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We describe a discrete-time stochastic model which simulates a random accumulation of items over time in a "rich gets richer" fashion, whose dynamics are dictated by a parameter β > 0. As time goes by, the finitely supported empirical measure associated with the random collection of items converges almost surely to a random measure with a symmetric Dirichlet distribution of parameter β -1 . We then study this distribution as the number of distinct items is sent to infinity. Relying on the law of large numbers, the random measure itself converges to the deterministic Lebesgue measure on [0, 1], regardless of the parameter. However, the decreasing rearrangement of the random measure appears to converge to a deterministic, continuous probability measure whose density function depends on the parameter β. In the particular case β = 1, we prove the convergence to a logarithmic probability density function on [0, 1], hence establishing a "logarithmic Zipf's law".

Introduction

Context and framework

In a surprisingly wide range of different settings, when it comes to studying statistical distributions, and more precisely frequencies of occurence of events among a vast collection of data, power laws appear as some sort of universal rule. Arguably, one of the most famous examples of this is Zipf's law, named after the linguist George Kingsley Zipf who discovered it in 1935 while studying the frequencies of appearance of english words in the novel Ulysses by James Joyce. By ranking the words in descending order of their appearance, from most common to least common, the frequency of appearance f (r) of the word of rank r ∈ N * seems to follow the simple formula

f (r) = c r ,
where c is some positive constant. Hence, the second most common word appears half as many times as the first, the third most common word appears three times less than the first, and so on... This general law appears not only in the study of language (written of spoken), but also in a large amount of contexts, from the distribution of income to the size of populations in different cities. Pareto's principle, also known as the 80/20 law, which states that 80% of the effects usually come from 20% of the causes, could also be interpreted as a corollary of Zipf's law.

A more general version of this power law is given by the Zipf-Mandelbrot, or Yule-Simon formula, of the general form:

f (r) = c (r + ρ) α ,
where c, ρ, α are positive constants. When ρ = 0, the continuous version of this power law is often referred to as the Pareto distribution.

Throughout the years, various mathematical constructions have been proposed to justify the emergence of this kind of empirical rule. One may for instance refer to Simon's work [START_REF] Simon | On a class of skew distribution functions[END_REF], where a power law distribution is derived from an adequately chosen stochastic model. In [START_REF] Mandelbrot | An informational theory of the statistical structure of language[END_REF], Mandelbrot provided an interpretation of Zipf's law in terms of information theory, based on lexicographic trees. More recently, in [START_REF] Reed | From gene families and genera to incomes and internet file sizes: Why power laws are so common in nature[END_REF], Reed and Hughes have shown that a large class of power laws can be interpreted as the distribution of certain stochastic processes with exponential growth, killed after a random time.

The aim of the present work is mainly to provide an elementary understanding of the existence of deterministic limits for reordered frequencies of appearance in a random collection of items. To this purpose, we introduce a rather natural stochastic model which simulates an accumulation of items over time. We first determine the large-time behavior of this random collection, before studying the limit as the number of distinct items is sent to infinity. In this setting, the random empirical measure associated with the reordered frequencies of appearance of the items appears to converge to a deterministic measure with a continuous, decreasing density, much ressembling a "logarithmic Zipf's law".

Overview of the model and main results

Throughout this paper, we shall work on a fixed probability space (Ω, F , P). Let us describe the construction of our random model for the gathering of a collection of items, depending on some positive parameter β > 0.

For N ∈ N * , let {1, . . . , N} represent the N different types of items one can have. The collection at time n ∈ N is described through a vector X n,N = (X n,N 1 , . . . , X n,N N ) ∈ (R + ) N giving the number of items of each type collected up to time n. At each time step, the collector selects a random type i ∈ {1, . . . , N} (the law of this selection should be specified) and adds β items of type i to his current collection.

With Zipf's law in mind, asymptotically, we want the model to naturally exhibit an inhomogeneous distribution of items: some "preferred" types of items should be present in large amounts whereas some other types should be under-represented. This can be achieved by following this simple rule: the more frequent a type is in the present collection, the higher should his probability of being picked again be. Coming back to the eloquent example of the frequency of words used in a language, the intuition makes it clear that the more frequent a word is in a conversation, the more it should be repeated and passed along.

The dynamics of the random collection (X n,N ) n≥0 are given by

X 0,N = 1 := (1, . . . , 1), X n+1,N = X n,N + βξ n+1,N where ξ n+1,N = (ξ n+1,N 1 , . . . , ξ n+1,N N ), with ξ n+1,N i = δ i,J N n+1
. The sequence of indices (J N n ) n≥1 is a time-inhomogeneous, {1, . . . , N}-valued Markov chain given by:

P(J N 1 = i) = 1 N , P J N n+1 = i | J N 1 , . . . , J N n = X n,N i N + nβ . (1.1)
Note that N + nβ is the total number of items in the collection at time n. We naturally define the random probability tuple p n,N giving the frequency of occurence of each type in the collection

p n,N = X n,N N + nβ ∈ P N (1.2)
where P N denotes the standard (N -1)-simplex

P N = p = (p 1 , . . . , p N ) ∈ (R + ) N N i=1 p i = 1 . (1.3)
Finally, we define the associated empirical measure (renormalized to fit in [0, 1]):

µ n,N = N i=1 p n,N i δ i N ∈ P([0, 1]).
(1.4)

The set of probability measures P([0, 1]) is equipped with the standard weak convergence.

The selection of items (1.1) in a "rich gets richer" fashion bears some similarities with the Polya urn scheme described in [BM + 73]. Our model could in fact be seen as a particular version of the so-called Chinese restaurant process, which plays a central role in non-parametric Bayesian statistics, with a fixed number of tables. The model is therefore rather classically expected to converge to some Dirichlet distribution as time goes to infinity. We provide an elementary proof of this convergence in our setting, with little to no measure theory involved.

Definition 1.1 (Dirichlet distribution).

For N ≥ 1 and α = (α 1 , . . . , α N ) ∈ (R + ) N , we introduce the probability density function

∀x ∈ P N , f (x; α) = 1 B(α) N i=1 x α i -1 i , where B(α) = N i=1 Γ(α i ) Γ( N k=1 α i )
.

(1.5)

A random tuple p ∈ R N is said to have a Dirichlet distribution of parameter α when, for all F ∈ C b (R N ), E F (p) = Q N F (x 1 , . . . , x N -1 , x N )f (x 1 , . . . , x N -1 , x N ; α) dx 1 . . . dx N -1 ,
where

Q N = (x 1 , . . . , x N -1 ) ∈ (R + ) N -1 | N -1 i=1 x i ≤ 1 and x N := 1 - N -1 i=1 x i . (1.6)
This can be interpreted as p ∈ R N having a degenerate density with respect to the (N -1)dimensional Lebesgue measure λ N -1 . When α = (α, . . . , α) we will simply denote the density function as f (x; α). In the particular case α = 1 := (1, . . . , 1), we are left with the flat Dirichlet distribution:

E F (p) = (N -1)! Q N F (x 1 , . . . , x N -1 , x N ) dx 1 . . . dx N -1 , (1.7)
The result can then be stated as follows.

Theorem 1. For any fixed N ∈ N * ,

µ n,N ---→ n→∞ µ N = N i=1 p N i δ i N in P([0, 1]), almost surely.
The limiting random probability tuple

p N = (p N 1 , . . . , p N N ) has a Dirichlet distribution of parameter α = (β -1 , . . . , β -1 ).
The roles of the different types of items in (1.1) being interchangeable, it is natural to obtain a symmetrical parameter of the form α = (α, . . . , α) for the limiting Dirichlet distribution. Although this symmetry is a rather coherent feature of the model, it is worth mentioning that our proof could easily be adapted to a non-symmetrical setting: the general initial condition X 0,N = (n 1 , . . . , n N ) woud lead to a Dirichlet distribution of parameter α = (β -1 n 1 , . . . , β -1 n N ) in the limit.

As expected, β > 0 dictates the typical behavior of the limiting random measure: µ N tends to be evenly distributed for β < 1 and rather sparse and inhomogeneous for β > 1.

The case β = 1 (one new item added at a time) leads to the flat Dirichlet distribution (1.7), and is of particular interest.

Next, we study the behavior of these Dirichlet random measures as the number of possible items N is sent to infinity.

Theorem 2. For any β > 0,

µ N ---→ N →∞ λ in P([0, 1]), in law, (1.8)
where λ denotes the deterministic Lebesgue measure on [0, 1].

We introduce the decreasing order statistics

p N = (p N (1) , p N (2) , . . . , p N (N ) ) with p N (1) > p N (2) > . . . > p N (N ) .
and the associated rearranged random measure

µ N = N i=1 p N (i) δ i N . For β = 1, µ N ---→ N →∞ m in P([0, 1]), in law, (1.9)
where m denotes the deterministic probability measure with logarithmic density function:

∀f ∈ C([0, 1]), f, m = 1 0 f (x)(-ln(x))dx.
The convergence (1.8) reflects a uniformization of the symmetric Dirichlet random measures µ N : as N goes to infinity, they converge to the deterministic Lebesgue measure regardless of the value of the parameter β > 0. The tendency of µ N to be sparse or evenly distributed depending on β is therefore entirely lost in the limit.

A way to remedy this uniformization is to look at the decreasing rearranged measures. The convergence (1.9) is proven in the easier particular case β = 1, but numerical observations show that a similar result holds for any value of β > 0. The rearranged measure µ N appears to converge to a continuous decreasing probability density function f β that gets steeper as β grows larger. Illustrations are given at the very end of section 3.2 below.

The result (1.9) is of course to be compared to Zipf's law: coming back to our random collection model, in the limit where time and the number of possible items are very large, the seemingly random ordered frequencies of appearance converge to a deterministic limit. In our case, this limit is however not a power law, but has a logarithmic slope. This justifies the term "logarithmic Zipf's law".

The proof of Theorem 1 is given in section 2 where the large-time asymptotic of the model is studied. The two convergences of Theorem 2 are established in section 3.

Large-time behavior

First, let us consider that N ∈ N * is fixed, and describe the large-time behavior of µ n,N . Let us introduce the canonical filtration (F n ) n≥0 associated with (J N n ) n≥1 :

F 0 = {Ω, ∅} , F n = σ J N 1 , . . . , J N n .
From (1.1) and (1.2), a simple calculation gives

E p n+1,N i -p n,N i F n = 1 N + (n + 1)β X n,N i + β E[ξ n+1,N i |F n ] -p n,N i = 1 N + (n + 1)β X n,N i + β P(J N n+1 = i |F n ) -p n,N i = 1 N + (n + 1)β X n,N i + β X n,N i N + nβ -p n,N i = p n,N i -p n,N i = 0.
Therefore, (p n,N ) n≥0 defines a bounded (F n ) n≥0 -martingale. Classical martingale theory (see e.g [START_REF] Williams | Probability with Martingales[END_REF], Chapter 11) hence guarantees that it converges almost surely to some random variable:

p n,N ---→ n→∞ p N almost surely. (2.1)
Of course, this can be translated in terms of random measures:

µ n,N ---→ n→∞ µ N := N i=1 p N i δ i N in P([0, 1]), almost surely.
We wish to determine the law of the limiting random measure µ N , or equivalently, that of the probability tuple p N .

Distribution at time n

Let us introduce

S n,N = ℓ = (ℓ 1 , . . . , ℓ N ) ∈ (N) N N i=1 ℓ i = n . (2.2)
The set X n,N = 1 + βℓ, ℓ ∈ S n,N is hence the naturel sample space for X n,N . Let us fix some ℓ ∈ S n,N and calculate the probability

P n,N ℓ := P(X n,N = 1 + βℓ).
Considering the dynamics (1.1), one may easily observe that the probability that (X m,N ) 0≤m≤n follows some given path leading to k = 1 + βℓ ∈ X n,N does not in fact depend on the path, but only on the tuple ℓ = (ℓ 1 , . . . , ℓ N ) giving the number of times each item has been chosen along the way : the probability of such a path is given by

ℓ 1 -1 j=0 (1 + jβ) × . . . × ℓ N -1 j=0 (1 + jβ) n-1 j=0 (N + jβ) .
Since the total number of paths leading to k = 1 + βℓ is given by the multinomial

coefficient n! ℓ 1 ! . . . ℓ N !
, this results in:

P n,N ℓ = n! n-1 j=0 (N + jβ) × ℓ 1 -1 j=0 (1 + jβ) × . . . × ℓ N -1 j=0 (1 + jβ) ℓ 1 ! × . . . × ℓ N ! . (2.3)
Note that, in the particular case where β = 1, (2.3) comes down to

P(X n,N = 1 + βℓ) = n! N(N + 1) . . . (N + n -1) = N + n -1 n -1 = 1 |S n,N | ,
so that, at each time step n ∈ N, X n,N is uniformly distributed on the set

X n,N = 1 + βℓ, ℓ ∈ S n,N .
In this case, the distribution of p n,N is given by : for all

F ∈ C([0, 1] N ), E F (p n,N ) = 1 |X n,N | k∈X n,N F k N + nβ .
Sending n to infinity, we rightfully expect the distribution of the limiting random variable p N to be uniform over all probability tuples of size N, that is on the standard (N -1) simplex P N defined in (1.3). This corresponds to the flat Dirichlet distribution (1.7).

Coming back to (2.3) in the case of a general parameter β = 1, the random collection X n,N is not distributed uniformly on X n,N anymore. Intuitively, when β < 1 (say β ≪ 1), each new item is picked just about uniformly at random, so that the distribution of X n,N tends to favor uniform collections (items of each type appear approximately the same number of times) over segregating collections (some types are largely more represented than others). The opposite phenomenon takes place when β > 1. These two behaviors, with a transition as the parameter approaches 1, is typical of Dirichlet distributions.

Limiting distribution

Recalling the Dirichlet probability density function (1.5), let us fix a compactly supported function F ∈ C c (R N ) with support in P N , chosen so that x ∈ P N → F (x)f (x; β -1 ) is bounded and Lipschitz-continuous. This will be the case as long as every coordinate of x ∈ Supp(F ) is bounded from below by some positive constant. From (2.3) we derive

E F (p n,N ) = ℓ∈S n,N F 1 + βℓ N + nβ P n,N ℓ .
To simplify this expression, we start by noting that, since N i=1 ℓ i = n,

F 1 + βℓ N + nβ -F ℓ n ≤ F lip 1 + βℓ N + nβ - ℓ n 1 ≤ F lip 1 N + nβ + ℓ 1 N n(N + nβ) ≤ F lip N + 1 N + nβ vanishes to 0 uniformly in ℓ ∈ S n,N , so that E F (p N ) = lim n→∞ ℓ∈S n,N F ℓ n P n,N ℓ .
We wish to show that this last limit is equal to the Dirichlet integral with α = (β -1 , . . . , β -1 ):

D N = Q N F (x)f (x; β -1 )dx 1 . . . dx N -1 , (2.4)
where

x N = 1 - N -1 i=1 x i . For any (x 1 , . . . , x N -1 ) ∈ Q N defined in (1.6), let us introduce ∀i ∈ {1, . . . , N -1}, ℓ i = ⌊nx i ⌋ ∈ N and ℓ N = n - N -1 i=1 ℓ i ∈ N, so that ℓ is the only element of S n,N satisfying the inequalities ∀i ∈ {1, . . . , N -1}, ℓ i n ≤ x i < ℓ i + 1 n , (2.5) and, still denoting x N = 1 - N -1 i=1 x i , x N - ℓ N n ≤ N n . (2.6)
This means that, introducing the disjoint union

Q n N = ℓ∈S n,N Q ℓ N , with Q ℓ N = N -1 i=1 ℓ i n , ℓ i + 1 n .
we have Q N ⊂ Q n N and, denoting by λ N -1 the (N -1)-dimensional Lebesgue measure,

λ N -1 Q n N \ Q N = λ N -1 Q n N -λ N -1 Q N = |S n,N | n -(N -1) - 1 (N -1)! ---→ n→∞ 0 since, recalling (2.2) |S n,N | = N + n -1 n = (n + 1)(n + 2) . . . (n + N -1) (N -1)! ∼ n N -1 (N -1)! . (2.7)
It follows that (2.4) can be rewritten as

D N = lim n→∞ ℓ∈S n,N D n,N ℓ with D n,N ℓ = Q ℓ N F (x)f (x; β -1 ) dx 1 . . . dx N -1 , (2.8)
and it all comes down to proving the equality

lim n→∞ ℓ∈S n,N F ℓ n P n,N ℓ = lim n→∞ ℓ∈S n,N D n,N ℓ .
For t > 0, Euler's classical identity for the Gamma function gives

n! n-1 j=0 (t + j) = Γ(t) n (t-1) × θ(n; t) with θ(n; t) ---→ n→∞ 1.
For any ℓ ∈ S n,N , recalling again N i=1 ℓ i = n, expression (2.3) can therefore be rewritten

P n,N ℓ = n! β n n-1 j=0 (Nβ -1 + j) × β n ℓ 1 -1 j=0 (β -1 + j) × . . . × ℓ N -1 j=0 (β -1 + j) ℓ 1 ! × . . . × ℓ N ! = n! n-1 j=0 (Nβ -1 + j) × ℓ 1 -1 j=0 (β -1 + j) × . . . × ℓ N -1 j=0 (β -1 + j) ℓ 1 ! × . . . × ℓ N ! = Γ(Nβ -1 ) n (N β -1 -1) × (ℓ 1 × . . . × ℓ N ) β -1 -1 Γ(β -1 ) N × θ(n; Nβ -1 ) θ(ℓ 1 ; β -1 ) × . . . × θ(ℓ N ; β -1 ) = n -(N -1) Γ(Nβ -1 ) Γ(β -1 ) N ℓ 1 × . . . × ℓ N n N β -1 -1 Θ(n, ℓ) = n -(N -1) f ℓ n ; β -1 Θ(n, ℓ),
where f ( • ; β -1 ) is the probability density function of the Dirichlet distribution of parameter α = (β -1 , . . . , β -1 ) and Θ(n, ℓ) → 1 as n, ℓ 1 , . . . , ℓ N → ∞.

(2.9)

Since n -(N -1) = λ N -1 (Q ℓ N ), this gives F ℓ n P n,N ℓ = Q ℓ N F ℓ n f ℓ n ; β -1 dx 1 . . . dx N -1 Θ(n, ℓ).
Recalling (2.8), we may finally write

ℓ∈S n,N F ℓ n P n,N ℓ - ℓ∈S n,N D n,N ℓ ≤ T n 1 + T n 2
where

T n 1 = ℓ∈S n,N Q ℓ N F ℓ n f ℓ n ; β -1 -F (x)f (x; β -1 ) dx 1 . . . dx N -1
and

T n 2 = ℓ∈S n,N Q ℓ N F ℓ n f ℓ n ; β -1 dx 1 . . . dx N -1 × |Θ(n, ℓ) -1|. Since x ∈ P N → F (x)f (x; β -1
) is Lipschitz-continuous, inequalities (2.5) and (2.6) give

T n 1 ≤ F f lip N n ℓ∈S n,N λ N -1 (Q ℓ N ) ≤ F f lip N n → 0. Since x ∈ P N → F (x)f (x; β -1 ) is bounded, T n 2 ≤ F f L ∞ n -(N -1) ℓ∈S n,N |Θ(n, ℓ) -1|.
For all m ∈ N, let us introduce the subset of S n,N

S n,N m = ℓ ∈ N N | N i=1
ℓ i = n, and ∀i ∈ {1, . . . , N}, ℓ i ≥ m .

From (2.7), it is clear that, as n → ∞ |S n,N m | = |S n-m,N | ∼ n N -1 (N -1)! ∼ |S n,N |
and thanks to (2.9),

ε(n, m) := sup |Θ(n, ℓ) -1|, ℓ ∈ S n,N m → 0 as n, m → ∞. Letting Θ ∞ = sup |Θ(n, ℓ)|, n ∈ N, ℓ ∈ N N , we hence get T n 2 ≤ F f L ∞ n -(N -1)    ℓ∈S n,N m |Θ(n, ℓ) -1| + ℓ∈S n,N \S n,N m |Θ(n, ℓ) -1|    ≤ F f L ∞ n -(N -1) |S n,N m | ε(n, m) + (|S n,N | -|S n,N m |)( Θ ∞ + 1) so that lim sup n→∞ T n 2 ≤ F f L ∞ (N -1)! lim sup n→∞ ε(n, m) → 0 as m → ∞.
This concludes the proof of Theorem 1 in the case where the function F in suitably compactly supported. The general case F ∈ C b (R N ) is deduced by monotone convergence and density with the standard reasoning.

3 Large number of items

uniformization of Dirichlet random measures

We now discuss the convergence (1.8) in Theorem 2. Let us briefly consider again the particular case β = 1, so that p N = lim n→∞ p n,N has a flat Dirichlet distribution on the (N -1)-simplex P N . In terms of measures, this should be interpreted by saying that the limiting random probability measure µ N = lim n→∞ µ n,N is chosen uniformly among all possible probability measures on the finite sample space

I N = { i N , 1 ≤ i ≤ N} ⊂ [0, 1].
In other words,

µ N ∼ U (P (I N )) .
When the number of items N is sent to infinity, seeing as I N becomes increasingly closer to the whole interval [0, 1], one could fathom that the distribution of µ N converges to that of a measure chosen uniformly among all measure of P([0, 1])... But of course this is not true! Averaging effects will tend to favor measures which are close to the uniform distribution on [0, 1] over those which are not, so that µ N actually converges (in law) to the deterministic Lebesgue measure λ. This result actually holds true regardless of the value of the parameter β. Depending on β > 1 or β < 1, the values of p N might tend to be concentrated on the "boundary" or on the "center" of P N , but the associated random measure µ N will converge in law to λ as N goes to infinity nonetheless.

The proof of this result relies solely on the law of large numbers. It is derived from the following standard Lemma regarding Dirichlet distributions, which can be obtained via a simple change of variables (see e.g [START_REF] Andrew Frigyik | Introduction to the dirichlet distribution and related processes[END_REF], section 2.3).

Lemma 3.1. Let α = (α 1 , . . . , α N ) ∈ (R + ) N . Let E 1 , . . . , E N be independent random variables from the Gamma distribution: for all 1 ≤ i ≤ N, E i ∼ G(α i , 1), that is with the pdf f i (x) = 1 Γ(α i ) x α i -1 e -x 1 R + (x).
Then, letting

Y i = E i N j=1 E j , the tuple (Y 1 , . . . , Y N ) has a Dirichlet distribution of param- eter α. Since µ N = N i=1 p N i δ i N
, where p N has a Dirichlet distribution of parameter α = (β -1 , . . . , β -1 ). we introduce i.i.d random variables (E i ) i≥1 of distribution G(β -1 , 1) (on some other probability space) and define

q N i = E i N j=1 E j , 1 ≤ i ≤ N, N ≥ 1.
Thanks to Lemma (3.1), µ N has the same distribution as

ν N = N i=1 q N i δ i N ∈ P([0, 1]). Recall that E[E 1 ] = Var[E 1 ] = β -1 . Now, for any k ∈ N, letting f (x) = x k , the standard strong law of large numbers yields, almost surely, as N → ∞, f, ν N = N i=1 q N i i N k = N i=1 i k E i N k N i=1 E i ∼ β N k+1 N i=1 i k E i = β N k+1 N i=1 A i ,
where A i = i k E i for all i ≥ 1. By Kronecker's L 2 strong law of large numbers, since the (A n ) n≥1 are independent, L 2 random variables satisfying

∞ n=1 Var A n n k+1 = ∞ n=1 Var E n n = ∞ n=1 β -1 n 2 < ∞, it follows that 1 N k+1 N i=1 A i -β -1 N i=1 i k ---→ N →∞ 0 almost surely. Since Faulhaber's formula gives N i=1 i k = N k+1 k + 1 + O(N k ), we derive f, ν N ---→ N →∞ 1 k + 1 = 1 0 x k dx = 1 0 f (x)dx almost surely.
This convergence holds for every polynomial function, hence, by density, for every f ∈ C([0, 1]) almost surely. This proves that ν N → λ almost surely, from which we deduce the convergence in law of µ N .

Convergence of the reordered measures

Let us finally discuss the convergence (1.9) in Theorem 2.

We have seen that, as N is sent to infinity, the tendency of µ N to be sparse and heterogeneous when β is large -as opposed to uniform and homogeneous when β is small -is entirely lost in the limit. In other words, from the observation of the laws of

f, µ N for f ∈ C([0, 1])
when N is very large, we cannot in fact recollect any information on the value of β > 0.

A way to remedy this phenomenon is to look at the reordered measure, associated with the decreasing order statistics of p N .

Let us introduce the tuple p n,N which consists of a rearrangement of the marginals of p n,N in decreasing order, so that p n,N = (p n,N

(1) , p n,N (2) , . . . , p n,N (N ) ) with p n,N (1) > p n,N (2) > . . . > p n,N (N ) .

We define the associated rearranged random measure

µ n,N = N i=1 p n,N (i) δ i N .
Although the permutation reordering the values of p n,N (ω) depends on ω ∈ Ω, the transformation x ∈ R N → x ∈ R N is continuous. Therefore, the convergence (2.1) immediately yields p n,N ---→ n→∞ p N almost surely. Let us introduce the rearranged limiting random measure

µ N = N i=1 p N (i) δ i N .
The distribution of p N ∈ P N is that of the decreasing order statistics of a Dirichlet distribution of parameter α = (β -1 , . . . , β -1 ). It remains to study this distribution in the limit where the number of items N is sent to infinity.

To this purpose, we may once again rely on Lemma 3.1. One is therefore naturally led to study the order statistics of a random sample of gamma distribution G(β -1 , 1). These are difficult to describe for a general parameter β > 0. For this reason, we restrict ourselves to the particular case β = 1 for the proof, so that the gamma distribution comes down to a standard exponential distribution. Numerical observations regarding the general case β = 1 are given at the end of this section.

Introducing i.i.d random variables (E i ) i≥1 of distribution Exp(1) and letting

q N i = E i N j=1 E j , 1 ≤ i ≤ N, for N ≥ 1,
it follows from Lemma 3.1 that µ N has the same distribution as

ν N = N i=1 q N (i) δ i N ∈ P([0, 1]).
The distribution of the order statistics of independent exponential random variables can be explicitly described: [START_REF] Rényi | On the theory of order statistics[END_REF] gives the following identity (recall that the order statistics are decreasing here)

(E (1) , E (2) , . . . , E (N ) ) =   N j=1 E j N -j + 1 , N -1 j=1 E j N -j + 1 , . . . , E 1 N   in law, =   N j=1 E j j , N j=2 E j j , . . . , E N N   in law.
We deduce that

q N (i) = E (i) N j=1 E (j) = N j=i E j j N j=1 E j := r N i in law
and this equality also holds for the joint distribution: q N = r N in law. Therefore, µ N has the same distribution as

m N = N i=1 r N i δ i N ∈ P([0, 1]). Recall that E[E 1 ] = Var[E 1 ] = 1. Now, for any k ∈ N, letting f (x) = x k , the standard strong law of large numbers yields, almost surely, as N → ∞ f, m N = N i=1 r N i i N k =   N j=1 E j   -1 1 N k N i=1 N j=i E j j i k ∼ 1 N k+1 N i=1 i k N j=i E j j = 1 N k+1 N j=1 j -1   j i=1 i k   E j = 1 N k+1 N j=1 A j , with A j = j -1   j i=1 i k   E j . Faulhaber's formula gives n i=1 i k ∼ n k+1 k + 1 , so that ∞ n=1 Var A n n k+1 = ∞ n=1 1 n k+2 n i=1 i k 2 < ∞.
We may therefore use Kronecker's L 2 strong law of large numbers once again: provided that the limit exists, it is deterministic and given by lim

N →∞ f, m N = lim N →∞ 1 N k+1 N j=1 E[A j ] almost surely, which can be rewritten as lim N →∞ f, m N = lim N →∞ 1 N N i=1 i N k 1 N   N j=i 1 j/N   almost surely.
An elementary sum-integral comparison gives, for i ≥ 2,

-ln i N ≤ 1 N N j=i 1 j/N ≤ ln 1 - 1 N -ln i -1 N which results in 1 N N i=2 i N k 1 N   N j=i 1 j/N   - 1 N N i=2 i N k -ln i N ≤ ln 1 - 1 N + 1 N N i=2 i N k ln i i -1 ≤ ln 1 - 1 N + 1 N N i=2 ln i i -1 ---→ N →∞ 0.
We may finally recognize a Riemann sum and conclude that Let us finish by giving some numerical observations. In the particular case β = 1, the convergence of the reordered random measures µ N to the logarithmic density on [0, 1] is clear to see. The limiting density (blue curve) on Figure 2 is approximated by some realization of µ N for N = 10 5 . As expected, the slope of f β appears to get steeper as β grows. The distribution approaches the Lebesgue measure λ and the Dirac measure δ 0 for small and large values of β respectively. The technique developed in the latter proof still holds for a general β > 0 and could theoretically provide, if not an explicit expression, some information on the limiting density function f β . However, as previously mentioned, this would require an understanding of the order statistics of a Gamma distribution for a general parameter, which is no easy task: one may refer to [START_REF] Gupta | Order statistics from the gamma distribution[END_REF] where moments and covariances are investigated.

  -ln(x))dx = f, m almost surely, where m denotes the probability measure of the logarithmic density function on [0, 1]. Once again, by density of the polynomial functions in C([0, 1]), this proves that m N → m almost surely, from which we deduce the convergence in law of µ N . This concludes the proof of Theorem 2.
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 12 Figure 1: Reordered flat Dirichlet random measures for increasing values of N