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Abstract. We propose broadcasting algorithms for line digraphs in the tele-
phone model. The new protocols use a broadcasting protocol for a graph G
to obtain a broadcasting protocol for the graph L*G, the graph obtained
by applying k times, the line digraph operation to G. As a consequence im-
proved bounds for the broadcasting time in De Bruijn, Kautz and Wrapped

Butterfly digraphs are obtained.

1 Introduction

Considerable attention has been recently devoted to the dissemination of informa-
tion in parallel computing, since the time needed to disseminate information among
the processors in a network often determines the running time of the whole algo-
rithm. Broadcasting is the process in which a node of the network (the originator)
sends one piece of information to all members of the network by placing calls over
the communication lines of the network. This is to be completed as quickly as pos-
sible subjected to the constraints of the considered model. This problem has been
widely studied both for its theoretical and practical interest for different network
configurations and under different models (see (7, 10] for recent surveys or the book
[11)).
In this paper we are concerned with the telephone model, that is, each call
involves only two vertices of the network and requires one unit of time (round);
moreover we require that’ a vertex can participate in at most one call per unit of
time by either sending or receiving a call and we restrict links to be one-way, that

is, information will always flow in the same direction.
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Interministerial de Ciencia y Tecnologfa, CICYT) under project TIC 92-1228-E and A.
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Following the literature we model the network topology by a digraph G = (.\", {7);
a vertex z € X corresponds to a node in the network, and an arc (z,y) € U, corre-
sponds to a link in which z is the sender and y is the receiver. (G, z) represents the
minimum number of time units (number of rounds) necessary to complete broadcast-
ing form vertex z; 6(G) is defined as the maximum of b(G, z) taken over all vertices
z of G. It is well known that for any digraph G with n vertices b(G) > [log, n]
and that the problem of determining 6(G) is a NP-hard problem. Values of §(G) are
known for many usual interconnection networks; however for Butterfly digraphs and
related networks the order is still unknown.

In this paper we propose a general methodology for designing broadcasting al-
gorithms in line digraphs and iterated line digraphs. In Section 3.1 we give a simple
protocol for broadcasting in LG (the graph obtained by applying the line digraph
operation to the graph () using a broadcast protocol in G where G is a regular di-
graph with degree d; if broadcast in G can be performed in time ¢, then the algorithm
performs broadcasting in LG in time t + [log, d] + 1. In section 3.2 we show that if
G satisfies an additional property, that we call 4, then there exists a broadcasting
protocol in LG that runs in time ¢t + [log, d] + 1.

By iterating the algorithms of Sections 3.1 and 3.2 we obtain protocols for iterated
line digraphs (L(L"~'G) = L"G). In Section 4.1 we show an improved algorithm
for broadcasting in L>G using a broadcasting protocol in G. For some values of d.
the direct derivation of the protocol for L2G has running time ¢ + 2[log, d| + 1 if
G satisfies property A. In Section 5 we sketch the extension to L*G. For example
we obtain for d = 2%, a > 1, a broadcasting algorithm in L3G running in time
t+ 3log,d + 1.

The iteration of the line digraph operation is a good method to obtain large
digraphs with fixed degree and diameter. Besides, many other good properties are
observed in such digraphs when used as models of communication networks ({3, 9]).
In fact some of the best known families of digraphs are indeed line digraphs: De
Bruijn, Kautz,Wrapped Butterfly, among others.

Property A is satisfied in particular if G is itself a line digraph. So we obtain
new and better protocols for De Bruijn, Kautz and Butterfly networks. In the case
of De Bruijn digraphs B(d, D) and Kautz digraphs i'(d, D) (the De Bruijn/Kautz
digraph with degree d and diameter D) we obtain the following bounds

b(B(d, D)) < D(log, d + f(d));
b(K(d, D)) < D(logy d + f(d)) + 1.

1
where f(d) satisfies:-log,(1 + (—1) < f(d) <0.508..
This improves the best current known bounds both for digraphs ([3], [9]) and

graphs ((2)).
2 Notation and Preliminaries

We refer to [5, 11] for basic definitions concerning graphs and digraphs and we recall
basic definitions and properties of line digraphs (see also [6, 8]).
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Given a directed graph G = (.X,U), if (z,y) is an arc, then z is adjacent to y
and y is adjacent from z. We also say that arc (r,y) is incident to y and incident
from z, and that arc u = (z,y) is adjacent to arc v = (y, z). We denote by d*(z)
(d~(z)) the number of vertices adjacent from x (adjacent to z); a digraph is said to
be d-regular if d*(z) = d~(z) = d for any vertex z.

A dipath of length h from a vertex z to a vertex y is a sequence of vertices
T = T0,Zy1,...,Th-1,Tn = ¥y Where (z;,zi41) is an arc of G. A digraph is strongly
connected if, for any couple of vertices r,y, there exists a dipath from z to y. The
length of a shortest dipath from z to y is the distance from z to y. Its maximum
value over all couples of vertices is the diameter of the digraph denoted D(G).

Given a digraph G = (X, U) the line digraph operation allows to define a new
digraph LG whose vertex set is in one to one correspondence with the set of arcs of G.
Vertex u of LG representing the arc u = (z,y) is adjacent to the vertex representing
the arc v if and only if v = (y, ), that is arcs of LG represent dipaths of length 2 of
G. It can be easily shown that if G is d-regular with n vertices then LG is d-regular
with dn vertices; furthermore if G is a strongly connected digraph different from a
directed cycle and d > 1, then the diameter of LG i is the diameter of G plus one.
We denote by L*¥G the graph L(L*~1G).

Let G be a digraph with n vertices and LG the corresponding' line digraph. The
arcs of LG can be partitioned into n complete bipartite digraphs isomorphic to K’.d_d
that are in one to one correspondence with vertices of G. If z is a vertex of a digraph
G then we denote by B, the corresponding bipartite digraph in LG. Note also that
each vertex of LG belongs to exactly to two of such bipartite digraphs: in one case
with in-degree 0 and in the other with out-degree 0.

An arc-labeling for a digraph G is a labeling of its arcs such that any two arcs

incident to the same vertex have different labels and any two arcs incident from the
same vertex have also different labels. If G is d-regular then it is always possible
to obtain such an arc-labeling with d labels. Since we always consider d-regular
digraphs we simply say an arc-labeling instead of an arc-labeling with d labels.
Given a digraph with an arc-labeling, we identify the labels with the elements of
Z4 and we refer to the arcs incoming from or outgoing to the same vertex by their
labels.
The De Bruijn digraph B(d, D) is a d-regular digraph with diameter D defined
as follows: vertices are the strings of length D, z1z5...zp, where z; € Z4, i =
1,2,...,D, and vertex =122 ...zp is adjacent to vertices za...zpa,a =0,1,2,...,d—
1. In [6] it is shown that B(d, D) = LP=1K}, where K} denotes the complete sym-
metric digraph on d vertices with an additional loop in each vertex.

The Kautz digraph K(d, D) is defined analogously: vertices are all strings of
length D, z122...2p, z; € Z;.,.l, i=1,2,..., D, such that two consecutive symbols
cannot be equal. Vertex z;z2...zp is adjacent to vertices z3...zpa, a € Z4y,
a # zp. The digraph K(d, D) is d-regular and has diameter D; moreover K(d, D) =

LP-'Kj,,, where K} , denotes the complete symmetric digraph on d+1 vertices [6].

The Directed Wrapped Butterfly WBF (d, n) has as vertex set the couples (z, /)
where z is a string of length n (zp~1Zn-2...20),2; € Z4,1=0,1,...,n—1,and [ €
Z,. Vertex (zp—1Zn-2...20,() is adjacent to vertices (zp—1...21p102-1...20,1 +

1), « € Z4. In [4] it is shown that WEF (d,n) = L"dC,, where dC, denotes the




graph obtained from the directed cycle with n vertices by replacing each arc with ¢

parallel arcs.

3 Broadcasting in line digraphs

In this section we will show that, given a broadcasting algorithm in a digraph G
running in time ¢, it is possible to construct a broadcasting protocol in LG that runs
in time ¢ + [log, d] + 1. The running time is t + |log, d] + 1 if G satisfies certain

properties.

3.1 A broadcasting protocol in a line digraph

A broadcasting algorithm in a digraph G = (X, U) with originator r can be described
via the broadcast tree T'(r) with root r and vertex set X. T(r) contains the arcs
through which the information has been broadcasted; since each vertex in T'(r) has
in-degree 1, then T'(r) is an arborescence. _

Any broadcasting algorithm P with originator r induces a partial broadcasting
in LG with originator any vertex in LG representing an arc (i, r) , which informs
those vertices of LG corresponding to the arcs of the broadcast tree of G. If P is
a broadcasting protocol running in time ¢ in G, then at time ¢, for any z, there is
at least one vertex u = (-, z) in LG, where - stands for an undetermined symbol,
that has been informed (namely vertex corresponding to (7, r) and the vertices that

correspond to the arcs of the broadcast tree T(r)).
During round ¢ + 1, for any z in G, the informed vertex u = (-,z) in LG sends

the information, denoted by i, to vertex (z,-) of label 1. Since the labeling of the
arcs is an arc-labeling in G, for all z’, vertices (-, z’) of label 1 have been informed.
At round t + 2, all vertices (-, z) of label 1 send i to vertices (z, -) of label 2. Thus at
the end of this round all vertices of LG with labels 1 or 2 will know i; so they will
be able to send i to vertices of LG of labels 3 and 4 during round t + 3. Following
this pattern, we claim that at the end of round ¢ + £, vertices of LG with label i,
1 < i< 2¥-1 will know i. The proof is by induction on k; it is true for k£ = 1
and k = 2. Suppose it is true at time ¢t + k , then at time ¢ + k¥ + 1 for any z the
vertex (-, z) of LG of label 7 informs the vertex (z,-) of label i + 2%¥~!. In this way
all vertices with label 7, 26~1 41 < i < 2%, get the information. Since G is d-regular
at round ¢ + [log, d] + 1, the protocol is completed. So we can state the following

theorem.

Theorem 1. Given a regular digraph G with degree d, such that broadcast in G can
be completed in t rounds, then there exisis a broadcast protocol in LG that runs in

time t + [log, d] + 1.

3.2 An improved protocol in a line digraph

In the previous protocol we have not used the facts that i arrived at vertex z of G
on some arc of a specific label and that i might arrive before time ¢. For example,
suppose that it arrives to an arc (-, z) not of label 1, then before round ¢ + 2 the
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information i has reached two vertices of LG. Therefore, at round ¢ + 2, i could
have been sent on two vertices of LG instead of only one; analogously if i reaches z
at time ¢ — h in the successive h rounds i can be sent on & new arcs.

In the sequel we obtain an improved broadcasting protocol in LG if G admits a
suitable arc-labeling. To this aim let us consider the broadcasting tree T'(r) given by
a broadcasting algorithm P with originator vertex r and let us label its arcs in the
following way: for each vertex, the last arc used to send i is labeled 0, the penultimate
one is labeled —1 (where we perform addition modulo d), the preceding one is labeled
with —2 and so on. We will call such a labeled tree a labeled broadcasting tree. If it
is possible to make an arc-labeling of the digraph G in which the labels of the arcs
of T(r) are the ones in the labeled broadcasting tree, we say that this arc-labeling
is consistent with the labeling of the broadcasting tree. We say that a vertex of G is
of kind k (in the protocol P) if it has received i though an arc of label —k (modulo

d).
We note the following immediate lemma.

Lemma 2. If a vertez is of kind k, then 1l has been znformed in the protocol P at

ltme t — k or before.

Definition3. A d-regular digraph G satisfies property A if there exists a broad-
casting protocol such that, for any vertex r, there exists an arc-labeling of G that

is consistent with the labeling of the broadcasting tree T'(r).
Lemmad. If G s a line digraph then it satisfies property A.

Proof. If G is a line digraph, due to the partition of the arcs into complete bipartite
digraphs, it is possible to label its arcs by arc-labeling independently the bipartite
subdigraphs.

Let T(r) be the broadcasting tree associated to the broadcasting protocol P in
G and for a given bipartite digraph B; of the decomposition of G, let V; and V5 be
the partition of the vertices of B;. For each vertex y of G there exists exactly one
arc entering in y that belongs to T'(r) (the arc through which i has arrived). Let
67 (z) be the out-degree of = in T (that is the number of vertices which have been
informed by z). Now we rank the vertices of V; and V; as follows.

Choose a vertex z in Vi, with ér(z) = 6 > 1; label this vertex zo and label its
out-neighbors in V5 with yo,v1,...,ys~1 in the order they have been informed, i.e.
according to their kind (the out-neighbor of kind 0 is labeled yo, the one of kind 1,
y1 and so on. In general suppose that at some step of the algorithm we have used
all labels till y; for vertices in V5.

If i < d— 1, then choose a vertex z in X with out-degree é7(z) = 6 > 1; label
this vertex z;4; and its out-neighbors y;4;, 1 < j < §;, according to their kind. If
i = d — 1, then there might be vertices in V; that have not been labeled; we label
them in any order using the remaining labels. Note that the labeling is-not unique
(in fact it depends on the order in which vertices in Vi have been chosen).

Let us now consider the following arc-labeling of G: arc (z;,y;) has label (i —
j) mod d. It is immediate to see that it is an arc-labeling which furthermore is

consistent with the labeling of T'(r).



Fig.1. Labeling of the vertices of a bipartite digraph. Drawn arcs are
those in the broadcasting tree T of G

Lemma5. Given a d-regular digraph G that satisfies property A and a broadcasting
protocol P running in G in time t, then there ezists a protocol in LG such that at

timet+h
i) for a vertez of kind k, —k € {1,2,.. 28 — 1}, all its outgoing arcs have been

informed;
i) for a vertez of kind k, —k & {1,2,...,2" =1}, all the arcs of labels j, 1 < j <

2% — 1, have been informed.

Proof. The proof is by induction on h and uses the following protocol @ in LG.
Until time ¢ we will use the broadcasting algorithm P in G but with the following
modification. Let £ be a vertex of G of kind k. By lemma 2, vertex z has received
i at time less or equal to ¢t — k. If we consider protocol P two possible cases arise:
either z has sent i on at least & arcs or = has sent i to &k’ arcs, &' < k, and it has
been idle for at least & — k&’ rounds before ¢. In the modified protocol that we use
until time ¢ we will use k¥ — k' rounds to send the information to k& — &’ arcs in such
a way that, at time ¢, z has sent the information through arcs 0,-1,..., -k + 1.

The specification of protocol @ is completed as follows. At round ¢ + 1 each
vertex (-, z) of LG that corresponds to an arc of the broadcasting tree sends i to its
neighbor of label 1. At the end of this round, if z € V(G) is of kind d — 1 then (-, z)
has informed all its neighbors in LG (in rounds before ¢, the vertices corresponding
to arcs of label —j, 7 =0,1,...,d—2, and, at round ¢+ 1, arc of label 1 = —(d—1)).
If z is of kind k different from d—1 then there exist at least two vertices of LG (y, z)
and (y-g,z) that have received i (these vertices correspond to arcs with labels 1
and —k); in this case these two vertices can send i to the two vertices (z,-) with
labels 2 and 3 during round ¢ + 2; note that in the previous protocol at round ¢ + 2,
i was sent to only one vertex (z,-).

Now we can start the induction. The lemma is satisfied for the cases h = 0
and h = 1. Suppose the lemma is true for hg and let us consider vertex z of kind



k. Then, at round ¢ + hg + 1, if —k € {1,2.....2% — 1} the lemma is true by
induction. If =&k ¢ {1,2,...,2" — 1}, z has received at the end of round t + hg

i on at least 2" arcs: arc of label —k (before time ¢ — k) and arcs of label 7,
j=1,2,...,25 — 1 (at rounds ¢,t + 1,...,t + hg). Therefore z can send i on 2ke
arcs of label j, j = 2R ... 2kl _ 1 Soif —k € {1,2,...,2(h+1) _ 1} a]] outgoing
arcs of = have been informed; otherwise the set of informed arcs is the claimed one.

The proof of the following theorem is an immediate consequence of the lemma
and of the fact that ¢ + [log,(d + 1)] =t + [log,(d)] + 1.

Theorem 6. Given a d-regular digraph G that satisfies property A and such that
broadcast can be performed in time t, then there exists a protocol in LG that runs in

time t + |log,(d)] + 1.

4 Broadcasting in L*G

Given a d-regular digraph G with d = 2%(1+3), 0 < 5 < 1, that satisfies property A,
in which there exists a broadcasting algorithm running in time ¢, by applying twice
the protocol for broadcasting in a line digraph, we obtain a broadcasting algorithm
in LG running in time ¢ +2a +2. The aim of this section is to design a broadcasting
protocol in L2G directly from the protocol in G running in time ¢ + 2a + 1; this is
possible if [ is not too large.

Recall that, given a graph G = (X,U), the vertex set of L2G is the set of all
possible dipaths of length 2 in G, and that broadcasting in L?G is equivalent to
broadcast the information through all paths of length 2, or equivalently, every arc
of G informs every other arc adjacent in G.

Observe that, in the protocol for LG described in the previous section. most
of the vertices are idle during the last unit of time. This happens because all their
neighbors have been already informed and it should not make sense to send again the
information. Nevertheless, if we iterate the process in order to obtain a broadcasting
algorithm in LG, each arc must send i to any other arc and, therefore, the fact

described before represents a waste of time.

4.1 The design of a protocol from small values of d

Lemma 7. Given a d-regular graph G that satisfies property A and a broadcast
protocol in G thatl runs in time t, then there erists a broadcast protocol in L*G such

that, at time t + a, a = |log,d], the information is arrived to all vertices that
correspond to pairs of arcs of G with labels (i, + 27), where 1 < i< 2°~! — 1 and
llogy ] < 7 < a—1, and also to vertices that correspond to a not completely specified
pair of arcs with labels (-,27), where 0 < j < a—1 and - denotes the undetermined
label of an arc (depending on the broadcast algorithm in G).

Proof. We use the protocol @) described in Lemma 5 in the following precise way.
We know that, for any vertex z, at time ¢ + h, the information i is arrived on all
the arcs i, 1 < i < 2" — 1, and on the arc —k (if z is a vertex of kind k). At time



t+h+1, we impose that, if it has not already been done, arc i sends the information
to i + 2" and arc —k to 2%,

Note that if -k € {1,2,...,2" - 1} there is no conflict as arc —£ has already sent
i to 2* and 2% 4+ k' with £’ = —k mod d, k' > 0. So the lemma follows by induction

and considering the case h = a = |log, d].

Let us call the above protocol a weak protocol. If, furthermore, we suppose that
the undetermined - is 0 we say that the protocol is a strong protocol. In this case arc
labeled 0 has informed arcs labeled 27,0 < j < a-1,or equivalently all the pairs
of arcs(0, 2) have been informed.

Let D, be the set of values of d, with |log, d] = a, such that any weak protocol
obtained at time ¢ + a can be completed in a full protocol for L>G in a + 1 more
steps. Since we can always find a weak protocol in time ¢t + « for any d in D,, it
follows that if d € D, then there exists a protocol in L*G running in time ¢t 4+ 2o + 1.

Analogously let E, be the set of values of d with [log, d] = a such that any
strong protocol obtained at time ¢ + o can be completed as in the case of a weak
protocol (G is a d-regular digraph) in « + 1 more steps. Notice that D, C E,.

Lemma8. 1. [fd € D, then 2d € Dyy;.
2. Ifde D, andd+ 1€ E, then2d+1€ Dyy4y.
3. Ifd € E, then 2d € Fyy.

Proof. 1) Let d € D,, thus a = {log, d| and a+ 1 = [log, 2d| = [log,(2d+ 1)]. Let
us recall that there exists a weak protocol for G with degree 2d as it is explained
in the protocol for LG. Let us consider the subdigraphs G, and G, induced by the
even and odd arcs of G respectively. The protocol for G, (where we label arc 2i as
') is exactly a weak protocol for G, (with degree d) completed in time ¢ + o + 1.
Indeed the information is arrived on all the arcs 24,2 < 2i < 29! — 1  that is,
1 < i <2%—1,and arc i has informed arcs i’ + 2/ with |log,#'| +1 < j < a — 1.
Similarly the protocol induced in G, (where we identify 27 4+ 1 with ) is a strong
protocol for G,. -

The protocol in G, and in G, can be completed in a+ 1 steps more since d € D,,.
Thus at time ¢+ 2a +2 all the vertices in L2G of the form (24, 25) and (2i+1,2j +1),
0 < 4,7 < d-1 know the information. Using an extra step (27,2j) can inform
(27,2 + 1) and (27 + 1,25 + 1) can inform (25 + 1, 27) completing the protocol in
time 2(a + 1) + 1. Thus 2d € Dq41.

2) Let us consider subdigraphs G. and G, as in the case before, but labeling arc 2d
as 2d + 1, that is considering 2d as if it were an odd number, and thus belonging to
G,. The protocols induced in G. and G, are a weak protocol and a strong protocol
respectively. Since d € D, and d + 1 € E4 it is possible for the vertices of the form
(2¢,27),0<#,j<d-1,and (2¢+1,2j+1),0 < ¢,j < d to be informed at time
2a + 2. Nevertheless let us change a bit the protocol in G, in order that for each
J, 0 < j < d-1, one of the informed vertices during last step, say (2: + 1,25 + 1)
is replaced by the vertex (27 + 1,2j), that is 2{ + 1 informs 2j instead of informing
2+ 1.

Notice that at time 2a+ 2 arcs in G, have been informed by d+ 1 other arcs, that
is (24,27) know the information for all 7, j < d — 1 as well as (2k + 1, 25) for some k.
Thus (27,27 + 1) can get the information in the next step forall i < d,j <d - 1.



Also at time 2« + 2 the arcs in G, have been informed at least d times, that
is, for every j < d there are at least d vertices of the form (27 + 1,25 + 1) which
are informed, and thus they can inform the d — 1 remaining vertices of the form
(2j +1,2i), 0 < i < d — 1 which were not informed at time 2« + 2 and the vertex
(2i + 1,2j + 1) which was neither informed at that time. Hence the protocol can be
completed in 2(a + 1) + 1 steps, and so 2d + 1 € Dy ;.

3) This case is analogous to Case 1 and it is omitted.

Lemma9. 4 € Dy and 5 € E).

Proof. In the following tables we show an algorithm for completing the protocol in
L2G. In the tables columns represent successive rounds and rows represent labels of
arcs incident to any vertex of G. At each round it is shown what must be done by
each incoming arc. For instance in table a) at time ¢ 43 all arcs inform 0; thus 0 will
have been informed by three different arcs and at time ¢ +4 it can inform 3 different
arcs (with labels 1, 2, 3).

Recall that, by Lemma 7, at time less than or equal to ¢t + 2 arcs 1,2 and 3 have
been informed and moreover the incoming arc 1 has informed the outgoing arc with

label 3.

l HSt+2[t+?ﬁ+ 4ft + 5]

<t+4+2[t+ 3t +4lt+5
(<t +2[t + 3]t + 4]t + 5] TBVRERERE

0 1,2,3] 0
1 3 4 2 10,1

1 3 0 1 2
. 2 2 {14103

2 0 2 11,3
3 5 EW 3 3 11,410,2
' 4 2,310,1,4
a) table for 4 € D» b) table for 5 € E

It is not difficult to construct analogous tables to show that 10 € D3 and 11 € Fj,
but for a lack of space we leave them to the full paper. This result and the ones shown
in Lemmas 8 and 9, imply that given d, d = 2%(1 + ) and « > 3, then d € D, if

3 <3/8andde€ E,if B <3/8.
We use a different analysis in order to obtain a broadcast protocol for L2G that

runs in time ¢t + 2a + 1, when d = 2, 5.

Lemma 10. Given a d-regular line digraph with d = 2 or d = 5 there exisls a
protocol in L*G running in time t + 3, respectively t + 5.

Proof. We give only the proof for d = 2 (the proof for d = 5 uses analogous ideas).
Let us consider the table below:

It seems to be a problem at time ¢ 4+ 3, because the arc of label 0 incident to
vertex of kind 1 might have received the information only once, and thus cannot
send twice. But if we have a little more care in our analysis we can realize that in
the case it has received the information only once (i.e. the incoming arc of label 0
in a vertex of kind 1 is an outgoing arc of a vertex of kind 1) it has received the
information in time less or equal than ¢, and thus can have sent this information
previous to ¢t + 3. In other case, (i.e. the incoming arc of label 0 in a vertex of kind 1
is an outgoing arc of a vertex of kind 0), it has received the information twice, and



so it can send twice the information. In any case it is possible to have a protocol for
L*G running in time ¢ + 3, which is ¢ + 2a + 1.

[ [l ee+1]t+2[t+3]
kind 0)0 1 0
1 0 1
kind 1[0 0,1
1o 1

The following theorem is the main result of this section and is a straightforward
consequence of previous lemmas.

Theorem 11. Given a d-regular digraph G, d = 2%(1+0) and < 3/8, that satisfies
property A and such that broadcast can be performed in time t then there erists a
protocol in L®G that runs in time t + 2|log,(d)] + 1.

It is possible to improve the value of B that appears in Theorem 11 by providing
tables analogous to the tables of Lemma 9 for larger values. We leave this extension
to the full paper. For example in the full paper we prove that 44 € Ds and 45 € E's
and so we have a theorem analogous to Theorem 11 with £ =.13/32.

We now show an upper bound for the value of 8 for which it possible to get
this improvement by the proposed methodology. Namely it cannot be applied if
B > /2 1. In fact the method uses for the first ¢ rounds a broadcast protocol in G;
it follows that at time ¢ we know that only n vertices in L2G have got the information.
Since at each subsequent round the number of vertices knowing the information at
most double, it follows that, at time t+2a+ 1, the number of vertices being informed
is at most n22¢*1, On the other hand the number of vertices in L2G is n2*(1+ 3)2.
The bound is obtained by comparing both expressions. Note that 13/32 = 0.406.. is

very close to 2 — 1 = 0.414..

4.2 Broadcasting in some families of digraphs
We consider the following families of iterated line digraphs: De Bruijn B(d, D), Kautz

K (d, D) and Directed Wrapped Butterfly IWBF (d,n). Since K;', K3, and dCy
(the first cases) satisfy property A then all these families satisfy property A as well

and the following corollary of theorems 6, 11 easily follows.

Corollary12. Letd=2%(1+03), a >4, and let cq =1/2 if 3 < 13/32 and cq = 1
otherwise. Broadcasting in De Bruijn, Kautz and Wrapped Butlerfly digraphs can be

performed in time

1. b(B(d, D)) < D([logd] + ca)
2. b(K(d, D)) < D(|logy d] + ca) +1

3. }(WBF (d,n)) < n(|logad] + ca) +n — 1.

Remark. For the De Bruijn digraph the broadcasting time can be written as
b(B(d, D)) < D(log, d + f(d))

where f(d) is a function bounded by log,(1 + (1/d)) < f(d) < 0.508..



The lower bound is obtained for d = 2% — 1 and the upper one is obtained for
B = 13/32. Nevertheless this result can be improved using protocols in L¥G as it

will be sketched in the next section.

5 Protocol in L*G

The results of the previous section can be extended by showing that, for some values
of d, it is possible to construct a protocol in L¥G running in time ¢ + k|log, d| + h,
h < k directly from the broadcasting algorithm in G. In the following we omit proofs.
First of all we observe that if G is a d-regular line digraph G with d = 29(1 + 3),
0 < B < 1, with a broadcasting algorithm running in time ¢, it is possible to construct
a broadcastmg algorithm in L*G running in time ¢ + ko + h with this method, only

ifl1+8< 2%,
Furthermore we can extend the notion of a weak protocol given in Section 4 as

follows: let DY™ be the set of values of d with llogs d] = o such that any weak
protocol can be completed in a full protocol for LkG in (k- 1)a + h steps more. The

next result is an extension of Lemma 8.

Lemmal3. Ifd € DR gnd b(B(2°,k—1)) =(k—1)s, then 2°d € Dﬁiﬁ’

In [9] it is shown that b(B(8,2)) = 3. Moreover we have been able to complete

the weak protocols for degrees 4, 8 and 16 into full protocols for L3G in 2a + 1 time
steps more. Thus we can state the following result.

Theorem 14. Let G be a line digraph with degree d = 2%, a > 1, such that there
erists a broadcasting algorithm running in time t, then there exist a broadcasting

algorithm in L3G running in time t + 3o + 1.

6 Conclusions

We have described a constructive method to design good broadcasting protocols
in line digraphs and in iterated line digraphs. The broadcasting time given by this
method is in most cases better than with any other method known up to date, even
considering the underlying graph of the line digraph (see (2]).

We summarize in the following table the running time for De Bruijn digraphs.
The table shows for each value of d the running time in terms of 4(B(d, D)) = s4D.
We have used the fact that we know how to construct protocols in L3G for d = 9
(resp. d = 11) running in time ¢ 4+ 10 (resp. t + 11), and in L*G for d = 4 (resp.
d = 8) running in time ¢t + 9 (resp. t +13).

d [2]3]4]s5[6][7]8]9 10 lllJlj
Previous bound|{1.5| 2 |2.5( 3 |3.5] 4 |4.5{ 5 |55] 6
Undirected case|] 1.5 2 [(2.5}2.8] 3 |3.28/3.5/3.67/3.8]3.9 4
New result 1.5 2 ]2.2512.5] 3 3 13.25(3.33{ 3.5 |3.66{ 4
Lower bound 1.44]1.80/2.11]2.38/2.62(2.8213.01(3.17/3.32|3.46]3.59
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