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Abstract

This paper presents a robust enrichment strategy to model weak and strong
discontinuities as well as cracks for industrial applications. First, numerical issues
encountered with popular extended finite element approximation spaces are pointed
out. Then, the paper gives indications on how to circumvent those issues. The very
originality of the paper relies on questioning the theoretical approximation spaces with
respect to numerical results and to modify accordingly their design. The relationship
between the new design and the previous designs is clearly established, in order to
highlight the very small implementation cost of the modifications exposed here. Hence
with minimal additional computational cost, gains in accuracy can be significant as
shown later in the paper.
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Introduction
Strain localization is usually an issue for conventional finite element approaches due to
numerical issues in the softening regime of the stress–strain relation, when the problem
becomes ill-posed. Apart from taking care directly of the localization by an adaptation
of the mesh to the discontinuity, different methods have been used in the literature to
circumvent this difficulty. Smeared-cracked models were first proposed [1,2] with per-
turbations of the fields across the interface. Discontinuous embedded elements appeared
almost at the same time with initial papers of Ortiz et al. [3] or Dvorkin et al. [4], with
arbitrary orientations through an element but independent from an element to its neigh-
bor. A little bit later, special interface elements [5,6] were proposed localized in between
conventional elements, which require frequent re-meshing and refinedmeshes in order to
allow for crack propagation in the correct direction. The eXtented Finite ElementMethod
X-FEM [7] and the Generalized Finite Element Method GFEM [8] finally allow meshes
not to respect the crack geometry while providing a continuous transfer of information
from one element to the next one about the crack surface localization unlike the gener-
alized class of embedded discontinuous finite element approaches [3,4]. These methods
with nodally based enrichments have managed to combine performance and robustness,
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considering non-meshed cracks in a finite element framework. X-FEM and GFEM use
the Partition of Unity [9] and enrich the classical basis of shape functions with discontin-
uous functions [10]. The discontinuity of the displacement field across the crack surface
is then introduced by a generalized Heaviside function, and adding asymptotic fields at
the front crack gives good precision in linear elastic fracture mechanics [10,11]. Themain
advantage of these methods in comparison to mesh-less methods is their easy implemen-
tation in a general finite element software, and their capabilities to be applied to various
fields: large transformations [12] or plasticity [13] in the X-FEM context for example…
One can say that X-FEM and GFEM extend the possibilities of the FEM, while keeping all
its advantages. A useful amelioration has been proposed by Sukumar et al. [14] with the
introduction of level set functions to represent discontinuities (cracks, voids,…). These
approaches are extremely handy in 3D to treat crack propagation [15,16].
Moreover, these methods have been implemented to solve linear elasticity fracture

mechanics problems [8,17] with better accuracy than with finite element methods. How-
ever, the extension of those methods to quadratic elements in three dimensions is a big
challenge. Meanwhile, industrial numerical tools use extensively quadratic elements and
simulations in three dimensions are almost the norm. In the wake of [18–20], this arti-
cle attempts to close in the gap between the theoretical methods and issues related to
implementation in industrial software.
Minor concerns in one dimension with linear elements turn out to be daunting chal-

lenges in 3D or with quadratic elements. Those concerns have been described in [17,21–
23] but have raised little interest since recent publications [24,25]. Firstly, they are related
to the ill conditioning of strong or weak discontinuous approximations in the general case
of non-conforming interfaces and secondly, to the numerical issues related to “geometrical
enrichment” techniques, near the crack-tip.
The analysis will be developed more particularly in the case of strongly discontinuous

approximations because a direct link with conditioning can be clearly established. For
weak discontinuities involved in bi-materials for instance, conditioning issues are still
present but they are coupled with the quality of the approximation space to represent
continuous solutions with discontinuous gradients [14,26–28]. A specific section will be
dedicated to this analysis.
In “Strong discontinuity approximation conditioning” and “Singular enrichment space

optimality and conditioning” sections, conditioning issues related to strong discontinuity
and singular functions are investigated, as well as, strategies available in the literature to
solve those issues. In “Approximation spaces in the literature” and “Numerical behav-
ior of strongly discontinuous and singular approximations” sections, those strategies are
benchmarked with linear and quadratic elements. Further analysis unfolds that quadratic
elements emphasize conditioning and accuracy issues almost unseenwith linear elements.
The results exposedhere are general enough, given thewide rangeof approximation spaces
considered in the paper.

Strong discontinuity approximation conditioning

Inmechanical engineering general purpose software with extended finite elements, strong
discontinuities are positioned rather arbitrarily within the bulk of the mesh. A sensitivity
study is clearly needed to check out whether strongly discontinuous enrichment strate-
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gies are dependent on the position of the interface or not (see Fig. 1). In the literature,
the answer is far from obvious. Authors suggested that there is indeed a sensitivity of the
solution with respect to the position of the interface; nonetheless, they considered this
sensitivity as a numerical side-effect and complex numerical solutions have been elab-
orated to deal with this issue [21,24]. Although those techniques may work with linear
elements, very little is said about their efficiency with quadratic elements. As a matter of
fact, the asymptotic behavior of strongly discontinuous approximations is not well under-
stood. Conditioning and accuracy of solutions with strong discontinuities deteriorate
severely when the interface gets close to the vertices of the mesh. For curved interfaces or
unstructuredmeshes, the interface has a strong probability of getting close to one vertex at
least. Dealing with this configuration is a requirement to prevent unexpected results when
switching meshes or when moving the interface during industrial numerical simulations.
Those numerical issues have been studied in the case of X-FEM formulations [24].With

X-FEM, the enrichment functions and the classical shape functions are almost collinear
when the interface cuts the mesh near one of its nodes (Fig. 2). Whenever those config-
urations appear, conditioning deteriorates very quickly. In such cases, there are plenty of
strategies to limit the conditionnumber large increase. Those strategies are detailed below.

Fig. 1 Positions of the interface investigated in the paper. The condition number is optimal in two cases:
firstly, when the interface cuts through the middle of the elements and secondly, when the interface is on the
boundary of the elements. Apart from those cases, the condition number soars. This behavior will be
investigated later in the paper

Fig. 2 Example of configurations leading to ill conditioning. The speed of increase of the condition number
is related to the distance between the interface and the nodes of the mesh. The condition number soars
when either the distanceN1IP goes to zero or whenN2IP goes to zero
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First of all, we can consider the elimination of degrees of freedom, based on straightfor-
ward criteria [18,24]. Those criteria are rough estimates of the “Heaviside information”
on both sides of the discontinuity. Basically, if the Heaviside information is heavily unbal-
anced, we have:

– either:

measure
({

�+ ∩ Supp(Φi)
})� measure

({
�− ∩ Supp(Φi)

})
(1)

– or:

measure
({

�− ∩ Supp(Φi)
})� measure

({
�+ ∩ Supp(Φi)

})
(2)

where, Supp(Φi) refers to the support of the shape function and �+ and �− are the
domains defined on Fig. 3.
Practically, this means that node numbered i is either on the side �− or on the side �+

and does not “see” the information from the opposite side. From now on, the information
from the opposite side will be called complementary information.
The criterion used here replaces the measurement of volumes [18,24] by the measure-

ment of distances between the nodes of the mesh and the interface on cut edges. When
these criteria are associated to a relocation of the interface they are usually named fit-to-

Fig. 3 Set of enriched nodes for a strong discontinuity. A node is enriched with the jump functions only if his
support is cut by the crack’s interface
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vertex. Along each edge (see example on Fig. 2), the balance of “Heaviside information” is
weighted through the comparison of lengths [N1IP] and [N2IP] with respect to [N1N2].
Level-sets (abbreviated “lsn”) are a handy tool to evaluate those lengths, since they do not
require computing the coordinates of the intersection points.
From the stand of node N1, we have if lsn refers to the normal level set:

measure(
{
�+ ∩ Supp(Φ1)

}
) ∝ length([N1IP]) ≈ ∣∣lsn(N1)

∣
∣ (3)

measure(
{
�− ∩ Supp(Φ1)

}
) ∝ length([N2IP]) ≈ ∣∣lsn(N2)

∣
∣ (4)

where N1 and N2 are the vertices of the linear element pictured (Fig. 2). IP is a given
intersection point on the linear element. lsn(x) represents the level-set function at point
x.
Then, the level-set values of both nodes are compared in order to enrich or not node

N1. A similar approach consists in changing directly the value of the level-set of the N2
node to zero. In any case, a threshold is needed to decide whether or not the enrichment
needs to be modified. This threshold based on the ratio of characteristic dimensions is
generally chosen between 10−2 and 10−3 [18,24].
A simple criterion expresses as:

• Node N1 is eliminated or the level set is moved to N2 by resetting lsn (N2) to zero if,
∣∣lsn(N2)

∣∣
∣∣lsn(N1)

∣∣+ ∣∣lsn(N2)
∣∣ < 10−2 (5)

• Node N2 is eliminated or the level set is moved to N1 by resetting lsn (N1) to zero if,
∣∣lsn(N1)

∣∣
∣∣lsn(N1)

∣∣+ ∣∣lsn(N2)
∣∣ < 10−2 (6)

Apart from distance or volume weighting criteria associated or not to fit-to-vertex, a
more evolved criterion may be used [24]. Here, the additional idea is about weighting
the “balance of Heaviside information” inside the stiffness matrix, instead of weighting
the geometrical information of physical domains. This “stiffness” criterion attempts to
correlate the condition number of the “stiffness” matrix to the numerical threshold of
elimination.
On second hand, to control the condition number, one can consider an algebraic pre-

conditioner [21], dedicated to orthogonalize shape functions and enrichment functions,
with a Cholesky factorization.
Let’s assumeK is the stiffnessmatrix.Ki,x is the term of thematrix associated with shape

function Φi and the enriched d.o.f. corresponding to the enrichment function FxΦi. As K
is bilinear, symmetric and positive definite there is an inner product 〈·, ·〉K such as:

Ki,x = 〈Φi, FxΦi〉K (7)

Béchet et al. [21] pre-conditioner orthogonalizes Φi and FxΦi (in the sense of 〈·, ·〉K ),
according to the following procedure:

K → K̃ = PT
CKPC

Ku = f →
{
K̃ ũ = PT

C f
u = PCũ

(8)

and,

K̃i,x = 〈Φi, FxΦi〉K̃ = 〈PCΦi, PCFxΦi〉K = 0 (9)
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If the degrees of freedom for each node are adjacent (ranked contiguously), the shape of
PC is:

PC =

⎡

⎢
⎢⎢⎢
⎢⎢⎢
⎢⎢⎢
⎣

P1
C 0 0 · · · · · · · · ·
0 P2

C 0 · · · 0 · · ·
0 0 P3

C · · · · · · · · ·
· · · · · · · · · . . . · · · · · ·
· · · 0 · · · · · · Pi

C · · ·
· · · · · · · · · · · · · · · . . .

⎤

⎥
⎥⎥⎥
⎥⎥⎥
⎥⎥⎥
⎦

(10)

The blocks of PC express as follows:

Pi
C =

{
S−1
i if the node is enriched
Id if not

(11)

where the inverse terms are computed from Cholesky’s factorization of local blocks of K :

Ki
loc = STi Si (12)

Ki
loc =

⎡

⎢
⎢⎢
⎣

〈Φi,Φi〉K 〈Φi, HΦi〉K 〈Φi, FxΦi〉K
〈Φi, HΦi〉K 〈HΦi, HΦi〉K 〈HΦi, FxΦi〉K
〈Φi, FxΦi〉K 〈HΦi, FxΦi〉K 〈FxΦi, FxΦi〉K

⎤

⎥
⎥⎥
⎦

(13)

Singular enrichment space optimality and conditioning

In linear elasticity, the asymptotic displacement solution at the tip of the crack satisfies
(in the local basis defined, Fig. 4) [10,11]:

u(r, θ ) =
∞∑

j=0
rλj
(
kj1u

j
I + kj2u

j
II + kj3u

j
III

)
λj = 1

2
+ j (14)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u0I = 1
2μ

√
r
2π
(
cos θ

2 (κ − cos θ ) e1 + sin θ
2 (κ − cos θ ) e2

)

u0II = 1
2μ

√
r
2π
(
sin θ

2 (2 + κ + cos θ ) e1 + cos θ
2 (2 − κ − cos θ ) e2

)

u0III = 2
μ

√
r
2π sin θ

2 e
3

(15)

where κ = 3 − 4υ (under the plane strain hypothesis) is Kosolov’s constant and υ is
Poisson’s ratio.
The first eigenvalue λ0 = 0.5 represents the less regular term of this expansion series.

The associated functions (∝ √
r) are responsible for a significant loss of accuracy within

regular FEM [17].
It is the focus point of theX-FEMenrichment to recover at least an order of convergence

in energy norm of min (1.5, m), where m is the interpolation order of the elements (1.5
is related to the regularity of the next eigenvalue λ1). For linear elements, an order of
convergence close to m = 1 is expected in the energy norm. For quadratic elements,
an order of convergence close to m = 2 is expected in the energy norm, when only the
components related to the 0.5 eigenvalue are activated by the boundary conditions.
Laborde et al. [17] showed that a fixed enrichment zone is needed, around the crack-

tip, to ensure the optimal accuracy of singular approximations (see Fig. 5). This technique
uncouples the size of the enrichment zone and the size of themesh, so that the enrichment
zone does not shrink to zero with mesh refinement.
However, this enrichment technique has given rise to many concerns almost from the

very beginning:
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Fig. 4 Plane crack local basis at the crack-tip. Definition of cylindrical coordinates at the crack-tip for plane
crack

Fig. 5 Sets of enriched nodes around the crack. If the crack ends in the middle of the domain, additional
enrichment functions are needed to model the singularity at the vicinity of the crack-tip. a illustration of the
sets of nodes for a linear mesh (for which ICT = ICT,1), b Illustration of the sets of nodes for a quadratic mesh
(for which ICT = ICT,2) and c Illustration of the sets ICT,1 and δICT,1 for a quadratic mesh
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• The first concern is the definition of the enrichment area and the related enrichment
strategy in blending elements. In the literature, two main strategies emerge: the “cut-
off” strategy ofNicaise et al. [29] and the geometrical enrichment strategy [17]. Firstly,
the “cutoff” strategy adds global singular d.o.f. and an additional function to soften
the transition between the enriched zone and the non-enriched zone. Secondly, the
geometrical enrichment introduces local singular d.o.f. which values are set to zero
outside the enrichment zone. Nicaise and et al. [29] shows that both strategies are
relevant and do not alter the convergence rates.

• The second concern is the swift increase of the condition number. Latest works of
Chevaugeonet al. [30] andGuptaa et al. [25] give strong researchdirections to improve
the condition number. A vectorial enrichment reduces drastically the number of d.o.f.
needed to describe the singular solution. Guptaa et al. [25] suggests that vectorial
enrichment could be further improved to permanently remove conditioning issues.
The idea of [25] is to subtract from the enrichment function its linear interpolation
on the set of elements where the singular enrichment is defined.

Approximation spaces in the literature
In the literature, there arenumerous approximation spaces tomodel strongdiscontinuities
and cracks within the general framework of extended finite element methods and alike.
The earliest work of [7] introduced the standardX-FEMapproximation space of Table 1 in
1999. Then in 2000, the work of [8] extrapolated GFEM [22] to crack modeling. Although
X-FEM and GFEM both aimed to model cracks, GFEM was designed to deal with a wider
scope of problems than X-FEM. Initially, X-FEM and GFEM were assumed as different
approaches.X-FEM introduced scalar functions tomodel Irwinmodes at the crack-tip.On
the opposite, GFEM used directly Irwin modes as vector functions to model the singular
behavior at the crack-tip. In “Approximation spaces for a cracked domain” section, this
difference is investigated. We will find out that X-FEM and GFEM are closely related.
In 2004, Laborde et al. [17] paper questioned the numerical accuracy of the X-FEM

approximation, particularly with higher order elements. Laborde et al. [17] suggested that
X-FEMwith one layer of enriched elements at the crack-tip, is not very accurate.When the
enrichment zone enlarges, accuracy improves, but conditioning deteriorates. Therefore,
it suggested a new approximation space to take care of conditioning issues and with a
better behavior for quadratic elements. As this new approximation space is restricted to
2D analysis, this approximation is not fitted for industrial numerical simulations. Finally,
to address higher order modeling, X-FEM design evolved into vectorial enrichment [30],
close to GFEM.
Very recently, in 2013, even the GFEM approximation space has evolved into a new

space called SGFEM [25,31]. SGFEM addresses conditioning issues of GFEM with a new
definition of the vectorial functions. Following [32] it is even defined by the fact that the
conditionnumberof the associated stiffnessmatrix has tobeof the sameorderwith respect
to mesh refinement than the one of FEM. However, SGFEM as proposed in [25,31] has
some drawbacks that will be discussed in “Approximation spaces for a cracked domain”
section.
Specifically, to model strong discontinuities, many approximations have been released

in the literature. The earliest work of [7] introduced a Heaviside function to model the
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jump d.o.f. on nodes in the vicinity of a strongly discontinuous interface (Fig. 3). The
next relevant approximation space was the one of Hansbo et al. [33] that introduces
discontinuous polynomials within the partition of unity. Numerous spaces were derived
from those previous approximation spaces and far too many to be studied thoroughly in
this paper [19,20,34,35]. Hence, we will focus, in “Strong discontinuity representation”
section, on the ones of Moës et al. [7], Hansbo et al. [33] and Belytchko et al. [36], which
is somehow intermediary between those of [7] and [33].
From the mathematical point of view, we will find out that the three spaces are very

similar.

Strong discontinuity representation

In this section,wemodel only a strongdiscontinuity,with amedia fully split by an interface.
Hence, we do not need the singular functions in that case. Singular functions will be
investigated in the next section.
Thus, let us assume the following X-FEM approximation space Vh, modeling a strong

discontinuity,

Vh =
⎧
⎨

⎩
uh =

∑

i∈I
aiΦi +

∑

j∈IH
bjHΦj

⎫
⎬

⎭
(16)

whereΦi are lagrangian polynomials up to order two, in the scope of this article. I denotes
the nodes of the finite element mesh, IH the set of enriched nodes and H the Heaviside
function. A node belongs to IH if, and only if, its support is split by the interface 
. We
recall that H is defined as follows:

∀x ∈ �, x /∈ 
, H (x) =
{

−1, if lsn(x) < 0
+1, if lsn(x) > 0

(17)

Let’s consider the basic case where the whole domain is divided into two parts as in Fig. 3:

• �(H=+1) = �+
• �(H=−1) = �− .

For which,

• uh
∣∣
�+ represents the approximation of the solution on the dimain �+ extended by

continuity to the domain �− over the interface 
,
• uh

∣∣
�− represents the approximation of the solution on the dimain �− extended by

continuity to the domain �+ over the interface 
.

The representation of the kinematic jump is crucial for many interfacial laws, such as
cohesive laws and contact laws. The jump at every point (commonly integration point)
located on the interface, follows the convention:

∀x ∈ 
, �uh(x) =
{
uh
∣∣∣
�+ − uh

∣∣∣
�−

}
(x) (18)

In order to simplify the notations in Table 1, we define for a given node j ∈ IH ,�j,1 =
χ�+�j and�j,2 = χ�−�j , whereχA denotes the characteristic function of the setA. Using
these notations, we have:

H�j − H
(
xj
)
�j =

{
+2χ�+�j = +2�j,1, if j ∈ �−
−2χ�−�j = −2�j,2, if j ∈ �+
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where xj is the location of j. The function H − H
(
xj
)
is used to define the formulation

introduced in [26].
Let us compare side-by-side, the XFEM representation of the displacement jump intro-

duced by [7] with the other well-known formulations of [33] and [26]. Even though the
jumpapproximationshavedifferent expressions (Table 1),wewill investigatenextwhether
the approximation spaces are really different or not.
Areias et al. [37] showed that [7] and [33] involve different bases but that both enrich-

ments still represent the same approximation space. Each enrichment can be expressed
in terms of the other one with a suitable change of variables. With the same analysis as
in [37], the different enrichments can be expressed in terms of the other ones for the
remaining couple of formulations X-FEM/Shifted and Domain/Shifted.
Thus, from the mathematical point of view, the approximation spaces involved in the

three formulations are equivalent (see Table 2). The same can be said of other formu-
lations encountered in the literature [19,34,35]. We would like to stress the fact that
this equivalency only holds in the case of strong discontinuity. When singular functions
are injected in the approximation, the relationship between the different approximation
spaces may be different as studied in the next section.

Approximation spaces for a cracked domain

The model problem is a cracked domain � (Fig. 6), under a linear elasticity assumption.
The material is also assumed to be homogeneous and isotropic. Dirichlet boundary con-
ditions are applied on the boundary 
D and Neumann boundary conditions are applied
on 
N.
The space of admissible displacements is:

V = {v ∈ H1(�); v = 0 on 
D
}

(19)

Table 2 Change of variables when switching enrichment strategies. ∀j ∈ IH , the following
changes of variables hold
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Fig. 6 Example of a cracked domain. Definition of notations used to label the domain and its boundaries

The weak form of the equilibrium problem is:

P:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Find u ∈ V such that a(u, v) = l(v) ∀v ∈ V,
a(u, v) = ∫

�
σ (u) : ε (v) d�,

l(v) = ∫
�
f · v d� + ∫


N
g · v d
,

σ (u) = λtr(ε (u))1 + 2με (u) ,

(20)

where u is the displacement, σ is the Cauchy stress, ε is the strain, 1 the identity tensor, f
is the body force applied on ω, g is the traction applied on 
N and λ and μ are the Lamé
parameters.
Now, the discrete approximation spaces from the literature will be investigated. In the fol-
lowing sections, we will prove that spaces available in the literature can be gathered into
two classes: “straightforward” enrichment and “bubble” enrichment. An illustration of
those two classes is provided on Fig. 7. “Straightforward” enrichment means that the sin-
gular function is introduced directly into the approximation space without modification.
“Bubble” enrichment means that the singular function is reshaped into a new function
before its introduction into the approximation space.
In the following sections, those classes are described:

• “Straightforward” singular enrichment class” section shows that X-FEM and GFEM
are “straightforward” enrichments. Moreover, GFEM is a subspace of X-FEM. This
statement implies that X-FEM is somehow more accurate than GFEM, but both
methods are nonetheless very close.

• “Bubble” enrichment class” section shows that a “bubble” enrichment as the one of
Gupta et al. [25] is not a “straightforward” enrichment. This statement implies that
“bubble” enrichments have numerical properties not identical to “straightforward”
enrichments that will be investigated in “Singular approximation at a crack tip” sec-
tion.
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Fig. 7 “Straightforward” enrichment class versus “bubble” enrichment class. The difference in shape
highlights the difference in behavior stated in the previous section

“Straightforward” singular enrichment class

Let Vh be the approximation space using vector asymptotic functions to describe the
crack kinematics:

Vh =
{
vh =∑i∈I

∑d
j=1 ai,jΦiEj +

∑
i∈IH

∑d
j=1 bi,jHΦiEj

+∑i∈ICT
∑d

α=1 ci,αΦiKα

}

(21)

where d is equal to two in the bidimensional case and three in the tridimensional case,
(
E1, E2, E3

)
is the usual Cartesian basis, Kα are the vector asymptotic functions and ICT

the set of nodes enriched by such functions. In this contribution, ICT is defined as the set
of nodes placed at a distance lower than R from the crack-tip (cf. Fig. 5).
The vector asymptotic functions Kα are defined as follows:

⎧
⎪⎨

⎪⎩

K 1 = u0I
K 2 = u0II
K 3 = u0III

(22)

with u0I , u
0
II u

0
III given by (15).

Let Vh
CUTOFF (W

2,∞) be the approximation space defined with a cutoff function χ ∈
W 2,∞ [29], which value is set to one if its distance from the crack front is lower than r0,
is set to zero if its distance from the crack front is greater than r1 with r1 > r0 and varies
linearly in between:
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Vh
CUTOFF (W

2,∞) =
{
vh =∑i∈I

∑d
j=1 ai,jΦiEj +

∑
i∈IH

∑d
j=1 bi,jHΦiEj+∑d

α=1 cαχKα

}

(23)

and let Vh
XFEM be the standard X-FEM approximation space [7]:

Vh
XFEM =

⎧
⎨

⎩

vh =∑i∈I
∑d

j=1 ai,jΦiEj +
∑

i∈IH
∑d

j=1 bi,jHΦiEj+
∑

k∈ICT
∑

α=1,4
∑d

j=1 c
j
k,αF

αΦkEj

⎫
⎬

⎭
(24)

where Fα are defined as:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F1 = √
r sin θ

2
F2 = √

r cos θ
2

F3 = √
r sin θ

2 sin θ

F4 = √
r cos θ

2 sin θ

(25)

We remark that:
{√

r cos θ
2 cos θ = F2 − F3

√
r sin θ

2 cos θ = F4 − F1 (26)

Consequently, the vector functions Kα and the scalar functions Fα are related by the
following linear relations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

K 1 = 1
2μ

√
2π

[
(κ − 1) F2 + F3] e1 + 1

2μ
√
2π

[
(κ + 1) F1 − F4] e2

K 2 = 1
2μ

√
2π

[
(κ + 1) F1 + F4] e1 + 1

2μ
√
2π

[
(1 − κ) F2 + F3] e2

K 3 = 2
μ

√
2π F

1e3
(27)

Lemma 1 Vh
CUTOFF (W

2,∞
h ) is a subspace of V h and V h is a subspace of V h

XFEM, i.e. the
three approximation spaces are related as follows,

V h
CUTOFF (W

2,∞
h ) ⊂ Vh ⊂ Vh

XFEM

where W 2,∞
h is the subspace of interpolated cutoff functions.

Proof The proof relies on the work of [29].

• Vh
CUTOFF (W

2,∞
h ) ⊂ Vh :

For vh ∈ Vh
CUTOFF (W

2,∞
h ),

vh =
∑

i∈I

d∑

j=1
ai,jΦiEj +

∑

i∈IH

d∑

j=1
bi,jHΦiEj +

d∑

α=1
cαχhKα

χh is the interpolation of a cutoff function χ which vanishes outside ICT ,

χh =
∑

i∈ICT
χ (xi)Φi

Then,

vh =
∑

i∈I

d∑

j=1
ai,jΦiEj +

∑

i∈IH

d∑

j=1
bi,jHΦiEj +

∑

i∈ICT

d∑

α=1
cαχ (xi)ΦiKα

which leads to,

vh ∈ Vh
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• Vh ⊂ Vh
XFEM :

For vh ∈ Vh,

vh =
∑

i∈I

d∑

j=1
ai,jΦiEj +

∑

i∈IH

d∑

j=1
bi,jHΦiEj +

∑

k∈ICT

d∑

α=1
ck,αΦkKα

• Equation (27) shows that Kα can be expressed as Kα =
4∑

l=1

d∑

m=1
kl,m,αFlem, where

ki,m,α is a constant tensor.
In case of a straight crack, the local basis is constant.

Thus, the local basis expresses in cartesian coordinates as, em =
d∑

j=1
μm,jEj , where

μm,j is a constant tensor.
Then,

Kα =
4∑

l=1

d∑

m=1

d∑

j=1
kl,m,αμm,jF lEj

d∑

α=1
ck,αΦkKα =

d∑

α=1

4∑

l=1

d∑

m=1

d∑

j=1
ck,αkl,m,αμm,jF lΦkEj

=
4∑

l=1

d∑

j=1

⎛

⎝
d∑

α=1

d∑

m=1
ck,αkl,m,αμm,j

⎞

⎠FlΦkEj

With a suitable change of variable,

cjk,l =
d∑

α=1

d∑

m=1
ck,αkl,m,αμm,j

we have finally,

vh =
∑

i∈I

d∑

j=1
ai,jΦiEj +

∑

i∈IH

d∑

j=1
bi,jHΦiEj +

∑

k∈ICT

4∑

l=1

d∑

j=1
cjk,lF

lΦkEj

which means that:

vh ∈ Vh
XFEM

• In case of a curved crack, the result of the lemma holds with a discretization of the
local basis of [30]. Let us consider a discrete local basis at each node

(
e1k , e

2
k , e

3
k
)
, such

as,

vh =
∑

i∈I

d∑

j=1
ai,jΦiEj +

∑

i∈IH

d∑

j=1
bi,jHΦiEj +

∑

k∈ICT

d∑

α=1
ck,αΦkKα,k

Kα,k =
4∑

l=1

d∑

m=1
kl,m,αFlemk

emk =
d∑

j=1
μm,j,kEj

The straight crack proof still holds here, with the additional node index “k”.
��
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Remark as a practical consequence of Lemma-1, the error bound of X-FEM should be
lower than the ones of Vh and of the cutoff [29]. With X-FEM, the optimization process
performs on a larger space than with other formulations and reaches a closer infimum
to the exact solution of the problem. Nevertheless, X-FEM introduces more d.o.f. than
GFEM and cutoff enrichments which increases its condition number.

“Bubble” enrichment class

Now, let us consider the SGFEM space for linear elastic fracture mechanics similar to the
one proposed in [25,31]:

Vh
SGFEM =

{
vh =∑i∈I

∑d
j=1 ai,jΦiEj +

∑
i∈IH

∑d
j=1
∑4

k=1 bi,j,kHψi,kΦiEj
+∑i∈ICT

∑d
α=1 ci,αΦi

(
Kα − �Kα

)

}

(28)

where
{
ψi,k
}
k=1..4 = {

1, x − xi, y − yi, z − zi
}
, and �Kα = ∑

k∈{ICT∪δICT } Kα(rk , θk )Φk is
the usual interpolation.

δICT is definedhere as the transition layer of nodes between crack-tip elements andother
elements of the mesh for which Kα unknowns are set to zero. This allows to connect the
enriched layer with the remaining of the mesh and to avoid blending issues [26].

Lemma 2 Vh
XFEM is not a subspace of V h

SGFEM and V h
SGFEM is not a subspace of V h

XFEM, so
that:

V h
XFEM �⊂ Vh

SGFEM and V h
SGFEM �⊂ Vh

XFEM (29)

Proof – Vh
SGFEM �⊂ Vh

XFEM
It is obvious thatVh

SGFEM �⊂ Vh
XFEM becauseVh

SGFEM involves higher order discontinuous
polynomials Hψi,kΦi, which are out of Vh

XFEM .

– Vh
XFEM �⊂ Vh

SGFEM

• F1E1
∑

k∈ICT
Φk belongs to the test function space Vh

XFEM with ai,j = 0, bi,j =

0, c1k,1 = 1 and cjk,α = 0 elsewhere (for α �= 1).
• However, F1E1

∑

k∈ICT
Φk does not belong to Vh

SGFEM , which can be shown by

contradiction.

• Let us assume F1E1
∑

k∈ICT
Φk belongs to Vh

SGFEM ,

F1E1
∑

k∈ICT
Φk =

∑

i∈I

d∑

j=1
ai,jΦiEj +

∑

i∈IH

d∑

j=1

4∑

k=1
bi,j,kHψi,kΦiEj

+
∑

i∈ICT

d∑

α=1
ci,αΦi

(
Kα − �Kα

)

• Singular functions cannot be represented by discontinuous polynomials
basis, so we necessarily have bi,j,k = 0

• Singular functions cannot be represented by continuous polynomials as well,

so,
∑

i∈I

d∑

j=1
ai,jΦiEj −

∑

i∈ICT

d∑

α=1
ci,αΦi�Kα = 0 as Φi�Kα is also a polynomial.

• Φi�Kα introduces at least three higher order polynomials per node,
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• Which leads to,
d∑

α=1
ci,αΦi�Kα = 0,

• Then, ci,α = 0,

• And, ai,j = 0 because
d∑

j=1
ai,jΦiEj = 0.

• Thus, F1E1
∑

k∈ICT
Φk = 0 which is contradictory.

��

Remark As a practical consequence of Lemma-2 the “bubble” class of “Bubble” enrich-
ment class” section does not belong to the “straightforward” class of “Straightforward”
singular enrichment class” section, in which X-FEM is found to be the largest space.
Hence, the definition of two classes of enrichment makes perfectly sense.

Numerical behavior of strongly discontinuous and singular approximations
In this section the numerical behavior of the different approximation spaces introduced
previously is investigated through a couple of benchmarks. First of all, we assess the asymp-
totic behavior of strongly discontinuous approximations, through a one dimensional case.
Secondly, we consider the convergence study of a two-dimensional problem with a crack
and singular approximation.

Numerical behavior of strongly discontinuous approximations

Numerical analysis of strongly discontinuous approximations with linear elements

Let us consider the basic case of the traction of a one-dimensional bar with a fictitious bi-
material interface. The arbitrary interface is positioned along the abscissa x (ε) (Fig. 8). The
problem even though continuous is treated as a discontinuous one, with gluing interface
boundary conditions imposed through a Lagrange multiplier. Actually, if the materials
were different on each side of the interface, the resulting problem would be equivalent
to enforcing a weak discontinuity with a strong discontinuity framework. This artefact
is used so as to establish convergence results in energy norm. If it was not the case, the
solution obtained would be that of two rigid bodies with prescribed displacements on one
of their end.

Fig. 8 1D case with X-FEM interface and linear elements. Left, the three elements used in the model. Right,
the analytical solution expected. The use of a discontinuous function is possible because discontinuous
degrees of freedom bear Neumann conditions that enforce the continuity of the solution (as in a contact
problem with Lagrange multipliers at the interface)
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• The problem is the solution of the following differential equation:

u′′(x) = 0 ∀x ∈ � = [0, 3] (30)

• With arbitrary Dirichlet boundary conditions:

u(0) = β u(3) = 3α + β (31)

• And with continuity conditions at the interface expressed in terms of the continuity
of the derivative of the displacement field (stress continuity at the interface):

du
dx

∣∣
∣∣
x(ε+)

= α− du
dx

∣∣
∣∣
x(ε−)

= α+ α− = α+ = α (32)

This continuity condition results from the equivalent Lagrangian form of (30) in which a
Lagrange multiplier λ is used to impose a continuous displacement across the interface.
(u, λ) is the saddle point of the following functional:

L (u, λ) = 1
2

3∫

0

(
u′)2 dx + λ

[
u
(
x
(
ε+))− u

(
x
(
ε−))] = 0

The expected continuous solution satisfying the boundary conditions above, is:

u(x) = αx + β , ∀x ∈ [0, 3] (33)

The resulting weak form of the problem is:

Find,
u ∈∏ :

{
w ∈ H1/w(0) = β , w(3) = 3α + β

}
, λ ∈ �

∀v ∈∏0 :
{
w ∈ H1/w(0) = 0, w(3) = 0

}

∀μ ∈ R

⎫
⎪⎬

⎪⎭

�→

⎧
⎪⎨

⎪⎩

∫ 3
0 u′v′dx = 0
(
λ − α+) v

(
x
(
ε+))− (λ − α−) v

(
x
(
ε−)) = 0

μ
[
u
(
x
(
ε+))− u

(
x
(
ε−))] = 0

(34)

The X-FEM discrete linear space is:
∏

h
:
{
w/w = a1�1 + a2�2 + b2H�2 + a3�3 + b3H�3 + a4�4
a1 = β a4 = 3α + β

}

(35)

Then, the 6× 6 matrix associated with the discretization of the weak form on the X-FEM
space of linear functions (first column of Table 1) is:

⎡

⎢⎢⎢
⎢⎢⎢
⎢⎢
⎣

1 −1 1 0 0 0
−1 2 −2 + 2ε −1 1 − 2ε 0
1 −2 + 2ε 2 1 − 2ε −1 0
0 −1 1 − 2ε 2 2ε −1
0 1 − 2ε −1 2ε 2 −1
0 0 0 −1 −1 1

⎤

⎥⎥⎥
⎥⎥⎥
⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1
a2
b2
a3
b3
a4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(36)

With the domain formulation of the second column of Table 1, the discrete matrix is:
⎡

⎢⎢
⎢⎢⎢
⎢⎢⎢
⎣

1 −1 0 0 0 0
−1 2 − ε 0 −1 + ε 0 0
0 0 ε 0 −ε 0
0 −1 + ε 0 1 − ε 0 0
0 0 −ε 0 1 + ε −1
0 0 0 0 −1 1

⎤

⎥⎥
⎥⎥⎥
⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1
α2,1
α2,2
α3,1
α3,2
α4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(37)
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With the shifted formulation of the third column of Table 1, the discrete matrix is:
⎡

⎢⎢
⎢⎢⎢
⎢⎢⎢
⎣

1 −1 0 0 0 0
−1 2 2ε −1 2 − 2ε 0
0 2ε 4ε −2ε 0 0
0 −1 −2ε 2 −2 + 2ε −1
0 2 − 2ε 0 −2 + 2ε 4 − 4ε 0
0 0 0 −1 0 1

⎤

⎥⎥
⎥⎥⎥
⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1
c2
d2
c3
d3
c4

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(38)

We enforce boundary conditions directly on the discrete problem, as equality constraints
through Lagrange multipliers. The position of the interface depends only on ε. Nonethe-
less, the solution does not depend on the ε parameter, so that the relative error does not
depend on ε, which makes our analysis relevant.
Let us consider the following arbitrary numerical values: α = 10/9 and β = 10.
Then, the solution is computed in standard 64-bit arithmetic, with the linear solver

UMFPACK, to reproduce the behavior of direct solvers.
The numerical error has to be close to zero, for any given position of the interface. The

error is evaluated here in terms of the H1-norm:

‖u − uh‖H1 =
√∫ 3

0

[
(u − uh)2 + (u′ − u′

h
)2] dx (39)

Although all three formulations represent the same approximation space, they do not have
exactly the same numerical behavior (Fig. 9), at least concerning the error in H1-norm.
The X-FEM error increases steadily while the “shifted” formulation and the “domain”
formulation levels of error stay close to machine precision (about 2.2 · 10−16).
Moreover, all three enrichment conditionings increase as the distance between the

interface and node N3 decreases (Fig. 10). This means that all three enrichment strategies
are very sensitive to the position of the interface. A pre-conditioner is needed for the
three enrichments. In the case of X-FEM, we studied Béchet et al. [21] pre-conditioner.
For other formulations we used a diagonal pre-conditioner to scale the d.o.f.
The diagonal pre-conditioner allows a scaling of rows and columns through a multipli-

cation with a diagonal matrix to the left and to the right:

Ku = f → K ′u′ = f ′ with

⎧
⎪⎨

⎪⎩

K ′ = DcKDc
u = Dcu′

f ′ = Dcf
(40)

In linear elasticity, Dc is usually defined as,

[Dc]i,i = 1
√
Ki,i

√
max(Ki,i) + min(Ki,i)

2
(41)

Thus, on Fig. 11, condition numbers are reduced drastically. However, the error still
increases in case of X-FEM. The error is clearly not only related to conditioning. Another
explanation should be considered.
When looking at the X-FEM discrete stiffness matrix, it is noticeable that the unknowns

a2 and b2 obey to an almost similar equation (as H�2 ≈ −�2). The difference between
those equations lies in the terms 1 − 2ε and 2 − 2ε. Those terms imply the sum of
heterogeneous quantities that leads to a tremendous loss of accuracy on the difference
information 2ε. For instance, let us consider the following string of calculations in “double
precision” arithmetic (8-octet storage):

1 − (1 − 6.3847497084E − 12) ≈ 6.348E − 12 (42)
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Fig. 9 H1-error of strongly discontinuous approximations with linear elements. Shifted and domain
enrichments outperform X-FEM formulation when “eps” (ε) goes to zero

Fig. 10 Conditioning of strongly discontinuous approximations without the use of pre-conditioners. The
three approximation spaces yield the same condition number (as they are equivalent)
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Fig. 11 The use of dedicated pre-conditioners improves the condition number but has little effect on X-FEM
accuracy. According to the curves above, conditioning and accuracy are clearly two separated issues:
improving the condition number does not automatically solve accuracy issues. Conditioning and accuracy
are both symptoms of the faulty behavior of partition of unity with asymptotically small domains

The final result 6.348E–12, is quite different from the exact result 6.3487497084E–12:
only four digits remain of the “difference information” between the equations. Hence ill
conditioning indicates also a lesser accuracy within the assembled stiffness matrix due to
round-off errors and truncated information. Even highly effective pre-conditioners [21]
cannot recover the truncated information. It is not surprising that, besides precondition-
ing, authors have used triple precision arithmetic to recover accuracy [24].

Remark Because the error curves are shattered, the phenomenon might be also proba-
bilistic and related to random round-off errors in interaction with the solver algorithm. A
comprehensive studywith awide range of solvers is presented (Figs. 12 and 13). This study
shows that the type of solver interferes with the level of error, which makes numerical
analysis on errors quite sensitive:

• For iterative methods (PCG), the error is generally higher because those solvers are
very sensitive to conditioning,

• For matrix factorization based solvers (UMF), the error is lower than with iterative
methods,

• For matrix inversion based solvers, good results can be obtained frequently.

Numerical analysis of strongly discontinuous approximations with quadratic elements

The same one-dimensional case is considered here. The same discretization of the weak
form is used with quadratic shape functions. The results are plotted on Fig. 14.
For the three approximations, conditioning worsens very quickly, at about three times

the rate of linear elements. More worrying is that the error increases. X-FEM enrichment
error worsens more quickly than the others.
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Fig. 12 Overall error analysis of a wide range of solvers for the 1D case. Only X-FEM’s enrichment without
pre-conditioner is studied here. The whole trend suggests a global increase of the sensitivity of solvers (with
respect to epsilon), when the “epsilon” parameter goes to zero

Fig. 13 The use of dedicated pre-conditioner stabilizes the behavior of solvers. But the error still increases
with the X-FEM method, as explained in “Numerical analysis of strongly discontinuous approximations with
linear elements” section

On Fig. 15, the same pre-conditioners than in “Numerical behavior of strongly discon-
tinuous approximations” section are considered. The wrong behavior noticed above still
applies.
This numerical behavior with quadratic elements is well explained by the coupling

between enrichment functions, as pictured on Fig. 16 with domain enrichment [33].
Whenmeasure(

{
�+ ∩ Supp(ΦS)

}
) → 0 for a given vertex node, the middle node satis-

fies likewise measure(
{
�+ ∩ Supp(ΦM)

}
) → 0, on the vertex patch. For such a configu-

ration, the enrichment shape functions χ�+ΦS and χ�+ΦM become almost homothetic
(Fig. 16).
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Fig. 14 H1-error and conditioning analysis with quadratic elements (Lagrange). The conditioning slopes are
about three as shown is “Numerical analysis of strongly discontinuous approximations with quadratic
elements” section

Fig. 15 The use of linear element pre-conditioners barely improves the accuracy and condition number of
quadratic elements (Lagrange)

• In case of Lagrange polynomials, we have:

ΦS(ξ ) = (1 − ξ )(1 − 2ξ ), ∀ξ ∈ [0, 1]

ΦM(ξ ) = 4ξ (1 − ξ ), ∀ξ ∈ [0, 1] (43)

Both functions can be related with the following expression,

ΦS(ξ ) = −4ΦM(ξ ) + 4(1 − ξ )2 (44)
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Fig. 16 Coupling between Lagrange quadratic shape functions. When the crack passes close to the nodes,
the discontinuous shape functions of the middle node and one vertex node become almost colinear
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Fig. 17 Graphs of polynomial functions e1 (a) and e2 (b)

when ξ goes to 1, the difference information between those functions decreases accord-
ingly to (1 − ξ )2. This generates a vanishing sub-space (consisting of polynomials only
defined on the small support

{
�+ ∩ Supp(ΦS)

}
), which implies a conditioning slope of

at least 3 with quadratic shape functions (Fig. 15). In other words, the condition number
κ(K ) is bounded by:

κ(K ) ≥ Cε−3 (45)

Proof Let κ(K ) be the condition number of the stiffness matrix:

κ(K ) =
max

({
eTKe

}
‖e‖2=1

)

min
({

eTKe
}
‖e‖2=1

) ≥ eT1 Ke1
eT2 Ke2

∀e1, e2/ ‖e1‖2 = 1, ‖e2‖2 = 1 (46)

where ‖‖2 is the Euclidian norm 2.
In order to estimate the lower bound of the condition number, we consider the polyno-

mials e1 and e2 illustrated on Fig. 17.
Those polynomials belong to the discrete space of [33] (likewise [7] and [26]). They can

be used to determine a lower bound of the condition number. Functions e1 and e2 are
expressed in the discrete space of [33] as:
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{
e1 = − 1√

5 (2�1 + �2)
e2 = 1√

17 (4χ�−�3 + χ�−�4)
(47)

In the discrete space of [33], we have:

‖u‖2 =
√ ∑

i∈I/IH
a2i +

∑

j∈IH
α2
j,1 +

∑

j∈IH
α2
j,2 (48)

so that we have ‖e1‖2 = ‖e2‖2 = 1.
As 1

2e
T
1 Ke1 and

1
2e

T
2 Ke2 represent the elastic energy of these solutions, we have:

eT1 Ke1
eT2 Ke2

=
∫ 1
0
(
e′1
)2 dx

∫ 2
2−ε

(
e′2
)2 dx

= 51
80ε3

Thus,

κ(K ) ≥ Cε−3

The asymptotic behavior of ΦM(ξ ) [at the first order of (1 − ξ )] is:

ΦM(ξ ) ≈ −ΦS(ξ )/4

Then, the related d.o.f. become redundant, which leads to ill conditioning. As enrichment
strategies are equivalent, the redundant d.o.f. pollutes also the approximation spaces of
the other formulations [7,26].

• In case of Bernstein polynomials, we have:

ΦS(ξ ) = (1 − ξ )2, ∀ξ ∈ [0, 1]

ΦM(ξ ) = 2ξ (1 − ξ ), ∀ξ ∈ [0, 1] (49)

when ξ goes to 1, there is no coupling between Bernstein polynomials as observed with
Lagrange polynomials. However, the polynomial ΦS cancels out accordingly to (1 − ξ )2,
which also leads to the same conditioning slope of three (Fig. 18) (as shown in the previous
section).
It is noticeable that [33] has better accuracy with Bernstein polynomials than with

Lagrange polynomials (Figs. 18, 19). ��

Numerical behavior of singular approximations at the crack tip

Numerical analysis of crack approximations with linear elements: crack opening inmode 1

Given the capabilities of the software we used, only two approximations were tested here:

• X-FEM/GFEM vectorial enrichment [30],
• X-FEM scalar enrichment [7].

Other approximations are out of scope because,

– Gupta et al. SGFEM kind of enrichment [25,31] (let us recall that accordingly to
[32] a genuine SGFEM enrichment is defined by the fact that the condition number
of the associated stiffness matrix is of the same order—2 [38]—with respect to mesh
refinement than the one of FEM) needs far toomany additional Heaviside d.o.f. which
are difficult to implement and may lead to conditioning issues,



Ndeffo et al. Adv. Model. and Simul. in Eng. Sci. (2017) 4:6 Page 26 of 51

Fig. 18 Asymptotic behavior with Bernstein polynomials. Bernstein polynomials allow emphasizing once
more that conditioning and accuracy are separated issues: the condition numbers of all three approximation
spaces are almost the same, but there is a great difference in accuracy when “eps” (ε) goes to zero

– Cut-off enrichment is not very convenient, as assembling global d.o.f. is out of the
scope of the industrial software we used (Code_Aster). Moreover, the method does
not extend properly in 3D [29].

Example 1 (Horizontal crack opening inmode Iwith linear elements). The domain geom-
etry is a square defined by � = [− 0.5,+ 0.5] × [− 0.5,+ 0.5] . The meshing procedure
subdivides the domain into regular sized cells, which edges are parallel to the crack. The
size of the enrichment zone is r = 0.1.

The analytical solution in displacement corresponds to the exact mode I limited to the√
r term in Williams series expansion [11] and is given by the first term of (15). Then,

Dirichlet boundary conditions are applied on three sides. On the left side, Neumann
conditions are preferred. As the left side is cut by the crack, Dirichlet conditions are more
difficult to apply given the discontinuity of the displacement field (Fig. 20).
The condition number is estimated by MUMPS solver, so that the results shown here

have to be taken only as rough estimates.
On Fig. 21, the condition number of X-FEM almost skyrockets as noticed in [21]. We

did not consider the pre-conditioner of [21] here to show how both enrichment strategies,
scalar and vectorial, behave without expensive treatment. Even the conditioning slope of
the vectorial enrichment is far from optimal. The expected optimal conditioning slope is
two [25].
Then, the relative error in energy norm is computed accordingly to the following for-

mula:

‖u − uh‖energy =
√∫

�

(
σ h − σ

)
:
(
εh − ε

)
d�

/∫

�

σ : εd� (50)
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Fig. 19 Asymptotic behavior with Bernstein polynomials with dedicated pre-conditioners (same
pre-conditioners as with linear elements). As with Lagrange polynomials, dedicated pre-conditioners do not
solve accuracy issues

Fig. 20 Boundary conditions around the patch-test. Mixed boundary conditions are applied to avoid
enforcing displacement on the nodes of the boundary near the crack interface which would add only a
technical difficulty beyond the scope of the paper

On Fig. 22, the rate of convergence in energy norm of the X-FEM scalar enrichment is
under-optimal (around 0.91) as noticed in [17]. Optimality is recovered with the vectorial
enrichment, the convergence rate being then 0.989. Nonetheless, X-FEM ismore accurate
than the vectorial enrichment as predicted in Lemma 1.

Example 2 (Inclined crack opening inmode I with linear elements).We introduce amore
realistic casewith a chosen inclinationof the crack at 44.9◦, in order to test the conditioning
with both Heaviside and singular enrichments. The analytical solution is still the one of a
mode I problem limited to the

√
r term inWilliams series expansion given by the first term

of (15) (Fig. 23). The inclined crack analytical solution is expressed through a rotation of
44.9◦ of the horizontal crack solution. The strain and stress tensors are rotated as well
of the same angle. Then the same mix of Neumann and Diriclet boundary conditions
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Fig. 21 Conditioning of crack approximations. The condition number increases swiftly with the geometrical
enrichment strategy i.e. the introduction of singular functions on many layers of elements around the
crack-tip

Fig. 22 Convergence analysis of crack approximation spaces. The single-layer enrichment (topological)
convergence curves are added to recall the benefit of the geometrical enrichment strategy

are applied (Fig. 24), similarly to the case of the horizontal crack. We consider the same
regular meshes as above which are not oriented accordingly to the crack surface here. The
pre-conditioner of [21] is not applied here as in the previous case.

On Fig. 25, the conditioning of the X-FEM vectorial enrichment becomes very high
and reaches a steady value around 1012. This behavior may be explained by the ill con-
ditioning of the Heaviside enrichment. As the “Heaviside information” becomes very
unbalanced, its ill conditioning overcomes the regular increase of conditioning expected
with the vectorial enrichment (see Fig. 21) as explained in “Strong discontinuity approxi-
mation conditioning” section. Nonetheless, both enrichments have optimal convergence
accuracy (see Fig. 26).
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Fig. 23 Analytical solution corresponding to a mode 1 displacement field for the inclined crack

Fig. 24 Boundary conditions for an inclined crack. The boundary conditions are the same with the horizontal
crack test

Fig. 25 Conditioning of vectorial and scalar enrichments with a crack orientation at 44.9◦
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Fig. 26 Convergence analysis for vectorial and scalar enrichments with a crack orientation at 44.9◦ . Both
enrichments have optimal convergence order but error levels are quite high. Results are in accordance with
the ones of Fig. 22 and X-FEM is more accurate than GFEM

Numerical analysis of crack approximation with quadratic elements: crack opening inmode 1

Only the linear vectorial enrichment approximation [30] is working with a reasonable
condition number. We recall that other approximations are not tested because,

• X-FEM conditioning skyrockets with quadratic elements, even with a small enrich-
ment zone,

• Gupta et al. SGFEM kind of enrichment [25,31] needs far too many additional Heav-
iside d.o.f., so that it is difficult to implement and may lead to ill conditioning,

• Cut-offwith global d.o.f. assembling requires a “macro” element,which is not straight-
forward to implement in finite element software. Moreover the method does not
extend properly in 3D [29].

Even if the linear vectorial enrichment converges at an optimal rate (in energy norm) with
quadratic elements, the condition number is still very high (see Fig. 27). We did not use
the pre-conditioner of [21], in order to test the conditioning of the vectorial enrichment.
In “Singular approximation at a crack tip” section, a new enrichment strategy with better
intrinsic numerical behavior, will be exposed.

Remark a dedicated integration scheme is needed at the tip of the crack, to get an optimal
rate of convergence in energy norm with quadratic elements [17]. Here, we used a Gauss-
Radau integration rule of order 20 [39]. As the aim of the paper is not about singular
integration,wedid not try to optimize the procedure.Optimization of integration schemes
has been well studied in [30,40].

Improving the design of quadratic approximation spaces to deal with previous
numerical issues
In this section, basic improvements are suggested to deal with numerical issues stated in
previous sections:

– For strongly discontinuous approximations, we suggest a correction to the approx-
imation spaces for quadratic elements. Note that as denoted by [17] optimal con-
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Fig. 27 Numerical behavior of the X-FEM vectorial enrichment with quadratic elements

vergence rates can only be achieved if the discontinuous approximation space is of
the same order than the one of the continuous space, that is to say quadratic. The
correction exposed here on the quadratic form is slightly different from the ones dis-
cussed in “Strong discontinuity approximation conditioning” section (fit-to-vertex
and elimination of d.o.f.).

– For singular enrichment, a reshape of the approximation space is considered. The
new approximation sums up benefits of work on strong approximation spaces with
the significant improvement associated to the “bubble” space as discussed in the next
section.

Improvement of strongly discontinuous approximations

Partition of unity alteration

As discussed in “Numerical analysis of strongly discontinuous approximations with
quadratic elements” section, the use of vertex node and middle node shape functions
(resp. χ�+ΦS and χ�+ΦM in Fig. 16) leads to an incorrect asymptotic behavior of strongly
discontinuous formulations, both for Bernstein and Lagrange polynomials.
When getting rid of the middle node d.o.f. χ�+ΦM for ε around 10−3, the condition

number decreases sharply (Fig. 28). This threshold value is close to estimates of [18,24],
but we stress on the fact that only the middle d.o.f. is removed and that the position of
the interface is not shifted. This alteration process allows the analysis to proceed beyond
ε = 10−12 as with linear elements.
Let us precise the differences between the removal of the middle node and straightfor-

ward criteria from “Strong discontinuity approximation conditioning” section:

• The fit-to-vertex and volume criterion remove both the vertex node and the middle
node d.o.f. (χ�+ΦS and χ�+ΦM). Then, with the fit-to-vertex, the interface position
is switched to the closest node.

• With the new strategy, only theminimal information is removed from the approxima-
tion (a single d.o.f., the nearest to the interface) with a tuned threshold. The interface
is not switched.

However, the alteration of the partition of unity has a noticeable impact on enrichment
[33] with Lagrange polynomials (Fig. 28): the H1-error increases sharply after the alter-
ation, instead of decreasing as observed with other formulations. This behavior might be
explained by the partition of unity and the nature of the solution represented here:
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Fig. 28 H1-error with quadratic Lagrange polynomials. The enrichments are alternated through the removal
of the middle node beyond a threshold eps of ε = 10−3

• The exact solution is continuous,
• In [7,26] discontinuous functions are added to continuous functions, so that the

removal of the discontinuous middle node d.o.f. does not alter the partition of unity
of continuous space functions [9] and consequently the representation of continuous
functions.

This is in contrast with [33], as the removal of the enrichedmiddle node d.o.f. prevents the
representation of continuous functions on some parts of the domain where the partition
of unity is broken.

Extrapolation in 3D

Let us consider the patch-test of [24]. It is a 3Dblock of side 4mdefinedby� = [− 2,+ 2]×
[− 2,+ 2]×[− 2,+ 2] and split by an inclined interface. The domain ismeshedwith regular
quadratic hexahedral elements (4 × 4 × 4 elements).
A multi-axial loading is applied. Given the elastic behavior, the stress is homogeneous

within the block at a value of 10MPa, for any given position of the interface. The interface
equation is parameterized with δ as:

x + y + z + δ = 0 (51)

The error is analyzed with the energy norm:

‖u − uh‖energy =
√∫

�

(
σ h − σ

)
:
(
εh − ε

)
d�

/∫

�

σ : εd� (52)

As the Hansbo et al. [33] enrichment performs as well as the “shifted” enrichment, only
the “shifted” enrichment is tested here.
The strategies discussed in 1D are extrapolated in 3D (an example is given Fig. 29):

• Preconditioning strategies are unchanged (Béchet et al. pre-conditioner [21] with
X-FEM and diagonal scaling with shifted enrichment),



Ndeffo et al. Adv. Model. and Simul. in Eng. Sci. (2017) 4:6 Page 33 of 51

Fig. 29 3D test-case with quadratic elements. The strategies to improve the condition number are assessed
on a 3D patch-test

• The elimination threshold for the middle nodes, is fixed at a ratio of relative distance
to the vertex of 10−3 along the edge (see on the 1D example illustrated by Fig. 16), or,
could be expressed with a volume ratio criterion [24]:

min
(
measure(

{
�+ ∩ Supp(ΦM)

}
),

measure(
{
�− ∩ Supp(ΦM)

}
)

)

≤ 10−9measure(
{
Supp(ΦM)

}
) (53)

On (Fig. 30), the shifted formulation is more accurate than the X-FEM one, as observed
in the 1D case. The difference in accuracy reaches a 1010 factor: accuracy issues observed
in 1D with X-FEM are heightened in 3D.
Furthermore, the volume ratio criterion on the middle node is very satisfactory. The

results improve as soon as the elimination process is activated around a node to interface
distance (here δ/

√
3) of 10−3 m.

Synthesis

Although, all three strongly discontinuous formulations considered in the paper represent
the same approximation space, they do not have the same numerical performance. From
the results above, domain and shifted enrichments are less sensitive to the position of the
interface than X-FEM. With quadratic elements, the three formulations need a special
care regarding the asymptotic behavior of the shape functions as shown in “Numerical

Fig. 30 Behavior of strongly discontinuous enrichments in 3D with the corrections studied previously
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analysis of strongly discontinuous approximations with quadratic elements” section. The
X-FEM jump formulation is far less accurate in 3D.
From a practical point of view, the “shifted” formulation seems to offer the best com-

promise, because it provides:

• A simpler pre-conditioner than X-FEM, which decreases the computational cost,
• Less discontinuous d.o.f. than [33], which eases the implementation and improves the

accuracy of the formulation in case of elimination of d.o.f. with Lagrange polynomials,
• A good accuracy in 3D with quadratic elements.

Singular approximation at a crack tip

New “bubble” approximation space

We introduce a simpler space than the one of Gupta et al. [25,31], to reduce its too many
additional Heaviside d.o.f. As a matter of fact Gupta et al. approach requires up to 12
Heaviside d.o.f. per node instead of 3 so that it is difficult to implement and may lead to
ill conditioning.
In the elements where Kα is discontinuous, a technique similar to the ghost node

interpolation used in [41] is preferred. The principle consists in using two continuous
interpolations by prolongation of the one on�+ and the one on�− to thewhole domain�

(an example is given Fig. 31). Hence, two continuous extensions ofKα(r, θ ) are introduced:

• Kα(r, |θ |) overlaps with Kα(r, θ ) on �+,
• Kα(r,− |θ |) overlaps with Kα(r, θ ) on �−.

In the elements where Kα has a singular point, the interpolation of Kα is smoothened,
so that subsequent interpolation errors of the singular function Kα do not pollute the
accuracy of the displacement field as observed in [25].

Fig. 31 Comparison between double node interpolation and ghost node interpolation for an arbitrary
function. The ghost node method uses the same element to interpolate both extrapolated branches. In
contrast, the double node refines the mesh around the discontinuity. Thus, the double node is twice more
accurate than the ghost node, but it requires a meshing of the interface (a strategy not relevant in the
framework of X-FEM/GFEM)
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Let n be the order of the interpolation used for the crack tip degrees of freedom. ICT is
the corresponding set of nodes enriched by the vectorial asymptotic functions i.e. ICT,1
corresponds to vertex nodes and ICT,2 contains both vertex nodes and middle nodes. If
we consider a quadratic interpolation for the crack tip degrees of freedom, we have n = 2
and ICT,2 = ICT . Let IT be the associated subset of ICT with singular points i.e. the set of
nodes such that a crack-tip belongs to their support. The nodes of IT are not taken into
account in the interpolation of Kα , so that the interpolation of Kα is smooth when the
polar coordinate r goes to zero. Letm be the order of the interpolation of Kα , which can
be different from n. The new interpolation operator reads:

�̃mKα =
∑

k∈{{ICT,m∪δICT,m}/IT }/IH
Kα(rk , θk )
k,m

+
∑

k∈IH∩{{ICT,m∪δICT,m}/IT }
[
Kα (rk , |θk |)
k,mχ�+ + Kα (rk ,− |θk |)
k,mχ�−

]
(54)

where 
k,m are the shape functions corresponding to order m interpolation and ICT,m is
the subset of ICT corresponding to order m interpolation, i.e. ICT,1 is the restriction
of ICT to vertex nodes and ICT,2 contains both vertex nodes and middle nodes of ICT .
Since we consider quadratic approximation in this section, we have ICT,2 = ICT . The set{
ICT,m ∪ δICT,m

}
contains all the nodes lying in the support of a node of ICT .

This interpolation should be interpreted, for an element which is split by the interface
(i.e. an element that does not contain a crack-tip), as follows

• Assuming the evaluation point (gauss point) is located on �+,

�̃m(Kα) =
∑

k∈{ICT,m∪δICT,m}/IT
Kα(rk , |θk |)
k,m (55)

• Assuming the evaluation point (gauss point) is located on �−,

�̃m(Kα) =
∑

k∈{ICT,m∪δICT,m}/IT
Kα(rk ,− |θk |)
k,m (56)

The new “bubble” approximation space, based on the new interpolation operator, is:

Vh
bub,m,n =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

vh =∑
i∈I

d∑

j=1
ai,jΦiEj +

∑

i∈IH

d∑

j=1
bi,j (H − H (xi))ΦiEj

+ ∑

i∈ICT,n

d∑

α=1
ci,α
i,n

(
Kα − �̃mKα

)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(57)

where Φi are the shape functions corresponding to the order of the elements, i.e. p = 2
in this section and n refers to the order of the shape functions 
i,n used for the vectorial
enrichment discretization.

Remark • Let us stress on the fact that the ghost node interpolation does not introduce
additional nodes. The two branches of discontinuous functions are interpolated over
the element through extrapolation of branches (Fig. 31);

• The difference between the original SGFEM and the “new” bubble space Vh
bub,m,n

lies in the behavior of the interpolation in the bandwidth of elements where the
enrichment function becomes unsmooth or discontinuous. The original SGFEMuses
the same interpolation operator whether the enrichment function is smooth or dis-
continuous. The new “bubble” space replaces the enrichment function with smooth
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continuous extensions in the bandwidth of elements where the enrichment func-
tion becomes discontinuous. Thanks to the ghost node interpolation, both smooth
extensions are interpolated without additional node (Fig. 31).

Comparisonwith previous approximations

The mode I problem of “Numerical behavior of singular approximations at the crack tip”
section is considered here, with a similar enrichment radius of r = 0.1. In this section, we
focus on the convergence analysis carried out with quadratic elements.
On Fig. 32, the “bubble” enrichment has a better condition number than the linear

vectorial enrichment. On Fig. 33, all enrichment strategies have optimal convergence
rates in energy norm. The bubble transformation of the singular function preserves the
optimality of the vectorial formulation.
Nonetheless, bubble spaces Vh

bub,m= 2,n= 1 and Vh
bub,m= 2, n= 2 are about five times more

accurate than the bubble space Vh
bub,m= 1, n= 1. The bubble space Vh

bub,m= 1, n= 1 has
the same accuracy than X-FEM vectorial enrichment. Clearly, the bubble spaces with

Fig. 32 Conditioning of “bubble” enrichment vs X-FEM vectorial enrichment

Fig. 33 convergence analysis of “bubble” enrichment strategies with vectorial enrichment
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quadratic interpolation of the singular function outperform X-FEM and the linear bub-
ble space. As a matter of fact, among the bubble spaces with quadratic interpolation of
singular function denoted Vh

bub,m= 2, n= 1 and Vh
bub,m= 2,n= 2, we recommend to choose

n = 1 (linear enrichment for the singular part) but m = 2 (quadratic interpolation of the
singular function) to have the best accuracy and lowest condition number with an order
with respect tomesh refinement around 3.25 for an optimal expected value of 2 [31,32,38]
(see Fig. 32).

Remark • Vh
bub,m= 1, n= 2 is not very interesting because it has a poor numerical behav-

ior. The shift with a lower order of interpolation has not been considered even in the
original method [25].

• The good results detailed in this section with quadratic elements, are confirmed with
linear elements. In this case the condition number for the bubble spaceVh

bub,m= 1, n= 1
evolves with an order with respect to mesh refinement around 2 which corresponds
to the optimal expected value (see Fig. 34 related to Figs. 21, 22 and Fig. 35 related
to Figs. 25, 26 of “Numerical analysis of crack approximations with linear elements:
crack opening in mode 1” section). In addition, an accuracy study of stress intensity
factors is also shown with convergence orders with respect to mesh refinement close
to the theoretical value of 2 (Fig. 36).

Fig. 34 Convergence and conditioning analysis with linear elements for a horizontal crack

Fig. 35 Convergence and conditioning analysis with linear elements for inclined crack at an angle of 44.9◦
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Fig. 36 Convergence analysis of stress intensity factor for the mode I problem. Stress Intensity Factors (SIF)
are estimated with a domain integral method (G-theta method [42,43]). The “bubble” formulation with
quadratic elements reaches the limit of numerical accuracy of the estimator used so that a convergence
analysis cannot be performed here. For formulations with linear elements, the convergence rates are close to
the optimal rate of convergence with mesh refinement, around 2

Extension to weak discontinuities
Similarly to the analyses performed for strong discontinuities and singular enrichment,
this section will describe several enrichments for weak discontinuities found in the lit-
erature. Those are used in case of bi-materials. We will show that getting a result with
correct accuracy does not depend only on conditioning issues but also on the quality of the
approximation space chosen to represent continuous fields with discontinuous gradients.
These two separate issues are often mixed in the literature as it will be shown later in this
section.

Enrichment functions for weak discontinuities

The general enrichment in case of weak discontinuity takes the following form:

uh (x) =
∑

i∈I
aiΦi (x) +

∑

j∈IH
bjF (x)Φj (x) (58)

with the same notations than in “Strong discontinuity representation” section. The first
sum in the right hand part of the previous equation corresponds to the standard finite
element approximation while the second one stands for the enriched term.
Different choices are present in the literature for the function F (x) and the ones in

[14,27,28] are possible (Table 3). Some of them are related: as a matter of fact, the choice
by [28] is a shifted version [26] of [14] and [27] is a bubble transformation of [14].

Table 3 Weak discontinuity enrichments comparison

Sukumar [14] Moës [27] Belytschko [28]

F(x)

∣
∣∣∣
∣
∑

i∈IH
lsniΦi (x)

∣
∣∣∣
∣

∑

i∈IH
|lsni |Φi (x) −

∣
∣∣∣
∣
∑

i∈IH
lsniΦi (x)

∣
∣∣∣
∣

∣
∣∣∣
∣
∑

i∈IH
lsniΦi (x)

∣
∣∣∣
∣
− ∣∣lsnj

∣
∣
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We analyze in the following the influence of these choices on the overall behavior of the
solution with respect to the satisfaction of simple patch tests convergence and accuracy
properties.

Remark Sukumar’s and Belytschko’s enrichment functions yield almost the same approx-
imation space. It can be shown straightforwardly through a change of variables as in
“Strong discontinuity approximation conditioning” section. Let aj and bj be the classical
and enriched degrees of freedom for Belytchko’s enrichment and a′

j and b′
j refer to the

classical and enriched degrees of freedom for Sukumar’s enrichment. We have for j ∈ IH{
a′
j = aj −

∣∣lsnj
∣∣ bj

b′
j = bj

(59)

Thus, in the next sections both approximations may display similar numerical properties.
Note also that the zero of the level set term

∑

i∈IH
lsniΦi (x) which appears in [14,27,28]

represents a discretization of the interface. In the following we took the same orders of
interpolation for the functions F (x) and the level sets, which seemed to be quite natural.

Numerical analysis of weakly discontinuous approximation

In order to see if conditioning issues are also relevant for weak discontinuities we per-
formed a numerical analysis similar to the one of “Numerical behavior of strongly dis-
continuous approximations” section, relying on a one dimensional bi-material problem.
We will show that even if these conditioning issues can be prevented by a change of for-
mulation, convergence issues can still be observed, due to the fact that simple patch tests
cannot be represented correctly for linear or quadratic elements.

Analytical solution for the one dimensional bi-material problem

To capture piecewise linear displacements as in “Numerical analysis of strongly discon-
tinuous approximations with linear elements” section, we simulate a one-dimensional
bi-material problem of length L in a two dimensional domain since our numerical soft-
ware is 2D and 3D and as was done in [14]. To ease calculations, we reduce it to the
one-dimensional bi-material problem.

• For the one dimensional bi-material bar, the solution verifies the following differential
equation

d2u
dx2

= 0, ∀x ∈ � = [0, x0[∪]x0,L] , so that,

u(x) =
{

α−x + β , if x ≤ x0
α+x + β ′, if x ≥ x0

}

,where x0 is the location of the interface,

• With arbitrary Dirichlet boundary conditions we choose to impose on the central
element nodes for the sake of simplicity,

u(0) = 0, u(L) = u

• Material properties are given by:

Ei(x) =
{
E1, if x ≤ x0
E2, if x ≥ x0

}

,where x0 is the location of the interface,
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• Assuming small strains, the expected solution satisfying the boundary conditions
above is:

u(x) =
⎧
⎨

⎩

E2u
E1L+(E2−E1)x0 x, if x ≤ x0 so that α− = E2u

E1L+(E2−E1)x0
E1x+(E2−E1)x0
E1L+(E2−E1)x0 u, if x ≥ x0 so that α+ = E1u

E1L+(E2−E1)x0

(60)

Numerical analysis of weakly discontinuous approximations with linear elements

In the numerical analysis of “Numerical analysis of weakly discontinuous approximations
with linear elements” section, to ease the calculations, we consider � = [− 1, 2] with the
following Dirichlet boundary conditions u (- 1) = 0, u (2) = ū so that L = 3 m. The
interface is 
 = {x0}.
The weak form of the problem becomes:
Find:

u ∈∏ :
{
w ∈ H1 (�) /w(−1) = 0, w(2) = ū, w(x−

0 ) = w
(
x+
0
)}

∀v ∈∏0 :
{
w ∈ H1 (�) /w(−1) = 0, w(2) = 0, w(x−

0 ) = w
(
x+
0
)}

}

�→
{∫ 2

−1 Eiu
′v′dx = 0

E1u′ (x−
0
) = E2u′ (x+

0
) (61)

The X-FEM discrete linear space is:
∏

h
:
{
w/w = a1�1 + a2�2 + b2F�2 + a3�3 + b3F�3 + a4�4
a1 = 0 a4 = ū

}

(62)

Then, the 6 × 6matrix associated with the discretization of the weak form on the X-FEM
space of linear function with Sukumar et al. formulation [14] is:

⎛

⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜
⎝

E1 −E1 −E1(1 − ε) 0 0 0

−E1 E1(2 − ε) + E2ε 2E1(1 − ε) −E1(1 − ε) − E2ε −E2ε 0

−E1(1 − ε) 2E1(1 − ε) E1 (2−ε)3
3 + E2 ε3

3 −E1(1 − ε) −E1 (1−ε)3
3 − E2 ε3

3 0

0 −E1(1 − ε) − E2ε −E1(1 − ε) E1(1 − ε) + E2(ε + 1) 2E2ε −E2

0 −E2ε −E1 (1−ε)3
3 − E2 ε3

3 2E2ε E1 (1−ε)3
3 + E2 (ε+1)3

3 −E2ε
0 0 0 −E2 −E2ε E2

⎞

⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟
⎠

⎛

⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎜
⎜⎜
⎝

a1

a2

b2

a3

b3

a4

⎞

⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎟
⎟⎟
⎠

With the formulation of Belytschko et al. [28] it becomes:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

E1 −E1 0 0 0 0
−E1 E1(2 − ε) + E2ε (E1 − E2)(1 − ε)ε −E1(1 − ε) − E2ε (E1 − E2)(1 − ε)ε 0

0 (E1 − E2)(1 − ε)ε E1
3 (u1 + 2) + E2

3 v1 (E2 − E1)(1 − ε)ε E1
3 u2 + E2

3 v2 0

0 −E1(1 − ε) − E2ε (E2 − E1)(1 − ε)ε E1(1 − ε) + E2(ε + 1) (E2 − E1)(1 − ε)ε −E2

0 (E1 − E2)(1 − ε)ε E1
3 u2 + E2

3 v2 (E2 − E1)(1 − ε)ε E1
3 (u1 + 1) + E2

3 (v1 + 1) 0
0 0 0 −E2 0 E2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1

a2

b2

a3

b3

a4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where:
{
u1 (ε) = −ε [ε (4ε − 6) + 3] v1 (ε) = ε [ε (4ε − 6) + 3]
u2 (ε) = [−2ε3 + 3ε-1

]
v2 (ε) = ε [ε (2ε − 6) + 3]

Finally, with Moës et al. formulation [27], the discrete matrix is:
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

E1 −E1 0 0 0 0

−E1 E1(2 − ε) + E2ε 2(E2 − E1)(1 − ε)ε2 −E1(1 − ε) − E2ε 2(E2 − E1)(1 − ε)2ε 0

0 2(E2 − E1)(1 − ε)ε2 E1f1 + E2f2 2(E1 − E2)(1 − ε)ε2 E1h1 + E2h2 0

0 −E1(1 − ε) − E2ε 2(E1 − E2)(1 − ε)ε2 E1(1 − ε) + E2(ε + 1) 2(E1 − E2)(1 − ε)2ε −E2

0 2(E2 − E1)(1 − ε)2ε E1h1 + E2h2 2(E1 − E2)(1 − ε)2ε E1g1 + E2g2 0

0 0 0 −E2 0 E2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1

a2

b2

a3

b3

a4

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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where:

f1 = 4
3
(1 − ε) ε2 [ε (4ε − 2) + 1] ; f2 = 16

3
(1 − ε)2 ε3;

h1 = 4
3
(1 − ε)2 ε2(−1 + 4ε)

h2 = 4
3
(1 − ε)2ε2(3 − 4ε); g1 = 16

3
(1 − ε)3ε2; g2 = 4

3
(1 − ε)2ε(ε(4ε − 6) + 3)

For all cases, we have taken ε = 1 − x0, where x0 denotes the interface position.
On considering the 4 × 4 sub-matrix that is free from boundary conditions, the diag-

onal pre-conditioner can easily scale the formulation of Moës et al. [27] as entire rows
(symmetrically columns) vanishes when ε = 0 or ε = 1 (see Fig. 37). For the enrichments
of Sukumar et al. [14] and Belytschko et al. [28], no conditioning issues can be observed, in
case of linear approximation. However, we will see in the next paragraph that these latest
two formulations are far from optimal with respect to convergence issues, being unable
to represent simple patch tests.

Ability of the enrichment to catch piecewise linear and quadratic solution

First of all, we would like to test that the proposed enrichments (see Table 4) are able
to capture piecewise linear and quadratic solutions, so that the enrichment function for
the material interface problem preserves the equivalence between the FEM and X-FEM
discretized spaces. For that purpose, we will consider the previous problem of the one-
dimensional bi-material bar for the linear case [14]. Then to capture piecewise quadratic
displacements we adapt the bi-material volumic load test of [27] using a constant volumic
load, instead of a quadratic one.
To simplify the calculations, the bar is subdivided into three elements (see Fig. 8) of

equal length L, in order to have cut and uncut elements. The central element which
carries the interface is such that 0 ≤ x ≤ L. Dirichlet boundary conditions are applied on
this central element such that u(0) = 0, u (L) = u. The linear shape functions we use in
the central element are of the form �1 = 1 − x

L ,�2 = x
L , while the quadratic ones are

taken as:

Fig. 37 Conditioning of X-FEM formulation with quadratic elements for weak discontinuities representation.
With X-FEM’s ridge enrichment functions no conditioning issues are observed through the use of a diagonal
pre-conditioner
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�1 =
(
1 − 2

x
L

) (
1 − x

L

)
, �2 = 4x

L

(
1 − x

L

)
, �3 = − x

L

(
1 − 2x

L

)

Unknowns that we search to recover the linear and quadratic patch test solutions are the
degrees of freedom a1, a2, b1, b2 and a1, a2, a3, b1, b2, b3, in (58) respectively.
For Sukumar and Belytschko formulations, the X-FEM blending elements which are

adjacent to those completely cut by the interface have a quadratic interpolation [even
with linear elements, due to the interpolation (58) and the expression of F (x) in Table 4]
or cubic interpolation [with quadratic elements and the expressions (58) and F (x)] with
just one active bi degree of freedom (see Fig. 8, for the left and right blending elements).
Since the patch test is linear, these degrees of freedom must be equal to zero which
cancels out all discontinuity. Hence linear patch tests cannot be satisfied and are just
approximated by these formulations, which will affect the energy norm as noticed by [14].
Note that Moës formulation with the same order of interpolation for F (x) and the shape
functions Φ(x) is able to catch the linear patch test solution, and that Moës formulation
with the linear interpolation of F (x) is also able to catch the solution for quadratic or linear
shape functions. Table 5 gives a summary of the principal results obtained for the linear
patch test. Table 6 represents the relative error in energy norm for this bi-material bar
under traction for different positions of the interface. One can see that the enrichments of
Sukumar and Belytschko, even when quadratic (see Table 7), do not yield proper results
due to the transition of F (x) in blending elements [26], while the problem is avoided with
Moës enrichment.
Moreover, as we cannot recover the exact linear solution for this patch test, an order

of convergence of 0.5 in energy norm with respect to mesh refinement is obtained for
Sukumar and Belytschko enrichments (Fig. 38), which is consistent with the previous
work of Moës et al. [44] extended to X-FEM with an enrichment that does not allow to
catch the discontinuity.
Analytical solution for the volumic load problem
Consider a plate of side L with two materials E1 and E2 with ν1 = ν2 = 0, the interface
being localized at x = x0 in the plate, as in Fig. 39. Plain strain conditions are assumed.
The plate is embedded on the left side and a variable volumic force is imposed on the plate
along the �x direction, given by

∥∥
∥�f
∥∥
∥ = f . The case is computed in two dimensions since

our numerical software works only in two and three dimensions, using a similar approach
to the one in [14].

Table 4 Expressions of F(x) for weakly discontinuous enrichments with linear and
quadratic approximations resulting from Table 3 for the one dimensional bi-material bar
problem

Sukumar [14] Moes [27] Belytschko [28]

Linear F(x) |x − x0| x + x0 − 2 xx0
L − |x − x0| |x − x0| − |xJ − x0|

Quadratic F(x) |x − x0| • If L/2 ≥ x0
x0 + x

L (L − 6x0)

+ 4x0
( x
L

)2 − |x − x0|

|x − x0| − |xJ − x0|

• If L/2 ≤ x0
x0 + x

L (2x0 − 3L)

+ 4 (L − x0)
( x
L

)2 − |x − x0|
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)ū

2(
E 1

L+
(E

2−
E 1

)x
0)

Th
e
an
al
yt
ic
al
so
lu
tio

n

ca
nn

ot
be

re
pr
es
en

te
d.

In
co
m
pa

tib
le
w
ith

bl
en

di
ng

el
em

en
ts
.

Q
ua
dr
at
ic

φ
(x
)a
nd

qu
ad
ra
tic

F(
x)

Th
e
an
al
yt
ic
al
so
lu
tio

n

ca
nn

ot
be

re
pr
es
en

te
d.

In
co
m
pa

tib
le
w
ith

bl
en

di
ng

el
em

en
ts
.

•i
fL

/
2

≥
x 0

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩

a 1
=

0
a 2

=
ū 2

+
(E

2−
E 1

)x
0ū
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Table 6 Comparison of relative error in energy norm for different interface locations
between the different enrichment functions for linear elements used in the bi-material bar
problem (results obtained with E1 = 2.05MPa, E2 = 20.5 MPa, L = 25m and ū = 3 · 10−6m)

Interface location Sukumar Moës Belytschko

12.3 2.38688E−01 3.26389E−15 2.38688E−01

12.4 2.42403E−01 4.30236E−15 2.42403E−01

12.5 2.45626E−01 2.82096E−15 2.45626E−01

12.6 2.48370E−01 5.19794E−15 2.48370E−01

12.7 2.50650E−01 6.25056E−15 2.50650E−01

Table 7 Comparison of relative error in energy norm for different interface locations
between the different enrichment functions for quadratic elements used in the bi-material
bar problem (results obtained with E1 = 2.05MPa, E2 = 20.5 MPa, L = 25m and
ū = 3 · 10−6m)

Interface location Sukumar Moës Belytschko

12.3 8.37168E−02 2.19329E−14 8.37168E−02

12.4 8.02193E−02 2.72702E−14 8.02193E−02

12.5 7.62151E−02 3.39596E−12 7.62151E−02

12.6 7.17862E−02 1.85735E−14 7.17862E−02

12.7 6.70550E−02 1.43340E−14 6.70550E−02

The exact displacements in the two materials are given by:

�u1(x) = − f
E1

(
x2

2
− Lx

)
�x if x ≤ x0

�u2(x) = −
[

f
E2

(
x2

2
− Lx

)
+ f

(
x20
2

− Lx0

)(
1
E1

− 1
E2

)]

�x if x ≥ x0

No linear element with linear F (x) is able to capture this quadratic solution directly.
For Sukumar and Belytschko formulations with quadratic elements, the xfem blending
elements which are adjacent to those completely cut by the interface give a cubic inter-
polation (linear F (x)) or order four interpolation (quadratic F (x)) with just one bi degree
of freedom (see Fig. 8, for the left and right elements). Since the patch test is quadratic,
these degrees of freedommust be equal to zero which cancels out all discontinuity. Hence

Fig. 38 Convergence in energy norm at a rate of 0.5 [44] for Sukumar and Belytschko enrichments. These
results are obtained with E1 = 2.05 MPa, E2 = 20.5 MPa, L = 25 m and ū = 3.10−6m
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Fig. 39 Plate with a material interface and a variable volumic load

quadratic patch tests cannot be satisfied and are just approximated by these formulations,
which will affect the energy norm as noticed by [14]. Note that Moës formulation with
quadratic shape functions Φ(x) and linear F (x) is able to catch the quadratic patch test
solution, and that Moës formulation with quadratic shape functions Φ(x) and quadratic
F (x) is not able to catch it. Table 7 gives a summary of the principal results obtained for
the quadratic patch test.
Figure 40 shows the convergence rates on the relative error in terms of the energy norm

with respect to mesh refinement for the quadratic patch test, using linear shape functions
Φ(x) and linear F (x) and quadratic shape functions Φ(x) and quadratic F (x). Using linear
elements we obtain the optimal convergence rates of 1. Using quadratic elements we
obtain 1.5. In this later case, a convergence rate of 2 would be expected since the analytical
solution does not lie in the finite element space (cf. Table 8). We will not prove formally
that the obtained convergence rates are in fact the expected ones, nevertheless we can
give some arguments that those rates are indeed the expected ones.
In the quadratic patch test case, the first and second derivatives of the analytical solu-

tion are discontinuous. The finite element space with enrichment we use with quadratic
F (x) and quadratic shape functions Φ(x) does not allow to capture this solution. How-
ever it allows to capture the linear patch test solution with a discontinuous first deriva-
tive. We can deduce from this analysis that its rate of convergence on energy will be
greater than 1 but lower than 2. Then the loss of 0.5 in convergence rate observed
numerically for quadratic elements, with a value of 1.5 observed numerically instead
of an expected 2, is coherent with the analysis for linear elements (0.5 instead of 1
when elements do not catch the discontinuity on the first derivative) performed by
Moës et al. [44].
From this analysis, we recommend to use Moës formulation with quadratic elements

and linear F (x).

Convergence analysis for weak discontinuities

In this paragraph we will investigate the convergence of our X-FEM formulations dedi-
cated to weak discontinuities when the solution is not in the approximation space.
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Fig. 40 Convergence rates on the relative error in terms of the energy norm with respect to mesh
refinement for the quadratic patch test, using linear shape functions and a linear enrichment function (linear,
linear) and quadratic shape functions and a quadratic enrichment function (quadratic, quadratic)

Volumic load problemwith straight interface

The test we propose in the following was already investigated by Moës et al. [18]. Let us
consider again the squared plate of Fig. 39 with side L = 2 m separated in its middle by
twomaterials E1 = 1MPa and E2 = 10MPa and with ν1 = ν2 = 0. This time the variable
volumic force is

∥∥
∥�f
∥∥
∥ = f

( x
L
)2 imposed on the plate along the �x direction.

The exact displacements in the two materials are:

�u1(x) = f
3E1L2

(
L3x − x4

4

)
�x

�u2(x) =
[

f
3E2L2

(
L3x − x4

4

)
+ 31f L2

192

(
1
E1

− 1
E2

)]
�x

We considered an unstructured mesh with 5, 10, 20 and 40 triangular elements on
each side. Figure 41 shows the convergence rates on the relative error in terms of the
energy norm with respect to mesh refinement for the volumic load problem, using linear
shape functions Φ(x) and linear F (x), quadratic shape functions Φ(x) and linear F (x) and
quadratic shape functions Φ(x) and quadratic F (x). Using linear elements or quadratic
elements and linear enrichment function we obtain the optimal convergence rates. Using
quadratic elements andquadratic enrichment functionweobtain 1.5.Note that the second
derivative of the analytical displacement is discontinuous in this case too.

Circular inclusionwith imposed displacement

To investigate the behavior of weak discontinuity enrichments in presence of curved
interfaces, Moës et al. [18] suggested the following test case. A circular inclusion �1
of radius a = 0.4 m is placed in the center of a material �2. A linear displacement is
imposed on the boundary 
2 (r = b = 2 m). The same material parameters are chosen:
E1 = 1 MPa, ν1 = 0.25 and E2 = 10 MPa, ν2 = 0.3. This problem has an analytical
solution provided in [18]. The analytical displacement reads:

ur (r) =
⎧
⎨

⎩

[(
1 − b2

a2

)]
α + b2

a2 , if 0 ≤ r ≤ a
(
r − b2

a2

)
α + b2

a2 , if a ≤ r ≤ b
,
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Fig. 41 Convergence rates on the relative error in terms of the energy for the volumic load problem. The
enrichment strategies are: linear shape functions and linear enrichment function (linear, linear), quadratic
shape functions and a linear enrichment function (quadratic, linear) and quadratic shape functions and a
quadratic enrichment function (quadratic, quadratic)

Fig. 42 Convergence rates on the relative errors with respect to mesh refinement for the circular inclusion
problem. The enrichment strategies are: linear shape functions and linear enrichment function (weak, linear,
linear), quadratic shape functions and linear enrichment (weak, quadratic, linear) and quadratic shape
functions and quadratic enrichment function (weak, quadratic, quadratic). Two models based on the
enrichment designed for strong discontinuities, using Lagrange multipliers to enforce the continuity of the
displacement through the interface have also been investigated: one with quadratic shape functions and a
linear approximation of the level set (strong, quadratic, linear) and one with quadratic shape functions and a
quadratic approximation of the level set (strong, quadratic, quadratic)

with:

α = (λ1 + μ1 + μ2) b2

(λ2 + μ2) a2 + (λ1 + μ1)
(
b2 − a2

)+ μ2b2

The domain of computation is a square�2 of side L= 2m.We considered an unstructured
mesh with 5, 10, 20, 40, 80 and 160 triangular elements by side. Figure 42 shows the
convergence rates on the relative error in terms of the energy norm with respect to
mesh refinement for circular inclusion, using linear shape functions Φ(x) and linear F (x),
quadratic shape functions Φ(x) and linear F (x) and quadratic shape functions Φ(x) and
quadratic F (x). Using linear elements we obtain the optimal convergence rate. Using
quadratic elements we obtain 1.5. In the case of quadratic F (x), this behavior arises from
the discontinuity of the second derivative of the analytical displacement. The case of linear
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F (x) is slightly different, due to its linkwith the geometrical approximation of the level sets
and more particularly of the interface established at the end of “Enrichment functions for
weakdiscontinuities” section. Ferté et al. [45,46] showed for strongdiscontinuities that the
approximation of the level set impacts the expected theoretical convergence rates, in the
case of quadratic elements: 2 is expected if a quadratic approximationof the level set is used
(equivalently quadratic F (x)), while 1.5 is expected if a linear representation of the level set
is used (equivalently linearF (x)). To illustrate this behavior,we also considered twomodels
based on the enrichment designed for strong discontinuities, using Lagrange multipliers
to enforce the continuity of the displacement through the interface: one with quadratic
shape functions and a linear approximation of the level set and one with quadratic shape
functions and a quadratic approximation of the level set. The convergence rates obtained
for these two models are also shown on Fig. 42.
Finally for weak discontinuities, optimal rates of convergence in energy norm are diffi-

cult to obtain for quadratic elements. If linear approximations of the level sets (equivalently
linear F (x)) are used associated to a quadratic approximation of the enrichment, conver-
gence rates are limited due to errors on the geometry. If quadratic approximations of the
level sets (equivalently quadratic F (x)) are used associated to a quadratic approximation of
the enrichment, convergence rates are limited due to errors on the approximation spaces.
It appears that both convergence rates end up being the same, with a loss of 0.5 in energy
norm with respect to optimal orders of convergence of 2. Optimal orders of convergence
are recovered when using a strong discontinuity approximation space with lagrangian
multipliers to represent weak discontinuities.

Conclusion
This paper outlines numerical issues around popular approximation spaces tomodel weak
discontinuities or strong discontinuities and cracks, particularly with quadratic elements.
We analyzed those issues on a few benchmarks. Those benchmarks revealed that popular
enrichment strategies do not behave well with asymptotic configurations (when the dis-
continuity gets close to a node of themesh, typically for a distance below 10% of the length
of the cut edge) for strongly discontinuous enrichments and that the singular enrichment
could be improved with respect to conditioning and accuracy.
Instead of working on complex and expensive strategies to solve those issues for strongly

discontinuous enrichments, we preferred to apply a slight reshape of the approximation
spaces, as it is in our sense, the most effective approach to deal with those issues for
industrial applications. In fact, the new approximation spaces get through the proposed
benchmarks, with significant improvement of the numerical behavior and accuracy of the
formulations studied.
Nonetheless, more theoretical work is needed to understand why very unsmooth “bub-

ble” functions tend to give better results than “straightforward” singular functions. At
least, our results confirmed the numerical properties of “bubble” spaces denoted in the
literature [25,31,32]. Moreover, the integration procedure needs to be improved, particu-
larly in 3D with quadratic elements, to further the analysis on complex crack surface and
crack front geometries.
At last, in case of weakly discontinuous enrichments, it was shown that most approxi-

mation spaces of the literature did not exhibit conditioning issues. However, for quadratic
elements, orders of convergence in energy norm were 0.5 lower than those obtained with
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an equivalent strongly discontinuous enrichment, so that we recommend using the latest
approach even in the case of weak discontinuities, associated to the strategy exposed in
the present work to avoid conditioning issues.
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