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Graph convolution networks (GCNs) are currently mainstream in learning with irregular data. These models rely on message passing and attention mechanisms that capture context and node-to-node relationships. With multi-head attention, GCNs become highly accurate but oversized, and their deployment on cheap devices requires their pruning. However, pruning at high regimes usually leads to topologically inconsistent networks with weak generalization. In this paper, we devise a novel method for lightweight GCN design. Our proposed approach parses and selects subnetworks with the highest magnitudes while guaranteeing their topological consistency. The latter is obtained by selecting only accessible and co-accessible connections which actually contribute in the evaluation of the selected subnetworks. Experiments conducted on the challenging FPHA dataset show the substantial gain of our topologically consistent pruning method especially at very high pruning regimes.

INTRODUCTION

Deep convolutional networks are currently one of the most successful models in image processing and pattern recognition [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]. Their principle consists in learning convolutional filters, together with attention and fully connected layers, that maximize classification performances. These models are mainly suitable for data sitting on top of regular domains (such as images) [START_REF] Jiu | Laplacian deep kernel learning for image annotation[END_REF][START_REF] Sahbi | Context-dependent kernel design for object matching and recognition[END_REF][START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF][START_REF] Sahbi | Imageclef annotation with explicit context-aware kernel maps[END_REF], but their adaptation to irregular data (namely graphs) requires extending convolutions to arbitrary domains [START_REF] Bruna | Spectral networks and locally connected networks on graphs[END_REF][START_REF] Henaff | Deep convolutional networks on graph structured data[END_REF][START_REF] Sahbi | Kernel-based Graph Convolutional Networks[END_REF]; these extensions are known as graph convolutional networks (GCNs).

Two categories of GCNs exist in the literature: spectral and spatial. Spectral methods [START_REF] Tn | Semi-supervised classification with graph convolutional networks[END_REF][START_REF] Levie | Cayleynets: Graph convolutional neural networks with complex rational spectral filters[END_REF][START_REF] Li | Adaptive graph convolutional neural networks[END_REF][START_REF] Defferrard | Convolutional Neural Networks on graphs with Fast Localized Spectral Filtering[END_REF][START_REF] Sahbi | Learning laplacians in chebyshev graph convolutional networks[END_REF] proceed by projecting both input graph signals and convolutional filters using the Fourier transform, and achieve convolution in the Fourier domain, prior to back-project the resulting convolved signal in the input domain. These projections rely on the eigendecomposition of graph Laplacians whose complexity scales polynomially with the size of the input graphs [START_REF] Vo | Transductive kernel map learning and its application to image annotation[END_REF][START_REF] Oliveau | Learning attribute representations for remote sensing ship category classification[END_REF][START_REF] Chung | Spectral graph theory[END_REF], and this makes spectral GCNs clearly intractable. Spatial meth-ods [START_REF] Gori | A new model for learning in graph domains[END_REF][START_REF] Micheli | Neural network for graphs: A contextual constructive approach[END_REF][START_REF] Wu | A comprehensive survey on graph neural networks[END_REF][START_REF] Hamilton | Inductive representation learning on large graphs[END_REF] instead rely on message passing, via attention matrices, before applying convolution. While spatial GCNs have been relatively more effective compared to spectral ones, their success is highly reliant on the accuracy of the attention matrices that capture context and node-to-node relationships [START_REF] Knyazev | Understanding attention and generalization in graph neural networks[END_REF]. With multi-head attention, GCNs are more accurate but computationally more demanding, so lightweight variants of these models should instead be considered.

Several methods have been proposed in the literature in order to design lightweight yet effective deep convolutional networks [START_REF] Huang | Condensenet: An efficient densenet using learned group convolutions[END_REF][START_REF] Sandler | Mobilenetv2: Inverted residuals and linear bottlenecks[END_REF][START_REF] Howard | Mobilenets: Efficient convolutional neural networks for mobile vision applications[END_REF][START_REF] Tan | Efficientnet: Rethinking model scaling for convolutional neural networks[END_REF]. Some of them build efficient networks from scratch while others pretrain heavy networks prior to reduce their time and memory footprint using distillation [START_REF] Hinton | Distilling the knowledge in a neural network[END_REF][START_REF] Zagoruyko | Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer[END_REF][START_REF] Romero | Fitnets: Hints for thin deep nets[END_REF][START_REF] Mirzadeh | Improved knowledge distillation via teacher assistant[END_REF][START_REF] Zhang | Deep mutual learning[END_REF][START_REF] Ahn | Variational information distillation for knowledge transfer[END_REF] and pruning [START_REF] Lecun | Optimal brain damage[END_REF][START_REF] Hassibi | Second order derivatives for network pruning: Optimal brain surgeon[END_REF][START_REF] Han | Learning both weights and connections for efficient neural network[END_REF]. Pruning methods, either unstructured or structured, allow removing connections whose impact on the classification performance is the least perceptible. Unstructured pruning [START_REF] Han | Learning both weights and connections for efficient neural network[END_REF][START_REF] Han | Deep compression: Compressing deep neural network with pruning, trained quantization and huffman coding[END_REF] consists in cutting connections individually using different criteria, including weight magnitude 1 , prior to fine-tuning. In contrast, structured pruning [START_REF] Li | Pruning filters for efficient convnets[END_REF][START_REF] Liu | Learning efficient convolutional networks through network slimming[END_REF] aims at removing groups of connections, channels or entire subnetworks. Whereas structured pruning may reach high speed-up on dedicated hardware resources, its downside resides in the rigidity of the class of learnable lightweight networks. On another side, unstructured pruning is more flexible, but may result into topologically inconsistent subnetworks (i.e., either partially or completely disconnected), and this may lead to limited generalization especially at very high pruning rates.

In this paper, we introduce a novel approach for lightweight GCN design that gathers the advantage of both structured and unstructured pruning, and discards their inconvenient; i.e., the method imposes a few constraints on the structure of the learned subnetworks (namely their topological consistency) while also ensuring their flexibility at some extent. Our solution is greedy and proceeds by selecting connections with the highest magnitudes while guaranteeing their accessibility (i.e., their reachability from the network input) and their coaccessibility (i.e., their actual contribution in the evaluation of the output). Hence, only topologically consistent subnetworks are considered when selecting connections. Different magnitude surrogates are also considered in order to greedily select connections; these surrogates allow maximizing magnitudes not only locally at the visited layers but also globally at the subsequent ones, thereby resulting into more effective lightweight networks as shown in experiments.

GRAPH CONVOLUTIONAL NETWORKS

Let S = {G i = (V i , E i )} i denote a collection of graphs with V i , E i being respectively the nodes and the edges of G i . Each graph G i (denoted for short as G = (V, E)) is endowed with a signal {ψ(u) ∈ R s : u ∈ V} and associated with an adjacency matrix A with each entry A uu > 0 iff (u, u ) ∈ E and 0 otherwise. GCNs aim at learning a set of C filters F that define convolution on n nodes of G (with n = |V|) as

(G F)V = f A U W , (1) 
here stands for transpose, U ∈ R s×n is the graph signal, W ∈ R s×C is the matrix of convolutional parameters corresponding to the C filters and f (.) is a nonlinear activation applied entrywise. In Eq. 1, the input signal U is projected using A and this provides for each node u, the aggregate set of its neighbors. Entries of A could be handcrafted or learned so Eq. 1 implements a convolutional block with two layers; the first one aggregates signals in N (V) (sets of node neighbors) by multiplying U with A while the second layer achieves convolution by multiplying the resulting aggregates with the C filters in W. Learning multiple adjacency (also referred to as attention) matrices (denoted as {A k } K k=1 ) allows capturing different contexts and graph topologies when achieving aggregation and convolution. With multiple matrices {A k } k (and associated convolutional filter parameters

{W k } k ), Eq. 1 is updated as (G F) V = f K k=1 A k U W k .
Stacking aggregation and convolutional layers, with multiple matrices {A k } k , makes GCNs accurate but heavy. In what follows, we propose a novel method that makes our networks lightweight and still effective.

LIGHTWEIGHT DESIGN

In what follows, we subsume any given GCN as a multilayered neural network g θ whose weights defined as θ = W 1 , . . . , W L , with L being its depth, W ∈ R d -1 ×d its th layer weights, and d the dimension of . The output of a given layer is defined as

φ = f (W φ -1 ), ∈ {1, . . . , L -1}, (2) 
being f an activation function. Without a loss of generality, we omit the bias in the definition of (2).

Magnitude Pruning

Given a GCN g θ , magnitude pruning (MP) consists in removing connections in g θ . MP is obtained by zeroing-out a subset of weights in θ, and this is achieved by multiplying W by a binary mask M ∈ {0, 1} d -1 ×d . The binary entries of M are set depending on whether the underlying layer connections are kept or removed, so Eq. 2 becomes

φ = f ((M W ) φ -1 ), (3) 
here stands for the element-wise matrix product. In this definition, entries of the tensor {M } are set depending on the prominence of the underlying connections in g θ ; MP consists first in zeroing the smallest parameters (up to a pruning rate) in the learned GCN g θ , and then fine-tuning the remaining parameters. However, such MP suffers from several drawbacks. On the one hand, removing connections individually may result into topologically inconsistent networks (see section 3.2), i.e., either completely disconnected or having isolated connections. On the other hand, high pruning rates may lead to an over-regularization effect and hence weakly discriminant lightweight networks, especially when the latter include isolated connections (see later experiments). In what follows, we introduce a more principled MP that guarantees the topological consistency of the pruned networks and allows improving generalization even at very high pruning rates.

Our Topologically Consistent Magnitude Pruning

Our formal definition of topological consistency relies on two principles: accessibility and co-accessibility of connections in g θ . Let M i,j refer to a connection between the i-th and the j-th neurons of layer .

M i,j is accessible if ∃i 1 , . . . , i -1 , s.t. M 1 i1,i2 = • • • = M -1 i -1 ,i = 1, and M i,j is co-accessible if ∃i +1 , . . . , i L , s.t. M +1 j,i +1 = • • • = M L i L-1 ,i L = 1.
Considering the products S a = M 1 M 2 . . . M -1 and S c = M +1 M +2 . . . M L , and following the above definition, it is easy to see that M ij is accessible (resp. co-accessible) iff the i-th column (resp. j-th row) of S a (resp. S c ) is different from the null vector. A network is called topologically consistent iff all its connections are both accessible and co-accessible. Accessibility guarantees that incoming connections to the i-th neuron carry out effective activations resulting from the evaluation of g θ up to layer . Co-accessibility is equivalently important and guarantees that outgoing activation from the j-th neuron actually contributes in the evaluation of the network output. A connection M ij -not satisfying accessibility or co-accessibility and even when its magnitude is large -becomes useless and should be removed when g θ is pruned.

For any given network, parsing all its topologically consistent subnetworks and keeping only the one with the largest magnitudes is highly combinatorial. Indeed, the accessibility of a given connection depends on whether its preceding and subsequent ones are kept or removed, and any masked connections may affect the accessibility of the others. In what follows, we introduce a greedy algorithm that prunes a given network by maximizing the magnitude of its connections while guaranteeing its topological consistency. 

}; for = 1 to L -1 do i +1 ← arg max j∈N (i ),k [W i ,j Ŵ +1 j,k ] ; // A stochastic variant is to select a random walk from i to i +1 ∈ N (i ) proportionally to {W i ,j Ŵ +1 j,k } j∈N (i ),k . if (M i ,i +1 = 0) then nc ← nc + 1; M i ,i +1 ← 1;

Algorithm

Our solution parses neurons in g θ layer-wise; each parsing consists in finding a complete chain from the input to the output of g θ . Given a neuron i in layer , its subsequent neuron in the chain corresponds to the one which maximizes magnitude among the forward neighbors of i (denoted as N (i)). This process is repeated for different input neurons till exhausting a targeted pruning rate. This solution maximizes magnitude locally; however, there is not guarantee that neurons visited in the subsequent layers will have sufficiently large magnitude connections. In order to circumvent this issue, instead of locally maximizing {W i,j } j∈N (i) , we globally maximize a surrogate criterion as

max j∈N (i),k W i,j Ŵ +1 j,k , k ∈ {1, . . . , d L }, (4) 
with Ŵ +1 = W +1 . . . W L (see also algorithm 1). Under row-stochasticity of {W } , the matrix Ŵ +1 models an m-step markovian process (with m = L -) where the conditional transition likelihood, between two neurons, is proportional to the sum of the conditional likelihoods of all the possible m -1 steps linking these two neurons. Nevertheless, Eq. 4 could be contaminated by a large number of small magnitude connections. This limitation motivates the introduction of a slight variant (called α-powered magnitude) with Ŵ +1 recursively defined as

Ŵ +1 = [W +1 ] 1 α [ Ŵ +2 ] 1 α α , 1/α ∈ [1, +∞[, (5) 
here the power is applied entrywise. When α → 0, Eq. 4 captures the largest magnitude path 2 outgoing from the i-th to the k-th output neuron of g θ (via j). When α ∈]0, 1[, Eq. 4 models instead the average of dominating magnitude paths outgoing from the i-th neuron (again via j), so the effect of spurious (small magnitude) connections could be attenuated. 2 The magnitude of a path is defined as the sum of all its connection magnitudes.

Stochasticity

In spite of making the selected subnetworks topologically consistent and hence effective (as shown later in experiments), the aforementioned procedure is deterministic and relies on the hypothesis that only connections with the highest magnitudes are essential while in practice, other connections could also be used in order to explore further subnetworks. Hence, instead of considering a deterministic parsing approach, we consider a stochastic sampling process. More precisely, neurons are again visited layer-wise, but the subsequent layer neurons are selected by sampling a random walk distribution (see the commented variant in algorithm 1); note that neurons that maximize magnitude are still preferred (with a high probability), nevertheless other neurons will also be selected depending on their magnitude distribution. This stochastic variant turns out to be more effective, especially at high pruning regimes, as shown subsequently.

EXPERIMENTS

We evaluate the performance of our GCNs on the task of action recognition using the First-Person Hand Action (FPHA) dataset [START_REF] Garcia-Hernando | First-Person Hand Action Benchmark with RGB-D Videos and 3D Hand Pose Annotations[END_REF]. The latter includes 1175 skeletons belonging to 45 action categories (with style, speed, scale and viewpoint variations). Each video (sequence of skeletons) is initially described with a graph G = (V, E) where each node v j ∈ V corresponds to the j-th hand-joint trajectory (denoted as {p t j } t ) and an edge (v j , v i ) ∈ E exists iff the j-th and the i-th trajectories are spatially connected. Each trajectory in G is processed using temporal chunking [START_REF] Mazari | MLGCN: Multi-Laplacian graph convolutional networks for human action recognition[END_REF]: first, the total duration of a sequence is split into M equally-sized temporal chunks (M = 32 in practice), then the trajectory coordinates {p t j } t are assigned to the M chunks (depending on their time stamps) prior to concatenate the averages of these chunks. This produces the raw description (signal) of v j .

Implementation details and baseline GCN. We trained the GCNs end-to-end using the Adam optimizer [START_REF] Kingma | Adam: A method for stochastic optimization[END_REF] for 2,700 epochs with a batch size equal to 600, a momentum of 0.9 and a global learning rate (denoted as ν(t)) inversely proportional to the speed of change of the cross entropy loss used to train our networks. When this speed increases (resp. decreases), ν(t) decreases as ν(t) ← ν(t -1) × 0.99 (resp. increases as ν(t) ← ν(t -1)/0.99). In all these experiments, we use a GeForce GTX 1070 GPU (with 8 GB memory). We evaluate the performances using the 1:1 setting proposed in [START_REF] Garcia-Hernando | First-Person Hand Action Benchmark with RGB-D Videos and 3D Hand Pose Annotations[END_REF] with 600 action sequences for training and 575 for testing, and we report the average accuracy over all the classes of actions. The architecture of our baseline GCN (taken from [START_REF] Sahbi | Learning Connectivity with Graph Convolutional Networks[END_REF]) includes an attention layer of 16 heads applied to skeleton graphs whose nodes are encoded with 32-channels, followed by a convolutional layer of 128 filters, and a dense fully connected layer. In total, this initial network is relatively heavy (for a GCN) and its number of parameters reaches 2 millions. Nevertheless, this GCN is accurate compared to the related work on the FPHA benchmark as shown in Table . 1. Considering this GCN baseline, our goal is to make it lightweight while maintaining its high accuracy.

Method

Color Depth Pose Accuracy (%) Two stream-color [START_REF] Feichtenhofer | Convolutional Two-Stream Network Fusion for Video Action Recognition[END_REF] 61.56 Two stream-flow [START_REF] Feichtenhofer | Convolutional Two-Stream Network Fusion for Video Action Recognition[END_REF] 69.91 Two stream-all [START_REF] Feichtenhofer | Convolutional Two-Stream Network Fusion for Video Action Recognition[END_REF] 75.30 HOG2-depth [5] 59.83 HOG2-depth+pose [5] 66.78 HON4D [START_REF] Oreifej | HON4D: Histogram of Oriented 4D Normals for Activity Recognition from Depth Sequences[END_REF] 70.61 Novel View [START_REF] Rahmani | 3D Action Recognition from Novel Viewpoints[END_REF] 69.21 1-layer LSTM [START_REF] Zhu | Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks[END_REF] 78.73 2-layer LSTM [START_REF] Zhu | Co-occurrence feature learning for skeleton based action recognition using regularized deep LSTM networks[END_REF] 80.14 Moving Pose [START_REF] Zanfir | The Moving Pose: An Efficient 3D Kinematics Descriptor for Low-Latency Action Recognition and Detection[END_REF] 56.34 Lie Group [START_REF] Vemulapalli | Human action recognition by representing 3D skeletons as points in a Lie group[END_REF] 82.69 HBRNN [START_REF] Du | Hierarchical recurrent neural network for skeleton based action recognition[END_REF] 77.40 Gram Matrix [START_REF] Zhang | Efficient Temporal Sequence Comparison and Classification Using Gram Matrix Embeddings on a Riemannian Manifold[END_REF] 85.39 TF [START_REF] Garcia-Hernando | Transition Forests: Learning Discriminative Temporal Transitions for Action Recognition[END_REF] 80.69 JOULE-color [START_REF] Hu | Jointly Learning Heterogeneous Features for RGB-D Activity Recognition[END_REF] 66.78 JOULE-depth [START_REF] Hu | Jointly Learning Heterogeneous Features for RGB-D Activity Recognition[END_REF] 60.17 JOULE-pose [START_REF] Hu | Jointly Learning Heterogeneous Features for RGB-D Activity Recognition[END_REF] 74.60 JOULE-all [START_REF] Hu | Jointly Learning Heterogeneous Features for RGB-D Activity Recognition[END_REF] 78.78 Huang et al. [START_REF] Huang | A Riemannian Network for SPD Matrix Learning[END_REF] 84.35 Huang et al. [START_REF] Huang | Building Deep Networks on Grassmann Manifolds[END_REF] 77.57 Our GCN baseline 86.08

Table 1: Comparison of our baseline GCN against related work on FPHA.

Lightweight CGN performances. Table . 2 shows the accuracy of our lightweight GCNs for different pruning rates, and other settings including topological consistency (TC) and stochasticity. From these results, the impact of TC is substantial on highly pruned GCNs. We also observe the positive impact of stochasticity which allows exploring different subnetworks. Note that the impact of TC is less important (and sometimes worse) with low pruning regimes; indeed, low pruning rates produce subnetworks with already enough (a large number of) connections and having some of them neither accessible nor co-accessible produces a well known regularization effect [START_REF] Wan | Regularization of neural networks using dropconnect[END_REF]. On another side, over-pruning networks, without TC, produces an over-regularization effect (i.e., under-fitting); the resulting lightweight networks become highly disconnected. In contrast, TC ensures connectivity (accessibility and co-accessibility) in spite of learning very lightweight networks, it also mitigates under-fitting and thereby improves generalization (see again accuracy in Table. 2 and how the A-C difference between standard MP and TC MP is accentuated as pruning rates increase). Finally, Table. 3 shows the impact of α (in Eq. 5) on the performance of our lightweight GCNs. From this Table 3: Accuracy for different α settings when maximizing magnitudes globally (i.e., with Eqs. 4 and 5). Both TC and stochasticity are used, and pruning rate (PR) is set to 99.9 %. Compared to table 2, with the same PR, the accuracy improves significantly when α is set appropriately (α = 10).

CONCLUSION

In this paper, we introduce a novel pruning method that trains very lightweight GCNs while guaranteeing their topological consistency. The latter is an important property which guarantees the contribution of all accessible and co-accessible network connections in the learned decision functions. Experiments conducted on the challenging task of hand-gesture recognition shows the maintained high accuracy of our topologically consistent lightweight GCNs, even at very high pruning regimes. As a future work, we are currently investigating the extension of this method to other network architectures and datasets.

Algorithm 1 :

 1 Topologically consistent MP Input: Weight tensor W 1 , . . . , W L , MaxKeptConnections. Output: Mask tensor M 1 , . . . , M L . nc ← 0; {M ← 0} ; while nc < MaxKeptConnections do Select i 1 from {1, . . . , d 1

Table 2 :

 2 Detailed performances and ablation study, for different pruning rates (# of parameters) and other criteria including topological consistency (TC) and stochasticity. This table also shows the resulting percentage of accessible and co-accessible connections (denoted as A-C). These results are obtained by maximizing magnitudes locally (without Eqs. 4 and 5, i.e., by maximizing {W i,j } j∈N (i) instead). NA stands for not applicable. .82 72.34 73.21 76.17 72.86 66.60
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Magnitude is considered as a proxy of weight relevance.