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Abstract In the context of the eXtended Finite Ele-

ment Method (X-FEM), the use of two level set func-

tions allows the representation of the crack to be achie-

ved regardless of the mesh. The initial crack geometry is

represented by two distinct level set functions, and the

crack propagation is simulated by an update of these

two level set functions. In this paper, we propose a new

approach, based on the Fast Marching Method (FMM),

to update the level set functions. We also propose a

new implementation of the FMM, designed for tetra-

hedral volume meshes. We then extend this method to

all types of volume elements (tetrahedra, hexahedra,

pentahedra, pyramids) available in a standard finite el-

ement library. The proposed approach allows one to use

the same mesh to solve the mechanical problem and to

update the level set functions. Non-planar quasi-static
crack growth simulations are presented to demonstrate

the robustness of the approach, compared to existing

methods based on the integration of Hamilton-Jacobi

equations or geometric approaches.
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1 Introduction

The level set method coupled with X-FEM (Belytschko

and Black 1999; Moes et al. 1999) is very effective to

simulate 2D (Stolarska et al. 2001) and 3D (Moes et al.

2002; Gravouil et al. 2002) crack growth. The initial

crack is represented by two level set functions: the faces

of the crack belong to the zero level set of a first level

set function while the second level set function is de-

fined in such a way the intersection of the zero level set

of the two level set functions describes the crack front.

The two level set functions are signed distance func-

tions. The two level set functions are orthogonal in the

sense that their gradients are orthogonal. The growth

of the crack is discretized in increments. Linear elastic

fracture mechanics is used to describe the displacement

of a point of the crack front from its position at the

beginning of the growth to its position at the end of

the growth increment. At the end of each growth in-

crement, the level set functions are updated to describe

the new crack position.

The udpate of both level set level set functions is

based on the level set method introduced by Osher and

Sethian (1988). The procedure proposed by Gravouil

et al. (2002) is as follows. In a first step, called the ex-

tension step, the displacement field is first extended to

a neighborhood of the zero level set. In a second step,

called the update step, the Hamilton-Jacobi equation

describing the evolution of each level set function is in-

tegrated. The intersection of the zero level set of the two

functions obtained after the update step describes the

new position of the crack front. These functions are not

expected to be true signed functions. The last step con-

sists of two interlocked steps, called the reinitialization

step and the orthogonalization step. The reinitializa-

tion step builds two new level set functions, from the
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functions obtained at the end of the update step. The

orthogonalization step ensures the two updated level

set functions are orthogonal.

Diffrent approaches to perform each of the four steps

of the update of the two level set functions have been

explored. Gravouil et al. (2002) proposed to integrate

Hamilton-Jacobi equations to perform these four steps.

Sukumar et al. (2003, 2008) and Shi et al. (2010) for-

mulated the extension and the reinitialization steps in

terms of eikonal equations and used the Fast Marching

Method, introduced by Sethian (1996). Prabel et al.

(2007) performed the four steps of the update of the

two level set functions on a dedicated regular grid, in

order to use an upwind scheme to integrate Hamilton-

Jacobi equations. Colombo and Massin (2011) intro-

duced a geometric approach to perform the extension

and update steps. Colombo (2012) extended this geo-

metric approach to perform also the reinitialization and

orthogonalization steps, in order to obtain a more ro-

bust method.

The developments are implemented in code aster fi-

nite element package, developped by EDF (1989–2021).

Three methods are available to perform the reinitializa-

tion and orthogonalization steps. Nevertheless, none of

these methods fit our desire of a robust tool, able to

perform the mixed mode propagation of a crack in an

industrial structure and, for example, the Brokenshire

test (see Barr and Brokenshire (1996)) is still a chal-

lenge.

In this paper, we propose a new approach in which

the geometric approach proposed by Colombo (2012) is

used for the orthogonalizaton step and the Fast Mar-

ching Method for the reinitialization step. Our imple-

mentation of this approach is designed for triangulated

meshes. We then extend this method to all types of

(linear) volume elements available in a standard finite

element library.

2 Level set update to model the growth of a

crack

The growth of the crack is discretized in growth incre-

ments. At the begining of a growth increment k, the

crack Γk is described by two level set functions : the

normal level set function Φk
n and the tangential level

set function Φk
t . The crack faces are described by the

set of points:

Γk = {M,Φk
n(M) = 0} ∩ {M,Φk

t (M) < 0}. (1)

The crack front Γk
0 is discretized by linear segments

(cf. Fig. 1). Let P i be a point on the crack front. The
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Fig. 1 Discretized crack front and local frame associated
with each point on the crack front.

local frame (Ti,Ni,Bi) is computed from the level set

functions Φk
n and Φk

t :

Bi =
∇Φk

n(P i)

‖∇Φk
n(P i)‖

,

Ti =
∇Φk

t (P i)×∇Φk
n(P i)

‖∇Φk
t (P i)×∇Φk

n(P i)‖
,

Ni = Bi ×Ti.

(2)

The standard finite element interpolation of the level

set functions is used to compute∇Φk
n(P i) and∇Φk

t (P i).

The mechanical fields are computed by means of X-

FEM. We typically use an energetic approach to com-

pute the energy release rate Gi and stress intensity fac-

tors Ki
I, Ki

II and Ki
III. G

i is then computed using the

domain integral method (Destuynder and Djaoua 1981;

Li et al. 1985) while the stress intensity factors are

computed using interaction integrals (Gosz and Moran

2002). We can also use the displacement jump extrap-

olation technique (Chan et al. 1970) to compute Ki
I,

Ki
II and Ki

III and apply Irwin’s formula (Irwin 1957) to

obtain Gi. These quantities are used to determine the

crack growth size and crack growth direction.

Following Gravouil et al. (2002) and Sukumar et al.

(2008), we assume a fatigue crack growth law and we

use a modified Paris’ law (Paris and Erdogan 1963), in

which G plays the role of the stress intensity range ∆K.

The maximal crack growth size during a growth incre-

ment ∆amax is an input parameter of the simulation.

The value of ∆amax corresponds to the typical element

size in the neighborhood of the crack. The crack growth

size ∆ai associated to the point P i on the crack front

is:

∆ai =

(
Gi

Gmax

)m

∆amax, (3)

where Gmax is the maximum of the energy release rate

G, for all the points of the crack front, and C and m

are the parameters of Paris’ law.
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The maximum hoop stress criterion is used to find

the crack growth direction. The angle β of the crack

growth direction with respect to the plane tangent to

the crack is obtained by (Erdogan and Sih 1963):

β = 2 tan−1

1

4

 KI

KII
− KII

|KII|

√(
KI

KII

)2

+ 8

 . (4)

A planar crack growth will correspond to assume β = 0.

Finally, the displacement of the point P i on the crack

front is given by the vector:

∆ai = ∆ai(cosβiNi + sinβiBi), (5)

where βi is the angle β evaluated at point P i.

At the end of the growth increment, the point Qi,

defined by:

OQi = OPi + ∆ai, (6)

lies on the new crack front Γk+1
0 . The problem is now

to build new level set functions Φk+1
n and Φk+1

t so that

the new crack front Γk+1
0 can be described as the inter-

section of the zero level set of Φk+1
n and the zero level

set of Φk+1
t .

2.1 PDE-based approaches: Simplex and Upwind

Methods

We now expose how the extension, update, reinitializa-

tion and orthogonalization steps are implemented for

Simplex and Upwind Methods. The general scheme fol-

lows the approach proposed by Colombo and Massin

(2011).

2.1.1 Extension step

The extension step extends the displacement defined on

the crack front to a neighbourhood of the crack front.

This neighbourhood is the domain in which the level

set functions will be updated during the update step.

The simplest approach consists in updating the level set

functions in the whole domain. One can also restrict the

updated domain, in order to save computational time.

The first step of the extension consists in mapping

each point of the domain to a point on the crack front,

by projecting the point of the domain onto the crack-

front. This first step is always performed for all the

nodes in the domain, because it enables the computa-

tion of the distance from each node of the mesh to the

crack front. This distance can then be used to restrict

the domain in which the level set functions will be udp-

dated to a torus surrounding the crack front, following

the procedure described in (Colombo and Massin 2011).

Let M be a node in the domain. The projection al-

gorithm finds point P on the crack front Γk
0 such that

point M belongs to the plane (P,N,B). The algorithm

computes point P and segment [P iP j ] to which P be-

longs. The displacement of point P reads:

∆aP = ∆a(cosβN + sinβB). (7)

The computation of crack growth size ∆a, angle β and

local frame (T,N,B) at point P , from the data known

at points P i and P j , is discussed in detail in (Colombo

and Massin 2011).

Displacement at point M is computed from dis-

placement at point P . Displacement ∆aPn is associated

to the displacement of the zero level set of Φn and dis-

placement ∆aPt is associated to the displacement of the

zero level set of Φt. Displacement at point M is decom-

posed as:

∆aM = ∆aM
n + ∆aM

t , (8)

where ∆aM
n is associated to the displacement of the

zero level set of Φn and ∆aM
t is associated to the dis-

placement of the zero level set of Φt. Displacement

∆aM
n is zero where Φk

t is negative to ensure Γk ⊂
Γk+1 at the end of the growth increment. Displace-

ment ∆aM
n where Φk

t is positive is computed assuming

‖∆an‖ varies linearly from ‖∆an‖ = 0 where Φk
t = 0

(i.e. on the crack front Γk
0) to ‖∆an‖ = ∆a sinβ where

Φk
t = ∆a cosβ.

2.1.2 Update step

We use the geometrical approach proposed in (Colombo

and Massin 2011). The updated level set functions at

point M read:

Φ̃n(M) = Φk
n(M)−∆aM

n ·∇Φk
n(M),

Φ̃t(M) = Φk
n(M)−∆aM

t ·∇Φk
t (M).

(9)

Updated level set functions Φ̃n and Φ̃t are neither ex-

pected to be signed distance functions nor expected to

be orthogonal.

2.1.3 Reinitialization and orthogonalization steps

The reinitialization and orthogonalization steps are in-

terlocked. Actually, in the case of a non-planar crack, it

is not possible to fulfill the orthogonality and unit gra-

dient conditions at the same time, except in the neigh-

borhood of the crack front. We use the following proce-

dure:
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Simplex Method Upwind Method Geometric Method Fast Marching Method

E
x
te

n
si

o
n

st
ep Projection of the nodes

onto the crack front.
Projection of the nodes
onto the crack front.

Projection of the nodes
onto the crack front.

Projection of the nodes
onto the crack front.

U
p

d
a
te

st
ep

Geometrical approach. Geometrical approach.
Implicit in the fully
geometric method.

Geometrical approach.

R
ei

n
it

ia
li
za

ti
o
n

st
ep

(Φ
n

)

Integration of a
time-dependent PDE;
solver dedicated to
triangulated meshes;
boundary condition:
Φn = Φk+1

n at nodes
of In.

Integration of a
time-dependent PDE;
solver dedicated to
regular meshes;
boundary condition:
Φn = Φk+1

n at nodes
of In.

Implicit in the fully
geometric method.

Integration of a
stationnary PDE;
solver dedicated to
triangulated meshes;
boundary condition:
Φn = Φk+1

n at nodes
of In.

O
rt

h
o
g
o
n

a
li
za

ti
o
n

st
ep

Integration of a
time-dependent PDE;
solver dedicated to
triangulated meshes;
boundary condition:

Φt = Φ̂t at nodes of In.

Integration of a
time-dependent PDE;
solver dedicated to
regular meshes;
boundary condition:

Φt = Φ̂t at nodes of In.

Implicit in the fully
geometric method.

Replaced by the

computation of Φk+1
t

at nodes of It, using
the fully geometric
method.

R
ei

n
it

ia
li
za

ti
o
n

st
ep

(Φ
t
)

Integration of a
time-dependent PDE;
solver dedicated to
triangulated meshes;
boundary condition:

Φt = Φk+1
t at nodes

of It.

Integration of a
time-dependent PDE;
solver dedicated to
regular meshes;
boundary condition:

Φt = Φk+1
t at nodes

of It.

Implicit in the fully
geometric method.

Integration of a
stationnary PDE;
solver dedicated to
triangulated meshes;
boundary condition:

Φt = Φk+1
t at nodes

of It.
Table 1 Comparison of the methods to update the level set functions studied in this article: Simplex Method, Upwind Method,
Geometric Method and the new approach based on the Fast Marching Method.

1. Reinitialization of the normal level set function. The

normal level set function at the end of growth incre-

ment Φk+1
n is computed as the steady-state solution

of the following evolution problem, with respect to

a virtual time τ :

∂Φn

∂τ
= − Φn

|Φn|
(‖∇Φn‖ − 1), (10)

with initial data:

Φn(τ = 0) = Φ̃n. (11)

Let In be the set of nodes belonging to cells which

contain the zero level set of Φ̃n. Level set function

Φk+1
n is built so that the zero level set of Φk+1

n co-

incides with the zero level set of Φ̃n. Thus, level set

function Φk+1
n at a given node of set In is the dis-

tance from this node to the zero level set of Φ̃n,

where Φ̃n is positive, and the opposite of the dis-

tance from this node to the zero level set of Φ̃n,

where Φ̃n is negative. The computation of the dis-

tance from each node of In to the zero level set of

Φ̃n is based on a projection algorithm proposed in

(Colombo and Massin 2011).

2. Orthogonalization. A level set function Φ̂t orthognal

to Φk+1
n is computed as the steady-state solution of

the following evolution problem:

∂Φt

∂τ
= − Φk+1

n

|Φk+1
n |

∇Φk+1
n

‖∇Φk+1
n ‖

·∇Φt, (12)

with initial data:

Φt(τ = 0) = Φ̃t. (13)

We use the result of the projection algorithm pre-

sented above to compute the value of the level set

function Φ̂t at nodes of In. The tangential level set

function Φ̃t is first interpolated at the vertices of the

triangulation of the zero level set of Φ̃n. Let M be a

node in In. The projection algorithm associates to

M a triangle T and a point P T in T . The value of

the level set function Φ̂t at M is computed as the

linear interpolation of the tangential level set func-

tion values computed at the vertices of the triangle

T evaluated at point P T .

3. Reinitialization of the tangential level set function.

The tangential level set function at the end of the
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growth increment Φk+1
t is computed as the steady-

state solution of the following evolution problem:

∂Φt

∂τ
= − Φt

|Φt|
(‖∇Φt‖ − 1), (14)

with initial data:

Φt(τ = 0) = Φ̂t. (15)

Let It be the set of nodes belonging to cells which

contain the zero level set of Φ̂t. The level set func-

tion Φk+1
t is built so that the zero level set of Φk+1

t

coincides with the zero level set of Φ̂t. Thus, the

level set function Φk+1
t at a given node of the set

It is the distance from this node to the zero level

set of Φ̂t, where Φ̂t is positive, and the opposite of

the distance from this node to the zero level set of

Φ̂t, where Φ̂t is negative. The computation of the

distance from each node of It to the zero level set

of Φ̂t is based on the projection algorithm presented

in the paragraph dedicated to the reinitialization of

the normal level set function.

This procedure ensures the level set functions Φk+1
n and

Φk+1
t are signed distance functions.

The difference between the Simplex Method and

the Upwind Method is in the way the Hamilton-Jacobi

equations (10), (12) and (14) are integrated. Simplex

Method is dedicated to unstructured meshes (trian-

gles or tetrahedra) and implements the method pro-

posed in (Barth and Sethian 1998). Upwind Method is

dedicated to regular grids (quadrangles or hexahedra)

and implements the upwind scheme proposed in (Pra-

bel et al. 2007). Both methods use a one step explicit

time integration scheme (explicit Euler) to integrate

the Hamilton-Jacobi equations. Therefore the time step

must be less than a critical value in order to satisfy the

CFL condition.

2.2 Geometric Method

We now expose the fully geometric method proposed

by Colombo (2012). The extension step discussed in

section 2.1.1 is first performed. Thus, point P on the

crack front Γk
0 is such that point M belongs to the plane

(P,N,B) which is known. Displacement ∆aP and angle

β at point P are also known.

Let Q be the point on the crack front Γk+1
0 corre-

sponding to point P on the crack front Γk
0 . Since ∆aP

is the displacement at point P , we have:

PQ = ∆aP = ∆a(cosβN + sinβB). (16)

Since β is the angle of the crack growth direction to

the plane tangent to the crack, local frame (NQ,BQ) at

𝐻
=
1
8
m

𝐿 = 8m

45°

𝑥

𝑦

𝑧

Fig. 2 Geometry and loading for the mode I-II crack growth.

pointQ is obtained by rotating local frame (N,B) by an

angle β with respect to T. The level set values Φk+1
n (M)

and Φk+1
t (M) form a cartesian coordinate system in

plane (Q,NQ,BQ) and we have:

QM = Φk+1
n (M)BQ + Φk+1

t (M)NQ. (17)

The level set functions at the end of the growth incre-

ment are then computed as:

Φk+1
n (M) = QM ·BQ,

Φk+1
t (M) = QM ·NQ.

(18)

This method condenses the update, reinitialization

and orthogonalization steps in one step. No property of
the underlying mesh is exploited so that this method

can handle all types of elements.

Table 1 gives a concise comparison of the methods to

update the level set functions. How each method per-

forms extension, update, reinitialization and orthogo-

nalization steps is shown.

2.3 Numerical tests

2.3.1 A mode I-II crack growth

We propose to compare the results obtained using the

Simplex Method, the Upwind Method and the Geomet-

ric Method on a simple case. We consider the cracked

plate depicted on Fig. 2. The length of the plate is

L = 8 m, its height is H = 18 m and its thickness

is e = 1 m. The initial crack is inclined with respect to

the loading symmetry plane (xOy) by an angle of 45°.

The initial crack front is located at a quarter of the
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G (J/m2) KI (MPa/
√

m) KII (MPa/
√

m)
45.9905 2.72750 1.38547

Table 2 Tabulated valued of the energy release rate and the
stress intensity factors.

length and at half the height. The initial crack length

is a0 = 2
√

2 m. The plate is submitted to a symmet-

ric uniform traction t applied on the top face and the

bottom face (see Fig. 2). Since the pre-crack is inclined

with respect to the loading symmetry plane, a mode

I-II crack growth is expected.

We consider two meshes. The first one is a rectan-

gular grid with twenty eight elements along the length,

sixty elements along the height and four elements in

the thickness. The second one is obtained by splitting

each hexaedron of the first mesh in six tetrahedra. Both

meshes share the same nodes, so that the Geometric

Method gives the same results with both meshes. The

Upwind Method is applied to the first mesh, made of

hexaedra. The Simplex Method is applied to the second

mesh, made of tetrahedra. The energy release rate and

the stress intensity factors are smoothed to make them

uniform along the crack front. This way, all points on

the crack front travel the same distance. Each simula-

tion consists in one growth increment and the distance

travelled by each point of the crack front is ∆amax =

0.4 m. Paris’ law exponent is m = 1.

In order to test only the level set update, we use

tabulated values of the energy release rate and of the

stress intensity factors (cf. Table 2). These values were

obtained using the mesh made of tetrahedra, a Young’s

modulus equal to 205000 MPa, a Poisson’s ratio equal

to 0.3 and a load amplitude t = 1 MPa. The energy

release rate and the stress intensity factors are com-

puted using the energetic approach in a domain re-

stricted to a torus surrounding the crack front of radius

RS = 1.16 m, which corresponds approximately to four

times the size of an element.

The domain in which the normal and tangential

level set functions are updated is restricted to a torus

surrounding the crack front. The radius of this torus is

automatically computed by the software from a mini-

mal radius given by the user. We chose a minimal ra-

dius R = RS +∆amax = 1.56 m. The radius of the torus

computed by the software is 2.31 m.

In this test the problem does not depend on the

x coordinate. Consequently, we expect the normal and

tangential level set functions to be uniform along axis

Ox.

Figure 3 shows the results we obtained using the

Simplex Method, the Upwind Method and the Geo-

metric Method to update the level set functions. We

computed level sets of the normal and tangential level

set functions and we represented the projection of these

level sets onto the plane (yOz).

The projection onto the plane (yOz) of the level sets

of the level set functions obtained using the Simplex

Method (cf. Fig. 3(a)) and the Upwind Method (cf.

Fig. 3(b)) do not result in curved lines but surfaces. The

level set functions obtained using the Simplex Method

and the Upwind Method are thus not uniform along axis

Ox. Conversely, the projection onto the plane (yOz) of

the level sets of the level functions obtained using the

Geometric Method (cf. Fig. 3(c)) result in curved lines

so that the level functions obtained using the Geometric

Method are uniform along axis Ox.

The level sets computed from the normal level set

function obtained using the Geometric Method are not

parallel to each other. Actually, due to the presence of

the bifurcation of the crack, level sets of the normal

level set function computed using the Geometric Me-

thod are discontinuous, since the normal level set func-

tion is not updated where the initial tangential level set

function is negative. The post-processing is not able to

represent these discontinuities in the general case. How-

ever, it is able to represent the kink of the zero level set

of the normal level set function. Taking into account

this artifact, we conclude the level sets computed from

the normal level set function obtained using the Geo-

metric Method are parallel to one another. The level

sets computed from the tangential level set function

obtained using the Geometric Method are parallel to

one another. Furthermore, the level sets of the normal

level set function are orthogonal to the level sets of the

tangential level set function, where the normal level set

function has been updated.

This analysis emphasizes the difficulty to obtain ac-

curate results by integrating the Hamilton-Jacobi equa-

tions to perform the reinitialization and orthogonaliza-

tion steps. The level set functions obtained using the

Geometric Method are quite good. Nevertheless, this

method faces other issues, as we shall see in the analy-

sis of the Brokenshire test.

2.3.2 Brokenshire test

Brokenshire test is a torsion test first proposed by Barr

and Brokenshire (1996). The initial work of Barr and

Brokenshire consisted in an experimental analysis. The

setup of Brokenshire test is depicted on Fig. 4.

Several authors investigated this test with various

approaches. Jefferson et al. (2004) used a plastic-damage-

contact model for concrete. Su et al. (2010) used cohe-

sive elements embedded between solid elements. Bay-

doun and Fries (2012) used X-FEM and studied dif-
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(a) Simplex Method (b) Upwind Method (c) Geometric Method

Fig. 3 Representation of the level sets of the normal and tangential level set functions computed at the end of the crack growth
using different implementations for the update step: (a) Simplex Method, (b) Upwind Method and (c) Geometric Method.
The zero level sets of the two level set functions are shown in red. The update of the level set functions is restricted to a torus
surrounding the crack front.

Fig. 4 Geometry and loading of Brokenshire test (Su et al.
2010).

ferent propagation criteria. We expose in this section

the behaviour of the Simplex, Upwind and Geometric

Methods applied to the Brokenshire test.

The vertical displacement prescribed at point C, on

one arm of the loading collar, is u = 10 mm. The ver-

tical displacement of the support which maintains the

other arm of the loading collar is prescribed to zero.

The two remaining supports, located on the other col-

lar, are fixed. The specimen is made of concrete, with

Young’s modulus E = 35000 MPa and Poisson’s ratio

ν = 0.2. The collars are made of steel, with Young’s

modulus E = 210000 MPa and Poisson’s ratio ν = 0.3.

We consider an unstructured tetrahedral mesh. In

order to accurately calculate the energy release rate

and the stress intensity factors the mesh is refined at

each propagation step in a region surrounding the crack

front. To do so we use HOMARD, an automatic mesh

adaptation tool distributed along with code aster (Nico-

las et al. 2016). The element size in the initial mesh is

h0 = 20 mm. HOMARD splits the edges such that the

element size is divided by two in the refined region. We

call HOMARD three times in a row, so that the ele-

ment size is h = h0/2
3 = 2.5 mm in a torus surround-

ing the crack front of radius RS = 5h = 12.5 mm. The

stress intensity factors and the energy release rate are

computed using the displacement jump extrapolation

technique. We extract the displacement of points lying

on the crack faces, within a distance 4h = 10 mm from

the crack front. The maximal crack growth size during

a growth increment is ∆amax = 4h = 10 mm and the

Paris’ law exponent we arbitrarily chose is m = 1. The

normal and tangential level set functions are updated

in the whole domain.

Simplex and Upwind Methods fail to converge dur-

ing the first increment step (the maximum number of

iterations is fixed to five hundred). Geometric Method

is able to perform at least the first two growth incre-

ments. The zero level sets of the resulting normal and

tangential level set functions are shown in Fig. 5.

After the second growth increment, oscillations of

the zero level set of the tangential level set function

are observed (cf. Fig. 5(b)). As a result, the crack front

becomes discontiunous and the computation stops.

We conclude none of the three approaches we pre-

sented so far is robust enough. We thus propose a new

implementation of the Fast Marching Method and we

expect it to be robust enough to be able to perform

the simulation until the total failure of the specimen is

reached.
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(a) After one growth increment.

(b) After two growth increments.

Fig. 5 Representation of the zero level set of the normal
level set function (in grey) and of the zero level set of the
tangential level set function (in purple) during the growth of
the crack, obtained using the Geometric Method.

3 Fast Marching Method for crack growth

Sukumar et al. (2003, 2008) proposed to couple the Fast

Marching Method and X-FEM to simulate planar and

non-planar crack growth. They used the Fast March-

ing Method to perform the extension and reinitializa-

tion steps. In this section, we propose a new approach

in which only the reinitialization step is performed by

means of the Fast Marching Method.

A level set function Φ satisfies the following eikonal

equation:

‖∇Φ‖ = 1. (19)

The Fast Marching Method proposes to solve this eiko-

nal equation, assuming the values of Φ in the neighbor-

hood of the zero level set of Φ are known. Let d = |Φ|
be the distance to the zero level set of Φ. The idea of

the method is to propagate the information outward

from smaller values of d to larger values. To ensure a

monotonic propagation of the information, we split the

process in two steps:

1. The function d = Φ is computed in the domain

{M : Φ(M) > 0} from known values of d in the

neighborhood of the zero level set of Φ. We then

take Φ = d.

ΓΦ = 0

Φ = −1

Φ = −2

Φ = 1

Φ = 2

Fig. 6 Propagation of the information during the Fast Mar-
ching Method process applied to the computation of the
signed distance function Φ to the interface Γ.

2. The function d = −Φ is computed in the domain

{M : Φ(M) < 0} from known values of d in the

neighborhood of the zero level set of Φ. We then

take Φ = −d.

Each step propagates the (positive) distance func-

tion d from smaller to larger values. The propagation

of the information during the Fast Marching Method

process is illustrated in Fig. 6.

In practice, the neighborhood of the zero level set

of Φ refers to a set of nodes I computed as follows. We

loop over the cells and identify the ones which contain

the zero level set of Φ. If the sign of the level set function

Φ is not the same at all the nodes of a given cell, this cell

contains the zero level set of Φ and the nodes belonging

to this cell are added to I.

We now expose our new approach:

1. Extension step. The extension step discussed in sec-

tion 2.1.1 is performed.

2. Update step. The update step discussed in section

2.1.2 is performed. We recall the updated level set

functions Φ̃n and Φ̃t obtained at the end of this step

are neither expected to be signed distance functions

nor expected to be orthogonal.

3. Reinitialization of the normal level set function. The

normal level set function at the end of growth in-

crement Φk+1
n is computed as the solution of the

eikonal equation:

‖∇Φn‖ = 1, (20)

by means of the Fast Marching Method. We recall

In is the set of nodes belonging to cells which con-

tain the zero level set of Φ̃n. Initial data consists in

the known values of level set function Φk+1
n at nodes

of set In. Level set function Φk+1
n is built so that the

zero level set of Φk+1
n coincides with the zero level

set of Φ̃n. Thus, level set function Φk+1
n at a given

node of set In is the distance from this node to the
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zero level set of Φ̃n, where Φ̃n is positive, and the

opposite of the distance from this node to the zero

level set of Φ̃n, where Φ̃n is negative. Computation

of the distance from each node of In to the zero

level set of Φ̃n is based on the projection algorithm

proposed in (Colombo and Massin 2011).

4. Reinitialization of the tangential level set function.

The tangential level set function at the end of growth

increment Φk+1
t is computed as the solution of the

eikonal equation:

‖∇Φt‖ = 1, (21)

by means of the Fast Marching Method. We recall It
is the set of nodes belonging to cells which contain

the zero level set of Φ̃t. Initial data consists in the

known values of level set function Φk+1
t at nodes

of set It. Since level set function Φ̃t and level set

function Φk+1
n are not orthogonal, level set function

Φk+1
t at a given node of set It cannot be deduced

from the distance from this node to the zero level

set of Φ̃t. We thus apply the Geometric Method dis-

cussed in section 2.2 to compute level set function

Φk+1
t at nodes of set It. This way, the reinitialization

of the tangential level set function and the orthog-

onalization step are condensed in one step.

Table 1 gives a concise comparison of our new ap-

proach based on the Fast Marching Method, with re-

spect to the three other methods to update the level

set functions (Simplex Method, Upwind Method and

Geometric Method).

During each growth increment, the normal level set

function and the tangential level set function are reini-

tialized. Each time a level set function is reinitialized,

the zero level set of this level set function is altered

(an illustration of this phenomeom is given in (Chopp

2001)). This behavior does not depend on the method

used to solve the reinitialization problem and may oc-

cur using the Fast Marching Method. The numerical

tests reported in section 3.3 show that despite the al-

teration of the zero level set of the level set functions

induced by this phenomenon, our new approach gives

acceptable results for our applications.

The Fast Marching Method travels across the nodes

of the mesh and updates the level set value of each vis-

ited node. The way the Fast Marching Method selects

the next node to be updated and the way this node

is updated depend on the mesh structure. In the fol-

lowing sections, we expose an approach dedicated to

unstructured grids, and we then extend this approach

from tetrahedra to all types of elements.

V
4

1
V

V
2

V
3

Fig. 7 Representation of the tetrahedron V1V2V3V4.

3.1 Fast Marching Method applied to unstructured

grids

We discuss in this section our implementation of the

Fast Marching Method dedicated to unstructured grids,

which consists in an extension to the tridimensional

case of the method proposed by Kimmel and Sethian

(1998). The distance function d represents the distance

to the zero level set of a given function Φ, which can be

either the normal level set Φk+1
n or the tangential level

set Φk+1
t . The computation is performed for a given set

of nodes N , which can correspond to the domain where

Φ is positive or the domain where Φ is negative.

3.1.1 Estimation of the distance function at a given

node

We consider a non degenerate tetrahedron in an un-

structured grid. The vertices of this tetrahedron are

denoted V1, V2, V3 and V4 (see Fig. 7). The value of the

distance function d at vertex Vi is denoted di. Distances

d1 = d(V1), d2 = d(V2) and d3 = d(V3) are known and

distance d4 = d(V4) is unknown. The first order Tay-

lor series expansion of distance function d around the

vertex V4 evaluated at point P reads:

d(P ) ≈ d(V4) + V4P ·∇d(V4). (22)

We assume that this approximation is exact for P =

V1, for P = V2 and P = V3. We obtain the following

system of three equations:

d1 = d4 + V4V1 ·∇d(V4),

d2 = d4 + V4V2 ·∇d(V4),

d3 = d4 + V4V3 ·∇d(V4).

(23)

Since the tetrahedron is not degenerate, (V4V1,

V4V2, V4V3) is a basis of R3. Thus we can write:

∇d(V4) = n1V4V1 + n2V4V2 + n3V4V3, (24)

where n1, n2 and n3 are the coordinates of ∇d(V4)

over (V4V1,V4V2,V4V3). System (23) can then be
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rewritten as follows:
d1
d2
d3

 =


d4
d4
d4

+ Gn̂, (25)

where n̂ = (n1, n2, n3)T and matrix G reads:

G =

 V4V1 ·V4V1 V4V1 ·V4V2 V4V1 ·V4V3

V4V2 ·V4V1 V4V2 ·V4V2 V4V2 ·V4V3

V4V3 ·V4V1 V4V3 ·V4V2 V4V3 ·V4V3

 .
Since d is a distance function, the gradient of the

distance at vertex V4 is a unit vector. We thus have :

∇d(V4)·∇d(V4) = 1. Matrix G represents the metric

tensor in the basis (V4V1,V4V2, V4V3). Since the

metric tensor represents the scalar product, we have:

n̂TGn̂ =∇d(V4) ·∇d(V4) = 1. (26)

Equations (25) and (26) represent a system of four

equations involving four unknowns: distance d4 at ver-

tex V4 and coordinates n1, n2 and n3 of the gradient of

distance at vertex V4. We define two criteria to accept

a solution of this system of equations:

1. the consistency condition d4 ≥ max(d1, d2, d3);

2. the monotonicity condition n1 ≤ 0, n2 ≤ 0 and

n3 ≤ 0.

The consistency condition states that, since we want

the update to propagate the information outward from

smaller values to larger values, we want d4 to be larger

than d1, d2 and d3. The monotonicity condition states

that−∇d(V4) lies in the tetrahedron, i.e.−∇d(V4) ∈
C, where C is the convex cone defined as follows :

C = {α1V4V1 + α2V4V2 + α3V4V3,

α1 ≥ 0, α2 ≥ 0, α3 ≥ 0}.

We suppose the solid angle at vertex V4 is acute, so

that we have: V4V1 ·V4V2 ≥ 0, V4V1 ·V4V3 ≥ 0 and

V4V2 ·V4V3 ≥ 0. As a consequence, if the monotonic-

ity condition is fulfilled, each component of the vector

Gn̂ is negative so that system (25) gives:

d1 − d4 ≤ 0,

d2 − d4 ≤ 0,

d3 − d4 ≤ 0.

(27)

The monotocity condition then appears as a sufficient

condition to fulfill the consistency condition. Neverthe-

less, we accept a solution of the system of equations if,

and only if, these two conditions are fulfilled simulta-

neously.

The way to solve the system of equations, depends

on a a priori hypothesis on ∇d(V4):

1. The tridimensional update corresponds to the case

where −∇d(V4) is supposed to lie in the interior

of convex cone C.
2. The bidimensional update corresponds to the case

where −∇d(V4) is supposed to lie in a face of con-

vex cone C.
3. The unidimensional update corresponds to the case

where −∇d(V4) is supposed to lie on an edge of

convex cone C.

Tridimensional update In this case, −∇d(V4) is sup-

posed to lie in the interior of convex cone C. System

(25) is rewritten as follows:

d− d41 = Gn̂, (28)

where d = (d1, d2, d3)T and 1 = (1, 1, 1)T. Since ma-

trix G represents a meric tensor, G is symmetric and

positive-definite. We deduce from (28):

G−1(d− d41) = n̂, (29)

(d− d41)T = n̂TG. (30)

We thus have:

(d− d41)TG−1(d− d41) = n̂TGn̂ = 1. (31)

Finally, d4 is solution of the following quadratic equa-

tion:

ad24 − 2bd4 + c = 0, (32)

where:

a = 1TG−11,

b = 1TG−1d,

c = dTG−1d− 1.

(33)

We assume the discriminant ∆ of (32) is non-negative,

so that this equation admits two solutions δ1 and δ2,

such that δ1 ≥ δ2. We consider only the solution d4 = δ1
to enforce the consistency of the update. Since d4 is

known, we can solve (28) to obtain coordinates n1, n2

and n3. If distance d4 fulfills the consistency condition

and if coordinates n1, n2 and n3 of the gradient of dis-

tance ∇d(V4) fulfill the monotonicity condition, we

accept distance d4. Otherwise, we try the bidimension-

nal update.
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Bidimensional update In this case, −∇d(V4) is sup-

posed to lie in a face of convex cone C, i.e. the inter-

section of convex cone C and one of the faces V1V2V4,

V2V3V4 or V3V1V4. One of the coordinates n1, n2 and

n3 is set to zero : n3 is set to zero if we consider face

V1V2V4, n1 is set to zero if we consider face V2V3V4 and

n2 is set to zero if we consider face V3V1V4. As a conse-

quence, one of the equations of system (25) is removed.

Without loss of generality, we consider face V1V2V4,

so that n3 is set to zero and the third equation of system

(25) has to be removed. System (25) is rewritten as

follows:

d′ − d41′ = G′n̂′, (34)

where

G′ =

[
V4V1 ·V4V1 V4V1 ·V4V2

V4V2 ·V4V1 V4V2 ·V4V2

]
,

d′ = (d1, d2)T, 1′ = (1, 1)T and n̂′ =
(
n1, n2

)T
. We

deduce from (34):

(d′ − d41′)T
(
G′
)−1

(d′ − d41′) =
(
n̂′
)T

G′n̂′. (35)

Since n3 = 0, equation (26) gives:(
n̂′
)T

G′n̂′ = n̂TGn̂ = 1. (36)

Finally, d4 is solution of the following quadratic equa-

tion:

a′d24 − 2b′d4 + c′ = 0, (37)

where a′, b′ and c′ are obtained by replacing 1, d, G

with 1′, d′, G′ in (33).

We proceed similarly to the tridimensionnal update

to determine distance d4 for face V1V2V4 but we try also

to compute distance d4 from faces V2V3V4 and V3V1V4
and we keep the smallest obtained value. If a value of

distance d4 cannot be computed from any face, we try

the unidimensionnal update.

Unidimensional update In this case, −∇d(V4) is sup-

posed to lie on an edge of convex cone C, i.e. the in-

tersection of convex cone C and one of the edges V1V4,

V2V4 or V3V4. Two of the coordinates n1, n2 and n3 are

set to zero : n2 and n3 are set to zero if we consider

edge V1V4, n1 and n3 are set to zero if we consider edge

V2V4 and n1 and n2 are set to zero if we consider edge

V3V4. As a consequence, two of the equations of system

(25) are removed.

System (25) is rewritten as follows:

d1 − d4 = V4V1 ·V4V1n
1. (38)

The gradient of distance ∇d(V4) reads:

∇d(V4) = n1V4V1. (39)

Since ∇d(V4) is a unit vector, the coordinate n1 ful-

filling the monoticity condition is:

n1 = − 1

‖V4V1‖
. (40)

Distance d4 fulfilling (38) is then:

d4 = d1 + ‖V4V1‖. (41)

A value of d4 can be computed from edges V4V1, V4V2
and V4V3. We select the smallest distance from the three

possible values:

d4 = min {d1 + ‖V4V1‖,
d2 + ‖V4V2‖, d3 + ‖V4V3‖} . (42)

A pathological case for which the tridimensional update

fails Fig. 8 illustrates a case for which the consistency

condition is fullfilled but not the monotonicity condi-

tion. The coordinates of the vertices over the reference

frame (O, ex, ey, ez) are V1(0, 1/2, 1), V2(0,−1/2, 1),

V3(1, 0, 1) and V4(−1/2, 0, 2). The distances associated

to vertices V1, V2 and V3 are respectively d1 = 1, d2 = 1

and d3 = 1. The largest root of (32) in this case is

d4 = 2 > 1 = max(d1, d2, d3), so that the consis-

tency condition is fullfilled. The coordinates of∇d(V4)

over the basis (V4V1, V4V2, V4V3) are n1 = −3/4,

n2 = −3/4 and n3 = 1/2. Since n3 > 0, the monotonic-

ity condition is not fullfilled. The tridimensional update

thus fails.

We now focus on face V1V2V4. Fig. 9 illustrates this

problem. The largest root of (37) in this case is d4 = 1+√
5/2 > 1, so that the consistency condition is fullfilled.

The coordinates of ∇d(V4) over basis (V4V1, V4V2,

V4V3) are n1 = −1/
√

5, n2 = −1/
√

5 and n3 = 0,

so that n1 ≤ 0, n2 ≤ 0, n3 ≤ 0 and the monotonicity

condition is fullfilled. The bidimensional update is thus

successful.

3.1.2 Sweeping process

The initial data consists in the known values of the

distance function d at nodes of a given set I. The set

of nodes for which a candidate value of distance d is

known is denoted K and the set of nodes with a minimal

distance is denoted P. Algorithm 1 outlines the way the

nodes are visited by the Fast Marching Method applied

to an unstructured grid.

In Algorithm 1 D refers to the set of candidate val-

ues for distance dj . There are three cases:
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Algorithm 1: Fast Marching Method on an unstructured grid

INITIALIZATION:
K = I.
P = ∅.

PROCESSING:
While K\P 6= ∅

Find the node i0 with the smallest value for the distance in K\P.
Add node i0 to P.
For each tetrahedron T adjacent to the node i0

For each node j of the tetrahedron T
If j /∈ I and j /∈ P Then

If all the other nodes adjacent to T are in K Then
The vertices of T are denoted V1, V2, V3, V4; V4 refers to node j.
D = ∅
If the discriminant of equation (32) is non-negative Then

Compute d4 as the largest root of (32).
Compute the coordinates of ∇d(V4) by solving (28).
If the consistency condition and the monotonicity condition are fulfilled Then

Add d4 to D.
End if

End if
If D = ∅ Then

For each face ∈ {V1V2V4, V2V3V4, V3V1V4}
If the discriminant of equation (37) is non-negative Then

Compute d4 as the largest root of (37).
Compute the coordinates of ∇d(V4) by solving (34).
If the consistency condition and the monotonicity condition are fulfilled
Then

Add d4 to D.
End if

End if

End for

End if
If D = ∅ Then

For each k ∈ {1, 2, 3}
Compute d4 = dk + ‖VkV4‖.
Add d4 to D.

End for

End if
If j /∈ K Then

Take dj = min(D).
Add the node j to K.

Else
Take dj = min(D ∪ {dj}).

End if

End if

End if

End for

End for

End while

1. If distance dj can be computed from the tetrahe-

dron, D is a singleton.

2. If distance dj can be computed from at least one of

the faces, D contains from one to three candidate

values.

3. If distance dj must be computed from the edges, D
contains three candidate values.

Traditional exposition of the Fast Marching Method

involves three sets of nodes (Sethian 1996, 1999; Kim-

mel and Sethian 1998; Sethian and Vladimirsky 2000;

Bronstein et al. 2007):

– The distance function at a node in the set of ”ac-

cepted” nodes is known and frozen.

– The distance function at a node in the set of ”tenta-

tive” nodes (the so called ”Narrow band”) is known

but can be recomputed.

– The distance function at a node in the set of ”dis-

tant” nodes is unknown.
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Fig. 8 Illustration of a configuration for which distance
d4 can not be computed using the tridimensional update.
The monotonicity condition is not fullfilled, since −n =
−∇d(V4) does not lie in convex cone C.
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Fig. 9 Illustration of the result of the bidimensional update
for face V1V2V4 in the configuration for which the tridimen-
sional update fails. Distance d4 can be computed because the
monotonicity condition is fullfilled, since −n′ = −∇d(V4)
lies in convex cone C.

With our notations, the set of ”accepted” nodes is I∪P,

the set of ”tentative” nodes is K\(I ∪P) and the set of

”distant” nodes is N\K. Our algorithm does not dis-

tinguish the update of the distance function at a ”ten-

tative” node and the computation of an initial distance

function at a node going from the set of ”distant” nodes

to the set of ”tentative” nodes. In the same way, our al-

gorithm does not perform the initialization of the nodes

in the set of ”tentative” nodes in a distinct block. Ac-

tually, while the node with the smallest value for the

distance in K\P belongs to I, the algorithm populates

the initial set of ”tentative” nodes. When the initial set

of ”tentative” nodes is fully populated, the node with

the smallest value for the distance in K\P belongs to

the set of ”accepted” nodes.

3.2 Extension of the Fast Marching Method from

tetrahedra to all types of elements.

The method we just exposed is designed for a tetrahe-

dral volume mesh. The simplest way to handle any type

of element is to build a tetrahedral mesh by splitting

the element of the given mesh in a preprocessing step.

This solution introduces a new step, a new tool and a

new source of problems. We thus propose in this sub-

section a way to extend the method to arbitrary volume

meshes.

In the algorithm, the mesh structure is used to iter-

ate over the tetrahedra adjacent to the node to update.

The idea is to build a set of tetrahedra from an arbi-

trary cell. The algorithm then consists in two nested

loops: the outer loop iterates over the cells adjacent to

the node to update, while the inner loop iterates over

the tetrahedra.

We recall the method computes an updated value

of the distance function at the given node, from a given

tetrahedron adjacent to the node, by computing an ap-

proximation of the gradient of the distance function. We

thus propose to iterate over all the tetrahedra we can

build from the vertices of the cell, so as many approxi-

mated gradients of the distance function as possible are

explored. Obviously, some of the tetrahedra built this

way can not be used to compute an updated value of

the distance function at the given node, since the value

of the distance function at some vertices of the cell can

be not known yet. Such tetrahedra are simply omitted,

as will be explained in the following.

We consider three types of volumic cell, except the

tetrahedron: the pyramid, the pentahedron and the hex-

aedron. We now expose how we compute a set of tetra-
hedra from each of these cell types.

Pyramid Let {1, 2, 3, 4, 5} be the connectivity of the

reference pyramid (cf. Fig. 10). It is possible to build

the four following tetrahedra from the pyramid:

{1, 3, 4, 5},
{1, 2, 3, 5},
{1, 2, 4, 5},
{2, 3, 4, 5}.

(43)

where {a, b, c, d} is the connectivity of the tetrahedron

based on vertices a, b, c and d.

There are three different cases in which we can use

the pyramid to update the value of the distance func-

tion at some vertex of the pyramid:

1. If the distance function is known at the four vertices

of the base (i.e. vertices 1, 2, 3 and 4) and we want to

update the value of the distance function at the apex
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1

4 3

2

5

(a)
1

4 3

2

5

(b)
1

4 3

2

5

(c)

Fig. 10 Spliting a pyramid into tetrahedra. Orange nodes represent known level sets values and red nodes represent level sets
values to be determined.

(i.e. vertex 5), we iterate over the four tetrahedra

of (43). Fig. 10(a) illustrates this case.

2. If the distance function is known at four nodes of the

pyramid, including the apex, we iterate over only

three tetrahedra. Fig. 10(b) illustrates the case of

the update of the distance function at vertex 3 from

known values of the distance function at vertices 1,

2, 4 and 5. In this case, we iterate over tetrahedra

{2, 3, 4, 5}, {1, 3, 4, 5} and {1, 2, 3, 5}.
3. If the distance function is known at three vertices

of the pyramid, we consider only one tetrahedron.

Fig. 10(c) illustrates the case of the update of the

distance function at vertex 1 or 4 from known values

of the distance function at vertices 2, 3 and 5. If we

want to update the distance function at vertex 1

we consider only tetrahedron {1, 2, 3, 5} while if we

want to update the distance function at vertex 4 we

consider only tetrahedron {2, 3, 4, 5}.

Pentahedron Let {1, 2, 3, 4, 5, 6} be the connectivity of

the reference pentahedron (cf. Fig. 11). We first remark

we can build the six following pyramids from the pen-

tahedron:

{1, 2, 3, 4, 5},
{1, 2, 3, 4, 6},
{1, 4, 5, 6, 2},
{1, 4, 5, 6, 3},
{2, 3, 5, 6, 4},
{2, 3, 5, 6, 1}.

(44)

From each of these pyramids, we can build four

tetrahedra. We then obtain the twenty four tetrahedra

listed in Table 3. Each column in Table 3 refers to one

of the six pyramids. In each column, the first row gives

the connectivity of the pyramid, while the other rows

1 2

34

6

5

Fig. 11 Spliting of a pentahedron into pyramids.

give the connectivities of four tetrahedra corresponding

to that pyramid.

Some of these twenty four tetrahedra can be built

from two pyramids. For example, we can build terahe-

dron {1, 2, 4, 5} from both pyramids {1, 2, 3, 4, 5} and

{1, 4, 5, 6, 2}. By removing the duplicates, we end up

with the following list of twelve tetrahedra:

{1, 2, 4, 5}, {1, 2, 4, 6}, {1, 2, 5, 6},
{1, 2, 3, 5}, {1, 2, 3, 6}, {2, 4, 5, 6},
{2, 3, 4, 5}, {2, 3, 4, 6}, {1, 3, 5, 6},
{1, 3, 4, 5}, {1, 3, 4, 6}, {3, 4, 5, 6}.

(45)

Hexahedron Let {1, 2, 3, 4, 5, 6, 7, 8} be the connectivity

of the reference hexahedron. We remark we can build

twelve pentahedra from the hexahedron, by splitting

the faces two by two. Figure 12(a) illustrates a first way

to build four pentahedra from the hexaedron, Fig. 12(b)

illustrates a second one and Fig. 12(c) illustrates a third
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{1, 2, 3, 4, 5} {1, 2, 3, 4, 6} {1, 4, 5, 6, 2} {1, 4, 5, 6, 3} {2, 3, 5, 6, 4} {2, 3, 5, 6, 1}
{1, 2, 4, 5} {1, 2, 4, 6} {1, 2, 4, 5} {1, 3, 4, 5} {1, 2, 5, 6} {2, 4, 5, 6}
{1, 2, 3, 5} {1, 2, 3, 6} {1, 2, 4, 6} {1, 3, 4, 6} {1, 2, 3, 5} {2, 3, 4, 5}
{2, 3, 4, 5} {2, 3, 4, 6} {1, 2, 5, 6} {1, 3, 5, 6} {1, 3, 5, 6} {3, 4, 5, 6}
{1, 3, 4, 5} {1, 3, 4, 6} {2, 4, 5, 6} {3, 4, 5, 6} {1, 2, 3, 6} {2, 3, 4, 6}

Table 3 The tetrahedra obtained from the six pyramids one can build from the reference pentahedron. The duplicates are in
red.
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Fig. 12 Spliting of a hexahedron into pentahedra.

one. Since we showed a pentahedron generates twelve

tetrahedra, one hundred forty-four (144) tetrahedra (in-

cluding duplicates) can be built.

In practice, we obviously do not store the connectiv-

ities of all these tetrahedra. We implemented a function

which returns the connectivities of the twelve tetrahe-

dra one can build from a pentahedron. We call this

function for each of the twelve pentahedra one can build

from a hexahedron to dynamically build the connectiv-

ities of the one hundred forty-four tetrahedra.

3.3 Numerical tests

3.3.1 A mode I-II crack growth

We propose to apply the Fast Marching Method to the

mode I-II crack growth problem we already investigated

using the Simplex Method, the Upwind Method and

the Geometric Method in section 2.3.1. The results are

depicted on Fig. 13.

The results obtained using the mesh made of tetra-

hedra or the mesh made of hexaedra are almost identi-
cal, which validates the extension of the method from

tetrahedra to other types of elements. The level sets

computed from the normal level set function obtained

using the Fast Marching Method are parallel to each

another. We remark the level sets of the normal level

set function computed using the Fast Marching Method

are smooth where the level sets of the normal level set

function computed using the Geometric Method are dis-

continuous. The level sets computed from the tangen-

tial level set function obtained using the Fast Marching

Method are parallel to each another. Furthermore, the

level sets of the normal level set function are orthogo-

nal to the level sets of the tangential level set function,

where the normal level set function has been updated.

We conclude that the Fast Marching Method is as

robust as the Geometric Method, since both methods

lead to similar results where the level sets of the nor-

mal level set function are continuous. However the Fast

Marching Method has the advantage of building smoo-

ther level set functions.
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(a) Tetrahedra

(b) Hexaedra

Fig. 13 Representation of the level sets of the normal and
tangential level set functions computed at the end of the crack
growth using the Fast Marching Method for the update step
and applied to: (a) the mesh made of tetrahedra and (b) the
mesh made of heaxaedra. The zero level sets of the two level
set functions are shown in red.

3.3.2 Convergence study

Our new approach based on the Fast Marching Method

involves approximations at each step. In order to eval-

uate a posteriori the convergence of our new approach

(involving the four steps of the update of the two level

set functions), we propose a convergence study. We con-

sider the uniform planar (β = 0) growth of a circu-

lar planar crack. The structure occupies domain Ω =

[−1,+1]×[−1,+1]×[−1/8,+1/8]. The radius of the ini-

tial crack is R = 1/2. The initial crack occupies domain

Γ0 = {M(x, y, z) ∈ Ω : x2 + y2 ≤ R2, z = 0}. Each sim-

ulation consists in three growth increments and the dis-

tance travelled by each point of the crack front during

one growth increment is ∆amax = ∆R = 1/20. Paris’

law exponent is m = 1. At the end of growth increment

k, normal level set function Φk
n and tangential level set
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Fig. 14 Error in terms of L1 norm for the level set func-
tions as a function of the normalized mesh size, obtained with
the treatment of obtuse tetrahedra: normal level set function
(top) and tangential level set function (bottom).

function Φk
t read:

Φk
n(M) = z, (46)

Φk
t (M) =

√
x2 + y2 − (R+ k∆R). (47)

A tetrahedron for which the solid angle at each ver-

tex is acute is called an acute tetrahedron. A tetrahe-

dron which is not an acute tetrahedron is called an ob-

tuse tetrahedron. A procedure to compute the solid an-

gle at each vertex of a tetrahedron, based on the formula

given by Writh and Dreiding (2014), has been imple-

mented. The caracteristics of the unstuctured meshes

used in this convergence study are reported in table 4.

Each mesh used in the convergence study includes a

small part of obtuse tetrahedra.

The convergence of the Fast Marching Method is en-

sured only if the triangulation is acute, i.e. each tetra-

hedron of the triangulation is acute (Sethian and Vla-

dimirsky 2003). To handle general triangulations, one

can either use a method to split the obtuse tetrahedra

(Bronstein et al. 2007; Fu et al. 2013) or the Order Up-

wind Methods proposed by Sethian and Vladimirsky

(2003).

We want to determine if a specific treatment of the

obtuse tetrahedra is needed for our applications. We

thus perform two convergence studies. In the first one,

each time we need to compute the absolute value of a

level set function at a vertex, from a tetrahedron such

that the solid angle at the vertex is obtuse, we apply the
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mesh size normalized mesh size (h) # nodes # tetrahedra # obtuse tetra. obtuse tetra. (%) max. angle (°)
1.47E−1 1.00E+0 892 2893 20 0.69 104.19
7.92E−2 5.40E−1 4771 19520 30 0.15 115.89
4.10E−2 2.79E−1 30564 152574 119 0.08 120.95
2.09E−2 1.43E−1 212917 1183921 622 0.05 128.34

Table 4 Statistics of the unstructured meshes used in the convergence study.
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Fig. 15 Error in terms of L1 norm for the level set functions
as a function of the normalized mesh size, obtained without
the treatment of obtuse tetrahedra: normal level set function
(top) and tangential level set function (bottom).

Geometric Method instead of the procedure discussed

in 3.1.1 (cf. Fig. 14). In the second one, no specific

treatment is applied to obtuse tetrahedra (cf. Fig. 15).

With or without the treatment of obtuse tetrahe-

dra, we obtain the same order of convergence for both

level set functions. We conclude no specific treatment

of obtuse tetrahedra is needed for our applications.

In our approach the Geometric Method is used to

initialize the Fast Marching Method. As a consequence,

we have to consider two convergence mechanisms: 1- the

convergence of the distance function at nodes used to

intialize the Fast Marching Method and 2- the conver-

gence of the distance function at the other nodes of the

domain. The first convergence mechanism caracterizes

the convergence of the Geometric Method while the sec-

ond one caracterizes the convergence of the Fast March-

ing Method. Since the approximation of the distance at

a given node in the Fast Marching Method is based on a

first order Taylor series expansion, we expect the error

in terms of L1 norm to converge at order 1, as reported

by Fu et al. (2013). Using the Geometric Method in the

whole domain, the error in terms of L1 norm converges
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Fig. 16 Error in terms of L1 norm for the tangential level set
function as a function of the normalized mesh size, obtained
using the Geometric Method in the whole domain.
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Fig. 17 3D cracked plate subjected to a three-point bending
test (the initial crack is in red).

at order 2 (cf. Fig. 16). For each growth step, the con-

vergence order of the whole process is in between these

two values (1 and 2), which seems consistent.

3.3.3 A three-point bending test

A cracked plate subjected to three-point bending is de-

picted Fig. 17. The length of this beam, associated to

direction x, is L = 260 mm. Its thickness, associated to

direction z, is t = 10 mm and its width, associated to



18 M. Le Cren et al.

direction y, is W = 60 mm. The initial crack length, as-

sociated to direction y, is a = 20 mm. The initial crack

is inclined with respect to plane (yOz) by an angle of

45°. We have AB = 2Le = 240 mm. Line segments AA′

and BB′ correspond to the supports. The loading con-

sists in a compressive force distribution applied on line

segment CC ′.

This configuration has been investigated experimen-

tally by Lazarus et al. (2008) and numerically by Cita-

rella and Buchhloz (2008). It has already been used by

Colombo and Massin (2011) and Geniaut and Galenne

(2012) to challenge crack growth methods available in

code aster. Since the pre-crack is inclined with respect

to the loading symmetry plane, the crack is subjected

to a mixed mode loading condition and a twisted prop-

agation is observed. We expose in this section the be-

haviour of the Fast Marching Method applied to this

three-point bending test.

The displacement along direction y is prescribed to

zero on both line segments AA′ and BB′. The displace-

ment along direction z is prescribed to zero at both

points A and B. The displacement along direction x is

prescribed to zero at point C. The resultant of the load

applied on line segment CC ′ is F = 2.4 kN. The ma-

terial is PMMA with Young’s modulus E = 2800 MPa

and Poisson’s ratio ν = 0.38.

We consider an unstructured tetrahedral mesh. In

order to accurately calculate the energy release rate

and the stress intensity factors we use HOMARD to

refine the mesh at each propagation step in a region

surrounding the crack front. The element size in the

initial mesh is h0 = 2.5 mm. We call HOMARD five

times in a row, so that the element size is h = h0/2
5 =

0.078125 mm in a torus surrounding the crack front of

radius RS = 5h = 0.390625 mm. The energy release

rate and the stress intensity factors are computed us-

ing the energetic approach in a domain restricted to

this torus.

The maximal crack growth size during a growth in-

crement is ∆amax = 4h = 0.3125 mm and the Paris’ law

exponent we arbitrarily chose is m = 1. The domain in

which the normal and tangential level set functions are

updated is restricted to a torus surrounding the crack

front. We asked the radius of this torus to be greater

than R = RS + ∆amax = 0.703125 mm.

At the end of the simulation, the total failure of

the specimen has almost been reached (cf. Fig. 18). We

compare the evolution of the crack front position dur-

ing the simulation we obtained using the Fast Marching

Method with the same evolution of the crack front posi-

tion reported in Citarella and Buchhloz (2008). Fig. 19

shows the projection of the crack fronts on plane (yOz)

while Fig. 20 shows the projection of the crack fronts

Fig. 18 Crack path obtained at the end of the simulation of
the three-point bending test.

on plane (xOz). Citarella and Buchholz extracted the

crack fronts at the beginning of some growth incre-

ments. We extracted from our data the crack fronts

corresponding to the ones reported by Citarella and

Buchholz. Each curve is indexed by the growth incre-

ment to which it corresponds. The growth increments

we extracted do not correspond to the ones reported

by Citarella and Buchholz because they used a value

of the maximal crack growth size during a growth in-

crement ∆amax = 1 mm, which corresponds to about

three times the value we used. One also remarks Cita-

rella and Buchholz used criteria to compute the direc-

tion of the crack growth direction and the growth size

different from the ones we used. Nevertheless, the so-

lution we obtained with the Fast Marching Method is,

qualitatively, in good agreement with the one reported

in Citarella and Buchhloz (2008).

3.3.4 Brokenshire test

We expose in this section the behaviour of the Fast

Marching Method applied to the Brokenshire test we

introduced in 2.3.2. The zero level sets of the normal

and tangential level set functions computed after the

first two growth increments are depicted Fig. 21.

Unlike the result we obtained using the Geometric

Method, no oscillations are observed on the zero level

set of the tangential level set function after the first

two growth increments. The simulation went on after

the second growth increment and the total failure of

the specimen was reached. We conclude our implemen-

tation of the Fast Marching Method is more robust than

the one of the Geometric Method.

The fracture surfaces observed experimentally and

obtained by means of the Fast Marching Method are

depicted on Fig. 22. They are similar. This qualitative

comparaison allows us to conclude our implementation

of the Fast Marching Method is able to reproduce a

complex crack path.
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Fig. 19 Crack front plots, coordinate y as a function of the coordinate z: (a) results obtained using the Fast Marching Method,
(b) results obtained by Citarella and Buchhloz (2008). The legend gives the growth increment corresponding to each position
of the crack front.
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Fig. 20 Crack front plots, coordinate x as a function of the coordinate z: (a) results obtained using the Fast Marching Method,
(b) results obtained by Citarella and Buchhloz (2008). The legend gives the growth increment corresponding to each position
of the crack front.

4 Conclusion

We proposed in this paper a new crack growth method

based on X-FEM and Fast Marching Method. We used

a Fast Marching Method designed for tetrahedral vol-

ume meshes and extended to all types of linear elements

(pyramids, pentahedra and hexahedra). Thus, our ap-

proach allows us to use the same mesh to solve the me-

chanical problem and to update the level set functions.

The price to pay for this ease of use is an order one

discretization scheme of the Eikonal equation used to

update the level set functions. For their part, Sukumar

et al. (2003, 2008) chose to update the level set func-

tions on an auxiliary rectangular grid to benefit from a

second order scheme.

We proposed a new implementation of the Fast Mar-

ching Method applied to tetrahedral volume meshes,

which consists in an extension of the method proposed

by Kimmel and Sethian (1998). Our implementation is

suitable for a finite element software. We also proposed

a new presentation of the algorithm which is straight-

forward to implement.

We proposed several numerical examples to show

the capabilities of our approach. We used a simple mode
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(a) After one growth increment.

(b) After two growth increments.

Fig. 21 Representation of the zero level set of the normal
level set function (in grey) and the zero level set of the tan-
gential level set function (in blue) during the growth of the
crack, obtained using the Fast Marching Method.

I-II crack growth to show we are able to compute smooth

level set functions in the presence of kinks. We per-

formed a convergence study of the proposed approach

on a crack growth problem for which an analytical so-

lution, in terms of the level set functions, is known. We

investigated the three point bending test introduced by

Lazarus et al. (2008) to demonstrate the approcah is

able to handle non planar cracks. Finally, this approach

was able to simulate the Brokenshire test (Barr and

Brokenshire 1996) until the total failure of the spec-

imen while all other methods available in code aster

stopped after two growth increments.

We showed the approach we propose is able to com-

pute smooth level set functions. We now want to get

rid of the robustness issues coming from accumulated

errors in the position of the crack front during the crack

growth. The position of the crack front is computed, at

the end of each growth increment, from the energy re-

lease rate and the stress intensity factors. Consequently,

our next objective is to robustify the computation of the

energy release rate and the stress intensity factors.
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