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Efficient Collective Communication in Optical
Networks*

J.-C. Bermond,! L. Gargano,® S. Perennes,! A. A. Rescigno,? and U. Vaccaro?

! 13S, CNRS, Université de Nice, 06903 Sophia Antipolis Cedex, France
2 Dipartimento di Informatica, Universita di Salerno, 84081 Baronissi (SA), Italy.

Abstract. This paper studies the problems of broadcasting and gossip-
ing in optical networks. In such networks the vast bandwidth available is
utilized through wavelength division multiplezing: a single physical opti-
cal link can carry several logical signals, provided that they are transmit-
ted on different wavelengths. In this paper we consider both single-hop
and multihop optical networks. In single~hop networks the information,
once transmitted as light, reaches its destination without being converted
to electronic form in between, thus reaching high speed communication.
In multihop networks a packet may have to be routed through a few
intermediate nodes before reaching its final destination. In both models
we give efficient broadcasting and gossiping algorithms, in terms of time
and number of wavelengths. We consider both networks with arbitrary
topologies and particular networks of practical interest. Several of our
algorithms exhibit optimal performances.

1 Introduction

Motivations. Optical networks offer the possibility of interconnecting hun-
dreds to thousands of users, covering local to wide area and providing capaci-
ties exceeding those of traditional technologies by several orders of magnitude.
Optical-fiber transmission systems also achieve very low bit error rate compared
to their copper-wire predecessors, typically 107° compared to 10~3. Optics is
thus emerging as a key technology in state—of-the—art communication networks
and is expecting to dominate many applications. The most popular approach to
realize these high—capacity networks is to divide the optical spectrum into many
different channels, each channel corresponding to a different wavelength. This
approach, called wavelength-division multiplezing (WDM) [11] allows multiple
data streams to be transferred concurrently along the same fiber-optic, with
different streams assigned separate wavelengths.

The major applications for such networks are video conferencing, scientific
visualisation and real-time medical imaging, high-speed super-computing and
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distributed computing [18, 39, 43]. We refer to the books of Green [18] and
McAulay [29] for a presentation of the physical theory and applications of this
emerging technology.

In order to state the new algorithmic issues and challenges concerning data
communication in optical networks, we need first to describe the most accepted
models of optical networks architectures.

The Optical Model. In WDM optical networks, the bandwidth available in
optical fiber is utilised by partitioning it into several channels, each at a different
wavelength. Each wavelength can carry a separate stream of data. In general,
such a network consists of routing nodes interconnected by point-to—point fiber
optic links. Each link can support a certain number of wavelengths. The routing
nodes in the network are capable of routing a wavelength coming in on an input
port to one or more output ports, independently of the other wavelengths. The
same wavelength on two input ports cannot be routed to a same output port.
WDM ligthwave networks can be classified into two categories: switchless (also
called broadcast-and-select or non-reconfigurable) and switched (also called re-
configurable). Each of these in turn can be classified as either single-hop (also
called all-optical) or multihop [39]. In switchless networks, the transmission from
each station is broadcast to all stations in the network. At the receiver, the
desired signal is then extracted from all the signals. These networks are prac-
tically important since the whole network can be constructed out of passive
optical components, hence it is reliable and easy to operate. However, switchless
networks suffer of severe limitations that make problematic their extension to
wide area networks. Indeed it has been proven in [1] that switchless networks
require a large number of wavelengths to support even simple traffic patterns.
Other drawbacks of switchless networks are discussed in [39]. Therefore, optical
switches are required to build large networks.

A switched optical network consists of nodes interconnected by point-to—
point optic communication lines. Each of the fiber-optic links supports a given
number of wavelengths. The nodes can be terminals, switches, or both. Terminals
send and receive signals. Switches direct their input signals to one or more of
the output links. Each link is bidirectional and actually consists of a pair of
unidirectional links [39].

In this paper we consider switched networks with generalised switches, as done
in [1, 3, 10, 38]. In this kind of networks, signals for different requests may
travel on a same communication link into a node v (on different wavelengths)
and then exit v along different links. Thus the photonic switch can differentiate
between several wavelengths coming along a communication link and direct each
of them to a different output of the switch. The only constraint is that no two
paths in the network sharing a same optical link have the same wavelength
assignment. In switched networks it is possible to “reuse wavelengths” [39], thus
obtaining a drastic reduction on the number of required wavelengths with respect
to switchless networks [1]. We remark that optical switches do not modulate the
wavelengths of the signals passing through them; rather. they direct the incoming
waves to one or more of their outputs.



Single~hop networks (or all-optical networks) are networks where the infor-
mation, once transmitted as light, reaches its final destination directly without
being converted to electronic form in between. Maintaining the signal in optic
form allows to reach high speed in these networks since there is no overhead due
to conversions to and from the electronic form. However, engineering reasons
(39] suggest that in some situations the multihop approach can be preferable. In
these networks, a packet from a terminal node may have to be routed through a
few terminal nodes before reaching its final destination. At each terminal node,
the packet is converted from light to electronic form and retransmitted on an-
other wavelength. See [32, 33] for more on these questions. In the present paper
we consider both switched single-hop and switched multihop networks.

Our Results. In this paper we initiate the study of the problem of designing
efficient algorithms for collective communication in switched optical networks.
Collective communication among the processors is one of the most impor-
tant issues in multi-processor systems. The need for collective communication
arises in many problems of parallel and distributed computing including many
scientific computations [9, 12, 15] and database management [17, 44]. Due to the
considerable practical relevance in parallel and distributed computation and the
related interesting theoretical issues, collective communication problems have
been extensively studied in the literature (see the surveys [20, 25, 16]). In this
paper we will consider the design of efficient algorithms for two widely used
collective communication operations: Broadcasting and Gossiping (also called
all-to—all broadcasting). Formally, the broadcasting and gossiping processes can
be described as follows.
Broadcasting: One terminal node v, called the source, has a block of data B(v).
The goal is to disseminate this block so that each other terminal node in the
network gets B(v).
Gossiping: Each terminal node v in the network has a block of data B(v). The
goal is to disseminate these blocks so that each terminal node gets all the blocks
B(u), for each terminal u in the network.

Although our work seems to be the first to address the problem of collec-
tive communication in switched optical networks, there is a substantial body
of literature that has considered related problems. Optical routing in arbitrary
networks has been recently considered in [1, 3, 30, 38]. Above papers contain
also efficient algorithms for routing in networks of practical interest. Routing in
hypercube based networks has been considered by (3, 34, 38]. Lower bounds on
the number of wa.velengths necessary for routing permutations have been given
in [34, 4, 37]. Gossiping in broadcast-and-select optical networks has been con-
sidered in [1]. Other work related to ours is contained in {13, 23, 14, 24, 25]. In
these papers the problem of designing efficient broadcasting and gossiping algo-
rithms in traditional networks has been considered under the assumption that
data exchange can take place through edge—disjoint paths in the network.

In this paper we consider both single-hop and multihop networks. In case
of single-hop networks we design broadcasting and gossiping algorithms that
<ot manad Lofasing ot intormadiate nades The aleorithms have to guarantee
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that there is a path between each pair of nodes requiring communication and no
link will carry two different signals on the same wavelength. For our purposes,
a wavelength will be an integer in the interval [1, W]. Generally, we wish to
minimise the quantity W, since the cost of switching and amplification devices
depends on the number of wavelengths they handle. For single~hop networks we
obtain:
e Optimal broadcasting algorithms for all maximally edge—connected graphs;
e optimal gossiping algorithm for rings and hypercubes, quasi—optimal algorithms
for toruses;
e upper and lower bounds on the number of wavelengths necessary to gossip in
arbitrary graphs in terms of the edge—expansion factor.
For multihop networks we derive non-trivial tradeoffs between the number of
wavelengths and the number of hops (rounds) necessary to complete the process.
We obtain, among several results:
o Asymptotically tight bounds for bounded degree networks;
o Tight bounds for hypercubes, meshes, and toruses.

Some of our results generalise previously known ones; indeed the results of
[13] and [23] can be seen as particular cases of our results, when only one wave-
length is available.

Due to the space limits, all proofs are omitted. We refer to the full version
(8] for all omitted proofs.

2 Notations and Definitions

We represent the network as a graph G = (V(G), E(G)). For physical reasons,
each edge in G is to be considered bidirectional and consisting of a pair of uni-
directional optical links [39, 30]. In graph-theoretic language, this is equivalent
to say that the network should be represented by a directed symmetric graph.
For sake of simplicity, we prefer to consider G as an undirected graph. However,
we will be always careful to count the number of signals crossing an edge taking
into account their directions, that is, our algorithms will always assign different
wavelengths to signals crossing an edge in the same direction. We will use the
term graph and network interchangeably. The number of vertices of G will be
always denoted by n. Given v € V(G), we denote with d(v) the degree of v, with
dmax and dmin we denote the maximum and minimum degree of G, respectively.

Processes are accomplished by a set of calls; a call consists of the transmission
of a message from some node z to some destination node y along a path from
z to y in G. Each call requires one round and is assigned a fixed wavelength.
A node can be involved in an arbitrary number of calls during each round, but
we require that if two calls share an edge in the same direction during the same
round then they must be assigned different wavelengths.

Given a network G, a node z € V(G), and an integer t, we denote by
wb(G, z,t) the minimum possible number of wavelengths necessary to complete
the broadcasting in G in at most ¢ rounds, when z is the source of the broadcast;



we set wb(G,t) = max;ev(c) wb(G, £, t). Analogously, with wg(G, t) we shall de-
note the minimum possible number of wavelengths necessary to complete the
gossiping process in G in at most ¢ rounds.

Given G, a node z € V(G), and an integer w, we denote by tb(G, z,w)
the minimum possible number of rounds necessary to complete the broadcasting
process in G using up to w wavelengths per round, when z is the source of the
broadcast; we set tb(G, w) = maxzev(g) tb(G, £, w). We denote by tg(G, w) the
minimum possible number of rounds necessary to complete the gossiping process
using up to w wavelengths per round.

The edge-ezpansion B(G) of G [26], (also called isoperimetric number in
[31, 42] and conductance in [27]) is the minimum over all subsets of nodes S C
V(G) of size |S| < n/2, of the ratio of the number of edges having exactly one
endpoint in S to the size of S.

A graph G is k—edge—connected if & is the minimum number of edges to be
removed in order to disconnect G, G is marimally edge—connected if its edge—
connectivity equals its minimum degree.

A routingfor a graph G isaset of n(n—1) paths R= {R. y | z,y € V(G), z #
y}, where R,y is a path in G from z to y. Given a routing R for the graph G,
the load of an edge e € E(G), denoted by load(R,e), is the number of paths
of R going through e in either directions. The edge-forwarding indez of G [21],
denoted by m(G), is the minimum over all routings R for G of the maximum
over all the edges of G of the load posed by the routing R on the edge, that is,
7(G) = ming max.eg(g) 1oad(R, €). It is known that [42]

n

B(G)

Unless otherwise specified, all logarithms in this paper are in base 2.

(G) 2 (1)

3 Single-Hop Networks

In this section we consider the number of wavelengths necessary to realize the
broadcasting and gossiping processes in single-hop (all-optical) networks.

In the single-hop model it is sufficient to study the number of wavelengths
necessary when only one communication round is used. Indeed, any one-round
algorithm that uses w wavelengths can also be executed in t rounds using [w/t]

wavelengths per round, that is,
G0 < |2 wiei < [@] . 2)

On the other hand, the assumption of a single-hop system implies that if we
have a realization of a process in t rounds using up to w wavelengths per round,
we can easily obtain a new realization using wt wavelengths and one round.
Therefore, in the sequel of this section we will focus on one-round algorithms;
we will write wb(G) and wg(G) to denote wb(G, 1) and wg(G, 1), respectively.
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3.1 Broadcasting

Given a graph G and a node v € V(G), when v is the source of the broadcasting
process there must exist at least (n — 1)/d(v) calls of the n — 1 originated at v
that share a same edge incident on v. Therefore,

Lemma 3.1 For each graph G on n nodes wb(G) > {dm..,(G)}

We give now an upper bound that allows to determine the exact value of wb(G)
for all maximally edge—connected graphs and, therefore, for most of the used
interconnection networks.

Theorem 3.1 For each k-edge—connected graph G on n nodes wb(G) < ‘1]

From Lemma 3.1 and Theorem 3.1 we get

Corollary 3.1 If G is mazimally edge-connected then wb(G) = IV#TG)‘I .

The above corollary gives the exact value of the number of wavelengths necessary
to broadcast in one round in various classes of important networks. By Mader’s
theorem [28], Corollary 3.1 gives the exact value of wb(G) for the wide class of
vertex—transitive graphs. In particular, we have

o for the d-dimensional hypercube Hy wb(Hy) = [(2¢

o for the r x s mesh M, ,

- 1)/d];

) =[(rs = 1)/2];

) = [(m? - 1)/(2d)];
=[(n-1)/d].

wb(M;s
o for the d dimensional torus C3, wh(C4,
(

o for any Cayley graph G of degree d wb(G)

For other classes of graphs G for which the edge connectivity is equal to dmin
and, therefore, for which wb(G) = hf._:TlG_)] by Corollary 3.1, see the survey
paper [7].

3.2 Gossiping

In this section we study the minimum possible number of wavelengths necessary
to perform gossiping in single-hop networks in exactly one round. In the following
lemma we put in relation wg(G) with «(G).

Lemma 3.2 For each graph G it holds that wg(G) > =(G)/2.

Minimising the number of wavelengths is in general not the same problem as
that of realizing a routing that minimises the number of paths sharing a same
edge. Indeed, our problem is made much harder due to the further requirement
of wavelengths assignment on the paths. In order to get equality in Lemma 3.2
one should find a routing R achieving the bound n(G)/2 for which the associated
conflict graph, that is, the graph with a node for each path in R and an edge
between any two paths sharing an edge in the same direction, is 7(G)/2-vertex



colorable. We also notice that the problem of determining the edge-forwarding
index of a graph is NP-complete [41].

In the rest of this section we will put in relation the minimum possible num-
ber of wavelengths necessary to perform gossiping in G in one round with
the edge-expansion of G. From Lemma 3.2 and (1) we get the lower bound
wg(G) = 2(n/B(G)). We now show that gossiping can be efficiently realized in
any bounded degree graph with a number of wavelengths within a (log? n)/8(G)
factor from the optimal. In order to gossip in one round one has to choose a path
for each pair of nodes and use these paths concurrently, this is equivalent to the
problem of embedding the nodes of the complete graph K, in G and route the
edges of K, as paths in G. For a bounded degree graph G, Leighton and Rao [26]
showed that this problem can be efficiently solved with congestion O(";‘fg?) and

dilation O(%) Since each vertex in the conflict graph of the resulting routing

has degree upper bounded by (congestion x dilation)= O("p—lf(gé—)"), the greedy
colouring algorithm can be used to colour the vertices of the conflict graph with
0('},—';’(5;—)") colours, that is, it can be used to assign O(%) wavelengths to
the paths of the routing so that no two paths sharing an edge have the same
wavelength assignment. Summarising,

Theorem 3.2 In any bounded degree graph G on n nodes wg(G) = O (-"‘%’(%2)—") .
Computing 3(G) seems an hard computational problem (see [31]), therefore it
can be useful also to relate wg(G) with easly computable parameters of G. In
particular, we can obtain bounds on wg(G) in terms of the spectrum of matrices
associated to G. Recalling that the Laplacian of a graph with adjacency matrix
A and degree function d(-) is the n x n matrix with entries d(z)d;y — Az y,
where J. , is the Kronecker symbol, from Lemma 2.1 of [2], Theorem 4.2 of [31],
Lemma 3.2, Theorem 3.2, and formula (1) of the present paper we get:

Theorem 3.3 Let A be the second smallest eigenvalue of the Laplacian associ-

ated to G. We have wg(G) =2 (\/XT’;—-‘——X)) and wg(G) =0 (n_h;%?_n) .

We show now that for some classes of important networks the lower bound
on wg(G) given in Lemma 3.2 can be efficiently reached.

In case of the path P, on n nodes it is not hard to prove that the shortest
path routing gives a set of paths that can be coloured with an optimal number
of colours m(P,)/2 = } l%J, so that all paths sharing an edge in the same

direction have different colours. In the next theorems we determine wg(-) for the
ring, the torus, and the hypercube.

Theorem 3.4 Let C,, be the ring on n nodes. Then

=1 2]

Theorem 3.5 Let C? be the k x k torus. If k is odd then
wg(CR) = k[k°/4]/2,
if k is even then
k°/8 < wg(CF) < (k + 1)(k*/8 + k/2).
Theorem 3.6 Let H,y be the d-dimensional hypercube. We have

ug(Hq) = 2971,

4 Multihop Networks

In this section we show that by exploiting the capabilities of the multihop optical
model, a drastic reduction on the number of wavelengths can be obtained with
respect to (2).

In the following, we will be mostly interested in investigating broadcasting
algorithms. Indeed, as it is well known, the gossiping process can be accomplished
by first accumulating all blocks at one node and then broadcasting the resulting
message from this node. Since accumulation corresponds to the inverse process
of broadcasting we get the obvious result

Lemma 4.1 For each graph G and number of wavelengths w

tb(G, w) < tg(G, w) < 2 tb(G, w).

-

4.1 Lower Bounds

Lemma 4.2 For each graph G on n nodes of minimum degree dmin and maxzi-
mum degree dmax

£5(G,w) > [‘°g“ +(n~ l)dm/dmm)]

log(wdmax + 1) (3)

Lemma 4.3 Given a graph G on n nodes of marimum degree d, let to; =

tb(G,w). It is possible to perform gossiping on G in t rounds using w wave-
lengths only if

(wd +1)t=% —1

2(n-1) wd

+(2t0 — t)(wd + 1)1 > 7(G)/(2w).



4.2 Upper Bounds

In order to obtain our general upper bound on the number of rounds to broadcast
in G with a fixed number of wavelengths, we need the following covering property.

Definition 4.1 An s—tree cover for a graph G = (V.E) is a family F of subtrees
of G such that:

1. UperV(F)=V;

2. For each F,F' € F it holds |V(F)NV(F)| < 1;

3. For each F € F it holds |V(F)| < s.
The s-tree cover number of G is the minimum size of an s—tree cover for G.

The following result upper bounds the s—tree cover number of any graph; its

proof also furnishes an efficient way to determine an s—tree cover which attains
the bound.

Lemma 4.4 For each graph G on n nodes and bound s, the s-tree cover number
of G s upper bounded by 2n/s.

Before giving the upper bound on the broadcasting time in general graphs,
we notice the following application of Lemma 4.4 to the function wb(-).

Theorem 4.1 For each k-edge connected graph G on n nodes

\/1+("—;)dmax/dmin—1] < wb(G,2) < [@-l ‘

By using Lemma 4.4 we can prove a general upper bound on tb(G, w) for any
w > 2; in the case w = 1 the bound tb(G, 1) < [logn] has been given in [13].

Theorem 4.2 For each graph G on n nodes and number of wavelengths w > 2
tb(G, w) < [logn/(log(w + 1) — 1)].
By Lemma 4.2 and Theorem 4.2 we get
Corollary 4.1 For each bounded degree graph G on n nodes
tb(G,w) = O(log, 4, n).

We give now a sharper bound on the broadcasting time in the d-dimensional
hypercube in terms of the maximum number of wavelengths. In the special case
w = 1 it is proved in [23] that tb(Hy, 1) = @(d/ logd).

Theorem 4.3 For each d and number of wavelengths w

d d
| S ) S iy 2
1 if logw = o(24),

with ¢(d, w) < 4 and limyeo c(d, w) < { 14 lggi otherwise.

For meshes and toruses we have the following result

Theorem 4.4 Let My, k, and Ck, k, be the ki x k2 mesh and torus, respectively,
on the n = kiky nodes in the set {(z1,z2) : 0 < z; < ki, i =1,2}. For each w,
k and ki, ks <k

log(2n — 1)} [ log k ]
———=| < tb(M, <l 1,
[log(4w +1)| — EB(Mie s w) < log| vVAw + 1] +
logn log k
[log(4w + 1)} e e [logl_\/4w + IJ] '

5 Conclusions and Open Problems

In this paper we have initiated the study of efficient collective communication
in switched optical networks. Although we have obtained a number of results,
several open problems can be investigated for future lines of research. We list
the most important of them here.

e The computation complexity of the quantities wb(G,t), wg(G,t), tb(G, w),
tg(G, w) deserves to be investigated. It is likely that for some of them it is NP-
hard. In this view, approximation algorithms in the sense of [40] and [19] could
be interesting to design.

¢ Our algorithm require a centralised control. This seems not to be a severe
limitation in that the major applications for optical networks require connections
that last for long periods once set up; therefore, the initial overhead is acceptable
as long as sustained throughput at high data rates is subsequently available [38].
Still distributed algorithms are worth investigating. ’

* We did not consider fault tolerant issues here. See the recent survey [35] for
an account of the vast literature on fault-tolerance in traditional networks.
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