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A REPORT ON AN ERGODIC DICHOTOMY

ANDRÉS SAMBARINO

Abstract. We establish (some directions) of a Ledrappier correspondence be-

tween Hölder cocycles, Patterson-Sullivan measures, etc for word-hyperbolic
groups with metric-Anosov Mineyev flow. We then study Patterson-Sullivan

measures for ϑ-Anosov representations over a local field and show that these

are parametrized by the ϑ-critical hypersurface of the representation. We use
these Patterson-Sullivan measures to establish a dichotomy concerning direc-

tions in the interior of the ϑ-limit cone of the representation in question: if u is

such a half-line, then the subset of u-conical limit points has either total-mass
if |ϑ| ≤ 2 or zero-mass if |ϑ| ≥ 4. The case |ϑ| = 3 remains unsettled.
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1. Introduction

Let G be the real points of a semi-simple real-algebraic group of the non-compact
type. The (Riemannian) globally symmetric space X associated to G is non-
positively curved, its visual boundary ∂∞X is a union of compact G-orbits, para-
metrized by directions in a (fixed beforehand) closed Weyl chamber a+ of g. The
G-orbit associated to a direction u ∈ P(a+) is G-equivariantly identified with the
flag space Fϑu of G, where ϑu is the subset of simple roots that do not vanish on u.

Let now Γ be a finitely generated group and ρ : Γ → G a representation with
discrete image. A fundamental object of study is the limit set Lρ of ρ(Γ) on the
visual boundary ∂∞X, defined as the set of accumulation points of a (any) orbit
ρ(Γ) · o on the natural compactification X ∪ ∂∞X.

When ρ(Γ) is Zariski-dense, this object has the following topological description
by Benoist [7]: the action of ρ(Γ) on each flag space Fϑ has a smallest closed
invariant set, called the limit set on Fϑ and denoted by Lϑρ ; on the other hand one

has the limit cone Lρ ⊂ a+ of ρ(Γ), defined as the subset of a+ of accumulation
points of sequences of the form

tna
(
ρ(γn)

)
,

where tn ∈ R+ converges to 0, γn ∈ Γ goes to infinity and a : G→ a+ is the Cartan
projection. It is a convex cone with non-empty interior and the limit set Lρ(Γ) on
∂∞X is the ”fibration” over P(Lρ), whose fiber over a given direction u ∈ P(Lρ) is
the limit set Lϑu

ρ of ρ(Γ) on Fϑu .
Inspired by the rank 1 case, as in Sullivan [68], one may seek to distinguish the

subset of conical points of Lρ, i.e. points on the limit set that are approached in a
uniform manner by elements of the orbit ρ(Γ) ·o. However, the definition of uniform
depends on:
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- the type of G-orbit the point lies in: a point x ∈ Lϑρ is conical if there
exists a (to be called conical) sequence {γn} ⊂ Γ converging to x such that
for every y ∈ Liϑ

ρ in general position1 with x the sequence γ−1
n (y, x) has

compact closure on the space of pairs of flags in general position F
(2)
ϑ ,

- the specific direction u ∈ P(Lρ), associated to the given point: fix a norm
‖ ‖ on a and define the tube of size r > 0 as the r-tubular neighborhood

Tr(u) = {v ∈ a : B(v, r) ∩ u 6= ∅},
then x ∈ Lϑu

ρ is u-conical if there exists r > 0 and a conical sequence γn → x
such that for all n one has

a
(
ρ(γn)

)
∈ Tr(u).

A measurable description has been recently established by Burger-Landesberg-
Lee-Oh [20] for u-conical points of Zariski-dense subgroups: under some extra as-
sumptions, the Patterson-Sullivan measure associated to the direction u charges
totally the subset of u-conical points iff G has rank ≤ 3, if rank G ≥ 4 then the
subset of u-conical points has zero mass.

In this paper we will also study a measurable description of u-conical limit
points, but for general Anosov representations, a class introduced by Labourie [43]
for fundamental groups of closed negatively-curved manifolds and generalized by
Guichard-Wienhard [35] for arbitrary (finitely generated) word-hyperbolic groups.
Thanks to the recent work by Kapovich-Leeb-Porti [40] (see also Bochi-Potrie-S.
[10] and Guéritaud-Guichard-Kassel-Wienhard [34]) we can define them as follows,
see § 5.2.

Definition 1.0.1. Let ϑ ⊂ ∆ be a non-empty subset of simple roots and denote by
| | the word length on Γ for some (fixed) symmetric generating set. A representation
ρ : Γ → G is ϑ-Anosov if there exist positive constants c, µ such that for all γ ∈ Γ
and σ ∈ ϑ one has

σ
(
a
(
ρ(γ)

))
≥ µ|γ| − c.

A key feature of a ϑ-Anosov representation ρ is that Γ is necessarily word-
hyperbolic and there exist continuous ρ-equivariant limit maps (Proposition 5.2.3)
defined on its Gromov-boundary,

ξϑ : ∂Γ → Fϑ

ξiϑ : ∂Γ → Fiϑ,

such that the flags ξiϑ(x) and ξϑ(y) are in general position whenever x 6= y.
We begin by studying the Patterson-Sullivan theory for these groups. Fix then

ϑ ⊂ ∆, let

aϑ =
⋂

σ∈∆−ϑ

kerσ

be the center of the associated Levi group and let pϑ : a → aϑ be the projection
invariant under the subgroup of the Weyl group point-wise fixing aϑ (see § 4.2). The
dual space (aϑ)∗ sits naturally as the subspace of a∗ of pϑ-invariant linear forms.
It is spanned by the fundamental weights of the elements in ϑ:

(aϑ)∗ =
〈{
$σ|aϑ : σ ∈ ϑ

}〉
.

1here we let i : a→ a be the opposition involution and iϑ := ϑ ◦ i,
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Let us write aϑ for the composition aϑ = pϑ ◦ a : G→ aϑ.
Let β : G× F∆ → a be the Buseman-Iwasawa cocycle of G introduced by Quint

[62] (see § 4.6). The map βϑ = pϑ ◦ β factors as a cocycle βϑ : G× Fϑ → aϑ.

Definition 1.0.2. A Patterson-Sullivan measure for ρ on Fϑ is a probability mea-
sure ν on Fϑ such that there exists ϕ ∈ a∗ϑ with, for every γ ∈ Γ ,

dρ(γ)∗ν

dν
(·) = q−ϕ

(
βϑ(ρ(γ)−1,·)

)
.

For ϕ ∈ (aϑ)∗ denote by

δϕ = lim
t→∞

1

t
log #

{
γ ∈ Γ : ϕ

(
a
(
ρ(γ)

))
≤ t
}
∈ [0,∞]

and, inspired by Quint’s growth indicator [61], consider the ϑ-critical hypersurface

Qϑ,ρ =
{
ϕ ∈ (aϑ)∗ : δϕ = 1

}
.

Let us define the ϑ-limit cone of ρ, denoted by Lϑ,ρ, as the asymptotic cone of the
projections {

aϑ
(
ρ(γ)

)
: γ ∈ Γ},

i.e. all limits of sequences of the form tnaϑ
(
ρ(γn)

)
, where γn →∞ in Γ and tn → 0

in R+.
In the real case, if ρ(Γ) is Zariski-dense, then Benoist’s aforementioned result

implies that Lϑ,ρ has non-empty interior. However, for arbitrary local fields this is
no longer the case1. We aim to work on this more general context, so let us assume
now that G is (the K-points of) a semi-simple algebraic group over a local field K,
we refer the reader to § 4 for the analogous definitions, where aϑ is replaced by the
real vector space Eϑ, etc.

Let Ann(Lϑ,ρ) be the annihilator of the ϑ-limit cone and denote by πϑρ : (Eϑ)∗ →
(Eϑ)∗/Ann(Lϑ,ρ) the quotient projection.

Theorem A. Let ρ : Γ → G be ϑ-Anosov. Then, Qϑ,ρ is a closed co-dimension-one
analytic sub-manifold of (Eϑ)∗ that bounds a convex set; moreover the projection
πϑρ
(
Qϑ,ρ

)
is also a closed co-dimension-one analytic sub-manifold, boundary of a

strictly convex set. For each ϕ ∈ Qϑ,ρ there exists a unique Patterson-Sullivan
measure νϕ with support on ξϑ(∂Γ). The map ϕ 7→ νϕ is an analytic homeomor-
phism between the projection πϑρ

(
Qϑ,ρ

)
and the space of Patterson-Sullivan measures

on Fϑ whose support is contained in ξϑ(∂Γ). Such Patterson-Sullivan measures are
ergodic and pairwise mutually singular.

We refer the reader to Corollary 5.5.3 and Proposition 5.9.2 for the proofs of the
above statements.

The fact that both Qϑ,ρ and πϑρ
(
Qϑ,ρ

)
are closed analytic hypersurfaces can be

found in Potrie-S. [57, Proposition 4.11] for K = R with essentially the same ar-
guments. The parametrization of Patterson-Sullivan measures by πϑρ

(
Qϑ,ρ

)
was

previously stablished by Lee-Oh [46, Theorem 1.3] for K = R, ϑ = ∆ and as-
suming Zariski-density of ρ(Γ). Existence and ergodicity was previously stablished,
for K = R by Dey-Kapovich [29, Main Theorem] for i-invariant functionals ϕ ∈
(a+)∗ ∩ (aϑ)∗ and i-invariant subsets ϑ; and S. [66, Corollary 4.22] for arbitrary
functionals but Zariski-dense representations of fundamental groups of negatively

1(even assuming Zariski-density and Anosov)
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curved manifolds. Existence of Patterson-Sullivan measures has also been stablished
by Canary-Zhang-Zimmer [21] in the real case for relative Anosov representations.

We keep the discussion for K = R since this is essential in the following result.
Consider ϕ ∈ Qϑ,ρ with associated Patterson-Sullivan measure µϕ. Via the duality

Grdim aϑ−1

(
(aϑ)∗

)
→ P(aϑ),

the tangent space TϕQϑ,ρ gives a direction uϕ of P(aϑ) contained in the relative
interior of the limit cone Lϑ,ρ (Corollary 5.9.1). We then further investigate the
µϕ-mass of uϕ-conical points on ξϑ(∂Γ).

Since we are dealing with the limit cone on aϑ (and not on a as before) uϕ-conical
are points are yet to be defined. It is standard that every point ξϑ(x) ∈ ξϑ(∂Γ) is
conical1, let us say it is further uϕ-conical if there exists a conical sequence (for x)
as above and r > 0 such that aϑ(ρ(γn)) ∈ Tr(uϕ). Denote by ∂ϕΓ ⊂ ∂Γ the subset

∂ϕΓ =
{
x ∈ ∂Γ : ξϑ(x) is uϕ-conical

}
.

Theorem B (Theorem 5.13.3). Let K = R and assume ρ is ϑ-Anosov and Zariski-
dense. If |ϑ| ≤ 2 then µϕ

(
ξϑ(∂ϕΓ)

)
= 1, if |ϑ| ≥ 4 then µϕ

(
ξϑ(∂ϕΓ)

)
= 0.

The case |ϑ| = 3 is sadly presently untreated, the missing fact that would make
our technique directly apply is an ergodicity result for translation skew-products
over metric-Anosov flows where the abelian group is isomorphic to R2 = R|ϑ|−1,
more precisely, we need equivalence between ergodicity and dimV ≤ 2 in Corollary
2.5.5.

When ϑ = ∆, a stronger version of Theorem B dealing also with the case |∆| = 3
was previously established by Burger-Landesberg-Lee-Oh [20, Theorem 1.6]. It is
likely that the combination of their techniques and ours settles the missing |ϑ| = 3
case.

1.1. General strategy for Theorem B. Let us briefly explain the proof of Theo-
rem B, which we believe is the main contribution of this work. The main ingredient
is a precise description of the ϑ-parallel sets dynamics of G. If (x, y) ∈ Fiϑ × Fϑ
are in general position, the associated parallel set is a subset of X consisting on
the union of totally geodesic maximal flats p of X whose associated complete flags
in the Furstenberg boundary p(−a+) and p(a+) contain, respectively, x and y as
a partial flag. This parallel set is a reductive symmetric space, and the associated
dynamical system consists on moving along its center.

More concisely, if one considers the space F
(2)
ϑ ⊂ Fiϑ × Fϑ of transverse flags,

then the space F
(2)
ϑ × aϑ carries a G-action (on the left) given by

g(x, y, v) =
(
gx, gy, v − βϑ(g, y)

)
,

and an aϑ-action (on the right) by translation on the last coordinate.

Observe however that the left-action of ρ(Γ) on F
(2)
ϑ × aϑ need not be proper.

For ϑ-Anosov groups though one finds an aϑ-invariant subset which is also ρ(Γ)-
invariant and on which this latter action is proper (§ 3.5.2 and § 5.3.2). Its quotient
by ρ(Γ) will be denoted, throughout this introduction, by Oϑ,ρ.

1(This follows from the fact that every point x ∈ ∂Γ is conical and the existence of the
equivariant limit maps for ρ.)
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For each ϕ ∈ Qϑ,ρ the space Oϑ,ρ will carry a ϕ-Bowen-Margulis measure Ωϕ

invariant under the directional flow ωϕ : Oϑ,ρ → Oϑ,ρ along uϕ ∈ uϕ, defined by
(the induced on the quotient by ρ(Γ) of)

(x, y, v) 7→ (x, y, v − tuϕ).

The idea generalizing S. [66] is that ωϕ is conjugated to a skew-product over a
metric-Anosov flow φϕ =

(
φϕt : χϕ → χϕ

)
t∈R on a compact metric space χϕ. This

is stablished in § 5.12 and previously stablished by Carvajales [23, Appendix] when
ϑ = ∆.

Remark 1.1.1. The flow φϕ plays a central role in this work. We propose to name
it the ϕ-refraction flow of ρ, because one may think as if the projection on the base
χϕ refracts the orbits of ωϕ (almost all of them wondering1 when |ϑ| ≥ 4) in order
to bind them in a compact space χϕ and obtain non-trivial dynamical behavior.
On the other hand, the term geodesic flow has too many meanings on this setting
(the geodesic flow of Γ , the geodesic flow of the locally symmetric space ρ(Γ)\X,
the geodesic flow of a projective-Anosov representation associated to ρ by Plucker
embedings...).

An ergodicity result for skew-products over metric-Anosov flows (see § 2.5) gives
an ergodic vs totally dissipative dichotomy for ωϕ according to |ϑ| ≤ 2 or |ϑ| ≥ 4,
here the base field K = R and Zariski-density of ρ are essential, since Benoist’s [8]
density of Jordan projections does not hold for non-ArchimedeanK. This dichotomy
is reminiscent of Sullivan’s [68] conservative vs totally dissipative dichotomy in rank
1. Observe again the untreated case |ϑ| = 3.

These dynamical properties of ωϕ imply the following. The set K(ωϕ) of points
in Oϑ,ρ whose future orbit returns unboundedly to some open bounded set, has
either zero Ωϕ-mass if |ϑ| ≥ 4 or its complement has zero Ωϕ-mass if |ϑ| ≤ 2.

The key feature now is to relate uϕ-conical points with the set K(ωϕ), this is

attained in Lemma 5.13.3 where it is shown that a triple (x, y, v) ∈ F
(2)
ϑ ×aϑ projects

to K(ωϕ) if and only if y is uϕ-conical. The previous dynamical dichotomy gives
then the dichotomy on the µϕ-measure on conical points:

|ϑ| ≤ 2⇒ µϕ(∂ϕΓ) = 1, |ϑ| ≥ 4⇒ µϕ(∂ϕΓ) = 0. (1)

The global strategy of our proof is different from the analog result in Burger-
Landesberg-Lee-Oh [20]. While, inspired by them, we also use a mixing result, the
use of Dirichlet-Poincaré series along tubes does not play any role in the proof of
Theorem B, nor on the ergodicity dichotomy for directional flows.

Let us end this Introduction be observing that both Burger-Landesberg-Lee-Oh
[20] and Chow-Sarkar [25] prove dynamical statements on ρ(Γ)\G (as opposed to
ρ(Γ)\G/M).

1.2. Plan of the paper. In § 2 we recall some basic facts about the Ergodic Theory
of metric-Anosov flows, and then study translation cocycles over them. Section 3
deals with a Ledrappier correspondence for word-hyperbolic groups whose Gromov-
Mineyev geodesic flow is metric-Anosov. We will mainly apply these results to the
Buseman-Iwasawa cocycle of G, for applications to other cocycles the reader may
check Carvajales [22, 23].

1in spite of being topologically mixing, these flows are wondering in a measureable sense i.e.
almost every point belongs to a subset of positive measure with bounded return times,
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We then recall in § 4 necessary definitions on semi-simple algebraic groups over
a local field and deal with Anosov representations on § 5. We explain in this section
how the Ledrappier correspondence applies in this setting to give, mainly:

- uniqueness results on the Patterson-Sullivan measures,
- precise dynamical information on the directional flows ωϕ.

The proof of Theorem B can be found in § 5.13.

1.3. Acknowledgements. This paper grew from a question asked to the author
by Hee Oh on the ergodicity of directional flows for Anosov representations (now
Theorem 5.12.1). He would like to thank her for asking the question. He would also
like to thank Marc Burger for encouraging him to pursue the ideas sketched on a
very early version of this work, together with the remaining authors O. Landesberg,
M. Lee and H. Oh of the paper [20], whose results inspired Theorem B.

2. Skew-products over metric-Anosov flows

Throughout this section we let X be a compact metric space and V a finite
dimension real vector space.

2.1. Thermodynamic Formalism and reparametrizations. Let φ = (φt :
X → X)t∈R be a continuous flow without fixed points. The space of φ-invariant
probability measures on X is denoted by Mφ. It is a convex, weakly-compact subset
of C∗(X), the dual space to the space of continuous functions equipped with the
uniform topology. The metric entropy of m ∈ Mφ will be denoted by h(φ,m), its
definition can be found in Aaronson [1]. Via the variational principle, we will define
the topological pressure (or just pressure) of a function f : X → R as the quantity

P (φ, f) = sup
m∈Mφ

(
h(φ,m) +

∫
X

fdm
)
. (2)

A probability measure m realizing the least upper bound is called an equilibrium
state of f. An equilibrium state for f ≡ 0 is called a measure of maximal entropy,
and its entropy is called the topological entropy of φ, denoted by h(φ).

Let f : X → R>0 be continuous. For every x ∈ X the function kf : X × R→ R,

defined by kf (x, t) =
∫ t

0
f(φsx)ds, is an increasing homeomorphism of R. There is

thus a continuous function αf : X × R→ R such that for all (x, t) ∈ X × R,

αf
(
x, kf (x, t)

)
= kf

(
x, αf (x, t)

)
= t.

The reparametrization of φ by f : X → R>0 is the flow φf = (φft : X → X)t∈R
defined, for all (x, t) ∈ X × R by

φft (x) = φαf (x,t)(x).

The Abramov transform of m ∈ Mφ is the probability measure m# ∈ Mφf

defined by

m# =
f ·m∫
fdm

. (3)

One has the following:
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Lemma 2.1.1 (S. [65, Lemma 2.4]). Let f : X → R>0 be a continuous function.
Assume the equation

P (φ,−sf) = 0 s ∈ R
has a finite positive solution h, then h is the topological entropy of φf . Conversely
if h(φf ) is finite then it is a solution to the last equation. In this situation, the
Abramov transform induces a bijection between the set of equilibrium states of −hf
and the set of probability measures maximizing entropy for φf .

Two continuous maps f, g : X → V are Livšic-cohomologous if there exists a
U : X → V, of class C1 in the direction of the flow1, such that for all x ∈ X one has

f(x)− g(x) =
∂

∂t

∣∣∣∣
t=0

U(φtx).

Remark 2.1.2. If f and g are real-valued and Livšic-cohomologous then P (φ, f) =
P (φ, g).

2.2. Metric-Anosov flows I: Livšic-cohomology. Metric-Anosov flows are a
metric version of what is commonly known as hyperbolic flows. The former are
called Smale flows by Pollicott [56], who transferred to this more general setting
the classical theory carried out for the latter. We recall here their definition and
some well known facts on their Ergodic Theory needed in the sequel. Throughout
this subsection we will further assume that φ is Hölder-continuous with an exponent
independent of t, that it is transitive, i.e. it has a dense orbit, and that it is metric-
Anosov.

For ε > 0 the local stable/unstable set of x are (respectively)

W s
ε (x) = {y ∈ X : d(φtx, φty) ≤ ε ∀t > 0 and d(φtx, φty)→ 0 as t→∞}

W u
ε (x) = {y ∈ X : d(φ−tx, φ−ty) ≤ ε ∀t > 0 and d(φ−tx, φ−ty)→ 0 as t→∞}.

Definition 2.2.1 (Metric-Anosov). The flow φ is metric-Anosov if the following
holds:

- (Exponential decay) There exist positive constants C, λ and ε such that for
every x ∈ X, every y ∈W s

ε (x) and every t > 0 one has

d(φtx, φty) ≤ Ce−λt,

and such that for every y ∈W u
ε (x) one has d(φ−tx, φ−ty) ≤ Ce−λt.

- (Local product structure) There exist δ, ε > 0 and a Hölder-continuous map

ν : {(x, y) ∈ X ×X : d(x, y) < δ} → R

such that ν(x, y) is the unique value ν such that W u
ε (φνx)∩W s

ε (y) is non-
empty, and consists of exactly one point, called 〈x, y〉 ; and for every x ∈ X
the map

W s
ε (x)×W u

ε (x)× (−δ, δ)→ X,

given by (y, z, t) 7→ φt(〈y, z〉), is a Hölder-homeomorphism onto an open
neighborhood of x.

1i.e. such that if for every x ∈ X, the map t 7→ U(φtx) is of class C1, and the map x 7→
∂
∂t

∣∣∣
t=0

U(φtx) is continuous
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A translation cocycle over φ is a map k : X × R→ V such that for every x ∈ X
and t, s ∈ R, one has

k(x, t+ s) = k(φsx, t) + k(x, s),

and such that the map k(·, t) is Hölder-continuous with exponent independent of t,
and with bounded multiplicative constant when t remains on a bounded set. Two
translation cocycles k1 and k2 are Livšic-cohomologous, if there exists a continuous
map U : X → V, such that for all x ∈ X and t ∈ R one has

k1(x, t)− k2(x, t) = U(φtx)− U(x). (4)

If k is a translation cocycle then the period for k of a periodic orbit τ is

`τ (k) = k
(
x, p(τ)

)
,

for any x ∈ τ. The marked spectrum τ 7→ `k(τ) is a cohomological invariant that
uniquely determines its class:

Theorem 2.2.2 (Livšic [47]). Let k : X × R → V be a translation cocycle. If
`k(τ) = 0 for every periodic orbit τ, then k is Livšic-cohomologous to 0.

Observe that if f : X → V is Hölder-continuous then the map

kf (x, t) =

∫ t

0

f(φsx)ds

is a translation cocycle. Two such functions are Livšic-cohomologous if and only if
the associated cocycles are, and the period of f on τ is, for any x ∈ τ,

`τ (f) =

∫
τ

f = kf
(
x, p(τ)

)
.

It turns out that every cocycle is Livšic-cohomologous to a cocycle of the form kf :

Corollary 2.2.3 (S. [66, Lemma 2.6]). If k : X × R → V is a translation cocycle
then there exists a Hölder-continuous f : X → V such that k and kf are Livšic-
cohomologous.

Proof. For any κ > 0, the function j(x, t) = 1
2κ

∫ κ
−κ k(x, t+ s)ds is differentiable on

the second variable, let f(x) =
(
∂/∂s

)
|s=0j(x, s). Then

kf (x, t) =

∫ t

0

f(φux)du =

∫ t

0

∂

∂s

∣∣∣
s=0

j(φux, s)du

=

∫ t

0

∂

∂s

∣∣∣
s=0

j(x, s+ u)du = j(x, t)− j(x, 0),

so the period kf (x, p(τ)) = j(x, p(τ))− j(x, 0) = k(x, p(τ)). By Theorem 2.2.2 the
cocycles k and kf are thus Livšic-cohomologous. �

We record also the following immediate consequence of Livšic’s Theorem:

Remark 2.2.4. The space of functions Livšic-cohomologous to a strictly positive
function is an (open cone on an) infinite dimensional space.

In this context much more information can be stated about the pressure function.
Recall that the space Holderα(X) of real valued α-Hölder functions is naturally a
Banach space when equipped with the norm

‖f‖α = ‖f‖∞ + sup
x6=y

|f(x)− f(y)|
d(x, y)α

.
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Proposition 2.2.5 (Bowen-Ruelle [16] and Parry-Pollicott [53, Prop. 4.10]). The
function P (φ, ·) is analytic on Holderα(X). If f, g ∈ Holderα(X), then

∂

∂t

∣∣∣
t=0

P (φ, f + tg) =

∫
gdmf ,

where mf is the equilibrium state of f, and the funcion t 7→ P (φ, f + tg) is strictly
convex unless g is Livšic-cohomologous to a constant. Finally, one also has

P (φ, f) = lim sup
t→∞

1

t
log

∑
τ :p(τ)≤t

e`τ (f). (5)

Let f ∈ Holderα(X) have non-negative (and not all vanishing) periods and define
its entropy by

hf = lim sup
s→∞

1

s
log #

{
τ periodic :

∫
τ

f ≤ s
}
∈ (0,∞].

Remark 2.2.6. Observe that hf is necessarily > 0 since f must have a positive
maximum and h(φ) > 0.

One has the following lemma.

Lemma 2.2.7 (Ledrappier [44, Lemma 1]+S. [65, Lemma 3.8]). Consider a Hölder-
continuous function f : X → R with non-negative periods. Then the following
statements are equivalent:

- the function f is Livšic-cohomologous to a positive Hölder-continuous func-
tion,

- there exists κ > 0 such that
∫
τ
f > κp(τ) for every periodic orbit τ,

- the entropy hf is finite,
- the function t 7→ P (φ,−tf) has a positive zero, in which case is hf .

Let us fix an exponent α and consider the cone Holderα+(X,R) of Hölder-continuous
functions that are Livšic-cohomologous to a strictly positive function. The implicit
function theorem for Banach spaces (see Akerkar [2]) and the explicit formula for
the derivative of pressure (Proposition 2.2.5) give the following corollary.

Lemma 2.2.8. The entropy map h : Holderα+(X,R)→ R+ is analytic.

Proof. Indeed Lemma 2.2.7 gives the equation P (φ,−hff) = 0 and equation (2.2.5)
gives that the non-vanishing derivative

d−hffP (φ, f) =

∫
fdm−hff > 0,

so the implicit function completes de result. �

2.3. Metric-Anosov flows II: Ergodic Theory. A fundamental tool for study-
ing the Ergodic Theory of metric-Anosov systems is the existence of a Markov
coding.

Let Σ be an irreducible sub-shift of finite type equipped with its shift transfor-
mation σ : Σ→ Σ, and r : Σ→ R>0 be Hölder-continuous. Let r̂ : Σ× R→ Σ× R
be defined as

r̂(x, s) = (σx, s− r(x)),

and consider the quotient space Σr = Σ × R/ 〈r̂〉 . It is equipped with the flow
σr =

(
σrt : Σr → Σr

)
t∈R induced on the quotient by the translation flow.
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Definition 2.3.1 (Markov coding). A triplet (Σ, π, r) is a Markov coding for φ if Σ
and r are as above, π : Σ→ X is Hölder-continuous and the function πr : Σ×R→ X
defined as

πr(x, t) = φtπ(x)

verifies the following conditions:

i) πr is Hölder-continuous, surjective and r̂-invariant; it passes then to the
quotient Σr,

ii) πr : Σr → X is bounded-to-one and injective on a residual set which is of
full measure for every ergodic σr-invariant measure of total support,

iii) for every t ∈ R one has πrσ
r
t = φtπr.

The following result has a long history, see for example Bowen [14, 15], Ratner
[63], Pollicott [56] and more recently Constantine-Lafont-Thompson [27].

Theorem 2.3.2 (Existence of coding). A transitive metric-Anosov flow admits a
Markov coding.

The above is a fundamental tool to obtain the following, see for example Bowen-
Ruelle [16], Parry-Pollicott [53] and more recently Giulietti-Kloeckner-Lopes-Marcon
[31], recall from § 2.1 the definition of equilibrium state.

Theorem 2.3.3 (Uniqueness of equilibrium states). Let f : X → R be Hölder-
continuous, then there exists a unique equilibrium state for f, denoted by mf ; it is
an ergodic measure. If g : X → R is also Hölder, then mg � mf if and only if
f − g is Livšic-cohomologous to a constant function, in which case mg = mf . The
function f 7→ mf , defined on the space of Hölder-continuous functions with fixed
exponent, is analytic.1

A final fact we will require on this setting (introduced by Margulis [48]) is the
decomposition of the measure of maximal entropy along the stable/ central-unstable
sets of φ.

The stable/unstable leaf of x is

W s(x) =
⋃
t∈R+

φ−t
(
W s
ε (φtx)

)
W u(x) =

⋃
t∈R+

φt
(
W u
ε (φ−tx)

)
,

and the central stable/unstable leaf is (respectively) the φ-orbit of W s(x) (resp.
W u(x)). These sets are independent of (any small enough) ε (i.e. smaller than the
ε given by Definition 2.2.1).

One has the following, see for example Margulis [49], Pollicott [55] for a con-
struction via Markov codings or Katok-Hasselblatt’s book [41, § 5 of Chapter 20]
for the discrete-time case.

Theorem 2.3.4 (Margulis description). For each x ∈ X there exists a measure µs
x

on the stable leaf W s(x) and a measure µcu
x on the central unstable leaf such that

- for all t > 0 and all measurable U ⊂W s(x) one has

µs
φtx(φtU) = e−h(φ)tµs

x(U), (6)

1We emphasize that the space of measures is endowed with the differentiable structure induced
by being the dual space of continuous functions.
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- the local product structure on Definition 2.2 induces a local isomorphism
between the measure µs

x ⊗ µcu
x and the measure of maximal entropy of φ.

The family of measures is unique in the following sense. If νs
x and νcu

x are also
a family of measures along the stable and central-unstable leafs of x such that the
product νs

x ⊗ νcu
x is locally isomorphic to a φ-invariant measure and νs

x verifies
equation (6) with some arbitrary fixed δ > 0 (instead of h(φ)) then δ = h(φ),
νs
x = µs

x and µcu
x = νcu

x .

2.4. Skew-products over sub-shifts. Consider now the two-sided subshift Σ and
let K : Σ→ V be Hölder-continuous.

Definition 2.4.1. We say that K is non-arithmetic if the group spanned by the
periods of K is dense in V.

The skew-product system is defined by f = fK : Σ× V → Σ× V

f(p, v) =
(
σ(p), v − K(p)

)
. (7)

If ν is a σ-invariant probability measure on Σ then the measure Ω = Ων = ν⊗Leb
is f -invariant.

The following proposition seems to be well known but we haven’t been able to
find a specific reference in the literature, for completeness we added a short proof
Appendix A.

Proposition 2.4.2. Let Σ be a two-sided sub-shift, ν be an equilibrium state of
some Hölder potential, and K : Σ→ R a non-arithmetic Hölder-continuous function
with

∫
Kdν = 0. Then the skew-product fK : Σ× R→ Σ× R is ergodic w.r.t. Ων .

We record also the following classical lemma. Let us say that a subset of Σ× V
is bounded if it has compact closure, and that it has total mass (w.r.t. Ω) if its
complement has measure zero. As the space Σ × V is non-compact, it is natural
to study the subset of points of Σ × V whose future orbit returns infinitely many
times to a fixed open bounded set:

K(f) =
{
p ∈ Σ× V : ∃B open bounded set and nk →∞ with fnk(p) ∈ B

}
.

One can be more specific. If B1,B2 ⊂ Σ×W we want to understand the measure
of

K(B1,B2) =
{
p ∈ B1 : ∃nk →∞ with fnk(p) ∈ B2

}
,

to this end one considers the sum
∑∞

0 Ω
(
1B1
· 1B2

◦ fn
)
:

Lemma 2.4.3. If
∑∞
n=0Ω

(
1B1
· 1B2

◦ fn
)
<∞ then Ω

(
K(B1,B2)

)
= 0. On the

other hand if ν has no atoms and f is ergodic w.r.t. Ω then K(f) has total mass
and for every pair B1,B2 one has K(B1,B2) has total mass on B1.

Proof. This is a standard argument valid for any measure preserving transforma-
tion. The first assertion follows by looking at the tail of the series in question

∞∑
n=k

Ω
(
1B1 · 1B2 ◦ fn

)
≥ Ω(Ek),

where, for each k ∈ N, Ek = {p ∈ B1 : ∃N ≥ k with fN (p) ∈ B2

}
. The second

assertion can be found in, for example, Aaronson’s book [1, page 22]. �
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2.5. An ergodic dichotomy. As in § 2.3, let σr be the suspension of the shift on Σ
by the function r. If ν is a σ-invariant probability measure, then ν⊗dt/

∫
rdν is in-

variant under the translation flow Σ×R and induces thus a σr-invariant probability
measure on Σr, denoted by ν̂.

Remark 2.5.1. It is a classical fact, to be found for example in Bowen-Ruelle [16],
that if ν is the equilibrium state of −h(σr)r then ν̂ realizes the topological entropy
of σr.

Let K : Σ × R → V be a 〈r̂〉-invariant Hölder-continuous function and consider
the flow

ψ =
(
ψt : Σr × V → Σr × V )t∈R

ψt
(
p, v
)

=
(
σrt (p), v −

∫ t

0

K(σrsp)ds
)
.

Consider the measure on Σr × V defined by Ω̄ν = ν̂ ⊗ Leb .

Theorem 2.5.2 (S. [66, Theorem 3.8]). Assume the group generated by the pe-
riods of (r,K) is dense in R × V and that

∫
Kdν̂ = 0 for the equilibrium state

ν of −h(σr)r. Then there exists κ > 0 such that given two compactly supported
continuous functions g1, g2 : Σr × V → R, one has

tdimV/2Ω̄ν

(
g1 · g2 ◦ ψt

)
→ κΩ̄ν(g1)Ω̄ν(g2),

as t→∞.

We include the main outline of its proof in Appendix B. As it is classical, the
above result holds for characteristic functions of open bounded sets whose boundary
has measure zero.

Corollary 2.5.3. Under the same assumptions of Theorem 2.5.2, if dimV = 1
then ψ is ergodic w.r.t. Ω̄ν . If dimV ≥ 3 then Ω̄ν

(
K(ψ)

)
= 0.

Proof. The skew-product system fK : Σ × V → Σ × V of equation (7), where
K : Σ→ V is defined by

K(x) =

∫ r(x)

0

K(x, s)ds, (8)

is the first-return map of ψ to its global section
(
Σ × {0}

)
/∼ × V. Consequently,

following the flow-lines until reaching the section, one finds a natural (measurable)
bijection between ψ-invariant subsets and f -invariant subsets. If µ is a σ-invariant
probability measure on Σ, then this bijection preserves the class of invariant-zero-
sets between the measures µ̂⊗ Leb on Σr × V and µ⊗ Leb on Σ× V. Thus we can
translate ergodicity results from f to the flow ψ and vice-versa.

The case dimV = 1 is hence settled by Proposition 2.4.2.
For dimV ≥ 3 one considers an open A ⊂ Σ with ν(∂A) = 0, an open interval

I ⊂ R with length < min r and B ⊂ V an open ball. Applying Theorem 2.5.2 to

B̄ = B̄1 = B̄2 = A× I ×B
gives a positive C such that for large t one has tdimV/2Ω̄

(
1B̄ · 1B̄ ◦ ψt

)
≤ C. Thus,

for a fixed t0 > 0 one has that∫ ∞
t0

Ω̄
(
1B̄ · 1B̄ ◦ ψt

)
dt ≤ C

∫ ∞
t0

1

tdimV/2
.
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If dimV ≥ 3 then
∫∞
t0
Ω̄
(
1B̄ ·1B̄ ◦ψt

)
dt <∞ and Lemma 2.4.3 gives Ω̄

(
K(ψ)

)
=

0, in particular the system is not ergodic. �

Remark 2.5.4. An ergodicity dichotomy for fK has been previously established
by Guivarc’h [36, Corollaire 3 on page 443] under the stronger assumption that K
is aperiodic.

By means of Markov partitions (Theorem 2.3.2), the above corollary immediately
translates in the following. As in the previous section, let X be a compact metric
space equipped with a topologically transitive, Hölder-continuous, metric-Anosov
flow φ. Let F : X → V be Hölder-continuous and consider the flow Φ =

(
Φt :

X × V → X × V
)
t∈R

Φt(p, v) =
(
φtp, v −

∫ s

0

F (φsp)ds
)
.

It is convenient to call the flow Φ by the skew product of φ by F .

Corollary 2.5.5 (Dichotomy). Assume the group spanned by the periods of (1, F )
is dense in R × V and that

∫
Fdm = 0 for the measure of maximal entropy m of

φ. Then Φ is mixing as in Theorem 2.5.2, moreover

dimV ≤ 1⇒ Φ is ergodic w.r.t. m⊗ Leb⇒ dimV ≤ 2.

If dimV ≥ 3 then K(Φ) has zero measure.

Proof. Follows from the corresponding results for subshifts and Remark 2.5.1 de-
scribing the measure of maximal entropy of φ. �

2.6. The critical hypersurface. We recall here two results from Babillot-Ledra-
ppier [5]. Their paper concerns differentiable Anosov flows but, as one checks the
proofs, only the existence of a Markov coding is required for both their results
below. We take the liberty to state them in our broader generality and refer the
reader to loc. cit. whose proofs work verbatim.

As before, let F : X → V be Hölder-continuous.

Assumption A. We will assume throughout the remainder of § 2 that the closed
group ∆ spanned by the periods of F has rank dimV, (i.e. ∆ ' Rk × ZdimV−k for
some k ∈ J0,dimV K) and that moreover the group spanned by{(

p(τ),

∫
τ

F
)

: τ periodic
}

is isomorphic to R×∆.

The compact convex subset of V

Mφ(F ) =
{∫

X

Fdµ : µ ∈Mφ
}

has hence non-empty interior. On the other hand, for each ϕ ∈ V ∗ one can consider
the pressure of the function ϕ(F ) : X → R:

P(ϕ) = P (φ,−ϕ ◦ F ).

By Assumption A the function P : V ∗ → R is analytic and strictly convex (Propo-
sition 2.2.5). Using the formula for the derivative of pressure (Proposition 2.2.5),
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and the natural identification GrdimV−1(V ∗)→ P(V ), one has, for ϕ ∈ V ∗ that

dϕP =

∫
Fdm−ϕ(F ), (9)

where m−ϕ(F ) is the equilibrium state of −ϕ(F ). One has the following.

Proposition 2.6.1 (Babillot-Ledrappier [5, Prop. 1.1]). The map ℘ : V ∗ → V
defined by ϕ 7→ dϕP is a diffeomorphism between V ∗ and the interior of Mφ(F ).

Let us denote by LF = R+ ·Mϕ(F ) the closed cone generated by the periods of
F. If 0 does not belong to Mφ(F ) then LF is a sharp cone (i.e. does not contain a
hyperplane of V ) and its interior is

intLF = R+ · int
(
Mφ(F )

)
.

One has moreover the following.

Proposition 2.6.2 (Babillot-Ledrappier [5, Prop. 3.1]). Assume 0 /∈Mφ(F ), then
the set ℘

(
{ϕ ∈ V ∗ : P(ϕ) = 0}

)
generates the cone intLF .

Remark 2.6.3. Observe that if ϕ ∈ V ∗ is such that
∑
τ periodic e

−`τ (ϕ◦F ) < ∞
then necessarily ϕ is strictly positive on the cone LF , i.e. ϕ ∈ int

(
L∗F
)
. Indeed, if∑

τ e
−`τ (ϕ◦F ) is convergent then the formula for pressure on Proposition 2.2.5 gives

that P(ϕ) ≤ 0. Since P(0) > 0, there exists s ∈ (0, 1] such that P(sϕ) = 0. The
variational principle (equation (2)) implies that∫

τ

ϕ(F ) ≥ 0

for every periodic orbit τ, and thus Lemma 2.2.7 applies to give that ϕ(F ) is Livšic-
cohomologous to a strictly positive function and hϕ(F ) ∈ (0, 1].

We are thus interested in the convergence domain of F

DF =
{
ϕ ∈ int

(
L∗F
)

: hϕ(F ) ∈ (0, 1)
}

⊂
{
ϕ ∈ V ∗ :

∑
τ periodic

e−`τ (ϕ◦F ) <∞
}
,

and the critical hypersurface1 (whose name is justified by the next corollary)

QF =
{
ϕ ∈ int

(
L∗F
)

: hϕ(F ) = 1
}
.

Corollary 2.6.4. Assume 0 /∈Mφ(F ), then DF = P−1(−∞, 0) and QF = P−1(0)
Consequently DF is a strictly convex set whose boundary coincides with QF . The
latter is a closed analytic co-dimension-one submanifold of V ∗. The map

ϕ ∈ QF 7→ TϕQF

induces a diffeomorphism between QF and directions in the interior of the cone LF .

Proof. We have already shown the inclusions P−1(−∞, 0) ⊂ DF and P−1(0) ⊂ QF ,
the other ones follow at once from Lemmas 2.2.7 and 2.1.1. Since 0 /∈ Mϕ(F )
Proposition 2.6.1 implies that P has no critical points, thus P−1(0) = QF is an
analytic sub-manifold of V ∗. Strict convexity follows from that of P, and the last
assertion follows by observing that the tangent space TϕQF equals ker dϕP. �

1also usually called the entropy-one set or the Manhattan curve,
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We now focus on the variation of the critical hypersurface when F varies. To
this end consider the Banach space Holderα(X,V ) of V -valued Hölder continuous
functions with exponent α. The pressure can be considered as an analytic map
P : Holderα(X,V ) × V ∗ → R defined as P(G,ψ) := P (φ,−ψ(G)). Its differential
at the point (F,ϕ) on the vector (G,ψ) is

d(F,ϕ)P(G,ψ) = −
∫ (

ψ(F ) + ϕ(G)
)
dm−ϕ(F ),

and vanishes identically only if (F,ϕ) = (0, 0). The pre-image P−1(0) is thus a
Banach-manifold.

If F ∈ Holderα(X,V ) is such that 0 /∈Mφ(F ), then its critical hypersurface

QF =
{
ϕ ∈ V ∗ : (F,ϕ) ∈ P−1(0)

}
is the intersection of {F}×V ∗ with the level set P−1(0). This intersection will vary
analytically on compact sets with F as long as the tangent space ker d(F,ϕ)P (for
fixed (F,ϕ) with P(F,ϕ) = 0) is transverse to the vector space {0} × V ∗. Since
ker d(F,ϕ)P has co-dimension 1, transversality is implied by ker d(F,ϕ)P ∩ {0} × V ∗
being co-dimension 1 on V ∗. However by Corollary 2.6.4, this latter intersection is,
as long as F verifies assumption A and 0 /∈Mφ(F ), the tangnet space TϕQF , which
has co-dimension 1. We have thus established the following.

Corollary 2.6.5. The critical hypersurface QF varies analytically on compact sets
when varying the function F among Hölder functions verifying the hypothesis of
Corollary 2.6.4.

2.7. Dynamical Intersection and the critical hypersurface. We recall here
the concept of dynamical intersection from Bridgeman-Canary-Labourie-S. [17],
similar concepts have been previously studied by Bonahon [11], Burger [19], Croke-
Fathi [28] and Knieper [42], among others.

Let f : X → R+ be a positive Hölder-continuous function and, for t > 0, consider
the finite set Rt(f) =

{
τ periodic : `τ (f) ≤ t

}
. Let g : X → R be Hölder-continuous

(but not necessarily positive), then the dynamical intersection between f and g is
defined by

I(f, g) = lim
t→∞

1

#Rt(f)

∑
τ∈Rt(f)

`τ (g)

`τ (f)
.

Then one has the following.

Proposition 2.7.1 ([17, § 3.4]). One has

I(f, g) =

∫
gdm−hff∫
fdm−hff

,

in particular I is well defined and varies analytically with f and g among Hölder-
continuous functions with fixed Hölder exponent. If g is moreover positive then one
has I(f, g) ≥ hf/hg.

We now place ourselves in the context of the previous subsection, i.e. we consider
a Hölder-continuous F : X → V and we assume moreover that 0 /∈ Mφ(F ). For
ϕ ∈ QF we consider the map Iϕ : V ∗ → R defined by

Iϕ(ψ) := I(ϕ(F ), ψ(F )) =

∫
ψ(F )dm−ϕ(F )∫
ϕ(F )dm−ϕ(F )

, (10)
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where the last equality comes from Proposition 2.7.1 and the fact that hϕ(F ) = 1.
Observe that it is a linear map. We then have the following explicit interpretation
of the tangent space to the critical hypersurface purely in terms of periods.

Corollary 2.7.2. Let F : X → V be as in § 2.6 and such that 0 /∈ Mφ(F ). Then
for ϕ ∈ QF one has TϕQF = ker Iϕ.

Proof. Since by Corollary 2.6.4 one has QF = P−1(0), the tangent space TϕQF =
ker dϕP = ker Iϕ, where the last equality comes from the combination of Equations
(9) and (10). �

3. A Ledrappier correspondence

In [44] Ledrappier establishes, for a closed negatively-curved manifold M, bijec-
tions between Livšic-cohomology classes of pressure zero functions on T1M, nor-
malized Hölder cocycles for the action of π1M on the visual boundary ∂∞M̃ of
the universal cover of M, quasi-invariant measures on ∂∞M̃ , among other objects.
The purpose of this section is to establish, in the context of word-hyperbolic groups
with metric-Anosov geodesic flow, some of these correspondences. We also extend
results from S. [64, 65, 66] to this setting. Some ideas from Bridgeman-Canary-
Labourie-S. [17, 18] and Carvajales [23, Appendix] are used. The reader can also
check Paulin-Pollicott-Schapira [54] for similar results in situations allowing cusps.

Let Γ be a finitely generated, non-elementary, word-hyperbolic group (see Ghys-
de la Harpe [30] for a definition). Denote by g =

(
gt : UΓ → UΓ

)
t∈R the Gromov-

Mineyev geodesic flow of Γ (see Gromov [33] and Mineyev [51]). The total space UΓ
is the quotient of ∂2Γ ×R by a properly discontinuous co-compact Γ -action (defined
in loc. cit.). This action restricted to ∂2Γ coincides with the induced Γ -action on
its Gromov boundary, and commutes with the R-action by translations, giving on
the quotient the desired flow g. We will save the notation

ŨΓ

for the pair consisting on the space ∂2Γ × R equipped with the above Γ -action.

Assumption B. We will assume throughout § 3 that g is metric-Anosov (recall
that in general g is transitive (see Remark 3.0.1)) and that the lamination induced

on the quotient by W̃cu = {(x, ·, ·) ∈ ŨΓ} is the central-unstable lamination of g.

Let us emphasize that, in what follows, the Gromov-Mineyev geodesic flow is
merely an auxiliary object. The whole discussion works verbatim replacing g by
the following flows known to satisfy Assumption B:

- the non-wandering set of the geodesic flow of a convex co-compact action of
Γ on a CAT(−1) space (if this is known to exist), see Constantine-Lafont-
Thompson [27],

- the geodesic flow of a projective-Anosov representation of ρ (again if this is
known to exist) as introduced in Bridgeman-Canary-Labourie-S. [17], see
also § 5.1.

Recall that every hyperbolic element1 γ ∈ Γ has two fixed points on ∂Γ , the
attracting γ+ and the repelling γ−. If x ∈ ∂Γ − {γ−} then γnx → γ+ as n → ∞.
The axis (γ−, γ+)× R projects then to a periodic orbit of g, denoted by [γ]. If l(γ)

1i.e. an infinite order element
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denotes the translation length of γ along this axis, then l(γ) is an integer multiple
of the period of the periodic orbit [γ]. Observe we allow [γ] to tour several times
along the orbits it surjects to, so at least formally, we let [γn] be the orbit [γ] toured
n-times.

Remark 3.0.1. We briefly justify why g is transitive. It suffices to show that given
two open sets U, V there exists t ∈ R s.t. gt(U)∩ V 6= ∅, so the question is reduced
to the same question for the action of Γ on ∂2Γ ; the open sets to be considered can
be reduced to be of the form U1 ×U2 and V1 × V2, where Ui, Vi ⊂ ∂Γ are open and
U1 ∩ U2 = V1 ∩ V2 = ∅; an element γ ∈ Γ with γ− ∈ U2 and γ+ ∈ V1 has a positive
power such that γn(U1 × U2) ∩ V1 × V2 6= ∅.

3.1. The Ledrappier potential of a Hölder cocycle. Let V be a finite dimen-
sional real vector space. A Hölder cocycle is a function c : Γ × ∂2Γ → V such
that:

- for all γ, h ∈ Γ one has c
(
γh, (x, y)

)
= c
(
h, (x, y)

)
+ c
(
γ, h(x, y)

)
,

- there exists α ∈ (0, 1] such that for every γ ∈ Γ the map c(γ, ·) is α-Hölder
continuous.

The period of a Hölder cocycle for a hyperbolic γ ∈ Γ is `c(γ) := c
(
γ, (γ−, γ+)

)
.

Two cocycles c, c′ are cohomologous if there exists a Hölder-continuous function
U : ∂2Γ → V such that for all γ ∈ Γ and (x, y) ∈ ∂2Γ one has

c(γ, (x, y))− c′(γ, (x, y)) = U(γ(x, y))− U(x, y).

Two cohomolgous cocycles have the same marked spectrum γ 7→ `c(γ). The follow-
ing should be compared with Ledrappier [44, Théorème 3].

Proposition 3.1.1. For every Hölder cocycle c there exists a Hölder-continuous
function Jc : UΓ → V such that for every hyperbolic γ ∈ Γ one has∫

[γ]

Jc = `c(γ).

Cohomologous cocycles induce Livšic-cohomolgous functions.

Proof. The general case follows from the case V = R by Riesz representation The-

orem. Assume thus V = R and consider the trivial line bundle ŨΓ × R equipped
with the bundle automorphisms

γ · (p, s) :=
(
γp, e−c

(
γ,(x,y)

)
s
)
,

where p = (x, y, t). Denote by F→ UΓ the quotient line bundle. It is equipped with
a flow

(
ĝt : F→ F

)
t∈R by bundle automorphisms, induced on the quotient by

t · (p, s) = (gtp, s).

Let | | be a Euclidean metric on F and define, for v ∈ Fp,

T(p, t) = log
|ĝtv|
|v|

. (11)

It is a translation cocycle over g, indeed since Fp is one dimensional the choice of v
does not matter, and since ĝ is a flow one has

log
|ĝt+s(v)|
|v|

= log
|ĝt(ĝsv)|
|v|

|ĝs(v)|
|ĝs(v)|

= log
|ĝt(ĝsv)|
|ĝs(v)|

+ log
|ĝs(v)|
|v|

.
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By Corollary 2.2.3, there exists a Hölder-continuous function Jc : UΓ → R such
that T and kJc are Livšic-cohomologous. We end the proof by a period compu-
tation. For every hyperbolic γ ∈ Γ one has, for all s ∈ R, that γ(γ−, γ+, s) =
(γ−, γ+, e

−`c(γ)s), or equivalently, for any x ∈ [γ] ⊂ UΓ and v ∈ Fx,

`c(γ) = log
|ĝp(γ)v|
|v|

= `[γ](T) =

∫
[γ]

Jc,

where p(γ) is the period of [γ] for g. Since cohomologous cocycles have the same
marked spectrum, the associated functions have the same periods and are thus
Livšic-cohomolgous by Theorem 2.2.2. �

Definition 3.1.2. We say that Jc is a Ledrappier potential of c over g.

3.2. Real cocycles and reparametrizations. Assume now V = R and consider
a cocycle c with non-negative (and not all vanishing) periods. Define its entropy
by

hc = lim sup
t→∞

1

t
log #

{
[γ] ∈ [Γ ] hyperbolic : `c(γ) ≤ t

}
.

Remark 3.2.1. It follows from Proposition 3.1.1 and Remark 2.2.6 that hc > 0.

For such a cocycle consider the action of Γ on ∂2Γ × R via c:

γ · (x, y, t) =
(
γx, γy, t− c

(
γ, (x, y)

))
. (12)

Let us denote by χc the quotient space χc = Γ\
(
∂2Γ × R

)
. The following can

be found in S. [65] for fundamental groups of closed negatively-curved manifolds
and in Carvajales [23] for the refraction cocycle of a ∆-Anosov representation (see
Definition 5.3.1).

Theorem 3.2.2. If c is a Hölder cocycle with non-negative periods and finite en-
tropy, then its Ledrappier potential is Livšic-cohomologous to a strictly positive
function. Moreover, the above action of Γ on ∂2Γ ×R is properly-discontinuous and
co-compact and the flow φc =

(
φct : χc → χc

)
t∈R induced on the quotient by the

R-translation flow is Hölder-conjugated to the reparametrization of g by Jc.

The topological entropy of φc is thus1 hc.

Proof. The first assertion follows at once from Lemma 2.2.7. For the remaining
statements, we continue as in the proof of the proposition but for the cocycle −c.
Observe first that −Jc = J−c. Since T and kJ−c are Livšic-cohomologous, there
exists U : UΓ → R such that for all t ∈ R, p ∈ UΓ and v ∈ Fp one has (recall
equation (11))

log
|ĝtv|
|v|
−
∫ t

0

J−c = U(gtp)− U(x).

Since J−c = −Jc is Livšic-cohomologous to a strictly negative function, the above
equation implies that the flow ĝ is contracting on F, i.e. there exist positive C and
µ such that for all v ∈ F and t ∈ R one has

|ĝtv| ≤ Ce−µt|v|.

1When Γ has torsion elements this fact requires some work, see Carvajales-Dai-Pozzetti-
Wienhard [24, Section 5] for details.
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A standard procedure (see for example Katok-Hasselblat [41] or Bridgeman-Canary-
Labourie-S. [17, Lemma 4.3]) provides a Euclidean metric ‖ ‖ on F such that the

constant C equals 1. We denote also by ‖ ‖ the lift of this metric to ŨΓ × R, it is a
Γ -invariant family.

Given then (x, y, t) ∈ ŨΓ we let v(x,y,t) ∈ (R−{0})/± be such that ‖v(x,y,t)‖ = 1.
As in [17, Proposition 4.2] the map

ŨΓ → ∂2Γ × (R− {0}/±)→ ∂2Γ × R
ξ : (x, y, t) 7→

(
x, y, v(x,y,t)

)
7→
(
x, y, log v(x,y,t)

)
, (13)

is Γ -equivariant and an orbit equivalence between de R-actions. �

Definition 3.2.3. The flow φc will be called the refraction flow of c.

3.3. Patterson-Sullivan measures. Let us consider now Hölder cocycles with
V = R and only depending on one variable, i.e. c : Γ × ∂Γ → R. Assume moreover
that c has non-negative periods and finite entropy. A cocycle c̄ : Γ ×∂Γ → R is dual
to c if for every hyperbolic γ ∈ Γ one has

`c̄(γ) = `c
(
γ−1

)
.

Definition 3.3.1.
- A Patterson-Sullivan measure for c of exponent δ ∈ R+ is a probability

measure µ on ∂Γ such that for every γ ∈ Γ one has

dγ∗µ

dµ
(·) = e−δc

(
γ−1,·

)
. (14)

- A Gromov product for the ordered pair (c̄, c) is a function [·, ·] : ∂2Γ → R

such that for all γ ∈ Γ and (x, y) ∈ ∂2Γ one has

[γx, γy]− [x, y] = −
(
c̄(γ, x) + c(γ, y)

)
.

Consider a pair of dual cocycles (c̄, c) and assume a Patterson-Sullivan measure
of exponent δ exists for each c and c̄, denoted by µ and µ̄ respectively. Assume
moreover that a Gromov product for the pair (c̄, c) exists. The measure

m̃ = e−δ[·,·]µ̄⊗ µ⊗ dt (15)

on ∂2Γ×R is hence Γ -invariant1 and R-invariant. Passing to the quotient one obtains
a measure m on χc invariant under the flow φc. Observe that we can write m̃ as

dm̃(x, y, t) =

∫
∂Γ×R

e−δtdµ(y)dt

(∫
∂Γ

eδte−δ[x,y]dµ̄(x)

)
.

1the action being via c, γ(x, y, t) = (γx, γy, t− c(γ, y))
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The measure e−δtdµdt is Γ -invariant1 on ∂Γ × R and the family

m(y,t) = eδte−δ[·,y]dµ̄

is Γ -equivariant. This decomposition induces then a local decomposition of m as a

product of measures on the laminations induced on the quotient by W̃cu =
{

(x, ·, ·) :

x ∈ ∂Γ} and Ṽ =
{

(·, y, t) : y ∈ ∂Γ , t ∈ R
}
. The local product structure induced

by ∂Γ × ∂Γ × R permits to transport the measures m(y,t), parallel to the central
stable leaf W cu[(x, y, t)], to the stable leaf of [(x, y, t)] for φc to obtain a family of
measures at each strong stable leaf νs

p such that

d
(
φc−t
)
∗ν

s
p

dνs
φctp

= e−δt. (16)

Margulis’s description of the measure maximizing entropy (§ 2.3.4) then gives that
δ = hc and that m maximizes entropy for φc. Thus, subject to the existence of
the Patterson-Sullivan measures and the Gromov product, we summarize the above
discussion in the following.

Proposition 3.3.2. The measure m on χc maximizes entropy for the flow φc.
The exponent δ necessarily equals the topological entropy of φc, hc, if ν is another
Patterson-Sullivan measure for c then ν = µ.

Let us consider again the measure m̃ on ∂2Γ × R from (15) but let us instead
study the Γ -action on the R-coordinate by the Gromov-Mineyev cocycle, so that
Γ\
(
∂2Γ×R

)
= UΓ and the induced flow is g. The quotient measure, a, is g-invariant

and the orbit equivalence ξ from equation (13) preserves, by the way it is defined,
zero flow-invariant sets between a and m. Since ξ is a conjugation between gJc and
φc, and m maximizes entropy for φc, the measure ξ∗m is gJc-invariant, maximizes
entropy for gJc and has the same zero sets as a.

One concludes that the Abramov transform (3) a# (w.r.t. Jc) is a measure
of maximal entropy of the flow gJc . Lemma 2.1.1 implies then that a/|a| is the
equilibrium state of −hcJc. Let us summarize in the following remark:

Remark 3.3.3. The probability measure a/|a| on UΓ = Γ\ŨΓ induced by m̃ is
the equilibrium state of −hcJc.

Since the zero sets of an equilibrium state are uniquely determined by the Livšic-
cohomology class of the associated potential up to an additive constant (Theorem
2.3.3), one concludes the following:

Corollary 3.3.4. Let κ̄, κ be a pair of dual cocycles with non-negative periods and
finite entropy. Assume Patterson-Sullivan measures, ν and ν̄, exist for κ and κ̄

1Indeed, if f : ∂Γ × R→ R is continuous then∫
f
(
γ(y, t)

)
e−δtdµdt, =

∫
f
(
γy, t− c(γ, y)

)
e−δtdµdt

=

∫
f(γy, t)e−δ

(
t−c(γ,y)

)
dµdt (by translation invariance)

=

∫
f(y, t)e−δ

(
t−c(γ,γ−1y)

)
e−δc(γ

−1,y)dµdt (by definition of µ)

=

∫
f(y, t)e−δtdµdt.
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respectively, together with a Gromov product for the pair. If ν has the same zero sets
as µ then the (scaled) Ledrappier potentials hcJc and hκJκ are Livšic-cohomologous
and ν = µ.

Proof. A final argument is required, indeed from § 2.3.3 there exists a constant K
such that hcJc and hκJκ + K are Livšic-cohomologous. However, since hc is the
topological entropy of gJc , Lemma 2.1.1 gives

0 = P (g,−hcJc) = P (g,−hκJκ +K) = K,

where the second equality holds by Remark 2.1.2, and the third equality by the
definition of P (equation (2)). �

The above corollary can be found in Ledrappier [44] when Γ is the fundamental
group of a negatively curved closed manifold. The proof uses also a disintegration
argument. One may also check Kaimanovich [39] and Babillot’s survey [4] specifi-
cally for the Buseman cocycle (Γ as in Ledrappier’s aforementioned situation), and
Carvajales [23, Appendix] for the refraction cocycle βϕ (see § 5.3 for the definition)
of a ∆-Anosov representation of an arbitrary word-hyperbolic group.

3.4. Vector-valued cocycles I: the critical hypersurface. Let now c : Γ×∂Γ →
V be a Hölder cocycle and consider the compact convex set Mg(Jc) ⊂ V. Since this
set depends on the base flow g it is natural to consider the limit cone of c

Lc =
⋃
γ∈Γ

R+ · `c(γ) = R+ ·Mg(Jc).

Remark 3.4.1. Up to Livšic -cohomology we can assume that Jc has values in the
vector space V ′ = 〈Mg(Jc)〉 . We can moreover choose a reparametrization gf of g

so that if Jgf

c : UΓ → V ′ is the Ledrappier potential for c over gf then the flow gf

together with the potential Jgf

c verify Assumption A from § 2.6.

Proof. By Remark 2.2.7 the space of Livšic-cohomology classes over g is infinite
dimensional, so the remark follows. �

We will work from now on with flow gf given by the remark and the Ledrappier

potential Jgf

c , we will rename these by g and Jc though as to not overcharge the
paper with notation and keep in mind that, when we restrict the image of Jc to V ′,
Assumption A is verified.

Let
(
Lc

)∗
= {ψ ∈ V ∗ : ψ|Lc ≥ 0} be the dual cone of c. For ψ ∈ V ∗ denote by

cψ = ψ ◦ c : Γ × ∂Γ → R and hψ = hcψ .

Assumption C. There exists ψ ∈
(
Lc

)∗
such that cψ has finite entropy.

Lemma 3.4.2. In this case 0 /∈Mg(Jc),
(
Lc

)∗
has non-empty interior and int

(
Lc

)∗
={

ϕ ∈
(
Lc

)∗
: hϕ <∞

}
.

Proof. The Lemma follows essentially from § 3.1 and Lemma 2.2.7, indeed since
hψ = hψ(Jc) < ∞ there exists κ > 0 such that for all hyperbolic γ ∈ Γ it holds

ψ
(
`c(γ)/p(γ)

)
> κ; by density of periodic orbits on Mg one has inf

{
ψ
(
Mg(Jc)

)}
>

κ > 0. The remaining statements follows similarly. �
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Since 0 /∈Mφcψ (Jc) we can apply Corollary 2.6. Denote by

Qc =
{
ϕ ∈ int

(
Lc

)∗
: hϕ = 1

}
Dc =

{
ϕ ∈ int

(
Lc

)∗
: hϕ ∈ (0, 1)

}
⊂
{
ϕ ∈ V ∗ :

∑
[γ]∈[Γ ]

e−`cϕ (γ) <∞
}

respectively the critical hypersurface and the convergence domain of c.
Since we haven’t required the cone Lc to have non-empty interior, consider its

annihilation space
Ann(Lc) = {ψ ∈ V ∗ : Lc ⊂ kerψ}.

If ϕ ∈ int
(
Lc

)∗
and ψ ∈ Ann(Lc) then the potentials ϕ(Jc) and (ϕ + ψ)(Jc) are

Livšic-cohomologous. Let πc : V ∗ → V ∗/Ann(Lc) be the quotient projection.
We also import the concept of dynamical intersection of § 2.7 to this setting using

the Ledrappier potential of c. For ϕ ∈ Qc define the dynamical intersection map
associated to c by Iϕ = Icϕ : V ∗ → R be defined by

Iϕ(ψ) = I
(
ϕ(Jc), ψ(Jc)

)
.

By definition I
(
ϕ(Jc), ψ(Jc)

)
only depends on the Livšic-cohomology classes of ϕ(Jc)

and ψ(Jc), so we may freely consider I as defined on Qc × V ∗ or on πc(Qc) ×
V ∗/Ann(Lc). One has the following:

Corollary 3.4.3. Under Assumption C one has that πc(Dc) is a strictly convex set
whose boundary is πc(Qc). The latter is an analytic co-dimension-one sub-manifold.
The map u : πc(Qc)→ P

(
span{Lc}

)
defined by

ϕ 7→ uϕ := Tϕπ
c(Qc) = ker Iϕ

is an analytic diffeomorphism between πc(Qc) and directions in the relative interior
of Lc.

Proof. By Remark 3.4.1 we can apply § 2.6 to Jc, the equality TϕQc = ker Iϕ follows
from Corollary 2.7.2. �

3.5. Vector-valued cocycles II: skew-product structure. We remain in the
situation of § 3.4, i.e. we keep Assumption C. It follows at once from Theorem 3.2
that the Γ -action ∂2Γ × V

γ(x, y, v) =
(
γx, γy, v − c(γ, y)

)
is properly discontinuous. We aim to give a description of the V -action on the
quotient space Γ\

(
∂2Γ × V

)
space.

By Lemma 3.4.2 and Theorem 3.2.2 we can, for every ϕ ∈ int
(
Lc

)∗
, consider

the refraction flow φcϕ =
(
φ
cϕ
t : χcϕ → χcϕ

)
t∈R. Such a ϕ is fixed from now on.

Remark 3.5.1. Let us still denote by Jc the Ledrappier potential for c over the
flow φcϕ , i.e. for every hyperbolic γ ∈ Γ one has∫

[γ]

Jc = `c(γ) ∈ V.

Let p be the probability measure of maximal entropy of φcϕ . The growth direction
of ϕ is the line of V

uϕ = TϕQc = R ·
∫
χcϕ

Jcdp (17)
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(the last equality follows from equation (9) and Corollary 2.6.4). Consider also
the projection πϕ : V → kerϕ parallel to uϕ and denote by Jϕc : χcϕ → kerϕ the
composition Jϕc = πϕ ◦ Jc. Observe that∫

χcϕ
Jϕc dp = 0. (18)

Fix uϕ ∈ uϕ with ϕ(uϕ) = 1 and define the directional flow
(
ωϕ
t : Γ\

(
∂2Γ × V

)
→

Γ\
(
∂2Γ × V

))
t∈R by the induced on the quotient of

t · (x, y, v) = (x, y, v − tuϕ).

Proposition 3.5.2 (S. [66]). There exist a (bi)-Hölder-continuous homeomorphism

E : Γ\
(
∂2Γ × V

)
→ χcϕ × kerϕ,

commuting with the kerϕ action, that conjugates the flow ωϕ with Φϕ =
(
Φϕt :

χcϕ × kerϕ→ χcϕ × kerϕ
)
t∈R

Φϕt (p, v) :=
(
φ
cϕ
t (p), v −

∫ t

0

Jϕc (φcϕs p)ds
)
.

Proof. This is the first item of S. [66, Proposition 3.5] when Γ is the fundamental
group of a closed negatively curved manifold. The proof adapts mutatis mutandis
once § 3.2 is stablished. �

Let us moreover place ourselves in the existence assumptions of subsection 3.3
for the cocycle cϕ, i.e. assume there exists:

- a dual cocycle c̄ϕ together with a Gromov product [·, ·] for the pair (c̄ϕ, cϕ),
- a Patterson-Sullivan measure for each cϕ and c̄ϕ, denoted by µ and µ̄ re-

spectively. Recall from Proposition 3.3.2 that necessarily the exponent of
both µ and µ̄ is hcϕ , the topological entropy of φcϕ .

By Proposition 3.3.2 the measure m maximizes entropy for φcϕ , one has then
p = m/|m|. Consider the ϕ-Bowen-Margulis measure Ωϕ on Γ\

(
∂2Γ × V

)
defined

as the induced on the quotient by

e−hcϕ [·,·]µ̄⊗ µ⊗ LebV ,

for a Lebesgue measure on V. One has the following result.

Proposition 3.5.3 (S. [66]). The (bi)-Hölder-continuous homeomorphism from
Proposition 3.5.2 is a measurable isomorphism between Ωϕ and m⊗ Lebkerϕ .

Proof. This follows again as in S. [66, Proposition 3.5] once Proposition 3.3.2 is
established. �

3.6. Vector-valued cocycles III: Dynamical consequences. We remain in the
situation of § 3.4. Let us say that c is non-arithmetic if the periods of c span a dense
subgroup in V.

One concludes at once the following consequences:

Corollary 3.6.1 (Ergodicity dichotomy). Assume c is non-arithmetic, then ωϕ

is mixing as in Theorem 2.5.2, consequently if dimV ≥ 4 then K(ωϕ) has zero
Ωϕ-measure. If dimV ≤ 2 then the directional flow ωϕ is Ωϕ-ergodic.
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Proof. By Proposition 3.5.2 the flow ωϕ is Hölder-conjugated to the skew-product
of φcϕ with the Ledrappier potential Jϕc , the fiber being kerϕ and thus dimV −
1-dimensional. Proposition 3.5.3 describes the desired measures in terms of the
skew-product structure; non-arithmeticity of c and equation (18) allow us to apply
Corollary 2.5.5. �

4. Algebraic semi-simple groups over a local field

This section is a collection of necessary language and basic results needed for
the sequel. Most of the material covered here can be found in, for example, Borel’s
book [12] and/or in the book by Benoist-Quint [9].

Let K be a local field. If K is non-Archimedean let us denote by q the cardinality
of its residue field, u ∈ K a uniformizing element, and choose the norm | | on K so
that |u| = q−1. In this case log denotes the logarithm on base q, so that log q = 1. If
K = R or C then | | is the standard modulus, q := e and log is the usual logarithm.

Let G be the K-points of a connected semi-simple K-group, A the K-points of a
maximal K-split torus and X(A) the group of its K∗-characters. Consider the real
vector space E∗ = X(A)⊗Z R and E its dual. For every χ ∈ X(A), we denote by χω

the corresponding linear form on E.
Let Φ be the set of restricted roots of A in g, the set Φω is a root system of E∗. Let

(Φω)+ be a system of positive roots, E+ the associated Weyl chamber and Φ+ and
∆ ⊂ Φ the corresponding system of positive roots and simple roots respectively.

Let ν : A→ E be defined, for z ∈ A, as the unique vector in E such that for every
χ ∈ X(A) one has

χω(ν(z)) = log |χ(z)|.
Denote by A+ = ν−1(E+).

Let W be the Weyl group of Φ, it is isomorphic to the quotient of the normalizer
NG(A) of A in G by its centralizer ZG(A). Let i : E→ E be the opposition involution:
if u : E → E is the unique element in the Weyl group with u(E+) = −E+ then
i = −u.

4.1. Restricted roots and parabolic groups. Consider ϑ ⊂ ∆ and let Pϑ, resp.
P̌ϑ, be the normalizers in G of, respectively, the Lie algebras⊕

α∈〈∆−ϑ〉

g−α ⊕
⊕
α∈Φ+

gα,

⊕
α∈〈∆−ϑ〉

gα ⊕
⊕
α∈Φ+

g−α.

The ϑ-flag space is Fϑ = G/Pϑ. The orbit G ·
(
[P̌ϑ], [Pϑ]

)
⊂ Fiϑ × Fϑ is the

unique open orbit on this product space, we will denote it by F
(2)
ϑ and say that

(x, y) ∈ Fiϑ × Fϑ are transverse if in fact (x, y) ∈ F
(2)
ϑ .

Denote by (·, ·) a W-invariant inner product on E, (·, ·) the induced inner product
on E∗, define 〈 , 〉 on E∗ by

〈χ, ψ〉 =
2(χ, ψ)

(ψ,ψ)

and let {$α}α∈Π be the fundamental weights of Φ, defined by the equations 〈$α, σ〉 =
dαδασ, where dα = 1 if 2α /∈ Φ and dα = 2 otherwise.
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4.2. The center of the Levi group. We now consider the vector subspace

Eϑ =
⋂

α∈∆−ϑ

kerαω

together with the unique projection pϑ : E → Eϑ invariant under the subgroup of
the Weyl group Wϑ = {w ∈ W : w|Eϑ = id}. The dual space (Eϑ)∗ sits naturally
as the subspace of E∗ of pϑ-invariant linear forms

(Eϑ)∗ =
{
ϕ ∈ E∗ : ϕ ◦ pϑ = ϕ

}
.

It is spanned by the fundamental weights
{
$σ|Eϑ : σ ∈ ϑ

}
.

4.3. Cartan decomposition. Let K ⊂ G be a compact group that contains a
representative for every element of the Weyl group W. This is to say, such that
the normalizer NG(A) verifies NG(A) = (NG(A) ∩ K)A. One has G = KA+K and if
z, w ∈ A+ are such that z ∈ KwK then ν(z) = ν(w). There exists thus a function

a : G→ E+

such that for every g1, g2 ∈ G one has g1 ∈ Kg2K if and only if a(g1) = a(g2). It is
called the Cartan projection of G.

4.4. Jordan decomposition. Recall that the Jordan decomposition states that
every g ∈ G has a power1 gk that can be written as a commuting product g =
geghgn, where ge is elliptic, gh is semi-simple over K and gn is unipotent. The
component gh is conjugate to an element zg ∈ A+ and we let

λ(g) = (1/k)ν(zg) ∈ E+.

The map λ : G→ E+ is the Jordan projection of G. We will also denote by λϑ : G→
Eϑ the composition pϑ ◦λ. For G = PGLd(K) we will denote by λ1(g) the logarithm
of the spectral radius if g.

4.5. Representations of G. Let V be a finite-dimensional K-vector space and
φ : G→ PGL(V) be an algebraic irreducible representation. Then the weight space
associated to χ ∈ X(A) is the vector space

Vχ = {v ∈ V : φ(a)v = χ(a)v ∀a ∈ A}
and if Vχ 6= 0 then we say that χω ∈ E∗ is a restricted weight of φ. Theorem 7.2 of
Tits [69] states that the set of weights has a unique maximal element with respect
to the order χ ≥ ψ if χ−ψ is a sum of simple roots with non-negative coefficients.
This is called the highest weight of φ and denoted by χφ.

We denote by ‖ ‖φ a norm on V invariant under φK and such that φA consists
on semi-homotheties2. If K is Archimedean the existence of such a norm is classical
(see for example Benoist-Quint [9, Lemma 6.33]), if K is non-Archimedean then
this is the content of Quint [60, Théorème 6.1].

For every g ∈ G one has then

log ‖φg‖φ = χωφ
(
a(g)

)
,

log λ1(φg) = χωφ
(
λ(g)

)
. (19)

1(k = 1 if K is Archimedean)
2i.e. diagonal on an orthonormal basis E of V, in the classical sense if K Archimedean, and

such that ‖
∑
e∈E vee‖ = max{|ve|} if K is non-Archimedean.
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Denote by Wχφ
the φA-invariant complement of Vχφ

. The stabilizer in G of Wχφ

is P̌ϑ,K, and thus one has a map of flag spaces

(Ξφ,Ξ
∗
φ) : F

(2)
ϑφ

(G)→ Gr
(2)
dim Vχφ

(V), (20)

where ϑφ = {σ ∈ ∆ : χφ − σ is a weight of φ}. This is a proper embedding which

is an homeomorphism onto its image. Here G
(2)
dim Vχφ

(V) is the open PGL(V)-orbit in

the product of the Grassmannians of (dim Vχφ
)-dimensional and (dim V−dim Vχφ

)-
dimensional subspaces.

One has the following proposition from Tits [69] that guarantees existence of
certain representations of G. We say that φ is proximal if dim Vχφ

= 1.

Proposition 4.5.1 (Tits [69]). For every σ ∈ ∆ there exists an irreducible proximal
representation of G whose highest restricted weight is lσ$σ for some lσ ∈ Z≥1.

Definition 4.5.2. We will fix and denote by φσ : G → GL(Vσ) such a set of
representations.

4.6. Buseman-Iwasawa cocycle. The Iwasawa decomposition of G states that
every g ∈ G can be written as a product lzu with l ∈ K, z ∈ A and u ∈ U∆,
where U∆ is the unipotent radical of P∆. When K is non-Archimedean the Iwasawa
decomposition is not unique, however if z1, z2 ∈ A are such that z1 ∈ Kz2U∆ then
ν(z1) = ν(z2).

The Buseman-Iwasawa cocycle of G, β : G×F → E, is defined by, for all g ∈ G and
k[P∆] ∈ F, if gk = lzu is an Iwasawa decomposition of gk then β(g, k[P∆]) = ν(z).
Quint proved the following.

Lemma 4.6.1 (Quint [62, Lemmas 6.1 and 6.2]). The function βϑ = pϑ ◦β factors
as a cocycle βϑ : G× Fϑ → Eϑ.

The Buseman-Iwasawa cocycle can also be read from the representations of G.
Indeed, Quint [62, Lemme 6.4] states that for every g ∈ G and x ∈ Fϑ one has

lσ$σ(β(g, x)) = log
‖φσ(g)v‖φ
‖v‖φ

, (21)

where v ∈ Ξφσ (x) ∈ P(Vσ) is non-zero.

4.7. Gromov product. As in S. [66], the Gromov product Gϑ : F
(2)
ϑ → Eϑ is

defined such that, for every (x, y) ∈ F
(2)
ϑ and σ ∈ ϑ, one has

lσ$σ

(
Gϑ(x, y)

)
= log

|ϕ(v)|
‖ϕ‖φσ‖v‖φσ

,

where ϕ ∈ Ξ∗φσ (x) and v ∈ Ξφσ (y) are the equivariant maps from equation (20).

Remark 4.7.1. Observe that the limiting situation lσ$σ

(
Gϑ(x, y)

)
= −∞ occurs

when v ∈ kerϕ, i.e. when x and y are no longer transverse flags, so a statement of
the form $σGϑ(x, y) ≥ −κ for all σ ∈ ϑ is a quantitative version (that depends on
K) of the transversality between x and y.

A straightforward computation (S. [66, Lemma 4.12]) gives, for all g ∈ G and

(x, y) ∈ F
(2)
ϑ ,

Gϑ(gx, gy)−Gϑ(x, y) = −
(

iβiϑ(g, x) + βϑ(g, y)
)
. (22)
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4.8. Proximality. Recall that g ∈ PGLd(V) is proximal if it has a unique eigen-
value with maximal modulus and that the multiplicity of this eigenvalue in the
characteristic polynomial of g is 1. The associated eigenline is denoted by g+ ∈ P(V)
and g− is its g-invariant complementary subspace.

We say then that g ∈ G is ϑ-proximal if for every σ ∈ ϑ one has φσ(g) is proximal.

In this situation, there exists a pair (g−ϑ , g
+
ϑ ) ∈ F

(2)
ϑ , defined by, for every σ ∈ ϑ,

Ξφσ

(
g+
ϑ

)
= φσ(g)+, and every flag x ∈ Fϑ in general position with g−ϑ verifies

gnx→ g+
ϑ .

It is also useful to consider a quantified version of proximality. Given r, ε positive
we say that g is (r, ε)-proximal if it is proximal,

$σGϑ(g−ϑ , g
+
ϑ ) ≥ −r

for all σ ∈ ϑ and for every x ∈ Fϑ with minσ∈ϑ$σGϑ(g−ϑ , x) ≥ −ε−1 one has

dFϑ(gx, g+
ϑ ) ≤ ε. More details on the following can be found in S. [65, Lemma 5.6].

Proposition 4.8.1 (Benoist [6, Corollaire 6.3]). For every δ > 0 there exist r, ε > 0
such that if g ∈ G is (r, ε)-proximal then∥∥aϑ(g)− λϑ(g)−Gϑ(g−ϑ , g

+
ϑ )
∥∥ ≤ δ.

4.9. Cartan attractors. Consider g ∈ G and let g = kgzglg be a Cartan decom-
position. We say that g ∈ G has a gap at ϑ if for all σ ∈ ϑ one has

σ
(
a(g)

)
> 0.

In that case the Cartan attractor of g in Fϑ

Uϑ(g) = kg[Pϑ]

is well defined: uniquely defined if K is Archimedian; defined up to a ball of radius
q−minσ∈ϑ σ(g) if K is non-Archimedean (see Pozzetti-S.-Wienhard [59, Remark 2.4]).

Remark 4.9.1. For every σ ∈ ϑ one has Ξφσ

(
Uϑ(g)

)
= U1

(
φσ(g)

)
.

Lemma 4.9.2 (Bochi-Potrie-S. [10, Lemma A.5]). Consider g, h ∈ G such that h
and gh have gaps at every σ ∈ ϑ, then one has

d
(
Uϑ(gh), gUϑ(h)

)
≤ q−minσ∈ϑ σ(h) ·max

σ∈ϑ

{
‖φσ(g)‖‖φσ(g−1)‖

)}
.

The Cartan basin of g is defined, for α > 0, by (recall Remark 4.7.1)

Bϑ,α(g) =
{
x ∈ Fϑ : $σ

(
Gϑ
(
Uiϑ(g−1)

)
, x
)
> −α ∀σ ∈ ϑ

}
.

It is clear from the definition that given α > 0 there exists a constant Kα such that
if y ∈ Fϑ belongs to Bϑ,α(g) then one has∥∥aϑ(g)− βϑ(g, y)

∥∥ ≤ Kα. (23)

Lemma 4.9.3 (Quint [62, Lemme 6.6]). For every g ∈ G one has aϑ(gh)−aϑ(h)−
βϑ
(
g, Uϑ(h)

)
→ 0 as minσ∈ϑ σ

(
a(h)

)
→∞.
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4.10. General facts on discrete subgroups. We record here some facts related
to the title that we will need in the sequel.

Lemma 4.10.1. Let ∆ ⊂ G be a discrete subgroup, then for every ϕ ∈ E∗ strictly
positive on E+ the exponential rate

δϕ∆ = lim sup
t→∞

1

t
log #

{
g ∈ ∆ : ϕ

(
a(g)

)
≤ t
}

is finite.

Proof. Follows from a computation of the Haar measure of G, to be found in Hel-
gason [37] for the Archimedean case and in Matsumoto [50, § 3.2.7] for the non-
Archimedean case, see Quint [61, § 4] for details. �

We record also the following theorem from Benoist [8].

Theorem 4.10.2 (Benoist [8]). Assume K = R and let ∆ ⊂ G be a Zariski-dense
subgroup, then the group spanned by the Jordan projections {λ(g) : g ∈ ∆} is dense
in E.

5. Anosov representations

Anosov representations where introduced by Labourie [43] for fundamental groups
of negatively curved manifolds and extended to arbitrary finitely generated hyper-
bolic groups by Guichard-Wienhard [35]. They originated as a tool to study higher
rank Teichmüller Theory, and are nowadays consider as the higher-rank analog of
what is known in pinched negative curvature as convex co-compact groups.

Notation. If ρ : Γ → G is a representation we will simplify notation and denote,
for γ ∈ Γ , by γρ = ρ(γ).

5.1. Real projective-Anosov representations. We begin by recalling Labourie’s
original approach. Let Γ be a finitely generated word-hyperbolic group. If ρ : Γ →
PGLd(R) is a representation then we can consider the natural flat bundle automor-
phism defined as follows. Consider the flat bundle Rd → Eρ → UΓ defined by

ŨΓ × Rd/∼ where (p, v) ∼
(
γp, γρv

)
, and define ĝ =

(
ĝt : Eρ → Eρ

)
t∈R as the

induced on the quotient by t · (p, v) = (g̃tp, v).

Definition 5.1.1. The representation ρ is projective-Anosov if there exists a pair
of continuous ρ-equivariant maps

ξ1 : ∂Γ → P(Rd)

ξd−1 : ∂Γ → P
(
(Rd)∗

)
such that:

- for every (x, y) ∈ ∂2Γ one has ker ξd−1(x) ⊕ ξ1(y) = Rd; this induces a
ĝ-invariant decomposition Ξ⊕Θ = Eρ

- the decomposition Eρ = Ξ⊕Θ is a dominated splitting for ĝ, i.e. there exist
c, α positive such that for every v ∈ Ξp and w ∈ Θp one has

‖ĝtv‖
‖ĝtw‖

≤ ce−αt ‖v‖
‖w‖

.
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One has the following standard consequences, see for example Guichard-Wienhard
[35, Lemma 3.1] or Bridgeman-Canary-Labourie-S. [17, Lemma 2.5+Proposition
2.6]. Recall from § 4.8 that g ∈ PGLd(R) is proximal if the Jordan block associated
to the eigenvalues with maximal modulus is 1-dimensional.

Lemma 5.1.2. If ρ is projective-Anosov then for every hyperbolic γ one has γρ is
proximal with attracting line ξ1(γ+). In particular the entropy

lim
t→∞

1

t
log #

{
[γ] ∈ [Γ ] hyperbolic : λ1

(
γρ
)
≤ t
}
∈ [0,∞).

The equivariant maps ξ1 and ξd−1 are Hölder-continuous.

Proof. Let us add a word on finiteness of entropy. Recall from Bowditch [13] that,
since Γ is hyperbolic its action on the space of pairwise distinct triples ∂(3)Γ is
properly discontinuous and co-cocompact. If γ ∈ Γ is hyperbolic one can choose
then η ∈ [γ] (the conjugacy class of γ) whose fixed points are far appart by a
constant independent of γ. Since the image γρ is proximal and the equivariant maps
are continuous, one has that ηρ is (r, ε)-proximal, for constants r, ε independent
of [γ]. By Proposition 4.8.1 one has then

∣∣ log ‖ηρ‖ − λ1(ηρ)
∣∣ < K for some K

independent of η. If follows then that for every t ∈ R+

#
{

[γ] ∈ [Γ ] hyperbolic : λ1(γρ) ≤ t
}
≤ #

{
γ ∈ Γ : log ‖γρ‖ ≤ t+K

}
.

Finiteness of entropy then follows from Lemma 4.10.1. �

We use the equivariant maps to construct a bundle R→ F̃→ ∂2Γ whose fiber at
(x, y) ∈ ∂2Γ is

F̃(x,y) =
{

(ϕ, v) ∈ ξd−1(x)× ξ1(y) : ϕ(v) = 1
}
/ ∼,

where (ϕ, v) ∼ (−ϕ,−v). This bundle is equipped with a Γ -action γ(ϕ, v) =
(
ϕ ◦

γ−1
ρ , γρv

)
and an R-action

(
g̃ρt : F̃→ F̃

)
t∈R defined by g̃ρt · (ϕ, v) = (etϕ, e−tv). Let

F = Γ\F̃ and denote by gρ =
(
gρt : F → F

)
t∈R the induced flow on the quotient, it

is usually called the geodesic flow of ρ.

Theorem 5.1.3 (Bridgeman-Canary-Labourie-S. [17]). The above Γ -action is prop-
erly discontinuous and co-compact. The flow gρ is Hölder-continuous and metric-
Anosov with stable/unstable laminations the (induced on the quotient by)

W̃ s
(
(x, y, (ϕ, v)

)
=
{(
x, ·, (ϕ, ·)

)
∈ F̃
}

W u
(
(x, y, (ϕ, v)

)
=
{(
·, y, (·, v)

)
∈ F̃
}
.

It is moreover Hölder-conjugated to the Gromov-Mineyev geodesic flow g of Γ , con-
sequently this latter flow is also metric-Anosov.

Consequently, hyperbolic groups admitting a real projective-Anosov represen-
tation verify Assumption B and are thus subject of a Ledrappier correspondence
(§ 3). It is stablished in Carvajales [22, Appendix] that gρ is topologically mixing
(regardless the Zariski closure of ρ) and thus mixing for any equilibrium state.
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5.2. Arbitrary G, coarse geometry viewpoint. Let G be as in § 4, we use freely
the notation introduced there and fix from now on a subset ϑ ⊂ ∆ of simple roots.

Let Γ be a finitely generated group and denote, for γ ∈ Γ , by |γ| the word length
w.r.t. a fixed finite symmetric generating set of Γ .

Definition 5.2.1. A representation ρ : Γ → G is ϑ-Anosov if there exist c, µ
positive such that for all γ ∈ Γ and σ ∈ ϑ one has

σ
(
a(γρ)

)
≥ µ|γ| − c. (24)

The constants c and µ will be referred to as the domination constants of ρ.

The Theorem below follows from the main result by Kapovich-Leeb-Porti [40]
and the standard facts from representation theory stated in § 4.5, a proof can also
be found in Bochi-Potrie-S. [10].

Theorem 5.2.2. If ρ : Γ → G is ϑ-Anosov then Γ is word-hyperbolic. If moreover
K = R then for every σ ∈ ϑ the representation φσ ◦ ρ : Γ → PGL(Vσ) is projective-
Anosov (as in § 5.1).

The following lemma is essentially a consequence of Bochi-Potrie-S. [10, Lemma
4.9]. See Pozzetti-S.-Wienhard [59, Proposition 3.5] for details concerning the non-
Archimedean case. The last assertion is classical.

Proposition 5.2.3 (Bochi-Potrie-S. [10, Proposition 4.9 ]). If ρ : Γ → G is ϑ-
Anosov, then for any geodesic ray {αn}∞0 with endpoint x, the limits

ξϑρ (x) := lim
n→∞

Uϑ
(
ρ(αn)

)
ξiϑ
ρ (x) := lim

n→∞
Uiϑ

(
ρ(αn)

)
exist and do not depend on the ray; they define continuous ρ-equivariant transverse
maps ξϑ : ∂Γ → Fϑ, ξiϑ : ∂Γ → Fiϑ. If γ ∈ Γ is hyerbolic, then γρ is ϑ-proximal
with attracting point ξϑ(γ+) = (γρ)

+
ϑ .

The above Proposition readily implies the following Lemma (recall Remark
4.7.1).

Lemma 5.2.4. Let ρ : Γ → G be ϑ-Anosov, {γn} ⊂ Γ a divergent sequence and
x ∈ ∂Γ . Then, as n→∞, one has:

γn → x ⇔ Uϑ
(
ρ(γn)

)
→ ξϑ(x) ⇔ ∃σ ∈ ϑ s.t. $σGϑ

(
Uiϑ

(
ρ(γn)

)
, ξϑ(x)

)
→ −∞.

We finally record the following useful Lemma.

Lemma 5.2.5 (Pozzetti-S.-Wienhard [59, Lemma 3.6]). Let ρ : Γ → G be ϑ-Anosov,
then for every ε > 0 there exists L such that⋃

γ:|γ|>L

Uϑ
(
γρ
)
⊂ Nε

(
ξϑ(∂Γ)

)
,

where Nε denotes the ε-tubular-neighborhood.

Remark 5.2.6 (Non-Archimedean case). The existence of continuous ρ-equivariant
maps implies, when K is non-Archimedean, that the boundary of Γ is necessarily
a Cantor set and thus Γ is virtually free. The Gromov-Mineyev of Γ is thus a
suspension of a sub-shift of finite type and is, hence, metric-Anosov.

Setting. A ϑ-Anosov representation ρ : Γ → G is fixed from now on. By § 5.1 for
K = R or C, and the preceding paragraph for non-Archimedean K, the Gromov-
Mineyev flow g of Γ satisfies Assumption B.
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5.3. The refraction cocycle verifies Assumption C. Via the equivariant bound-
ary maps of ρ one can pullback the Buseman-Iwasawa cocycle of G to obtain a
Hölder-cocycle on the boundary of Γ :

Definition 5.3.1. The refraction cocycle of ρ is β : Γ × ∂Γ → Eϑ

β(γ, x) = βρ(γ, x) = βϑ
(
γρ, ξ

ϑ
ρ (x)

)
.

The limit cone of β will be denoted by Lϑ,ρ and referred to as the ϑ-limit cone
of ρ. The period computation below implies it is the smallest closed cone of Eϑ
that contains the projections

{
λϑ
(
γρ
)

: γ ∈ Γ
}
. We prove moreover that β verifies

Assumption C from § 3.4.

Lemma 5.3.2. The periods of β are β(γ, γ+) = λϑ
(
γρ
)
, consequently Assumption

C holds for β, in particular int
(
Lϑ,ρ

)∗
=
{
ϕ ∈

(
Lϑ,ρ

)∗
: hϕ <∞

}
.

Proof. The first assertion follows from Proposition 5.2.3. To prove assumption C
holds one considers any σ ∈ ϑ and the representation φσ. By Theorem 5.2.2 the
composition φσρ : Γ → GL(Vσ) is projective-Anosov and thus, by (19) and Lemma
5.1.2, the form $σ ∈ (Eϑ)∗ has finite entropy. The last assertion follows from
Lemma 3.4.2. �

Lemma 3.4.2 and Theorem 3.2.2 give then the following.

Corollary 5.3.3. There exists a Hölder-continuous function Jϑ,ρ : UΓ → Eϑ such

that for every hyperbolic γ ∈ Γ one has
∫

[γ]
Jϑ,ρ = λϑ

(
γρ
)
. For every ϕ ∈ int

(
Lϑ,ρ

)∗
the Γ -action on ∂2Γ × R defined by

γ · (x, y, t) =
(
γx, γy, t− βϕ(γ, y)

)
(25)

is properly discontinuous and co-compact. The R-translation flow induces on the
quotient a flow φϕ =

(
φϕt : χϕ → χϕ)t∈R (bi)-Hölder-conjugated to the reparametriza-

tion of g by ϕ ◦ Jϑ,ρ.

Definition 5.3.4. The function Jϑ,ρ will be referred to as the Ledrappier potential
of ρ. The flow φϕ will be called the ϕ-refraction flow of ρ.

5.4. The ϑ-limit cone. We mimick some celebrated results by Benoist [7] for
Zariski dense subgroups and ϑ = ∆.

Lemma 5.4.1 (Benoist [6, Proposition 5.1]). For every compact set L ⊂ G there
exists a compact set H ⊂ E such that for every g ∈ G one has a(LgL) ⊂ a(g) +H.

Let us also denote by aϑ = pϑ ◦ a.

Proposition 5.4.2. Let ρ : Γ → G be a ϑ-Anosov representation, then there exists
a compact set D ⊂ Eϑ such that aϑ

(
ρ(Γ)

)
⊂ λϑ

(
ρ(Γ)

)
+D.

Proof. As Γ is finitely generated and word-hyperbolic, there exist κ > 0 and two
elements u, v ⊂ Γ such that for every non-torsion γ ∈ Γ there exists f ∈ {u, v} such
that fγ verifies

d∂Γ
(
(fγ)+, (fγ)−

)
> κ.

As ρ is ϑ-Anosov, the above equation implies the element ρ(fγ) is (r, ε)-proximal
on ϑ for some r only depending on κ. By Proposition 4.8.1 one has∥∥aϑ(ρ(fγ)

)
− λϑ

(
ρ(fγ)

)∥∥ ≤ K,
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for some K only depending on κ and ρ. We consider the compact set H from the
Lemma above applied to L = ρ({u−1, v−1}) and we let D := pϑ(H) +B(0,K). �

We will mainly use the following direct consequence:

Corollary 5.4.3. If ϕ ∈ int
(
Lϑ,ρ

)∗
then the exponential rate

δϕ := lim sup
t→∞

1

t
log #

{
γ ∈ Γ : ϕ

(
a(γρ)

)
≤ t
}
<∞.

Proof. If σ ∈ ϑ then, since both intersections ker$σ ∩Lϑ,ρ and kerϕ∩Lϑ,ρ vanish
(the first one always does, the second one by the assumption on ϕ) the function
ϕ/$σ is bounded below away from zero on Lϑ,ρ. By Proposition 5.4.2 there exist
positive c and C such that for all hyperbolic γ ∈ Γ one has

ϕ
(
a(γρ)

)
≥ c$σ

(
a(γρ)

)
− C.

Lemma 4.10.1 gives then the desired result. �

5.5. Patterson-Sullivan Theory along the Anosov roots: existence. In this
section we will construct, for each ϕ ∈ int

(
Lϑ,ρ

)∗
a βϕ-Patterson-Sullivan mea-

sure1. The procedure is standard and follows the original idea by Patterson.
We begin by considering the Dirichlet series

Pϕ(s) =
∑
γ∈Γ

q−sϕ
(
a(γρ)

)
.

It is convergent for every s > δϕ and divergent for every s < δϕ. As it is customary
when constructing Patterson-Sullivan measures, we can assume throughout this
subsection that Pϕ(δϕ) =∞, otherwise one would consider the series

s 7→
∑
γ∈Γ

h
(
ϕ
(
a(γρ)

))
q−sϕ

(
a(γρ)

)
for some real function h defined, for example, as in Quint [62, Lemma 8.5].

For s > δϕ consider the probability measure on Fϑ defined by

νs =
1

Pϕ(s)

∑
γ∈Γ

q−sϕ
(
a(γρ)

)
δ
Uϑ

(
γρ

).
Lemma 5.5.1. For every η ∈ Γ the signed measure

ε(η, s) = (ηρ)∗νs −
1

Pϕ(s)

∑
γ∈Γ

q−sϕ
(
a(γρ)

)
δ
Uϑ

(
ηργρ

)
weakly converges to 0 as s↘ δϕ.

This is a standard argument that can be found, for example, in Pozzetti-S.-
Wienhard [59, Lemma 5.11].

1The ϑ-Anosov property is not really used until the uniqueness corollary, the existence pre-
sented here works for any discrete group whose limit cone on E does not intersect any wall asso-
ciated to ϑ and replacing ξϑ(∂Γ) by⋂

n∈N
{Uϑ(g) : g ∈ ∆ with min

σ∈ϑ
σ(a(g)) ≥ n}.
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Proof. It is sufficient to check the convergence for continuous functions. If f : Fϑ →
R is continuous then

|ε(η, s)(f)| ≤ 1

Pϕ(s)

∑
γ∈Γ

q−sϕ
(
a(γρ)

)∣∣∣f(ηρUϑ(γρ)
)
− f

(
Uϑ(ηργρ)

)∣∣∣.
By Lemma 4.9.2 and uniform continuity of f the convergence follows. �

Lemma 5.5.2. Let νϕ be any weak-star limit of νs when s↘ δϕ. Then the support
of νϕ is contained in ξϑ(∂Γ). Moreover, for every η ∈ Γ one has

dρ(η)∗ν
ϕ

dνϕ
(x) = q

−ϕ
(
βϑ

(
η−1
ρ ,x

))
.

Proof. The first statement follows at once from Lemma 5.2.5 since we assumed
Pϕ(δϕ) = ∞. For the second statement, consider a sequence sk ↘ δϕ such that
νsk → νϕ. One then has

ρ(η)∗ν
sk = ε(η, sk) +

1

Pϕ(sk)

∑
γ∈Γ

q−skϕ
(
a(γρ)

)
δUϑ(ηργρ)

= ε(η, sk) +
1

Pϕ(sk)

∑
γ∈Γ

q−skϕ
(
a(η−1

ρ γρ)
)
δUϑ(γρ)

= ε(η, sk) +
1

Pϕ(sk)

∑
γ∈Γ

q−skϕ
(
a(η−1

ρ γρ)−a(γρ)
)
q−skϕ

(
a(γρ)

)
δUϑ(γρ)

= ε(η, sk) +
1

Pϕ(sk)

∑
γ∈Γ

q
−skϕ

(
βϑ

(
η−1
ρ ,Uϑ(γρ)

)
+ε′(η,γ)

)
q−skϕ

(
a(γρ)

)
δUϑ(γρ)

where, by Quint’s Lemma 4.9.3 and the fact that ϕ ◦ pϑ = ϕ, one has ε′(η, γ)→ 0
as minσ∈ϑ σ

(
a
(
γρ
))
→ ∞. Taking limit as sk ↘ δϕ one has, since we assumed

Pϕ(δϕ) = ∞, that only elements γ ∈ Γ with arbitrary big |γ| count in the sum.
Since ρ is ϑ-Anosov, this is equivalent to considering elements γ ∈ Γ such that

min
σ∈ϑ

σ
(
a(γρ)

)
is arbitrary big. The result then follows as ε(η, sk) → 0 by the Lemma above and
ε′(η, γ) is arbitrary small. �

Since Assumption C holds for β (Lemma 5.3.2), § 3.3 applies to give:

Corollary 5.5.3. For every ϕ ∈ int
(
Lϑ,ρ

)∗
there exists a βϕ-Patterson-Sullivan

measure µϕ := (ξϑ)∗ν
ϕ of exponent δϕ. Such a measure is ergodic and moreover

one has δϕ = hϕ. If ψ ∈ int
(
Lϑ,ρ

)∗
is such that µψ � µϕ then for every hyperbolic

γ ∈ Γ one has

hϕϕ
(
λϑ(γρ)

)
= hψψ

(
λϑ(γρ)

)
and, in particular, µψ = µϕ.

The above corollary was previously stablished by Dey-Kapovich [29, Main The-
orem] for real algebraic groups, i-invariant functionals ϕ ∈ int(a+)∗ and i-invariant
subsets ϑ. The equality δϕ = hϕ, together with more information, can also be found
in Glorieux-Monclair-Tholozan [32, Theorem 2.31 (2)] for real groups.
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Remark 5.5.4. We conclude by remarking that, for ϕ ∈ int
(
Lϑ,ρ

)∗
, the existence

assumptions of § 3.3 are guaranteed for βϕ. Indeed Proposition 5.5.3 states the
existence of a Patterson-Sullivan measure µϕ for βϕ. On the other hand the cocycle

β̄(γ, x) = iβiϑ

(
γρ, ξ

iϑ(x)
)

is dual to β and moreover, from equation (22), the function [·, ·]ϕ : ∂2Γ → R

[x, y]ϕ = ϕ
(
Gϑ
(
ξiϑ(x), ξϑ(y)

))
(26)

is a Gromov product for the pair (β̄ϕ,βϕ). Finally, exchanging ϑ with iϑ, Propo-
sition 5.5.3 provides a Patterson-Sullivan measure for β̄ϕ. We can thus apply the
results from § 3.4 and § 3.5.

5.6. Cartan’s basins have controlled overlaps. The job of understanding the
overlaps of Cartan’s bassins for Anosov representations has been carried out in
Pozzetti-S.-Wienhard [58]. The idea is to compare the Cartan’s basins of elements
γρ, for hyperbolic γ ∈ Γ , with the coarse cone type of γ.

Let c0, c1 be positive and I ⊂ Z an interval, then a (c0, c1)-quasigeodesic is a
sequence {αi}i∈I ∈ Γ such that for every pair j, l in the interval I one has

1

c0
|j − l| − c1 ≤ dΓ (αj , αl) ≤ c0|j − l|+ c1.

The coarse cone type at infinity of γ ∈ Γ consists of endpoints on ∂Γ of quasi
geodesic rays based at γ−1 passing through the identity (see Figure 1):

Cc0,c1∞ (γ) ={
[{αj}∞0 ] ∈ ∂Γ : {αi}∞0 is a (c0, c1)-quasi-geodesic with α0 = γ−1, e ∈ {αj}

}
.

Bc1(e)

γ−1 Γ

Cc0,c1∞ (γ)

Figure 1. The coarse cone type at infinity, the black broken lines are
(c0, c1)-quasi-geodesics.

Pozzetti-.S.-Wienhard [58, Prop. 3.3] together with Bochi-Potrie.S. [10, Lemma
2.5] (see also Pozzetti-S.-Wienhard [59, Proposition 3.3]) give the following. The
last statement can be found on Pozzetti-S.-Wienhard [58, Proposition 3.5]:

Proposition 5.6.1 (Pozzetti-.S.-Wienhard [58, Prop. 3.3]). For a given α > 0
there exist c0, c1, depending on α and the domination constants of ρ, such that for
every hyperbolic γ ∈ Γ one has

(ξϑ)−1
(
Bθ,α(γρ)

)
⊂ Cc0,c1∞ (γ).
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Reciprocally, there exists α′; only depending on c0, c1 and the domination constants
of ρ, such that

Cc0,c1∞ (γ) ⊂ (ξϑ)−1
(
Bθ,α′(γρ)

)
.

There exists then N ∈ N, only depending on c0, c1 and the domination constants of
ρ such that, for all t ∈ N the family

Ut =
{
γρBϑ,α

(
γρ
)

: t ≤ |γ| ≤ t+ 1
}

is an open covering of ξϑ(∂Γ) and such that every element ξϑ(x) belongs to at most
N elements of the covering Ut.

5.7. Sullivan’s shadow lemma. We establish now a version of Sullivan’s shadow
Lemma.

Lemma 5.7.1. Consider ϕ ∈ (Eϑ)∗ and let µ be a βϕ-Patterson-Sullivan measure
of exponent δ. Let ν = ξϑ∗µ, then given α > 0 there exist constants C, C ′ and L ∈ N
such that for every γ ∈ Γ with |γ| ≥ L one has

q−δ·ϕ
(
a(γρ)

)
C ′ ≤ ν

(
γρBϑ,α(γρ)

)
≤ Cq−δ·ϕ

(
a(γρ)

)
.

Proof. It suffices to stablish that there exist α and κ > 0 such that for all large
enough γ ∈ Γ one has ν

(
Bϑ,α(γρ)

)
≥ κ. Indeed, using this fact the Lemma follows

from the defining Equation (27) and Equation (23).
In order to stablish the desired lower bound we suppose by contradiction that

there exists αn →∞, γn →∞ such that ν
(
Bϑ,αn((γn)ρ)

)
→ 0 as n→∞. We can

extract then a subsequence (γnk) such that

Uiϑ

(
(γ−1
nk

)ρ
)
→ Y ∈ Fiϑ, k →∞.

Moreover, since ρ is ϑ-Anosov, Lemma 5.2.5 guarantees that Y = ξiϑ(y) for some
y ∈ ∂Γ . Also, since ν

(
Bϑ,αnk ((γnk)ρ)

)
→ 0 and αnk → ∞ we get that the comple-

ment(
Bϑ,αnk ((γnk)ρ)

)c
= {X ∈ Fϑ : ∃σ ∈ ϑ s.t. $σGϑ(Uiϑ((γ−1

nk
)ρ), X) ≤ −αn

}
converges to the subset of Fϑ{

X ∈ Fϑ : (X, ξiϑ(y)) /∈ F
(2)
ϑ

}
,

and that this subset has total ν-mass. Since the support of ν is contained in ξϑ(∂Γ)
and the equivariant maps are transverse (Proposition 5.2.3), one has that

{ξϑ(y)} =
{
ξϑ(x) : (ξϑ(x), ξiϑ(y)) /∈ F

(2)
ϑ

}
has total ν-mass. However, considering γ ∈ Γ with γy 6= y we get, since

d(γρ)∗ν

dν
(·) = q−δ·ϕ

(
βθ(γ−1

ρ ,·)
)
, (27)

that ν{ξ1(γy)} > 0, contradicting that {ξϑ(y)} has total ν-mass. �

Corollary 5.7.2. For every ϕ ∈ int
(
Lϑ,ρ

)∗
one has

∑
γ∈Γ

q−δ
ϕϕ
(
a(γρ)

)
=∞.

Proof. We apply Sullivan’s shadow Lemma 5.7.1 to the measure νϕ of Lemma 5.5.2.
Indeed, considering the coverings of ξϑ(∂Γ) given by Proposition 5.6.1 one has

1 = νϕ
(
ξϑ(∂Γ)

)
≤

∑
t≤|γ|≤t+1

νϕ
(
γρBϑ,α(γρ)

)
≤ C

∑
t≤|γ|≤t+1

q−δ
ϕϕ
(
a(γρ)

)
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for all large enough t, giving divergence of the desired series. �

5.8. Patterson-Sullivan Theory along the Anosov roots: surjectivity. We
prove here surjectivity of the map ϕ 7→ µϕ defined in § 5.5.

The following proposition should be compared with Pozzetti-S.-Wienhard [58,
Theorem 5.14], where a similar result is obtained for measures on the flag space Fθ,
for θ not necessarily equal to ϑ but assuming that ϑ ∩ θ 6= ∅.

Proposition 5.8.1. Consider ϕ ∈ (Eϑ)∗. If there exists a βϕ-Patterson-Sullivan
measure µ of exponent δ then ϕ ∈ int(Lϑ,ρ)

∗, δ = δϕ and µ = µϕ.

Proof. We let ν = ξϑ∗µ. Using Proposition 5.6.1 we get a family of coverings Ut with
bounded overlap. In combination with Lemma 5.7.1 one has for t large enough that

1 = ν(ξϑ(∂Γ)) ≥ K
∑

γ:t≤|γ|≤t+1

e−δϕ
(
a(γρ)

)
,

for some constant K > 0. This is to say, there exists κ > 0 such that for all t ∈ R+

large one has
∑
γ:t≤|γ|≤t+1 e

−δϕ
(
a(γρ)

)
≤ κ, which gives in turn that

∑
γ:|γ|≤t

e−δϕ
(
a(γρ)

)
≤ κt.

A standard argument (using for example § 4.8) permits to replace Cartan projec-
tions with Jordan projections giving∑

[γ]:p([γ])≤t

e−δϕ
(
λ(γρ)

)
=

∑
[γ]:p([γ])≤t

e
−`δJϕ

ϑ,ρ
(γ)
≤ κ′t,

for a suitable κ′, where p([γ]) is the g-period of the periodic orbit associated to [γ],
and J

ϕ
ϑ,ρ is the Ledrappier potential of βϕ. Formula (5) for the pressure function

gives then

P (−δJϕϑ,ρ) ≤ 0.

Consequently, Lemma 2.2.7 gives that J
ϕ
ϑ,ρ is Livšic-cohomologous to a positive

function, this is to say, ϕ ∈ int
(
Lϑ,ρ

)∗
. Finally, since Remark 5.5.4 guarantees the

existence assumptions of § 3.3 for βϕ, the remaining two equalities in the statement
follow from Corollary 3.3.2. �

5.9. The critical hypersurface parametrizes Patterson-Sullivan measures.
By Lemma 5.3 Assumption C holds for β and thus § 3.4 applies. Define the ϑ-critical
hypersurface, resp. ϑ-convergence domain, of ρ by

Qϑ,ρ := Qβ =
{
ϕ ∈ int

(
Lϑ,ρ

)∗
: hϕ = 1

}
,

Dϑ,ρ := Dβ =
{
ϕ ∈ int

(
Lϑ,ρ

)∗
: hϕ ∈ (0, 1)

}
.

Moreover, by Corollary 5.5.3 one has δϕ = hϕ so one has the equalities
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Qϑ,ρ =
{
ϕ ∈ int

(
Lϑ,ρ

)∗
: δϕ = 1

}
,

Dϑ,ρ =
{
ϕ ∈ int

(
Lϑ,ρ

)∗
: δϕ ∈ (0, 1)

}
=
{
ϕ ∈ (Eϑ)∗ :

∑
γ∈Γ

e−ϕ
(
a(γρ)

)
<∞

}
,

where the last equality comes from Corollary 5.7.2.
For ϕ ∈ Qϑ,ρ we consider the dynamical intersection map Iϕ = Iβϕ : (Eϑ)∗ → R,

associated to the cocycle β as in § 3.4 and defined by

Iϕ(ψ) = Iβϕ (ψ) = lim
t→∞

1

#Rt(ϕ)

∑
γ∈Rt(ϕ)

ψ(λ(γρ))

ϕ(λ(γρ))
,

where Rt(ϕ) =
{
γ ∈ Γ hyperbolic : ϕ(λ(γρ)) ≤ t}. Let Ann(Lϑ,ρ) be the annihilator

of the ϑ-limit cone and denote by

πϑρ : (Eϑ)∗ → (Eϑ)∗/Ann(Lϑ,ρ)

the quotient projection. As before, the map Iβ is also well defined on πϑρ (Qϑ,ρ) ×
(Eϑ)∗/Ann(Lϑ,ρ).

Some statements in the following corollary were previously stablished in S. [64]
for K = R and Zariski-dense ϑ-Anosov representations of closed negatively curved
manifolds.

Corollary 5.9.1. The sets Qϑ,ρ and πϑρ
(
Qϑ,ρ) are closed co-dimension-one analytic

sub-manifolds, the latter bounds the strictly convex set πϑρ
(
Dϑ,ρ

)
. The map

ϕ 7→ Tϕπ
ϑ
ρ

(
Qϑ,ρ

)
= ker Iϕ

is an analytic diffeomorphism between πϑρ
(
Qϑ,ρ

)
and directions in the relative inte-

rior of Lϑ,ρ.

We now prove the following:

Proposition 5.9.2. The map ϕ 7→ µϕ is an analytic homeomorphism from the
manifold πϑρ

(
Qϑ,ρ

)
to the space of Patterson-Sullivan measures supported on ξϑ(∂Γ).

Proof. By uniqueness in Corollary 5.5.3 the map ϕ 7→ µϕ is well defined and in-
jective. Regularity follows from Remark 3.3.3 and analytic variation of equilibrium
states (Theorem 2.3.3). Surjectivity follows from Proposition 5.8.1. �

Proposition 5.9.2 was previously stablished by Lee-Oh [46, Theorem 1.3] for
K = R and ∆-Anosov Zariski-dense representations. The convergence domain D∆,ρ

is dual to Quint’s growth indicator function [61].

Remark 5.10. Observe that, by definition, a βϕ-Patterson-Sullivan measure has
its support on ∂Γ , and thus on ξϑ(∂Γ) when pushed to Fϑ. One could more generally
study measures on Fϑ verifying

d(γρ)∗ν

dν
(·) = q−δ·ϕ

(
βθ(γ−1

ρ ,·)
)
, (28)

without imposing conditions on their support. Such measures exist, for example the
K-invariant measure on Fϑ, but their exponent is too large. The question would be
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totally settled if the following had affirmative answer: Is the support of a measure
verifying (28) with δ = δϕ necessarily contained on ξϑ(∂Γ)?

5.11. Variation of the critical hypersurface. We record the following conse-
quence of Bridgeman-Canary-Labourie-S. [17, § 6.3]

Corollary 5.11.1 (Bridgeman-Canary-Labourie-S. [17]). Let {ρu : Γ → G}u∈D be
an analytic family of ϑ-Anosov representations. Then Livšic-cohomology class of

the Ledrappier potential Jβρu : ŨΓ → Eϑ associated varies analytically with u.

Consequently we can apply Corollary 2.6.5 to obtain:

Corollary 5.11.2. Let {ρu : Γ → G}u∈D be an analytic family of ϑ-Anosov repre-
sentations, then the critical hypersurface Qϑ,ρu varies analytically (on compact sets
of Eϑ) with the representation u.

5.12. Consequences of the skew-product structure. Consider ϕ ∈ int
(
Lϑ,ρ

)∗
.

By Remark 5.5.4 we can freely apply results from § 3.4 and § 3.5 to the cocycle βϕ.
Let uϕ = ThϕϕQϑ,ρ ∈ P(Lϑ,ρ) be the growth direction of ϕ. By § 3.4 the half line

uϕ ∩Lϑ,ρ lies in the relative interior of Lϑ,ρ (and every direction in this relative
interior is obtained in this fashion).

Consider the ϕ-Bowen-Margulis measure Ωϕ on Γ\
(
∂2Γ × Eϑ

)
, defined as the

induced on the quotient by

e−δ
ϕ[·,·]ϕ µ̄ϕ ⊗ µϕ ⊗ dLeb . (29)

Consider uϕ ∈ uϕ with ϕ(uϕ) = 1 and denote by ωϕ =
(
ωϕ
t : Γ\

(
∂2Γ × Eϑ

)
→

Γ\
(
∂2Γ × Eϑ

))
t∈R the directional flow, induced on the quotient of

t · (x, y, v) = (x, y, v − tuϕ).

The ergodic dichotomy from § 3.6 gives then:

Theorem 5.12.1. Assume K = R and ρ is Zariski-dense, and let ϕ ∈ int
(
Lϑ,ρ

)∗
.

If |ϑ| ≤ 2 then the directional flow ωϕ is ergodic w.r.t Ωϕ, in particular K(ωϕ) has
total mass. If |ϑ| ≥ 4 then K(ωϕ) has measure 0.

Proof. The non-arithmeticity assumption for β holds by Benoist’s Theorem 4.10.2
and thus Corollary 3.6.1 applies. �

5.13. Directional conical points. The present task is to study the set of points
on ∂Γ that are conical in the direction uϕ.

Consider y ∈ ∂Γ and a sequence {γn} ⊂ Γ with γn → y. Then we say that γn
converges conically to y if for every z ∈ ∂Γ − {y} the sequence γ−1

n (z, y) remains
on a compact subset of ∂2Γ .

Remark 5.13.1. Equivalently, since any compact subset of ∂2Γ is contained in
a compact subset of the form

{
(a, b) : d∂Γ (a, b) ≥ κ

}
for a fixed κ, one has that

γn → y conically if and only if there exists a geodesic ray {αi}∞0 on Γ , converging
to y, such that {γn} is at bounded Hausdorff distance from {αi}∞0 . It follows then
the existence of constants, c0, c1 such that for all n one has

γ−1
n y ∈ Cc0,c1∞ (γn). (30)

Let us fix an (auxiliary) Euclidean norm on Eϑ and denote by B(v, r) the asso-
ciated ball of radius r about v. The tube of size r about uϕ is the tubular neighbor-
hood:

Tr(uϕ) = {v ∈ Eϑ : B(v, r) ∩ uϕ 6= ∅}.
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Definition 5.13.2. We say that y ∈ ∂Γ is (r, ϕ)-conical if there exists a conical
sequence {γn} ⊂ Γ converging to y such that for all n

aϑ
(
(γn)ρ

)
∈ Tr(uϕ).

We say that y is ϕ-conical if it is (r, ϕ)-conical for some r.

Let us denote by ∂r,ϕΓ ⊂ ∂Γ the set of (r, ϕ)-conical points and by ∂ϕΓ the set
of ϕ-conical points. We now establish the following dichotomy.

Theorem 5.13.3. Assume K = R and that ρ is Zariski-dense. If |ϑ| ≤ 2 then
µϕ
(
∂ϕΓ) = 1, if |ϑ| ≥ 4 then µϕ

(
∂ϕΓ) = 0.

The Theorem follows directly from Theorem 5.12.1 and the following proposition.
Let us denote by p : ∂2Γ × Eϑ → Γ\

(
∂2Γ × Eϑ

)
the quotient projection.

Proposition 5.13.4. A point y ∈ ∂Γ belongs to ∂ϕΓ if and only if for every pair
(x, v) ∈ (∂Γ − {y})× Eϑ one has p(x, y, v) ∈ K(ωϕ).

Proof. If (x, y, v) ∈ ∂2Γ × Eϑ is such that y ∈ ∂ϕΓ , then consider r > 0 and γn → y
conically such that a

(
(γn)ρ

)
∈ Tr(uϕ). By equation (30), there exists ε given by

Proposition 5.6.1 (only depending on c0 and c1) such that for all n

ξϑ(y) ∈ (γn)ρBϑ,ε
(
(γn)ρ

)
.

Consequently equation (23) gives∥∥β(γ−1
n , y) + aϑ

(
ρ(γn)

)∥∥ =
∥∥− β(γn, γ

−1
n · y) + aϑ

(
ρ(γn)

)∥∥ < Kε. (31)

By assumption aϑ
(
ρ(γn)

)
∈ Tr(uϕ) and one finds thus a divergent sequence tn ∈ R+

such that

‖β(γ−1
n , y) + tnuϕ‖ < K ′, (32)

for some K ′ only depending on r and ε. The sequence

ωϕ
−tnγ

−1
n (x, y, v) =

(
γ−1
n x, γ−1

n y, v − β(γ−1
n , y)− tnuϕ

)
is thus contained in

{
(z, w) ∈ ∂2Γ : d∂Γ (z, w) > κ

}
× B(v,K ′), for some κ only

depending on d∂Γ (x, y), in particular p(x, y, v) ∈ K(ωϕ) as desired.
Reciprocally, if p(x0, y0, v0) ∈ Γ\

(
∂2Γ×Eϑ

)
belongs to K(ωϕ), let B be a bounded

open set to which the ωϕ-orbit of p(x0, y0, v0) returns to unboundedly. Considering

an accumulation point of the orbit points in B we can assume that B = p(B̃) for

some B̃ of the form {
(z, w) ∈ ∂2Γ : d∂Γ (z, w) ≥ κ′

}
×B(v, c).

We obtain thus divergent sequences {γn} ⊂ Γ and {tn} ⊂ R+ such that for all n

d∂Γ (γ−1
n x0, γ

−1
n y0) > κ′ and ‖β(γ−1

n , y0) + tnuϕ‖ ≤ K ′′. (33)

Considering subsequences we can assume that γ−1
n x0 → x∞ and γ−1

n y0 → y∞.
Necessarily x∞ 6= y∞ since they are at least κ′ apart. The sequence {γn} is thus
conical, but it is still to be determined whether it converges to x0 or to y0.

Using the last inequality in (33) we deduce, since tn → +∞, that for all σ ∈ ϑ

$σ

(
β(γ−1

n , y0)
)
→ −∞.
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By definition of β and the interpretation of the Buseman-Iwasawa cocycle via rep-
resentations (equation (21)) one has log

(
‖φσρ(γ−1

n )v‖/‖v‖
)
→ −∞ for any non-

vanishing v ∈ Ξφσ

(
ξϑ(γ−1

n y0)
)
, or equivalently, as n→∞

‖φσρ(γ−1
n )v‖

‖v‖
→ 0.

We now use a standard linear algebra computation1 to conclude that

sin]
(

Ξφσ

(
ξϑ(y0)

)
, Ud−1

(
φσ(γn)ρ

))
→ 0.

By Lemma 5.2.4 one concludes that

U1

(
φσ
(
ρ(γn)

))
→ Ξφσ

(
ξϑ(y0)

)
,

as n → ∞ for all σ ∈ ϑ. Again by Lemma 5.2.4 one has γn → y0 as n → ∞
(in Γ ∪ ∂Γ) and thus, by conicality of {γn}, that for all z ∈ ∂Γ − {y0} it holds
γ−1
n z → x∞. It follows then that

Ud−1

(
φσρ(γn)−1

)
→ Ξ∗φσ

(
ξiϑ(x∞)

)
,

and, since γ−1
n y0 → y∞ 6= x∞, that

]
(
Ξφσ

(
ξϑ(γ−1

n y0)
)
, Ud−1

(
φσρ(γn)−1

))
> κ′.

Since the latter lower bound holds for all σ ∈ ϑ one concludes that ξϑ(γ−1
n y0)

belongs to the Cartan basin Bϑ,κ′′
(
ρ(γn)

)
. Thus, as in equation (31), one has∥∥β(γ−1

n , y0) + aϑ
(
ρ(γn)

)∥∥ ≤ K,
for some K only depending on κ′′. The latter, together with the second inequality
from equation (33) implies that y0 is ϕ-conical, as desired. �

Proof of Theorem 5.13.3. Consider a positive ε. Fix y ∈ ∂ϕΓ , x ∈ ∂Γ −{y} and two
neighborhoods A− and A+ of x and y respectively so that for all (z, w) ∈ A−, A+

one has
∣∣[z, w]ϕ − [x, y]ϕ

∣∣ < ε. Pick also an arbitrary T > 0 so that the quotient

projection p is injective on B̃ = A− × A+ × B(0, T ). We can thus compute the

measure of B = p(B̃) by the formula (29).

If we let K̃(ωϕ) = p−1
(
K(ωϕ)

)
, then the Lemma above asserts that

A− × (A+ ∩ ∂ϕΓ)×B(0, T ) = K̃(ωϕ) ∩ B̃.

If |ϑ| ≤ 2 Theorem 5.12.1 states that Ωϕ(B̃) = Ωϕ
(
K̃(ωϕ) ∩ B̃

)
, which implies, up

to e−δ
ϕε, that

µϕ(A+) = µϕ(A+ ∩ ∂ϕΓ).

Since ε is arbitrary one concludes µϕ(∂ϕΓ) = 1. On the other hand, if |ϑ| ≥ 4 then

we have Ωϕ
(
K̃(ωϕ)

)
= 0 so µϕ(A+ ∩ ∂ϕΓ) = 0 and the theorem is proved. �

1

Lemma 5.13.5 (Bochi-Potrie-S. [10, Lemma A.3]). Let A ∈ GLd(R) have a gap at α1, then for

every v ∈ Rd one has

‖Av‖
‖v‖

≥ ‖A‖ sin]
(
R · v, Ud−1(A−1)

)
.
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Appendix A. Ergodicity of skew-products with values on R

We freely use notation from Proposition 2.4.2 which we intend to prove. The
proof presented here is mainly a collection of results.

We say that K is recurrent if for every measurable set A ⊂ Σ with ν(A) > 0 and
every neighborhood N(0) of 0 in V there exists n ∈ Z− {0} such that one has

ν
(
A ∩ σ−nA ∩

{
x :

n∑
k=0

K(σix) ∈ N(0)
})

> 0.

It is proven in Schmidt [67, Theorem 5.5] that K is recurrent if and only if the
skew-product fK : Σ× R→ Σ× R is conservative (see Aaronson book [1, § 1.1] for
the definition). It is moreover a general fact that mean-zero cocycles over the reals
are conservative, see [1, Cor. 8.1.5] from which we state here a particular case.

Corollary A.1. Since by assumption
∫

Kdν = 0, the cocycle fK is conservative
and so K is recurrent.

The proof of Proposition 2.4.2 ends with the following theorem of Coelho (ob-
tained by the combination of Example 2.4 and Corollary 3.4 of Coelho [26] ), specific
to sub-shifts and equilibrium states.

Theorem A.0.1 (Coelho [26]). Assume K is non-arithmetic and let ν be an equi-
librium state of σ for a Hölder potential. Then f is ergodic w.r.t Ων if and only if
K is recurrent.

Appendix B. Mixing

In this appendix we give a quick outline of the proof of Theorem 2.5.2. We use
small modifications of classical computations dating back at least to Babillot [3] and
appearing also in Babillot-Ledrappier [5], Ledrappier-Sarig [45] and more recently
in Oh-Pan [52] and Chow-Sarkar [25], where an extra parameter (an holonomy
with values on a compact group) has been added to the Ruelle operator. We thank
M. Chow and P. Sarkar for pointing out an issue in the argument presented in S.
[66], F. Ledrappier for suggesting the reference [45] and H. Oh for pinpointing the
reference [52].

It is first convenient to straighten the flow action by means of twisting the r-
action.

Lemma B.1. Let U = R×W, and let k : Σ→ U be k(x) =
(
r(x),

∫ r(x)

0
K(x, s)ds

)
,

then:

- there exists ϕ ∈ U∗ such that ϕ(k) = r > 0,
-
∫
kdν = (

∫
rdν, 0) 6= 0,

- there exists a bi-Hölder homeomorphism E : Σr ×W → Σ× U/k̂, where

k̂(x, u) =
(
σ(x), u− k(x)

)
,

which is a measurable isomorphism between Ω̄ and ν ⊗ LebU /k̂, that con-
jugates ψ with the flow induced on the quotient by

(x, u) 7→ (x, u− tτ),

where τ ∈
∫
kdν is such that ϕ(τ) = 1.
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Proof. Define E : Σr ×W → Σ×U/k̂ by E
(
(x, t), w

)
=
(
x,
(
t, w+

∫ t
0
K(x, s)ds

))
.

It is well defined since the above formula is equivariant, indeed one has

∫ t−r(x)

0

K(σ(x), s)ds =

∫ t

r(x)

K(σ(x), s− r(x))ds

=

∫ t

r(x)

K(x, s)ds (K is r̂-invariant)

=

∫ t

0

K(x, s)ds−
∫ r(x)

0

K(x, s)ds

which implies

E
(
r̂(x, t), w

)
=
(
σ(x),

(
t− r(x), w +

∫ t−r(x)

0

K(σ(x), s)ds
))

=
(
σ(x),

(
t− r(x), w +

∫ t

0

K(x, s)ds−
∫ r(x)

0

K(x, s)ds
))

= k̂
(
E((x, t), w)

)
.

as desired. The remaining assertions follow similarly. �

We will work from now on with this latter flow, still denoted by ψ in order not
to overcharge with notation. Up to Livšic-cohomology we may assume that k is
defined on Σ+.

By measure-theoretic arguments we consider F,G : Σ+ × U → R that we can
assume have separated variables, i.e. can be written as F (x, u) = pF (x)vF (u), with
pF and pG Hölder-continuous and vF and vG smooth with compact support. We
have to show that, as t→∞,

tdimW/2Ω̄
(
F ·G ◦ ψt)→ Ω̄(F )Ω̄(G).

Tracing back the definitions one is brought up to understanding the limit as t→∞
of

tdimW/2
( ∫

Σ+×U

∑
n∈N

F (x, u)G
(
σnx, u− Snk(x)− tτ

)
dνdLebU

)
, (34)

where Snk(x) =
∑n
i=0 k(σi(x)) is the Birkhoff sum. We focuss on the integral

between brackets, only to multiply at the very end of our computation by
√
t
d−1

,
where d = dimU. The above integral becomes∫

Σ+×U

∑
n∈N

pF (x)pG
(
σnx

)
vF (u)vG

(
u− Snk(x)− tτ

)
dν(x)dLebU (u).

Recall that by assumption there is ϕ ∈ U∗ so that ϕ(k) = hr > 0 and that
P (−hr) = 0, so up to Livšic-cohomology we can assume that −ϕ(k) = −hr is
normalized, i.e. so that the Ruelle operator, defined by

LϕΦ(x) =
∑

y:σ(y)=x

e−ϕ
(
k(y)
)
Φ(y),

verifies L∗ϕν = ν, in particular, for every pair of Hölder-continuous functions j, l on

Σ+ one has
∫

Σ+ j(σx)l(x)dν =
∫

Σ+ j(x)
(
Lϕl

)
(x)dν.
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Denote by LebU∗ the Lebesgue measure on U∗ defined by the Fourier inversion
formula

vG(w) =

∫
U∗
eiψ(w)FvG(ψ)dLebU∗(ψ)

for the Fourier transform FvG if vG. As in Babillot-Ledrappier [5, § 2.3] we can,

and will, assume that FvG is of class CN for some N > (d− 1)/2 and has compact
support.

We will suppress the notation ν, LebU and LebU∗ from the integrals from now
on. The desired integral, equation (34), then becomes∫

Σ+×U

∑
n∈N

(
LnϕpF

)
(x)pG

(
x
)
vF (u)vG

(
u− Snk(x)− tτ

)
dxdu

=

∫
Σ+×U

∑
n∈N

(
LnϕpF

)
(x)pG

(
x
)
vF (u)

∫
U∗
eiψ
(
u−Snk(x)−tτ

)
FvG(ψ)dψdxdu,

=

∫
Σ+×U

∫
U∗

∑
n∈N

(
Lnϕ+iψpF

)
(x)pG(x)vF (u)eiψ

(
u−tτ

)
FvG(ψ)dψdxdu

=

∫
Σ+×U

pG(x)vF (u)

∫
U∗

∑
n∈N

(
Lnϕ+iψpF

)
(x)eiψ

(
u−tτ

)
FvG(ψ)dψdxdu. (35)

We seek thus to understand the nature of ψ 7→
∑
n∈N L

n
ϕ+iψ, for which one is

brought to understand the spectral radius rψ of Lϕ+iψ. Applying Parry-Pollicott
[53, Chapter 4] we obtain that for every ψ ∈ U∗ one has rψ ∈ (0, 1]. We then
distinguish two situations.

The spectral radius rψ is smaller than 1; in which case

η 7→
∑
n∈N

Lnϕ+iη = (1− Lϕ+iη)−1,

is analytic on a neighborhood of ψ.
The spectral radius rψ equals 1. One has then the following:

Theorem B.1 (Parry-Pollicott [53, Chapter 4]). One has rψ = 1 if and only if
there exists a Hölder continuous wψ : Σ+ → S1 such that for all x ∈ Σ+ one has

eiψ(k(x)) = λψ
wψ(σ(x))

wψ(x)
.

In this situation the function wψ is unique up to scalars.

Applying moreover Parry-Pollicott [53, Theorem 4.5] and the perturbation the-
orem [53, Prop. 4.6], there exists a neighborhood Oψ of ψ such that for all η ∈ Oψ
one has

Lϕ+iη = ληQη +Nη (36)

where Qη is a rank-one projector, Nη is an operator with spectral radius strictly
smaller than rη = |λη| and such that QηNη = NηQη = 0. The above objects are
analytic on Oψ. The operator Mψ =

∑
n∈NN

n
ψ is hence well defined and analytic

on Oψ. Observe that, as we have assumed −ϕ(k) to be normalized, one has

Q0(f)(x) =
( ∫

Σ+

fdν
)
· 1. (37)
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Remark B.2. On the other hand, since k has dense group of periods on U, ψ(k) :
Σ+ → R has dense group of periods as soon as ψ 6= 0, and Parry-Pollicott [53,
Theorem 4.5] implies that {λnψ : n ∈ Z} is dense in S1 = ∂D. In particular λψ 6= 1,
unless ψ = 0. Consequently, if ψ 6= 0 then for all η ∈ Oψ the operator

Qη
1− λη

−Mη

is well defined and analytic on Oψ.

Lemma B.3. If rψ = 1 then for all η ∈ Oψ − {ψ} it holds rη < 1. Consequently

η 7→
∑
n∈N

Lnϕ+iη = (1− Lϕ+iη)−1 =
Qη

1− λη
+Mη

is analytic on Oψ − {ψ} and, if ψ 6= 0, it extends analytically to Oψ, as the right-
hand-side of the equation is well defined on ψ.

Proof. As η 7→ λη is analytic on Oψ, together with the above density result, it
follows that there isa neighborhood (possibly smaller but) still denoted by Oψ such
that if |λη| = 1 then λη = λψ. One has then applying Theorem B.1 that

ei(ψ−η)(k(x)) = λψ
wψ(σ(x))

wψ(x)
λ−1
η

wη(x)

wη(σ(x))
=

(wψ/wη)(σ(x))

(wψ/wη)(x)
.

The remark and Theorem B.1 give ψ − η = 0 and so the lemma is stablished. �

One obtains then that the operator
∑
n∈N L

n
ϕ+iψ is well defined and varies ana-

lytically on ψ except at ψ = 0. One is thus taken to localize the integral (35) about
0. To that end one considers an auxiliary C∞ function κ : U∗ → R, supported on
the neighborhood O0 where equation (36) holds, with κ(0) = 1, and we seek to un-
derstand the modified integral over U∗ on equation (35) given, for (x, u) ∈ Σ+×U,
by ∫

U∗

(
1− κ(ψ)

)∑
n∈N

(
Lnϕ+iψpF

)
(x)eiψ

(
u−tτ

)
FvG(ψ)dψ. (38)

Consider from § 2.6 the critical hypersurface Qk ⊂ U∗. It follows from Babillot-
Ledrappier [5] that one has Qk = P−1(0) and the tangent space TϕQk = {ψ ∈ U∗ :
ψ(τ) = 0}. For ψ ∈ U∗ let

ψ = sψϕ+ ψ0 (39)

be its decomposition along U∗ = Rϕ⊕TϕQk. Decomposing dψ as dsdψ0, the integral
(38) becomes

∫
R

e−its
∫

TϕQk

eiψ(u)
(
1− κ(ψ)

)∑
n∈N

(
Lnϕ+iψpF

)
(x)FvG(ψ)dψ0ds = O(t−N ) (40)

as it is the Fourier transform of the integral over TϕQk, which is, by Lemma B.3

as regular as FvG(ψ), and this function was chosen to be of class CN for some
N > (d− 1)/2.
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We can thus focus on the integral from equation (35) localized about 0, so it
becomes, using again Lemma B.3,∫

Σ+×U

∫
U∗
κ(ψ)

( (QψpF )x

1− λψ
+ (MψpF )(x)

)
pG(x)vF (u)eiψ

(
u−tτ

)
FvG(ψ)dψdxdu

+O(t−N ). (41)

We first treat the term containing Mψ, which is dealt with as we did with equa-
tion (38). Indeed, for the same reasons one has for all (x, u) ∈ Σ+×U, the integral∫

U∗
κ(ψ)(MψpF )(x)eiψ

(
u−tτ

)
FvG(ψ)dψ

=

∫
R

e−its
∫

TϕQk

eiψ(u)κ(ψ)(MψpF )(x)FvG(ψ)dψ0ds

= O(t−N ). (42)

We effort then on understanding the integral∫
U∗
κ(ψ)

(QψpF )x

1− λψ
eiψ
(
u−tτ

)
FvG(ψ)dψ, (43)

the issue being the singularity at ψ = 0 of 1/(1 − λψ). To that end, consider the
function Q : TϕQk → R defined implicitly by the equation

Q(ψ0)ϕ+ ψ0 ∈ Qk.

It is analytic, critical at 0 with Q(0) = 1, and has positive-definite Hessian at 0,
Hess0 Q, using Taylor expansion one writes

Q(ψ0) = 1 + (1/2) Hess0 Q(ψ0) +O
(
‖ψ0‖2

)
.

One applies the Weierstrass preparation Theorem [38, Theorem 7.5.1] to express
1− λψ about 0 as

1− λψ = a(ψ)
(
isψ − (1/2) Hess0 Q(ψ0)−O

(
‖ψ0‖2

))
,

(recall the decomposition of ψ from equation (39)) where a is real-analytic and
a(0) = h

∫
rdν (see Babillot-Ledrappier [5, page 37] or Ledrappier-Sarig [45, page

17] for details). Whence, as in [5, Lemma 2.3], using the formula 1/z = −
∫∞

0
eTzdT

one has

1

1− λψ
= − 1

a(ψ)

∫ ∞
0

e
T

(
isψ−(1/2) Hess0 Q(ψ0)−O

(
‖ψ0‖2

))
dT,

and equation (43) becomes, denoting by C(ψ, x) = κ(ψ)
(QψpF )(x)

a(ψ) FvG(ψ) to lighten

the notation,

∫
U∗
eiψ(u−tτ)κ(ψ)

(QψpF )(x)

a(ψ)
FvG(ψ)

∫ ∞
0

e
T

(
isψ−(1/2) Hess0 Q(ψ0)−O

(
‖ψ0‖2

))
dTdψ0ds

=

∫ ∞
0

∫
R

e−i(t−T )s

∫
TϕQk

C(ψ, x)e
iψ(u)−T

(
Hess0 Q(ψ0)/2+O

(
‖ψ0‖2

))
dψ0dsdT.

(44)
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Using Taylor series on the ψ-variable we may, and will, assume that C(ψ, x) is
of the form cx(sψ)b(ψ0). Equation (44) now becomes

∫ ∞
0

∫
R

e−i
(
t−T−ϕ(u)

)
scx(s)ds

∫
TϕQk

b(ψ0)e
iψ0(u)−T

(
Hess0 Q(ψ0)/2+O

(
‖ψ0‖2

))
dψ0dT

=

∫ ∞
0

Fcx
(
t− T − ϕ(u)

) ∫
TϕQk

b(ψ0)e
iψ0(u)−T

(
Hess0 Q(ψ0)/2+O

(
‖ψ0‖2

))
dψ0dT

=

∫ ∞
ϕ(u)

Fcx
(
t− T

) ∫
TϕQk

b(ψ0)e
iψ0(u)−

(
T−ϕ(u)

)(
Hess0 Q(ψ0)/2+O

(
‖ψ0‖2

))
dψ0dT,

=

∫ ∞
max(t/2,ϕ(u))

Fcx(t− T )

∫
TϕQk

b(ψ0)e
iψ0(u)−

(
T−ϕ(u)

)(
Hess0 Q(ψ0)/2+O

(
‖ψ0‖2

))
dψ0dT +O(t−N ),

(45)

where the last equality is, as in [5, page 27], essentially due to the fact that cx has

compact support and is of class CN . Applying the change of variables ψ0 7→ ψ0/
√
T

the last integral becomes

∫ ∞
max(t/2,ϕ(u))

Fcx(t− T )
√
T
d−1

∫
TϕQk

b(
ψ0√
T

)e
i
ψ0√
T

(u)−
(

1−ϕ(u)
T

)(
Hess0 Q(ψ0)/2+O

(
‖ψ0‖

2

T

))
dψ0dT +O(t−N )

= −
∫ min(t/2,t−ϕ(u))

−∞

Fcx(S)
√
t− Sd−1

∫
TϕQk

b(
ψ0√
t− S

)e
i
ψ0√
t−S (u)−

(
1−ϕ(u)

t−S

)(
Hess0 Q(ψ0)/2+O

(
‖ψ0‖

2

t−S

))
dψ0dS +O(t−N ).

(46)

We finally multiply by
√
t
d−1

, take limit as t→∞ and trace back our definitions
to get, as we assumed N > (d − 1)/2, the convergence of equation (46) (and thus
that of equation (43)) to

lim
t→∞

√
t
d−1

∫
U∗
κ(ψ)

(QψpF )x

1− λψ
eiψ
(
u−tτ

)
FvG(ψ)dψ

= b(0)

∫ ∞
−∞

Fcx(S)dS

∫
TϕQk

e−
1
2 Hess0 Q(ψ0)dψ0

= cx(0)b(0)

∫
TϕQk

e−
1
2 Hess0 Q(ψ0)dψ0

=
Q0(pF )(x)FvG(0)

a(0)

∫
TϕQk

e−
1
2 Hess0 Q(ψ0)dψ0

=

∫
Σ+ pF dν

∫
U
vG(u)du

h
∫

Σ+ rdν

∫
TϕQk

e−
1
2 Hess0 Q(ψ0)dψ0, (47)

where we have used equation (37) and the formula FvG(0) =
∫
U
vG(u)du. Observe

that, as Hess0 Q is positive-definite, the integral
∫

TϕQk
e−

1
2 Hess0 Q(ψ0)dψ0 is finite

(and non-zero).

Remark B.4. If one modifies the action (x, u) 7→ (x, u−tτ) to consider the induced
on the quotient by (x, u) 7→ (x, u− tτ −

√
tw0) for a fixed w0 ∈ kerϕ then tracing
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the compuations one readily sees that

lim
t→∞

√
t
d−1

∫
U∗
κ(ψ)

(QψpF )x

1− λψ
eiψ
(
u−tτ−

√
tw0

)
FvG(ψ)dψ

=

∫
Σ+ pF dν

∫
U
vG(u)du

h
∫

Σ+ rdν

∫
TϕQk

e−iψ0(w0)e−
1
2 Hess0 Q(ψ0)dψ0

=

∫
Σ+ pF dν

∫
U
vG(u)du

h
∫

Σ+ rdν
FH(w0),

where we have defined

H(ψ0) = e−(1/2) Hess0(ψ0).

Observe that, as H(ψ0) = H(−ψ0), the value of the Fourier transform FH(w0) ∈ R.

We finally group back the equations to get the desired result. Indeed, equation
(34) is

√
t
d−1

∫
Σ+×U

∑
n∈N

F (x, u)G
(
σnx, u− Snk(x)− tτ

)
dνdLebU

=
√
t
d−1

∫
pG(x)vF (u)

∫
κ(ψ)

(QψpF )x

1− λψ
eiψ
(
u−tτ

)
FvG(ψ)dψdudx+O(1/t)

=

∫
Σ+ pF dν

∫
U
vG(u)du

h
∫

Σ+ rdν

∫
pG(x)vF (u)dxdu

∫
TϕQk

e−
1
2 Hess0 Q(ψ0)dψ0 +O(1/t)

=
FH(0)

h
∫

Σ+ rdν

∫
FdνdLeb

∫
GdνdLeb +O(1/t),

where we have used, in the first equality, equations (40) and (42) and the fact that
N > (1/2)(d− 1) and, in the second equality, the convergence from equation (47).
This completes the sketch of proof.
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