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Abstract  

Basal ganglia disorders such as Parkinson's disease, dystonia and Huntington's disease 

are characterized by a dysregulation of the basal ganglia neuromodulators (dopamine, 

acetylcholine and others) which impacts cortico-striatal transmission. Basal ganglia 

disorders are often associated with an imbalance between the midbrain dopaminergic 

and striatal cholinergic systems. In contrast to the extensive research and literature on 

the consequences of a malfunction of midbrain dopaminergic signaling on the plasticity 

of the cortico-striatal synapse, very little is known about the role of striatal cholinergic 

interneurons in normal and pathological control of cortico-striatal transmission. In this 

review, we address the functional role of striatal cholinergic interneurons, also known as 

tonically active neurons and attempt to understand how the alteration of their functional 

properties in basal ganglia disorders leads to abnormal cortico-striatal synaptic plasticity. 

Specifically, we suggest that striatal cholinergic interneurons provide a permissive signal 

which enables long-term changes in the efficacy of the cortico-striatal synapse. We 

further discuss how modifications in the striatal cholinergic activity pattern alter or 

prohibit plastic changes of the cortico-striatal synapse. Long-term cortico-striatal 

synaptic plasticity is the cellular substrate of procedural learning and adaptive control 

behavior. Hence, abnormal changes in this plasticity may underlie the inability of patients 

with basal ganglia disorders to adjust their behavior to situational demands. 

Normalization of the cholinergic modulation of cortico-striatal synaptic plasticity may be 

considered as a critical feature in future treatments of basal ganglia disorders. 
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Introduction 

Dysfunction of the striatal cholinergic interneurons is highlighted in common human 

movement disorders such as Parkinson's disease (PD), dystonia and Huntington's 

disease (HD) 1-4. In the striatum, cholinergic interneurons closely interact with the 

midbrain dopaminergic neurons. These two neuronal populations exhibit coincident 

physiological changes in their activity during behavior 5;6 and exert reciprocal control on 

the release of their neurotransmitters 3;7-11. Therefore, basal ganglia (BG) disorders are 

often associated with an alteration of the normal balance between the midbrain 

dopaminergic and the striatal cholinergic system 1;4;12;13. 

Currently, the BG network is viewed as two functionally related subsystems 14-18. The 

first subsystem is the main axis which corresponds to the different BG structures that 

connect cortical fields to the motor centers of the brain. The second subsystem is 

composed of neuromodulators that include the midbrain dopaminergic neurons and 

striatal cholinergic interneurons which adjusts activity along the main axis. BG disorders 

are caused by a dysregulation of the neuromodulators that impact activity along the main 

axis. Figure 1.A schematically summarizes the current view of the complex connectivity 

of the BG network. 

There is converging evidence suggesting that midbrain dopaminergic neurons adjust 

activity along BG main axis by encoding a reward prediction error signal 5;6;19-24 capable 

of modulating the (long-term) efficacy of cortico-striatal transmission 25-29. The midbrain 

dopaminergic system also has a pivotal role in the attribution of incentive values to cues 

that signal reward 20;30;31. Therefore, midbrain dopaminergic neurons are involved in both 

the predictive/learning and motivational features of reward-related processes. 

Physiologically, this long-term modulation (plasticity) in the efficacy of the cortico-striatal 

synapse is expressed as long-term potentiation and depression (LTP/LTD, respectively). 

LTP/LTD at cortico-striatal synapses are commonly viewed as the cellular substrate of 
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procedural learning and adaptive control behavior 4;13;32;33. Accordingly, dysfunction of 

dopaminergic system leads to alteration of the plasticity of cortico-striatal transmission 

and to deficits in action selection, decision making and shifting behavioral aptitudes 34-39. 

Electrophysiological recordings showed that the responses of the striatal cholinergic 

interneurons encode a wide range of processes, from the incentive value of events to a 

prediction error signal 40-43. In vitro studies reported that striatal acetylcholine (ACh) level 

dictates the polarity of the plasticity (LTP vs. LTD) of the cortico-striatal synapse 25. 

Nevertheless, little is known about the functional role of these cholinergic interneurons in 

the plasticity of cortico-striatal transmission. Moreover, the consequences of their 

malfunction in BG disorders are still elusive and deserve to be synthesized. 

In this review, we go over the main chemical, anatomical and electrophysiological 

features of the striatal cholinergic interneurons. Then, we discuss the functional role of 

their responses and their impact on the plasticity of cortico-striatal transmission in health. 

Finally, we discuss the consequences of dysregulation of the striatal cholinergic system 

and the plasticity of cortico-striatal transmission in pathological conditions such as PD, 

dystonia and HD. 

 

Main chemical, anatomical and electrophysiological features of the striatal 

cholinergic interneurons 

Interneurons comprise only ~5% of all striatal neurons 44-46 (but, see 47;48). The remainder 

corresponds to GABAergic projection neurons, also known as medium spiny neurons 

(MSNs). Four striatal interneuron types have been described. Three of them are 

GABAergic neurons and coexpress different neuropeptides: one coexpress parvalbumin, 

one somatostatin, neuropeptide Y, NADPH-diaphorase and nitric oxide synthase and 

one calretinin. The fourth type is the cholinergic interneurons representing 1-2% of the 

total number of neurons in the striatum. They constitute the main ACh source for the 
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striatum. A recent study indicated that the striatum also receives extrinsic ACh 

innervation from the brainstem 49, however the relative importance of this external ACh 

innervation is still under investigation. 

Morphologically, striatal cholinergic interneurons have a large soma (Ø 20-50µm), vast 

dentritic and axonal fields and are devoid of dentritic spines 46;50;51. Therefore, the 

morphological features of these giant aspiny neurons suggest that they are able to 

integrate synaptic inputs over large striatal regions and project to a wide area of the 

striatum 45. Striatal cholinergic interneurons are innervated by midbrain dopaminergic 

neurons 52-54, MSNs 51;55;56, GABAergic interneurons 57;58 and others cholinergic 

interneurons 58. However, like the MSNs, their main input is glutamatergic and arises 

from the cortex and the thalamus 53;59-62. Anatomical 60;62 and physiological 63;64 evidence 

suggests that striatal cholinergic interneurons are prominently targeted by thalamic 

afferents (from intralaminar nuclei). In return, they predominately project to the MSNs 65. 

The main afferent and efferent connections of the cholinergic interneurons and MSNs 

within the striatum are illustrated in figure 1.B. Based on neurochemical marker staining 

in the striatum, it has been shown that cholinergic interneurons are located in specific 

compartments, called matrisomes (with rich cholinergic marker staining) and 

preferentially lie near the borders of compartments with low cholinergic marker staining 

(striosomes or patches) 66-68. Therefore, it has been hypothesized that striatal cholinergic 

interneurons might convey information from MSNs in striosomes to MSNs in matrisomes 

69. However, even though there is clear evidence of this bipartite organization in rodents, 

non-human primates and humans, its functional role is still debated. 

Physiologically, in vitro intracellular recordings revealed that striatal cholinergic 

interneurons hold a relatively depolarized resting membrane potential (~60mV) and 

exhibit long lasting after-hyperpolarization following action potentials 44;45;70;71. Moreover, 

these interneurons tonically fire even in the absence of synaptic inputs indicating that 
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their tonic activity is supported by endogenous mechanisms 72. A detailed description of 

the cellular mechanisms of their spontaneous discharge is provided by Goldberg and 

Wilson 73. This autonomous "pacemaking" activity has been confirmed in 

electrophysiological studies on behaving animals, where their spontaneous tonic 

discharge ranges between 2 and 12Hz 6;40;41;43;74-78. This spontaneous tonic discharge, in 

contrast to the very low spontaneous discharge of the MSNs, led to the common 

reference to striatal cholinergic interneurons as "Tonically Active Neurons" 40-42;46;59.  

 

Behavioral neurophysiology and functional role of the striatal tonically active 

(cholinergic) interneurons 

Electrophysiological recordings in the striatum of behaving monkeys showed that 

tonically active neurons respond to rewarding (but also aversive) events. The most 

common response of tonically active neurons consists of a short latency pause in the 

tonic firing rate, lasting few hundred milliseconds (~200ms), which is often flanked by 

initial and rebound excitatory periods 5;42;43;79-84. Figure 2.A depicts the classic population 

responses of tonically active neurons to behavioral events in the different striatal 

functional territories. This study did not report significant differences in responses of 

tonically active neurons to cues predicting food, air-puff or neutral outcome. However, 

other studies have demonstrated that their response features are significantly modulated 

by the motivational significance (appetitive vs. aversive) of an event 5;85;86. Therefore, 

tonically active neurons are probably involved in both the detection of motivational 

events and the signaling of the motivational value of these events 40;41;43;75;86. 

Tonically active neurons acquire responses to the stimulus predicting the reward by 

repeatedly experiencing the stimulus-reward association (Fig.2.B) 42;75;80;84. Therefore, 

they are probably not only involved in the detection of incentive events, they would also 

play a role in reward-related learning processes 42;75;80. Delivery of unpredicted rewards 
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or temporal alteration of the predictability of rewards boost pauses of tonically active 

neurons (i.e., the principal component of their responses) to the reward itself (Fig.2.C) 

80;81;87;88. These results were confirmed by findings showing stronger pauses for the 

outcome delivery in probabilistic 5 vs. deterministic 79;89 conditioning tasks. We therefore 

can conclude that tonically active neurons encode a positive reward prediction error (i.e., 

when reality is better than expected).  

As regards the role of the tonically active neurons in the encoding of negative reward 

prediction error (i.e., when reality is worse than expected), it has been shown in 

Pavlovian 5 and instrumental 6 conditioning tasks that tonically active neurons also 

respond to the omission of expected rewards. These responses to reward omission, 

although their magnitudes are smaller, have the same polarity (i.e., pauses) as those 

observed for reward delivery. Therefore, responses of tonically active neurons probably 

signal the precise timing of expected incentive events which do not occur, via the 

encoding of an absolute prediction error signal. Recent studies identified a subset of 

tonically active neurons that respond with opposite changes in activity (albeit of smaller 

amplitude and longer duration) to reward delivery and reward omission (Fig.2.D) 90;91. 

This subset of tonically active neurons would be therefore able to provide a positive and 

negative or signed prediction error signal to the cortico-striatal system, in line with the 

computational temporal difference model of reinforcement learning 92;93. The question of 

whether the tonically active neurons represent a homogenous or heterogenous group of 

neurons is still debated (see cross-correlation studies below). 

Cross-correlation analyses of simultaneously recorded tonically active neurons (Fig.3.A) 

revealed that the spontaneous spiking activity of the tonically active neurons is highly 

synchronized 78;94. In the same vein, signal/response correlation analyses demonstrated 

that tonically active neurons, widely distributed in the striatum, exhibit positive correlation 

coefficient values (Fig.3.B) 95, in agreement with single-unit studies showing a 
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homogeneity of their responses (Fig.2.A) 42;79. Thus, as for the dopaminergic system 6;95-

97, tonically active neurons form a homogenous functional population over diverse 

territories and are capable of uniform modulation of the cholinergic tone in the striatum in 

response to incentive events.  

 

Role of striatal acetylcholine in cortico-striatal synaptic plasticity  

In the striatum, ACh affects multiple targets, with multiple time scales 98. Here, we limit 

ourselves to the impact of ACh on long-term changes of the efficacy of cortico-MSN 

synapse. In this review, the term cortico-striatal synapse refers to the cortico-striatal 

synapse onto MSNs. 

Over the last two decades, it has been shown the existence of LTP and LTD in the 

striatal MSNs 99-102, but the mechanisms that rule the polarity of these changes are still 

unclear and debated 28;103;104. Current opinion indicates that the precise timing/order 

between pre- and postsynaptic spiking activity dictates the polarity of long-term plasticity 

changes. This process, named spike-timing-dependent-plasticity (STDP) has been 

described in several brain structures 105;106.  Based on the conventional Hebbian rule, 

LTP is induced when postsynaptic activation follows presynaptic activation whereas 

reversing this order causes LTD. This bidirectional Hebbian STDP has also been 

observed at the cortico-striatal synapse 28;107. However, Fino and colleagues 108;109 found 

that cortico-striatal bidirectional STDP might be controlled by a reverse Hebbian rule. 

Therefore, mechanisms that rule cortico-striatal bidirectional STDP are still under 

investigation, but there is evidence that the type of DA receptor (D1/D2) present on the 

MSNs and their level of activation play a critical role 28. 

In vivo, due to the large diversity and amount of presynaptic inputs received by 

postsynaptic elements, synapses are constantly adapting their synaptic efficacy as pre- 

and postsynaptic spikes collide. As a result, an emerging view suggests that STDP in 
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the striatum is further controlled by an additional factor involving neuromodulators 33;110. 

Indeed, neuromodulator signals, such as the striatal ACh signal provided by responses 

of tonically active neurons might serve to spatially and temporally associate specific pre- 

and postsynaptic activities. In other words, ACh and other striatal neuromodulators (e.g., 

DA, serotonin) might enable the selection of certain input-output coincidences of pre- 

and postsynaptic neurons and make them eligible for changes in the synaptic plasticity. 

In line with this view, in vitro studies in the striatum showed that striatal ACh level 

dictates the polarity of the plasticity of the cortico-striatal synapse via activation of the 

MSN muscarinic postsynaptic receptors. Activation of M1-like postsynaptic receptors 

increases MSN excitability 111;112. Accordingly, activation of M1 receptors favors MSN 

depolarization and thus plays a permissive role in LTP 25;113. In contrast, decrease of the 

striatal cholinergic tone has been proposed to facilitate LTD 114;115. In vitro studies 

reported that in response to cortical stimulation, striatal cholinergic interneurons are 

activated before MSNs 116. Therefore, striatal cholinergic interneurons appear to be 

ideally located (feed-forward) to modulate the excitability and the membrane potential of 

the MSNs before the latter receive cortical inputs. Striatal cholinergic interneurons might 

orchestrate the timing/order of the pre- and postsynaptic activity at the cortico-striatal 

synapse level and help govern the polarity of the plasticity. 

However, this role of striatal cholinergic interneurons as a bidirectional regulator of 

plasticity in the cortico-striatal synapse needs to be moderated since overly fast and 

strong plasticity may lead to instability. Indeed, behavioral events such as conditional 

stimuli or rewards affect a large diversity of neuromodulators in the striatum such as DA, 

ACh, serotonin, histamine and others with direct and indirect impact on the cortico-

striatal synaptic plasticity. For instance, the low striatal cholinergic tone accompanying 

pauses of tonically active neurons directly favors LTD, but also disinhibits the midbrain 

dopaminergic neurons via their nicotinic receptors and thus causes a bursty release of 
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DA in the striatum 7;10;117-119. Such DA burst has been shown to be involved in the 

induction of cortico-striatal LTP 120.  

Therefore, determining the resulting effect of the modulation of striatal ACh in vivo 

conditions (several modulators and combinations of actions) on cortico-striatal synaptic 

plasticity is overwhelmingly challenging. It is likely that stereotypically synchronized 

pauses of tonically active neurons cause a transient significant reduction of the striatal 

cholinergic tone. This striatal ACh signal might serve as a driver or a permissive 

temporal window to favor specific input-output coincidences of pre- and postsynaptic 

neurons and thus allow long-term modulations of efficacy at specific cortico-striatal 

synapses. 

 

Dysregulation of the striatal cholinergic system and cortico-striatal transmission 

in pathological conditions 

- Parkinson's disease 

In PD, degeneration of midbrain dopaminergic neurons resulting in striatal DA depletion 

causes a cascade of physiological changes, notably an increase in the striatal ACh level 

4;12;13. This DA-ACh imbalance in PD led to the initial use of anticholinergic drugs as 

treatment of the disease 121;122. For a long time, a high striatal ACh level in PD was 

associated with a reduction in the activation of D2 receptors, located on cholinergic 

interneurons due to DA depletion 123. Ding and colleagues 124 showed that striatal DA 

depletion also provokes a reduction in the efficacy of M4 autoreceptors on cholinergic 

interneurons, resulting in a self-disinhibition of ACh release. In vitro recordings revealed 

that after acute striatal DA depletion cholinergic interneurons exhibit striking changes in 

their electrophysiological features such as an increase in the excitability, a reduction in 

the amplitude and duration of the after-hyperpolarization, as well as modifications in the 

shape, amplitude and duration of their spikes. These physiological changes might lead 
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to hyperactivity of the cholinergic interneurons 125 (but, see 126). In vivo, recordings of 

tonically active neurons in monkeys after MPTP injection 78;127 or DA antagonists 

administration 128 showed a loss of their response for relevant behavioral events during 

associative conditioning tasks (Fig.4.A). Additionally, Raz and colleagues 78 reported that 

after striatal DA depletion due to MPTP injection tonically active neurons displayed high 

synchronized oscillatory activity (Fig.4.B) which is probably shared by the whole BG 

network 129. 

Consequently, it is interesting to correlate the emergence of this abnormal pattern of 

activity in the tonically active neurons with the loss of cortico-striatal synaptic plasticity 

(both LTP and LTD) reported in vitro in the 6-hydroxydopamine (6-OHDA) lesioned rat 

100;130-133. As mentioned earlier, transient reduction in the striatal ACh level as observed 

during pauses of tonically active neurons might form a permissive temporal window for 

cortico-striatal synaptic plasticity 5;6. Therefore, in PD, the pathological activity of the 

striatal cholinergic interneurons might cause a persistent unmodulated high level of ACh 

in the striatum. If this abnormal persistent activity is further modulated by oscillations, it 

may lead to periods of high/low ACh levels which are irrelevant from a behavioral point 

of view. This may be a major factor prohibiting any changes in cortico-striatal synaptic 

plasticity. 

In parallel, structurally, it has been shown that DA depletion induced a shift towards 

greater ACh innervation of striatopallidal MSNs than striatonigral MSNs 134. This 

redistribution of ACh synaptic connections between the striatopallidal and striatonigral 

MSNs might contribute to the selective pruning of spines and glutamatergic synapses in 

the striatopallidal MSNs, observed after striatal DA depletion 135. Therefore, the elevation 

of ACh signaling in PD, by lowering the number of spines and glutamatergic contacts 

into the striatopallidal MSNs, might reduce opportunities to spatially and temporally 

associate pre- and postsynaptic activities. This would lead to a reduction in possibilities 
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for cortico-striatal synaptic plasticity at least for the striatopallidal MSNs. Remarkably, a 

recent study conducted on 6-OHDA lesioned rats repeatedly treated with L-DOPA found 

a reduction of the dentritic spines in MSNs (especially those expressing DA D1 

receptors), concomitantly with the development of L-DOPA induced dyskinesia (LID) 136. 

Additional studies in the rat model of LID revealed that maladaptive cortico-striatal 

synapse plasticity might play an important role in the development of LID 132;137. In 

parallel, pharmacological reduction of the striatal cholinergic tone or specific ablation of 

cholinergic interneurons in parkinsonian mice attenuates LID 138;139. Therefore, it has 

been proposed that exacerbated DA sensitivity of striatal cholinergic interneurons during 

parkinsonian state might contribute to the expression of LID, which suggests that striatal 

cholinergic interneurons represent a promising therapeutic target for the prevention and 

treatment of LID. 

 

- Dystonia 

Dystonia is a motor disorder characterized by involuntary twisting movements and 

abnormal postures 140. DYT1 dystonia is the most frequent form of inherited (primary) 

dystonia and is linked to a single nucleic-acid mutation of the gene DYT1, resulting in an 

abnormal expression of the protein torsinA 141. Here, we limit our discussion to DYT1 

dystonia. 

One of the most effective treatments for DYT1 dystonia is the use of antagonists of the 

cholinergic muscarinic receptor 142. Unlike PD, in DYT1 and other genetic forms of 

dystonia there is no degeneration of the midbrain dopaminergic neurons. However, 

studies conducted on transgenic mouse model of DYT1 over-expressing the human 

mutated protein torsinA demonstrated abnormal coupling between dopaminergic and 

cholinergic signaling in the striatum and a pathological elevation of the striatal 

cholinergic tone 143. In these transgenic mice, in vitro recordings revealed that D2 
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receptor activation via quinpirole (D2 DA receptor agonist) provokes membrane 

depolarization and increases the firing rate of the striatal cholinergic interneurons that 

should lead to an elevation of the striatal ACh level 143. This result is unexpected since, 

in control animals, D2 receptor activation inhibits striatal ACh release 144;145 by reducing 

N-type calcium currents 146. This paradoxical effect of D2 activation of ACh levels 

appears to be a consequence of a malfunctioning of the N-type calcium channels which 

reduces the amplitude of the medium after-hyperpolarization and thus increases the 

firing rate of the striatal cholinergic interneurons 73. 

As regards cortico-striatal synaptic plasticity in DYT1 dystonia, in vitro recordings in slice 

preparations from DYT1 mice revealed that cortico-striatal LTD cannot be induced 

whereas LTP is enhanced compared to the control group 147. In addition, it has been 

demonstrated that normalizing the striatal ACh signaling in these DYT1 mice by 

administrating either hemicholinium-3, a depletor of endogenous ACh, or muscarinic M1-

like receptor antagonists (i.e., pirenzepine or trihexyphenidyl) restores normal cortico-

striatal synaptic plasticity 147. Therefore, these results are in line with the presumed role 

of striatal ACh level in determining the polarity of cortico-striatal synaptic plasticity 25 and 

provide direct evidence that an excessive striatal ACh level underlies the cortico-striatal 

synaptic plasticity deficits observed in DYT1 dystonia.  

Recently, in vitro recordings in mice with the DYT1 dystonia mutation showed that 

thalamo-striatal stimulation mimicking responses of tonically active neurons to incentive 

events evoked shortened pauses and abnormal spiking activity of the striatal cholinergic 

interneurons compared to the control groups 148. It is tempting to speculate that this 

abnormal activity pattern of the striatal cholinergic interneurons by disrupting the cortico-

striatal transmission/integration might affect the long-term cortico-striatal synaptic 

plasticity of animal models and patients suffering from DYT1 dystonia. 
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- Huntington's disease 

HD is an inherited neurodegenerative disease characterized by a selective loss of MSNs 

in the striatum 149;150. HD is caused by a mutation in the Huntingtin gene encoding the 

Huntingtin protein and is characterized by movement disorders (e.g., involuntary 

choreiform movements), behavioral and cognitive deficits 37;151. Even though no specific 

degeneration of the striatal cholinergic interneurons has been described in HD 152-154, 

studies in HD transgenic mice have reported an abnormally low release of ACh the 

striatum 2;155, pointing out a role of these interneurons in the pathophysiology of the 

disease. Consistent with a malfunctioning of the striatal ACh signaling in HD, the density 

of the muscarinic receptors in post-mortem striatal tissue from HD patients is reduced 

156;157. In addition, further studies demonstrated that the level of both the vesicular 

acetylcholine transporter and choline acetyl-transferase are significantly reduced in the 

striatum of HD R6/2 transgenic mice, as well as in post-mortem striatal tissue from HD 

patients 154;155;158;159. In parallel, Vetter and colleagues 155 showed in HD R6/2 transgenic 

mice, an impairment of the presynaptic inhibition of the ACh via both M2 auto- and D2 

heteroreceptors suggesting the emergence of presynaptic compensatory mechanisms to 

overcome the low striatal cholinergic tone observed in HD. 

To date, little information is available regarding the impact of striatal cholinergic 

interneurons on the cortico-striatal synaptic plasticity in HD patients or animal models. 

However, in both the phenotypic rat model of HD (after chronic systemic 3-nitropropionic 

acid administration) and HD R6/2 transgenic mice, MSNs exhibit normal LTP but are not 

able to express LTD 2. This lack of LTD expression occurs despite a low striatal ACh 

level which is known to favor LTD in normal condition 25. Remarkably, certain studies 

indicate that both striatal ACh and DA level are reduced in HD 160;161 and an emerging 

view suggests that reduction of the ACh signaling might be accountable for the 

malfunction of D1 receptor-mediated excitation of striatal cholinergic interneurons 161. 
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Therefore, a better understanding of the abnormal ACh-DA coupling in HD appears to be 

essential to elucidate the mechanisms behind the abnormal cortico-striatal synaptic 

plasticity in HD. 

 

Concluding remarks 

One of the main cognitive deficits in BG disorders such as PD, dystonia and HD is the 

inability to adjust/switch behavior depending on situational demands 34-39. Seen from this 

angle, the ability to induce and reverse LTP and LTD at specific synapses appears to be 

critical. Indeed, LTP by reinforcing the synaptic strength of specific synapses would 

contribute to the information storage in neuronal networks. However, it is crucial that 

these same synapses are able to reverse this form of plasticity (i.e., induction of LTD) to 

allow extinction or "forgetting" processes 132 in response to new behavioral situations. 

Earlier genetic and pharmacological studies showed involvement of various striatal 

signaling molecules and circuits in behavioral flexibility 162;163.  

In this review we pointed out that the emergence of abnormal activity pattern in striatal 

cholinergic interneurons that accompanied the dysfunction of striatal ACh signaling in 

BG disorders might contribute to pathological cortico-striatal synaptic plasticity. This 

abnormal cortico-striatal synaptic plasticity probably underlies some of the clinical 

disturbances in learning and switching behaviors seen in patients with BG disorders. 

Table 1 summarizes the abnormal cortico-striatal synaptic plasticity observed in the 

major BG movement disorders concomitantly with striatal DA-ACh levels. We therefore 

suggest that future treatments of BG disorders should also be directed towards the 

normalization of the cholinergic (and other BG neuromodulators) modulation of cortico-

striatal synapses.  

Finally, dysregulation of BG neuromodulators is also often found in drug addiction 164;165 

and in psychiatric diseases such as Tourette syndrome, obsessive compulsive disorders 
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(OCDs), and major depressive disorders 166-170. In Tourette syndrome, there is 

converging evidence that dramatic reduction of number of cholinergic interneurons in 

dorsal striatum contributes to behavioral manifestation of the disease 169;170. In OCD 

patients, an attenuation of the cortico-striatal LTD after anterior capsulotomy has been 

concomitantly shown with an improvement in OCD symptoms. Thus, exacerbated 

cortico-striatal LTD might be one of the mechanisms underlying OCD symptoms 171. 

However, too little is known about aberrant cortico-striatal synaptic plasticity in 

psychiatric disorders and the involvement of the striatal cholinergic interneurons has not 

been addressed yet. It is time to fill this gap to better understand the pathophysiology of 

neurological and addiction/psychiatric BG-related diseases and use this knowledge to 

develop new therapeutic approaches 172. 
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dopamine acetylcholine CS LTP CS LTD
Parkinson's disease - + ↓ ↓
DYT1 dystonia ? + ↑ ↓
Huntington's disease ? - N ↓

↓ and ↑: enhancement and impairement/loss, respecƟvely

Table.1  Changes in striatal dopamine-acetylcholine levels and plasticity of the cortico-striatal 

CS: cortico-striatal (MSN); LTP: long term potentiation; LTD: long term depression; N: normal;

synapse in movement disorders

?: unresolved, inconsistent results; - and +: low and high striatal level, respectively; 
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Figure 1: Cholinergic interneurons within basal ganglia network. (A) Schematic 

model of the basal ganglia network. Input structures of the BG (striatum and subthalamic 

nucleus) receive inputs from the cortex and the thalamus. The output structures of the 

BG (internal segment of the globus pallidus and the substantia nigra reticulata) project to 

the cortical (through the thalamus) and brainstem motor centers. Activity in BG main axis 

is controlled by different neuromodulators such as dopamine and acetylcholine which 

modulate the cortico-striatal transmission. Red and green arrows indicate the 

glutamatergic or GABAergic nature of the connection. CTX: cortex; Thal: thalamus; STR: 

striatum; STN: subthalamic nucleus; GPe-i:  external and internal segment of the globus 

pallidus; SNr: substantia nigra reticulata; PPN: pedonculopontine nucleus; SC: superior 

colliculus; ACh: acetycholine, DA: dopamine. (B) Main afferent and efferent connections 

of the cholinergic interneurons and medium spiny neurons within the striatum. 
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Cholinergic interneurons (ChIs) and medium spiny neurons (MSNs) are reciprocally 

connected and impacted by dopaminergic neurons (DA) from substantia nigra compacta 

(SNc). In return, cholinergic interneurons influence dopaminergic transmission. Vertical 

and horizontal red arrows represent the glutamatergic innervation from cortex (Ctx) and 

thalamus (Thal), respectively. 
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Figure 2: Response properties of tonically active neurons. (A) Average population 

responses of tonically active neurons to behavioral events in the putamen, caudate 

nucleus and ventral striatum (VS). Time 0 indicates the cue presentation followed by 

outcome delivery at time 2s. Color codes indicate cue value (reward, neutral, aversive). 

N indicates the number of neurons. Adapted from Adler et al. (2013) 79. (B) Emergence 

of population response of tonically active neurons to a click predicting a juice reward 



34 
 

(left), concomitantly with the acquisition of the conditional behavioral response, 

characterized by the alignment of the licking after the click when the juice is delivered 

(right). Numbers in parentheses indicate the number of neurons. EMG: electromyogram. 

Adapted from Graybiel et al. (1994) 42. (C) Example of a tonically active neuron 

responding to the reward when its delivery is hardly predictable (irregular or regular 4-s 

intervals), but not when reward prediction is facilitated (regular 2-s interval). Adapted 

from Ravel et al. (2001) 87. (D) Example of two tonically active neurons responding with 

opposite changes in activity when predicted rewards were omitted (bottom, left and 

right). Both neurons respond with a pause to reward delivery (top, left and right). 

Adapted from Apicella et al. (2009) 90. 
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Figure 3: Homogenous activity of tonically active neurons (A) Crosscorrelograms of 

tonically active neurons recorded simultaneously in healthy non-human primates. The 

zero-centered peak in the crosscorrelograms indicates that the activity of tonically active 

neuron pair is highly synchronized. Adapted from Raz et al. (1996) 78. (B) Distribution of 

the response correlation of tonically active neurons to conditional cues. Response 

correlation quantifies (on a scale of -1 to +1) the similarity of the responses of a pair of 

neurons (recorded simultaneously or not) to the same event. The distribution of the 

correlation coefficients of tonically active neuron pairs is skewed toward positive values, 

suggesting a homogeneity of the responses of tonically active neurons to conditional 

cues. N indicates number of response pairs. Adapted from Joshua et al. (2009) 95. 
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Figure 4: Alteration of the pattern of tonically active neurons after striatal 

dopamine depletion. (A) Average population responses of tonically active neurons to a 

conditional cue (click predicting a reward) before and after striatal dopamine depletion 

(MPTP treatment). Tonically active neurons acquire a response to the click after 

conditioning (middle). After MPTP (bottom), conditional responses of tonically active 

neurons disappear in the dopamine depleted side (left), but are maintained in the intact 

side (right). Numbers in parentheses indicate the number of neurons. Average licking 

movements are shown below each population histogram. Adapted from Aosaki et al. 

(1994) 127. (B) Crosscorrelograms of tonically active neurons recorded simultaneously in 

non-human primates after MPTP treatment. As in the healthy state, each activity of 

tonically active neuron pair is characterized by a central peak, but in addition the pattern 

of the crosscorrelograms changes and becomes oscillatory. Adapted from Raz et al. 

(1996) 78. 

 


