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ABSTRACT

In this paper, we introduce a novel interactive satellite im-
age change detection algorithm based on active learning. The
proposed approach is iterative and asks the user (oracle) ques-
tions about the targeted changes and according to the oracle’s
responses updates change detections. We consider a proba-
bilistic framework which assigns to each unlabeled sample a
relevance measure modeling how critical is that sample when
training change detection functions. These relevance mea-
sures are obtained by minimizing an objective function mix-
ing diversity, representativity and uncertainty. These criteria
when combined allow exploring different data modes and also
refining change detections. To further explore the potential of
this objective function, we consider a reinforcement learning
approach that finds the best combination of diversity, repre-
sentativity and uncertainty, through active learning iterations,
leading to better generalization as corroborated through ex-
periments in interactive satellite image change detection.

Index Terms— active learning, reinforcement learning,
satellite image change detection

1. INTRODUCTION

Satellite image change detection consists in finding occur-
rences of targeted (relevant) changes into a scene at a given
instant w.r.t. the same scene acquired earlier [4,6–8]. This in-
cludes appearance or disappearance of visual entities such as
infrastructure destruction after natural hazards (earthquakes,
tornadoes, etc.) [2, 3]. This task is very challenging as rel-
evant changes are eclectic and satellite images are subject
to multiple sources of irrelevant changes including illumina-
tion, artefacts, clouds, etc. Existing solutions either remove
irrelevant variations in satellite images by correcting their
radiometric effects [1, 10, 12–14] or consider them as a part
of appearance modeling [9, 11, 15–20]. The latter consists
in designing statistical or machine inference models [5, 37]
that learn how to discriminate between relevant and irrelevant
changes. Training these models requires enough labeled data
covering all the sources of variability due to both the positive
and negative classes. However, beside the scarceness of la-
beled data, the relevance of changes could be subjective and
may vary from one user to another, and this makes the task of

automatic change detection highly challenging.
Existing machine learning approaches that mitigate the

scarceness of labeled data include few shot, self-supervised
and active learning [21–24, 26–33]. Among these methods,
active learning is particularly interesting and allows modeling
the user’s subjectivity (about targeted changes) more accu-
rately. Active learning solutions are interactive approaches
that show the most critical unlabeled data (a.k.a. displays)
to the user/oracle, and ask the latter about the relevance of
changes prior to update change detections [34]. Display
section strategies usually rely on diversity, representativity
and uncertainty [25]. Diversity allows exploring different
modes of the unlabeled data, representativity seeks to se-
lect prototypical samples in those modes while uncertainty
allows displaying the most ambiguous data that ultimately
refine change detections. However, knowing a priori which
sequence of display strategies (diversity, representativity and
uncertainty) to apply through all the iterations of active learn-
ing is highly combinatorial. Besides, under the frugal learning
regime, labeled validation sets are scarce in order to make the
optimization of these strategies statistically meaningful.

In this paper, we devise a novel change detection algo-
rithm that asks the oracle the most informative questions
about targeted changes and according to the oracle’s re-
sponses updates change detections. The proposed solution
is probabilistic and assigns to each unlabeled sample a rel-
evance measure which captures how critical is that sample
when learning changes. These relevance measures are ob-
tained as the optimum of an objective function that mixes
diversity, representativity and ambiguity criteria. In order to
tackle the combinatorial aspect of these criteria, we further
rely on reinforcement learning (RL) which finds the “op-
timal” sequence of actions (diversity, representativity and
ambiguity as well as their possible combination) that ulti-
mately leads to high generalization. Experiments conducted
on the challenging task of interactive satellite image change
detection show the superiority and the outperformance of the
proposed RL-based approach w.r.t. related work.

2. PROPOSED MODEL

Let Ir = {p1, . . . , pn}, It = {q1, . . . , qn} denote two reg-
istered satellite images taken at two different time-stamps t0,



t1 respectively, and let X = {x1, . . . ,xn} be a set of aligned
patch pairs with xi = (pi, qi) ∈ Ir × It. Considering the la-
bels of X initially unknown, our goal is to design a classifier
g(.) by interactively labeling a very small fraction of X (as
change / no-change), and training the parameters of g. This
interactive labeling and training is known as active learning.
Let Dt be a display (defined as a subset of X ) shown to an
oracle1 at any iteration t of active learning, and let Yt be the
underlying labels. The initial display Dt (with t = 0) is uni-
formly sampled at random, and used to train the subsequent
classifiers by repeating the following steps till reaching high
generalization or exhausting a labeling budget:
i) Get the labels of Dt as Yt ← oracle(Dt).
ii) Train gt(.) using

⋃t
τ=1(Dτ ,Yτ ) where the subscript in

gt(.) refers to the decision function at iteration t. In this pa-
per, support vector machines (built on top of convolutional
features) are used.
iii) Select the next display D ⊂ X −

⋃t
τ=1Dτ that possibly

increases the generalization performances of the subsequent
classifier gt+1(.). As the labels of D are unknown, one can-
not combinatorially sample all the possible subsets D, train
the associated classifiers, and select the best display. Alter-
native display selection strategies (a.k.a display models) are
usually related to active learning and seek to find the most
representative display that eventually yields optimal decision
functions [22]. In what follows, we introduce our main con-
tribution: a novel display model which allows selecting the
most representative samples to label by an oracle and ulti-
mately lead to high generalization performances, in satellite
image change detection, as corroborated later in experiments.

2.1. Display model

We consider a probabilistic framework which assigns for
each sample xi ∈ X a membership degree µi that measures
the probability of xi belonging to the next display Dt+1;
consequently, Dt+1 will correspond to the unlabeled data in
{xi}i ⊂ X with the highest memberships {µi}i. Considering
µ ∈ Rn (with n = |X |) as a vector of these memberships
{µi}i, we propose to find µ as the minimum of the following
constrained optimization problem

min
µ≥0,‖µ‖1=1

η tr
(
diag(µ′[C ◦D])

)
+ α [C′µ]′ log[C′µ]

+β tr
(
diag(µ′[F ◦ logF])

)
+ µ′ logµ,

(1)
here ◦, ′ are respectively the Hadamard product and the

matrix transpose, ‖.‖1 is the `1 norm, log is applied entry-
wise, and diag maps a vector to a diagonal matrix. In the
above objective function (i) D ∈ Rn×K and Dik = d2ik
is the euclidean distance between xi and kth cluster cen-
troid of a partition of X obtained with K-means cluster-
ing, (ii) C ∈ Rn×K is the indicator matrix with each

1The oracle is defined as an expert annotator providing labels (changes /
no-changes) for any given subset of images.

entry Cik = 1 iff xi belongs to the kth cluster (0 oth-
erwise), and (iii) F ∈ Rn×2 is a scoring matrix with
(Fi1,Fi2) = (ĝt(xi), 1− ĝt(xi)) and ĝt ∈ [0, 1] being a nor-
malized version of gt. The first term of this objective function
(rewritten as

∑
i

∑
k 1{xi∈hk}µid

2
ik) measures the repre-

sentativity of the selected samples in D; in other words, it
captures how close is each xi w.r.t. the centroid of its cluster,
so this term reaches its smallest value when all the selected
samples coincide with these centroids. The second term
(rewritten as

∑
k[
∑n
i=1 1{xi∈hk}µi] log[

∑n
i=1 1{xi∈hk}µi])

measures the diversity of the selected samples as the entropy
of the probability distribution of the underlying clusters; this
measure is minimized when the selected samples belong to
different clusters and vice-versa. The third criterion (equiv-
alent to

∑
i

∑nc
c µiFic logFic) captures the ambiguity in D

measured as the entropy of the scoring function; this term
reaches its smallest value when data are evenly scored w.r.t.
different categories. Finally, the fourth term is related to the
cardinality of D, measured by the entropy of the distribution
µ; this term also acts as a regularizer. Considering 1nc, 1K
as vectors of nc and K ones respectively (with nc = 2 in
practice), one may show that the solution of Eq. 1 is given as
µ(τ+1) := µ̂(τ+1)/‖µ̂(τ+1)‖1, with µ̂(τ+1) being

exp

(
−
[
η(D◦C)1K+αC(log[C′µ(τ)]+1K)+β(F ◦ logF)1nc

])
.

(2)
As shown later in experiments, the setting of the hyper-
parameters α, β, η is crucial for the success of the display
model. For instance, putting more emphasis on diversity (i.e.,
high α) results into high exploration of class modes while
a high focus on ambiguity (i.e., large β) locally refines the
trained decision functions. A suitable balance between explo-
ration and local refinement of the learned decision functions
should be achieved by selecting the best configuration of
these hyper-parameters. Nevertheless, since labeling is spar-
ingly achieved by the oracle, no sufficiently large validation
sets could be made available beforehand to accurately set
these hyper-parameters.

2.2. RL-based display model

Let Λα, Λβ , Λη denote the parameter spaces associated to
α, β, η respectively, and let Λ be the underlying Cartesian
product. For any instance λ ∈ Λ (at a given iteration t + 1),
one may obtain a display (now rewritten as Dλt+1) by solving
Eq. 1. In order to find the best configuration λ∗ that yields an
“optimal” display, we model hyper-parameter selection as a
Markov Decision Process (MDP). An MDP based RL corre-
sponds to a tuple 〈S,A, R, T, δ〉 with S being a state set, A
an action set, R : S ×A 7→ R an immediate reward function,
T : S × A 7→ S a transition function and δ a discount factor
[35]. RL consists in running a sequence of actions from A
with the goal of maximizing an expected discounted reward
by following a stochastic policy, π : S 7→ A; this leads to the



true state-action value as

Q(s, a) = Eπ

[ ∞∑
k=0

δkrk|S0,= s,A0 = a

]
, (3)

here Eπ denotes the expectation w.r.t. π, rk is the immediate
reward at the kth step of RL, S0 an initial state, A0 an initial
action and δ ∈ [0, 1] is a discount factor that balances between
immediate and future rewards. The goal of the optimal policy
is to select actions that maximize the discounted cumulative
reward; i.e., π∗(s) ← arg maxaQ(s, a). One of the most
used methods to solve this type of RL problems is Q-learning
[36], which directly estimates the optimal value function and
obeys the fundamental identity, the Bellman equation

Q∗(s, a) = Eπ

[
R(s, a) + δmax

a′
Q∗(s

′, a′)|S0 = s,A0 = a
]
,

(4)
with s′ = T (s, a) and R(s, a) is again the immediate re-
ward. We consider in our hyper-parameter optimization, a
stateless version, so Q(s, a) and R(s, a) are rewritten simply
asQ(a), R(a) respectively. In this configuration, the parame-
ter space Λ is equal to {0, 1}3\(0, 0, 0) so the underlying ac-
tion set A corresponds to 7 possible binary (zero / non-zero)
settings of α, β, η. We consider an adversarial immediate re-
ward function R that scores a given action (and hence the
underlying configuration λ ∈ Λ) proportionally to the error
rates of gt(Dλt+1); put differently, the displayDλt+1 is selected
in order to challenge (the most) the current classifier gt, lead-
ing to a better estimate of gt+1. With this RL-based design,
better change detection performances are observed as shown
subsequently in experiments.

3. EXPERIMENTS

Dataset and setting. We evaluate the accuracy of our RL-
based interactive change detection algorithm using the Jef-
ferson dataset. The latter consists of 2, 200 non-overlapping
(30×30 RGB) patch pairs taken from (bi-temporal) GeoEye-
1 satellite images of 2, 400× 1, 652 pixels with a spatial res-
olution of 1.65m/pixel. These patch pairs pave a large area
from Jefferson (Alabama) in 2010 and in 2011. These images
show several damages caused by tornadoes (building destruc-
tion, debris on roads, etc) as well as no-changes including
irrelevant ones (clouds, etc). In this dataset 2, 161 patch pairs
correspond to negative data and only 39 pairs to positive, so
< 2% of these data correspond to relevant changes and this
makes their detection very challenging. In our experiments,
half of the patch pairs are used for training and the remaining
ones for testing. We measure the accuracy of change detection
using the equal error rate (EER); the latter is a balanced gen-
eralization error that evenly weights errors in the positive and
negative classes. Smaller EERs imply better performances.

Ablation study and impact of RL. In the first set of exper-
iments, we show an ablation study of our display model and

Iter 1 2 3 4 5 6 7 8 9 10 AUC
Samp% 1.45 2.90 4.36 5.81 7.27 8.72 10.18 11.63 13.09 14.54

rep 48.05 26.21 12.72 10.48 9.88 9.70 8.52 8.85 8.61 8.82 15.18
div 48.05 31.24 23.45 30.41 44.81 24.12 13.22 17.02 6.88. 7.98 24.71
amb 48.05 46.68 38.73 29.91 14.74 20.11 8.33 7.41 7.37 5.53 22.68

rep+div 48.05 26.21 33.35 25.10 21.55 11.71 2.84 1.65 1.59 1.43 17.34
rep+amb 48.05 26.21 12.62 10.81 9.82 9.70 8.53 9.23 8.60 8.82 15.23
div+amb 48.05 41.69 28.82 23.08 23.41 23.42 19.82 13.10 8.16 6.97 23.65
all (flat) 48.05 26.21 33.35 25.52 23.70 14.59 2.74 1.54 1.67 1.48 17.88

RL-based 48.05 31.75 10.36 14.83 13.36 14.70 1.06 1.06 1.10 1.01 13.72

Table 1. This table shows an ablation study of our display model. Here rep, amb
and div stand for representativity, ambiguity and diversity respectively. These results are
shown for different iterations t (Iter) and the underlying sampling rates (Samp) defined
as (

∑t−1
k=0 |Dk|/(|X |/2))× 100. The AUC (Area Under Curve) corresponds to the

average of EERs across iterations.

thereby the impact of ambiguity, representativity and diver-
sity criteria when taken individually and combined. From
these results, we observe the positive impact of diversity at
the early iterations of active learning, while the impact of
ambiguity comes later in order to further refine the learned
change detection functions. However, none of the settings
(rows) in table 1 obtains the best performance through all
the iterations of active learning. Considering these observed
ablation performances, a better setting of the α, β and η
should be cycle-dependent using reinforcement learning (as
described in section 2.2), and as also corroborated through
performances shown in table 1. Indeed, it turns out that this
adaptive setting outperforms the other combinations (includ-
ing “all”, also referred to as “flat”), especially at the late
iterations of change detection.
Extra comparison. Figure. 1 shows extra comparisons of
our RL-based display model w.r.t. different related display
sampling techniques including random, MaxMin and uncer-
tainty. Random picks data from the unlabeled set whereas
MaxMin greedily selects a sample xi in Dt+1 from the pool
X\ ∪tk=0 Dk by maximizing its minimum distance w.r.t
∪tk=0Dk. We also compare our method w.r.t. uncertainty
which consists in selecting samples in the display whose
scores are the closest to zero (i.e., the most ambiguous).
Finally, we also consider the fully supervised setting as an
upper bound on performances; this configuration relies on the
whole annotated training set and builds the learning model in
one shot.
The EERs in figure 1 show the positive impact of the pro-
posed RL-based display model against the related sampling
strategies for different amounts of annotated data. The com-
parative methods are effective either at the early iterations
of active learning (such as MaxMin and random which cap-
ture the diversity of data without being able to refine decision
functions) or at the latest iterations (such as uncertainty which
locally refines change detection functions but suffers from the
lack of diversity). In contrast, our proposed RL-based design
adapts the choice of these criteria as active learning cycles
evolve, and thereby allows our interactive change detection
to reach lower EERs and to overtake all the other strategies at
the end of the iterative process.
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Fig. 1. This figure shows a comparison of different sampling strategies w.r.t. dif-
ferent iterations (Iter) and the underlying sampling rates in table 1 (Samp). Here Un-
cer and Rand stand for uncertainty and random sampling respectively. Note that fully-
supervised learning achieves an EER of 0.94%. See again section 3 for more details.

4. CONCLUSION

We introduce in this paper a satellite image change detection
algorithm based on active and reinforcement learning. The
strength of the proposed method resides in its ability to find
and adapt display selection criteria to the active learning it-
erations, thereby leading to more informative subsequent dis-
plays and more accurate decision functions. Extensive exper-
iments conducted on the challenging task of change detection
shows the accuracy and the out-performance of the proposed
interactive method w.r.t. the related work.
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