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Abstract 

Background: Microelectrode recordings along pre-planned trajectories are often used for 

accurate definition of the subthalamic nucleus (STN) borders during deep brain stimulation 

(DBS) surgery for Parkinson’s disease. Usually, the demarcation of the STN borders is detected 

manually by a neurophysiologist. The exact detection of the borders is difficult and especially 

detecting the transition between the STN and the substantia nigra pars reticulata. Consequently, 

demarcation may be inaccurate, leading to sub-optimal location of the DBS lead and inadequate 

clinical outcomes.  

Methods: We present machine learning classification procedures that utilize microelectrode 

recordings power spectra and allow for real time, high accuracy discrimination between STN and 

substantia nigra pars reticulata.  

Results: A support vector machine procedure was tested on microelectrode recordings from 58 

trajectories that included both STN and substantia nigra pars reticulata that achieved a 97.6% 

consistency with human expert classification (evaluated by 10-fold cross validation). We used the 

same dataset as a training set to find the optimal parameters for a hidden Markov model using 

both microelectrode recordings features and trajectory history to enable a real-time classification 

of the ventral STN border (STN exit). Seventy-three additional trajectories were used to test the 

reliability of the learned statistical model in identifying the exit from the STN. The hidden 

Markov model procedure identified the STN exit with an error of 0.04 ± 0.18 mm and detection 

reliability (error < 1 mm) of 94%.  

Conclusion: The results indicate that robust, accurate and automatic real-time 

electrophysiological detection of the ventral STN border is feasible.  
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INTRODUCTION 

Surgical treatment for advanced Parkinson’s disease (PD) includes high-frequency deep brain 

stimulation (DBS) of the subthalamic nucleus (STN), which has proven to be surgically safe and 

beneficial over time.
1–4

 In some patients, mood disorders such as depression
5
 or manic 

symptoms
6–11

 may be observed after stimulation as a result of  suboptimally placed DBS leads. 

By contrast, the combined stimulation of the substantia nigra pars reticulata (SNr) and STN may 

improve freezing of gait in patients with advanced PD.
10,11

 Therefore, accurate differentiation of 

the STN from the  SNr is essential for achieving optimal therapeutic benefit while avoiding 

psychiatric complications. 

 

Microelectrode recordings (MERs) along pre-planned trajectories are often used for improved 

delineation of the location of the STN during DBS surgery for Parkinson’s disease. The detection 

of the dorsolateral region of the STN is based on  clear-cut changes in electrical activity in the 

form of a sharp rise in the total power of the MER (as measured by the root mean square, 

RMS),
12

 the tremor-frequency, and the β-oscillatory activity (13–30 Hz).
13

 In contrast, several 

factors can make electrophysiological determination of the ventral STN border more difficult, 

and in particular an uninterrupted STN-SNr transition because in this case there is no drop in 

activity (or RMS). In addition, the cells in the STN ventral domain have firing characteristics 

(reduced β band and tremor frequency oscillations) resembling SNr cells.
14–18

 Finally, 

electrophysiological determination of the STN exit can be challenging because white matter gaps 

in the STN may lead to erroneous early detection of STN exit.
12

 Therefore, the 

Page 4 of 58

John Wiley & Sons

Movement Disorders

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

5 

 

 

 

electrophysiological determination of the STN ventral border can be ambiguous and occasionally 

difficult to define. 

 

Although recent imaging studies have been able to improve the differentiation between the STN 

and the SNr,
19

 electrophysiology is still necessary to identify  and verify the STN-SNr transition 

intraoperatively. To facilitate detection of the transition, this article describes a new automatic, 

reliable procedure for locating the STN exit. Earlier  automatic methods that use RMS values
12,20–

23
 are successful in identifying  STN-white matter (STN-WM) transitions, but are not as good for 

the direct STN-SNr transition. To improve the STN-SNr transition and STN lower border 

detection, we developed a computational analysis procedure that capitalizes on  several features 

from the power spectra of the MER and allows for high accuracy discrimination between the 

STN and the SNr.  

 

PATIENTS AND METHODS 

 

Patients and Surgery 

MERs were analyzed from 131 microelectrode trajectories that passed through both the STN and 

SNr of 81 Parkinson’s disease patients undergoing bilateral STN DBS implantation. The patients' 

demography and clinical state were as follows: mean age (62.1 years), mean disease duration 

(10.3 years), 36% female, mean unified Parkinson's disease rating scale - part III (UPDRS III) 

score OFF/ON therapy before surgery (51.1/19.4), and mean levodopa equivalent dosage 

(LED) before surgery (849.6 mg/day). Patient demographic information appears in Supporting 
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Information Table S4. This study was authorized and approved by the Institutional Review Board 

of Hadassah Hospital in accordance with the Helsinki Declaration (reference code: HMO-0064-

12). All patients were awake during surgery. Further details on the surgical procedure and data 

acquisition can be found in our previous reports.
12,23

 

 

Microelectrode recordings 

For both the left and right hemispheres, one or two parallel microelectrodes were inserted and the 

recording started 10 mm above the calculated target. Our trajectories followed a double-oblique 

approach towards the dorsolateral STN target. In most cases, two microelectrodes were used (Fig. 

1A): a ‘central’ electrode was directed at the center of the dorsolateral STN target (as per 

imaging) and often traversed STN and entered SNr without passing through the white matter. An 

‘anterior’ electrode was advanced 2 mm anterior to the central electrode (in the parasagittal 

plane) and therefore crossed STN-SNr area in a more ventral plane. In contrast to the central 

electrode, the anterior electrode often passed through the white matter before it entered the SNr. 

Analysis was not based on continuous recordings during the entire advance towards the 

dorsolateral STN target, but rather on segments of data recorded at specific points (without 

electrode movement; Fig. 1B). Segments of data were recorded for at least 4 seconds, after 0.5 

seconds of lowering the electrode. Further details on the microelectrode recordings and the 

intervals of the depths are presented as supporting information. 

  

Neural Datasets 
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We divided our neuronal database into two parts. Training dataset was composed of 58 

trajectories (obtained from 30 PD patients) containing 2678 stable MERs recorded in the white 

matter before the STN, STN dorsolateral oscillatory region (DLOR), STN ventromedial non-

oscillatory region (VMNR), white matter after STN and SNr. A subset of this dataset, containing 

1720 MERs from the dorsal and ventral STN as well as SNr, was used for the support vector 

machine (SVM) procedure. Training dataset of 58 trajectories was also used to find the optimal 

parameters for the hidden Markov model (HMM). Seventy-three additional trajectories recorded 

from 51 other patients, and yielding 4526 stable MERs (test dataset) were used solely to test the 

robustness of the HMM detection. 

 

Root Mean Square (RMS) 

The RMS estimate was calculated from the multi-unit activity recorded by the microelectrode at 

each electrode depth. RMS values are susceptible to electrode properties (e.g., electrode 

impedance);
12

 hence, the RMS was normalized by the pre-STN (white matter) baseline RMS,
12,23

 

creating what we term the normalized RMS (NRMS).  

 

Power spectral density (PSD) 

Visual inspection of the average STN and SNr power spectra revealed significant differences in 

the 5-300 Hz domain. To identify the frequency band that contained the largest difference 

between the STN and the SNr we divided the 5-300 Hz range of the power spectra into 10 

approximately logarithmically spaced bands. For each band we calculated the mean power for 

each MER, and then evaluated the difference in the mean power between the STN and the SNr. 
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Using this method we identified which frequency bands had the largest difference between the 

STN and the SNr.  Additional details are presented in the supporting information.  

 

Support vector machine (SVM) discrimination of STN and SNr MERs 

In machine learning, SVMs are supervised learning models that are specifically designed to solve 

a classification problem offline, after all the data have been collected. For our SVM analysis, 

measurements in both time and frequency domains (based on the NRMS and power spectra of the 

MERs) were used as features for the SVM classification. The classification procedure used the 

NRMS and the ”100-150 Hz / 5-25 Hz Power Ratio” features, as well as their class label (STN or 

SNr) for each of the 1720 MERs in the training dataset. The performance of the SVM classifier 

was evaluated by 10-fold cross validation. Additional details are presented in the supporting 

information.  

 

The SVM requires labeling the MERs of each region, which is not amenable to real time use. 

Here we used the SVM to identify which features had the most information in terms of 

discriminating regions. However, once the optimal features had been selected, the SVM was no 

longer needed or used.   

 

The Hidden Markov Model  

The HMM takes the set of features extracted from the raw data as input, and provides the output 

clustering in real time. In previous reports,
23,24

 the HMM procedure was used to discriminate the 

STN from the white matter. This study goes beyond these previous works by designing a HMM 
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procedure with improved ability to detect the STN-exit by delineating the borders between the 

STN-SNr (even for cases without a WM gap between the STN and the SNr). Details on the 

HMM are provided in the supporting information. 

 

All statistical analyses were performed using custom-made MATLAB 7.5 routines (Mathworks, 

Natick, MA). The statistics presented in this report, if not specified otherwise, are the mean ± 

standard error of the mean (SEM); the criterion for statistical significance was set at P < 0.05 for 

all statistical tests. 

 

RESULTS 

Power Spectra features help to discriminate STN from SNr recordings 

The NRMS values calculated from the MERs were very effective in detecting the STN border 

with the white matter. As presented in the three examples in  Figure 2A, top panels, the STN-

entry and STN-exit borders appear as a sharp increase and decrease in the NRMS, 

respectively.
23,12

 In these “easy” cases the electrode traversed the STN and entered the SNr after 

passing through the white matter. The power spectra of these SNr (Fig 2A bottom panels) depict 

a unique signature:  blue vertical lines indicating a reduction in relative power at lower 

frequencies. However, some trajectories lacked a clearly defined STN-exit (e.g., Fig. 2B). These 

are the “hard” cases in which there is no clear transient reduction in the NRMS (NRMS gap), 

most probably because the electrode traversed the STN and entered the SNr without passing 

through the white matter after the STN. Though the SNr cannot be identified by the NRMS in 

these cases, the SNr was identified by the electrophysiologist and can be seen in the power 
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spectra (Fig. 2B bottom) as depicted by the vertical blue lines. These examples suggest that 

power spectra characteristics can be used to assist in detection of the STN exit, especially for 

cases without a STN-WM transition and NRMS gap. 

 

To evaluate the ability of the NRMS to distinguish the STN from the SNr, we calculated the 

distribution of their NRMS values. Figure 3A shows the overlap in the NRMS distribution of 660 

MERs in STN DLOR, 990 MERs in the STN VMNR, and 155 MERs in the SNr (training 

dataset). The significant overlap between the different distributions suggests that there is no clear 

separation between the STN and the SNr using NRMS. In contrast, Fig 3B, illustrating the mean 

PSD of the STN and SNr recordings, suggests that features from the PSD could be used to 

discriminate STN from SNr. In line with the characteristic signature of the STN and SNr in the 

spectrograms (Fig 2), the average PSDs of the two STN domains and the SNr revealed different 

non-overlapping features. The mean SNr PSD (Fig. 3B, green trace) presented decreased activity 

in the 5-25 Hz band as compared to the mean PSD of the STN DLOR, and VMNR (Fig. 3B, red 

and blue traces). In addition, the mean PSD in the SNr displayed increased activity in the 85-300 

Hz band (Fig. 3B, green trace). 

 

To determine quantitatively which part of the power spectra enables the best discrimination of the 

STN from the SNr, we examined 10 (approximately logarithmically distributed) bands along the 

frequency axis in the power spectra. The mean power in two different frequency bands - high 

frequency (100-150 Hz) and low frequency (5-25 Hz) - provided the greatest discrimination 

between STN and SNr (discrimination matrix of 10 bands presented in the Supporting 
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Information Table S1). We therefore calculated the ratio of the power of these two frequency 

bands and termed this new feature the “100-150 Hz / 5-25 Hz Power Ratio”. Figure 3C shows 

very little overlap in the distributions of STN and SNr power ratio values. 

 

Support vector machine (SVM) analysis confirms the utility of the power ratio for STN-SNr 

discrimination 

An SVM classifier was used to examine the ability of the “100-150 Hz / 5-25 Hz Power Ratio” to 

provide a robust discrimination between the SNr and STN. Figure 4 shows the result of an SVM 

classifier that was trained and tested on 155 randomly selected samples from the STN and all 155 

samples from the SNr. A linear-kernel decision boundary was used to classify the training set as 

SNr (hollow square; green) or STN (hollow triangle; blue); then new data points were classified 

as SNr (solid square; green) or STN (solid triangle; blue). Yellow circles represent the support 

vectors defining the decision boundary between the STN and SNr samples. Figure 4 further 

demonstrates the absence of correlation between NRMS and the “100-150 Hz / 5-25 Hz Power 

Ratio”. Both of these characteristics reinforce the utility of the power ratio feature as an 

additional attribute for classifying MERs. The discrimination performance of the SVM classifier 

for the entire training dataset using the two features, NRMS and “100-150 Hz / 5-25 Hz Power 

Ratio” was evaluated by 10-fold cross validation and is presented as an error matrix in the 

Supporting Information Table S2. The overall classification accuracy rate was 97.6%. 

 

Hidden Markov model (HMM) analysis enables reliable detection of STN exit  
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The HMM procedure uses MER features and trajectory history to enable real time decisions as to 

electrode placement. The use of trajectory history in addition to the MER features enable the 

HMM procedure to "neglect" recording glitches that a classification method (e.g., SVM) would 

classify incorrectly. Our previous HMM procedures
23

 did not include the SNr as a possible state 

and did not use the high frequencies (100-150 Hz) of the power spectrum. Here we extended the 

HMM procedure to discriminate between the STN and SNr using the “100-150 Hz / 5-25 Hz 

Power Ratio” and NRMS features, together with the depth of the trajectory (i.e., estimated 

distance to the target). The distribution of STN-exit borders was evaluated, and revealed that 77 

out of 131 trajectories (59%) had STN-WM transitions, and 54 out of 131 trajectories (41%) had 

STN-SNr transitions. 

 

Figure 5 presents three examples of a typical trajectory’s NRMS and PSD as well as the “100-

150 Hz / 5-25 Hz Power Ratio” feature. At each depth along the trajectory during the implant 

process the NRMS and power spectra features of the MERs are continually calculated and 

updated. Based on these calculations a new assessment by the HMM is made automatically in 

real time. An expert physiologist lowers the electrode along the trajectory until the red line 

appears (i.e., as determined by the real time HMM analysis). This indicates that the STN ventral 

border has been reached, followed by either the SNr or white matter. The three example 

trajectories illustrate the direct transition from the STN to SNr. The red line in the top panel 

illustrates the direct STN-SNr transition defined by the real time HMM analysis. It takes 99 ms in 

real time to process a new trajectory and determine whether it is STN or not, as illustrated by the 
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HMM running time in Fig. 5. The time to analyze each subsequent MER is less than a ms per 

MER, making this a practical method for use during DBS surgery.   

 

For each of the 58 trajectories in the training dataset, the HMM parameters (transition and 

emission matrices) were estimated from the other 57 trajectories (leave-one-out cross-validation). 

The resulting mean (of all 58 trajectories) HMM transition and emission matrices are presented in 

the Supporting Information Table S3.  

 

The performance of the HMM was assessed with two measures.  The first is the mean OUT 

location error. It is defined as the difference between the location (Human Expert’s 

Classification), which is the location of the transition defined by the neurophysiologist, and 

location(HMM), which is the HMM inferred location of the transition, both measured in mm of 

estimated distance to the target. The second measure is the OUT transition error which is defined 

as an OUT location error greater than 1 mm. Hits were the number of correctly detected OUT 

transitions. Misses were the number of OUT transitions (according to the human expert’s 

decision) that the HMM procedure did not detect.  

 

The OUT location error for both STN-SNr and STN-WM demonstrated better mean and standard 

deviation than that found by previous methods.
12,23

 The performance of the OUT location error 

on the training dataset had an error of 0.1 ± 0.34 mm (mean ± standard deviation) with 2 misses 

out of 58 trajectories (97% Hits).  
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The HMM procedure has to deal with a heterogeneous variation of trajectories, as some 

transitions are from VMNR STN to SNr and others from white matter before STN to SNr. 

Because an automatic detection algorithm that can be used in the operating room needs to 

function on novel data without being continually adjusted, it is important to demonstrate that the 

HMM procedure can work with completely novel data. Therefore, 73 other trajectories (from 51 

patients, all trajectories included both STN and SNr) were evaluated by the HMM procedure. The 

HMM procedure identified the STN-exit with error of 0.04 ± 0.18 mm. Using the 1 mm 

threshold, the OUT transition error of the novel dataset committed 4 misses out of 73 trajectories 

(94% Hits), which is better than that found when applying the previous HMM procedure
23

 and 

Bayesian method
12

 (12 misses out of 73 trajectories, 83% hits, and error = 0.50 ± 0.59 mm, 

respectively). The performance of the new HMM procedure was shown to be robust to the 

specified threshold because threshold values of 0.5 mm and 0.15 mm produced similar 

quantitative results (4 and 7 misses out of 73 trajectories, respectively).  

 

DISCUSSION 

We described a computational machine-learning procedure with a new feature; namely, the ratio 

of high frequency (100-150 Hz) power to low frequency (5-25 Hz) power, which enables  high 

accuracy discrimination of the STN from SNr. We used a SVM procedure to verify that the “100-

150 Hz / 5-25 Hz Power Ratio” is a reliable feature for discriminating the STN and SNr 

populations. Then, we utilized an HMM procedure using the MER features, together with the 

trajectory history to detect the STN exit either to the white matter (WM) or SNr.  
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The MERs along pre-planned trajectories are commonly used to confirm the STN territory during 

DBS surgery for Parkinson’s disease; however, there is a lack of consensus on whether the MER 

allows for reliable separation between the STN exit point and the SNr entry point. Across the 

ventral region of the STN there are fewer kinesthetic neurons,
22

 and the STN VMNR neurons are 

characterized by consistently reduced β band and increased gamma (30-100 Hz) activity.
13

 

Similarly, the discharge pattern of the neurons in the SNr (below the STN target) lack the β band 

and tremor frequency oscillations, but have  increased gamma activity.
14–18

 In addition, islands of 

cells have been observed with firing characteristics of both SNr and STN cells.
22

 Therefore, the 

electrophysiological determination of the transition from the STN to SNr is ambiguous and 

difficult to evaluate. 

 

Several studies have developed automatic detection and visualization not only for  the STN, but 

also  the SNr based on objective and quantitative MER features.
12,20,22,25–27

 Some of these studies 

have used features that require spike detection algorithms to identify the firing pattern.
25–27

 While 

these features may aid in detecting the STN ventral border near the SNr, it is still computationally 

challenging to calculate neuronal spike characteristics in a real-time intra-operative scenario.
12

 

Moreover, the ideal isolation of single units requires 5-10 microns steps of electrodes and is very 

time-consuming. In contrast, NRMS values that are based on unsorted multi-unit activity are easy 

to measure. The STN-entry and STN-exit  often manifest as a sharp increase and decrease in the 

NRMS, respectively.
23,12

 Some studies have used NRMS together with spectral features of the 

analog signal, which are computationally efficient to calculate.
20,22,27

 However, these spectral 
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features do not lead to reliable or robust identification of the transition between the STN and the 

SNr. Here, we divided the 5-300 Hz range power spectra into frequency bands. This division 

allowed us to determine which frequency bands contained the largest difference between the STN 

and the SNr, and to accurately detect the STN ventral border.  

 

When implementing the NRMS and features from the power spectra, there are several ways to 

differentiate the STN from the SNr using automatic detection methods. Some studies have 

proposed rule-based detection methods;
22,27

 however, they are unable to detect the direct STN-

SNr transitions. For example, despite the fact that Cagnan et al.
27

 used the power spectra of 

tremor, and the alpha band (3–12 Hz), beta band (13–30 Hz) and gamma band (31–100 Hz) as 

features, their algorithm still required a white matter gap in the trajectory between the STN and 

the SNr to detect the SNr. Furthermore, rule-based detection systems tend to be overly complex 

and may not generalize to other surgical centers. Other studies
12,23,25

 have used machine learning 

techniques to automatically extract the “rules” or decision boundaries to  discriminate between 

the STN and the SNr. These machine learning procedures are either unsupervised, and involve 

extracting patterns using unlabeled training data (that  still require labeling of the output),
25

 or 

supervised, that require the  labeling of the electrophysiological signals used for training.
12,23

 For 

example, Wong et al.
25

 used a clustering algorithm (unsupervised machine learning) that returns a 

pre-specified number of clusters, but then requires the human observer to label the clusters. The 

main drawback of these techniques is that they do not take the previous location of the MERs 

into account when determining the electrode's current location. A supervised technique that uses 

the electrode's location is HMM. For example, Zaidel et al.
23

 combined the power spectra of beta 

Page 16 of 58

John Wiley & Sons

Movement Disorders

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

17 

 

 

 

band features and NRMS to locate the STN and its sub-territories. The two advantages of the 

HMM procedure are the short recording time needed for location analysis and low computational 

cost. Our approach goes beyond this previous work by delineating the borders between the STN-

SNr which thus enable intra-operative application with greater accuracy.  

 

Accurate discrimination between the STN and the SNr is of crucial importance for achieving 

optimal therapeutic benefits while avoiding psychiatric complications for PD DBS procedures. 

The beneficial effects of bilateral STN DBS on motor symptoms and quality of life have been 

repeatedly confirmed in patients with advanced PD;
28

 however, psychiatric complications 

induced by STN DBS have also been reported.
29,30

 In some patients with PD with impulse control 

disorders, their  abnormal behavior may be provoked by stimulation with a ventral contact of the 

DBS lead, and suppressed by switching off this contact.
6–9

 It also has been reported that 

manic
31,32

 and depressive
5
 symptoms are induced by stimulation of active contacts located in the 

SNr. On the other hand, the SNr is thought to be particularly involved in balance control during 

gait.
33

 The combined stimulation of the SNr and the STN has been reported to improve axial 

symptoms (including freezing of gait, balance, and posture) compared to standard STN 

stimulation.
10,11

 In summary, automatic and reliable localization of the direct STN-SNr transition 

and STN lower border detection could lead to improved localization of DBS leads and better 

DBS clinical outcomes. It takes 99 ms in real time to process a new trajectory and decide whether 

it is STN or not, making this a practical method for use during DBS surgery. This analysis tool 

can be easily learned and employed in the DBS operating room. Future studies might incorporate 
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MER data from multiple centers to test the applicability of these algorithms for automatic 

navigation in DBS surgery. 
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Supporting Data 

Additional Supporting Information may be found in the online version of this article on the 

publisher’s website. 
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SUPPORTING INFORMATION  

 

Microelectrode recordings 

The microelectrode recording data were acquired with the MicroGuide system 

(AlphaOmega Engineering, Nazareth, Israel). The signal was amplified by 10,000, 

band-passed filtered from 250 to 6,000 Hz using a hardware four-pole Butterworth 

filter, and sampled at 48 kHz by a 12-bit A/D converter (using ±5 V input range).  

 

A typical trajectory was ~60° from the axial anterior commissure-posterior 

commissure (AC-PC) plane and ~15° from the mid-sagittal plane. The trajectory 

was further adjusted for each patient to avoid the cortical sulci, the ventricles and 

major blood vessels.
1
 The electrodes were advanced in small discrete steps toward 

the estimated target. Step size (ranging from 400 µm to 100 µm in our recordings) 

was controlled by the neurophysiologist to achieve optimal identification of the 

upper and lower borders of the STN. Typically, shorter steps (~100 µm) were used 

when the electrode was advanced closer to and inside the presumed location of the 

STN.  

 

We did not attempt to isolate single units during the physiological mapping and our 

analysis below was conducted on   the unsorted analog 250-6000Hz band-passed 

filtered data (multi-unit activity). Each segment along the trajectory (multi-unit 

traces) was recorded for at least 4 seconds, 0.5 seconds after electrode movement. A 

few segments were recorded for longer periods of time than others because 

responses to active and passive limb movement were tested (time ranged from 4 to 

90 seconds). Each multi-unit signal was subjected to stability analysis using a 

custom-made algorithm.
2
 Stability analysis divided each data trace into consecutive 

segments of 50 ms and computed the RMS for each segment. A section of the trace 

was considered stable when the RMS values of all corresponding segments lay 

within one standard deviation of the mean RMS. The longest stable section of the 

data trace was then selected for further analysis, and the rest of the trace was 

discarded. All stable sections included in the analysis were longer than 1.5 seconds.  
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Power spectral density (PSD) 

The PSD was calculated from the mean-subtracted absolute value of the analog 

signal.
3,4

 This absolute procedure was needed   to expose the frequency band of 

interest (below 250 Hz) since the original analog data were band-pass filtered at 

250-6000 Hz (the 250 Hz cut off was used because of operating room constraints). 

The average power spectral density was calculated for each trace using Welch’s 

method, with a 3 second Hamming window (50% overlap) and a spectral resolution 

of 1/3 Hz (sampling frequency 48 kHz, number of discrete Fourier transform points 

= 144,000). Values within 2 Hz of the 50 Hz power supply artifacts and their 100 

and 150 Hz harmonics were removed and interpolated from the surrounding values. 

To normalize the PSD we divided the PSD by the total power of the signal from 0 

to 24 KHz (excluding PSD values within 2 Hz of the 50 Hz power supply artifacts 

and their 100 and 150Hz harmonics) creating a relative PSD.
2
 This normalization 

revealed the relative power across frequencies.  

 

Discrimination matrix of the STN-SNr 

Table S1: The frequency dependence of the STN-SNr discrimination matrix. 

 

Discrimination 

matrix 

Width of each band [Hz] 

10 Hz 20 Hz 50 Hz 100 Hz 

S
ta
r
tin
g
 

In
d
e
x
 [H
z
] 

 

5 Hz 4.28 5.30 1.71 0.04 

50 Hz NA 2.62 2.02 2.41 

100 Hz NA NA 15.55 4.13 

200 Hz NA NA NA 1.99 

 

Values depict the discrimination between STN and SNr of 10 approximately 

logarithmically spaced bands along the 5-300 Hz range of the power spectra. The 

band starts at the starting index and has the specified width (e.g., top left box is the 

5-15 Hz band). The starting index of the band width was simultaneously increased 

(e.g., for a starting index = 200 Hz, we only tested a width of 100 Hz, 200-300 Hz 

band). For each band the mean power (V
2
/Hz) for each MER was calculated. Then, 

for each band the absolute value of the difference in the mean power between the 

STN and the SNr was obtained. Finally, the results were normalized by the square 

root of the sum of the variances of the STN and the SNr to yield the discrimination 

index (V
2
/Hz).  Maximal STN-SNr discrimination was obtained in two different 
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frequency bands: high frequency (100-150 Hz) with a value of 15.55, and low 

frequency (5-25 Hz) with a value of 5.3. 

 

 

Support vector machine discrimination performance 

An SVM is a classification method that finds the linear boundary that maximizes 

the separation between two classes. A linear SVM with a linear-kernel alogrithm
5,6

 

was used to provide high-performance discrimination between the STN and SNr 

populations. The SVM linear boundary is calculated solely from those MERs that 

lie close to the interface between the two groups of interest (the support vectors, see 

figure 4).  

 

The performance of the SVM classifier was evaluated by 10-fold cross validation. 

First, the MERs from the entire training dataset were divided randomly into training 

(90% of the MERs) and test sub-sets (10% of the MERs). The model was trained by 

finding the optimal separating boundary based on the features from the training 

MERs. Then, the SVM was used to predict the class labels of the test sub-set and 

the predictions were compared with the known values to assess accuracy.
7
 This 

procedure was repeated 10 times, using different and non-overlapping 10% of the 

MERs for testing in each repetition, and the remaining 90% of the MERs for 

training on that repetition. The 10 results were averaged to produce the performance 

estimation.  

 

 

Table S2: SVM discrimination performance  

 

The discrimination performance of the SVM classifier for the training dataset.  The 

NRMS and “100-150 Hz / 5-25 Hz Power Ratio” were evaluated by the 10-fold 
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cross validation method and are presented as an error matrix. TP, true positive; 

TN, true negative; FN, false negative; FP, false positive.  

 

The Hidden Markov Model  

 

An HMM procedure was used to estimate the state of the electrode at each depth 

along the trajectory. The input data to the HMM procedure were made up of a 

sequence of single values based on the features of the MER. The features that we 

used were NRMS, beta power (13–30 Hz) from the PSD,
8
 and the ”100-150 Hz / 5-

25 Hz Power Ratio” implemented in the SVM. To assess accuracy, the HMM 

predictions were compared to the electrophysiologist’s determination of the location 

of the STN ventral border (STN exit). 

 

For the HMM procedure, a trajectory is a sequence of states, and at any depth along 

the trajectory the electrode exists in one of a finite set of states (functionally 

discrete state model, presented in Figure 1C).  

1. White matter before STN  

2. Dorso lateral oscillatory region (DLOR) STN  

3. Ventral medial non oscillatory region (VMNR) STN 

4. STN exit 

a. White matter between STN and SNr  

b. or SNr  

 

A typical trajectory state sequence proceeds through the first three states 

consecutively and then to the white matter between the STN and SNr (solid line in 

Figure 1C). However, not all trajectories have clearly defined STN-WM transitions; 

hence, a trajectory may enter the SNr immediately after the STN (dotted line). In 

addition, a trajectory can start in the white matter and enter the VMNR or go 

directly into the SNr (dashed lines) without passing through the STN.  

 

In the HMM, transitions between states take place according to (1) a fixed 

probability (i.e., transition matrix and emission matrix) depending solely  on the 

state of the electrode at the depth immediately preceding the current state and (2) a 

probability value calculated from the current MER. Note that we used a feed-
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forward HMM procedure; i.e., as a sequence progresses, it is possible to remain in 

the same state, but it is not possible to return to a previous state (e.g., from the SNr 

to the STN state).  

 

 

Table S3: The HMM transition and emission matrices. 

 

A 

Transition matrix To 

State-1 State-2 State-3 State-4 

F
ro
m
 

State-1 0.9510 0.0280 0.0103 0.0107 

State-2 0 0.9601 0.0397 0.0002 

State-3 0 0 0.9617 0.0383 

State-4 0 0 0 1.0000 

 

B 

Emission 

matrix 

Observations 

Low-

NRMS 

Interme

diate-

NRMS 

high-NRMS 

High mean beta Low mean beta High to 

Low 

Power 

Ratio 

High 

max 

beta 

Low 

max 

beta 

High 

max 

beta 

Low 

max 

beta 

S
ta
te 

State-1 0.8685 0.0261 0.0348 0.0044 0.0039 0.0254 0.0365 

State-2 0.3056 0.0263 0.3786 0.0434 0.0336 0.1755 0.0367 

State-3 0.3167 0.0534 0.0769 0.0239 0.0780 0.3694 0.0814 

State-4 0.5382 0.1881 0.0130 0.0012 0.0207 0.1054 0.1330 

 

 

(A) The HMM transition matrix. Values depict the probability of transition between 

states (or remaining in the current state) for each step in the sequence. The states are 

defined as follows: 1 – WM before the STN; 2 – in the dorsolateral oscillatory 

region (DLOR) of the STN; 3 – in the ventro medial non-oscillatory (VMNR) of the 

STN; 4 – STN exit (STN-SNr or STN-WM). (B) The HMM emission matrix. 

Values depict the probability of each observation given the state. The states are 

defined as in A. The seven columns correspond to the seven observations detailed 

in the table header as follows: 

- All MERs with NRMS<1.25 (threshold 1); i.e., below a 25% increase from the 

NRMS baseline (which is equal to 1 due to the normalization) were clustered 

together (Low-NRMS observation).  
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- The mean deviation from threshold 1 (i.e. NRMS - 1.25) of the remaining 

MERs was calculated. Threshold 2 was defined as threshold 1 plus 25% of the 

calculated mean deviation. MERs with a NRMS between threshold 1 and 

threshold 2 were clustered together (Intermediate-NRMS observation), and 

MERs with NRMS> threshold 2 were further divided according to their 

(maximum and mean) beta (13–30 Hz) oscillatory activity (above or below the 

median), resulting in four more (high-NRMS) observations. 

- A high to low power ratio observation was calculated for all the MERs and was 

independent of the NRMS observations. 
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Patient No. Sex Age Disease duration

(years) (years)

1 m 69 8 55 13 1500

2 f 61 6 64 32 N/A

3 m 66 5 51 22 750

4 f 67 5 53 29 1000

5 m 67 26 55 24 550

6 m 59 8 48 13 570

7 m 52 7 38 12 540

8 m 64 8 41 6 825

9 m 60 5 39 15 1580

10 m 42 25 77 18 500

11 m 60 7 85 30 870

12 m 75 4 39 28 562.5

13 m 69 7 45 17 750

14 f 74 13 33 10 830

15 m 63 6 59 18 810

16 m 65 8 48 12 750

17 f 67 15 35 11 1147.5

18 m 59 8 36 10 900

19 f 57 8 48 19 680

20 m 53 3 49 6 200

21 m 64 4 56 34 850

22 m 74 16 57 31 750

23 f 71 22 51 35 2000

24 f 66 4 46 16 750

25 m 50 10 47 35 93.7

26 m 64 9 69 48 900

27 m 62 30 56 22 1120

28 m 66 10 63 11 600

29 m 61 7 32 7 750

30 f 59 13 75 19 1000

31 m 54 9 75 41 500

32 m 64 12 35 2 875

33 m 50 20 53 39 N/A

34 f 73 5 73 42 1250

35 m 57 7 78 37 1370

36 m 69 8 50 10 1140

37 m 66 9 34 14 1000

38 m 58 10 47 13 N/A

39 m 58 12 47 11 1120

40 f 62 14 37 9 1000

41 m 76 7 32 19 1120

42 f 62 13 32 6 925

43 m 70 10 N/A N/A 950

44 f 59 10 50 14 455

45 f 61 10 N/A N/A 1000

46 m 66 10 68 27 1250

47 m 73 20 60 16 1496

48 m 60 8 46 21 500

49 f 64 9 21 4 917.5

50 m 54 5 86 42 500

51 m 59 4 64 26 1000

52 f 60 8 44 12 975

53 m 78 10 N/A N/A 2075

54 m 62 17 72 22 1550

55 f 70 13 41 13 400

56 f 69 9 33 6 1875

57 m 53 9 41 10 375

58 m 72 12 N/A N/A 1125

59 f 50 8 N/A N/A 550

60 f 45 9 82 55 700

61 m 59 9 42 14 150

62 m 62 12 55 19 1005

63 m 62 4 63 17 1080

64 m 52 8 27 3 510

65 f 52 10 35 9 770

66 f 66 15 48 13 1540

67 m 49 13 63 18 660

68 f 48 18 47 20 300

69 m 60 11 56 14 850

70 f 39 10 47 16 512.5

71 m 61 11 44 10 500

72 f 50 25 50 17 400

73 f 72 7 60 24 100

74 f 51 4 20 7 N/A

75 m 73 8 55 27 562.5

76 m 66 6 75 38 450

77 f 73 10 45 18 1750

78 f 62 20 56 9 517.5

79 m 74 6 61 31 750

80 f 67 8 48 3 250

81 m 72 6 42 33 640

sum / 52 m 62.1 ± 8.3 10.3 ± 5.5 51.1 ± 14.8 19.4 ± 11.51 849.6 ± 425

mean ± SD 29 f

UPDRS 3 (OFF/ON medication) : clinician-scored motor evaluation (range 0–108)

Table S4: Patient characteristics

N/A : Not Available

LED : Levopoda Equivalent Dose

Pre-operative

UPDRS 3 (OFF) UPDRS 3 (On) LED
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MRI image that shows typical anatomical targeting 

 

 

T2 weighted Axial MR image 6mm below the ACPC plane with coronal and 

sagittal reconstructions. The STN is shown approximately outlined in yellow, the 

SNr is shown approximately outlined in green. The dotted red lines represent 

possible examples of MER tracks that traverse the STN and may enter the SNR. 

Although the target is the dorsolateral part of the STN, we aim to have as long a 

trajectory as possible traversing the STN through the target point. 
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Overview of STN targeting. (A) Schematic diagram of a typical trajectory of two parallel microelectrodes 
showing subcortical structures. STN-Subthalamic nucleus, SNr- Substantia nigra reticulate, ZI – zona 

inccerta (B) One-second example of 14 representative raw signal traces (in descending order)  out of  the 
82 recorded signal traces at various depths along the trajectory (a single DBS track) from a Parkinson's 

disease patient. The signal at each position was recorded for at least 4 seconds. The segment at 2.55 mm 
estimated distance to target (EDT) was recorded for a longer period of time than the others because 

responses to active and passive limb movements are tested. The traces indicate regions of internal capsule 
(white matter), dorsalateral oscillatory region (DLOR) STN, ventral medial non oscillatory region (VMNR) 

STN, white matter between STN and substantia nigra pars reticulata (SNr); vertical bar indicates 256 µv, 
horizontal bar indicates 100 ms. (C) Functional state model represents the anatomy which is sequentially 
encountered during microelectrode recording of the STN detection. At all depths along the trajectory the 

electrode is in one of a finite set of states. Arrows between the states represent the possible state 
transitions. Solid lines depict a typical trajectory state sequence that proceeds through the first three states 
consecutively and then to the white matter between the STN and SNr. Dotted lines depict: 1) a trajectory 

that enters the SNr immediately after the STN, 2)  a trajectory that starts in the white matter and enters the 
VMNR, 3) one that goes directly into the SNr without passing through the STN.  

Figure 1  
89x44mm (600 x 600 DPI)  
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STN-white matter transition versus STN-SNr transition. (A) Clearly defined STN-WM transition in three 
example trajectories (from three patients). The top three graphs represent the normalized root mean square 

(NRMS) analysis as a function of EDT. The bottom three graphs represent the power spectral distribution 

(PSD) spectrogram of the data, in relation to EDT on the x-axis. The  arrow on each trajectory points to the 
transition between the STN and the WM (determined by an expert neuorophysiologist). The green dashed 
lines represent the baseline of the NRMS (i.e., WM). (B) The same as in A, but for the STN-SNr transition. 

The power spectral density color-scale represents 10 log10 (power spectral density /average power spectral 
density). The  arrow on each trajectory points tothe transition between the STN and the SNr (determined by 
an expert neuorophysiologist). EDT = estimated distance to target (defined as the dorsolateral STN target 

according to preoperative imaging).  
Figure 2  

165x192mm (300 x 300 DPI)  
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“100-150 Hz / 5-25 Hz Power Ratio” separates STN from SNr better than NRMS. (A) The left hand figure 
illustrates the NRMS distribution for dorsal STN (red), ventral STN (blue), SNr (green), white matter before 
STN (white), white matter after STN (gray). Right hand figure same as left, but three subcortical structures 

are superimposed on the x-axis, and show the overlap in NRMS distribution of the STN and the SNr.  (B) The 
left hand figure illustrates the power spectral density as a function of the frequency, with a linear scale plot 
in the DLOR STN (red), VMNR STN (blue), SNr (green). The right hand figure is the same as left, but with a 
logarithmic scale plot of the x-axis. The shaded regions mark SEMs. (C) The left hand figure illustrates “100-

150 Hz / 5-25 Hz Power Ratio” distribution in five regions. Right figure same as left, but has the three 

subcortical structures superimposed on the x-axes.  
Figure 3  

181x215mm (300 x 300 DPI)  
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A linear support vector machine classifier provides high performance discrimination between the STN and 
SNr populations. A support vector machine (SVM) classifier was trained and tested on 155 randomly 

selected samples from the STN and all 155 samples from the SNr, using NRMS and the “100-150 Hz / 5-25 

Hz Power Ratio” features. The linear-kernel decision boundary is used to classify the trained data for the SNr 
(hollow square; green) and the STN (hollow triangle; blue); then new data points are classified as SNr (solid 

square; green) or STN (solid triangle; blue). Yellow circles (within the hollow squares and triangles) 
represent the support vectors defining the decision boundary between the STN and SNr samples.  

Figure 4  
61x55mm (300 x 300 DPI)  
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Robust detection of the STN-SNr transition by the “100-150 Hz / 5-25 Hz Power Ratio” feature. Top and 
middle panels illustrate a typical trajectory’s NRMS and PSD, respectively. Bottom panel represents the 

“100-150 Hz / 5-25 Hz Power Ratio” feature as a function of the estimated distance to target (EDT).  The 

three sample trajectories illustrate the direct transition from the STN to SNr. The red line in the top panel 
illustrates the STN-SNr transition defined by the real time HMM analysis. The dashed green lines represent 

the baseline of the NRMS (i.e., WM). Each segment along the trajectory was recorded for at least 4 seconds, 
except for a few segments where responses to active and passive limb movements were tested. The data 
acquisition arrow marks the real duration of a single track of the example trajectories as a function of EDT. 

The total recording time of a single DBS track of the example trajectories from the left to the right 
column:  992 seconds, 622 seconds and 608 seconds. The HMM running time arrow shows the duration of 

the HMM processing as a function of the number of MERs (lower arrow). MERs = micro-electrode recordings. 
Figure 5  

190x244mm (300 x 300 DPI)  
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Abstract 

Background: Microelectrode recordings along pre-planned trajectories are often used for 

accurate definition of the subthalamic nucleus (STN) borders during deep brain stimulation 

(DBS) surgery for Parkinson’s disease. Usually, the demarcation of the STN borders is detected 

manually by a neurophysiologist. The exact detection of the borders is difficult and especially 

detecting the transition between the STN and the substantia nigra pars reticulata. Consequently, 

demarcation may be inaccurate, leading to sub-optimal location of the DBS lead and inadequate 

clinical outcomes.  

Methods: We present machine learning classification procedures that utilize microelectrode 

recordings power spectra and allow for real time, high accuracy discrimination between STN and 

substantia nigra pars reticulata.  

Results: A support vector machine procedure was tested on microelectrode recordings from 58 

trajectories that included both STN and substantia nigra pars reticulata that achieved a 97.6% 

consistency with human expert classification (evaluated by 10-fold cross validation). We used the 

same dataset as a training set to find the optimal parameters for a hidden Markov model using 

both microelectrode recordings features and trajectory history to enable a real-time classification 

of the ventral STN border (STN exit). Seventy-three additional trajectories were used to test the 

reliability of the learned statistical model in identifying the exit from the STN. The hidden 

Markov model procedure identified the STN exit with an error of 0.04 ± 0.18 mm and detection 

reliability (error < 1 mm) of 94%.  

Conclusion: The results indicate that robust, accurate and automatic real-time 

electrophysiological detection of the ventral STN border is feasible.  
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INTRODUCTION 

Surgical treatment for advanced Parkinson’s disease (PD) includes high-frequency deep brain 

stimulation (DBS) of the subthalamic nucleus (STN), which has proven to be surgically safe and 

beneficial over time.
1–4

 In some patients, mood disorders such as depression
5
 or manic 

symptoms
6–11

 may be observed after stimulation as a result of  suboptimally placed DBS leads. 

By contrast, the combined stimulation of the substantia nigra pars reticulata (SNr) and STN may 

improve freezing of gait in patients with advanced PD.
10,11

 Therefore, accurate differentiation of 

the STN from the  SNr is essential for achieving optimal therapeutic benefit while avoiding 

psychiatric complications. 

 

Microelectrode recordings (MERs) along pre-planned trajectories are often used for improved 

delineation of the location of the STN during DBS surgery for Parkinson’s disease. The detection 

of the dorsolateral region of the STN is based on  clear-cut changes in electrical activity in the 

form of a sharp rise in the total power of the MER (as measured by the root mean square, 

RMS),
12

 the tremor-frequency, and the β-oscillatory activity (13–30 Hz).
13

 In contrast, several 

factors can make electrophysiological determination of the ventral STN border more difficult, 

and in particular an uninterrupted STN-SNr transition because in this case there is no drop in 

activity (or RMS). In addition, the cells in the STN ventral domain have firing characteristics 

(reduced β band and tremor frequency oscillations) resembling SNr cells.
14–18

 Finally, 

electrophysiological determination of the STN exit can be challenging because white matter gaps 

in the STN may lead to erroneous early detection of STN exit.
12

 Therefore, the 
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electrophysiological determination of the STN ventral border can be ambiguous and occasionally 

difficult to define. 

 

Although recent imaging studies have been able to improve the differentiation between the STN 

and the SNr,
19

 electrophysiology is still necessary to identify  and verify the STN-SNr transition 

intraoperatively. To facilitate detection of the transition, this article describes a new automatic, 

reliable procedure for locating the STN exit. Earlier  automatic methods that use RMS values
12,20–

23
 are successful in identifying  STN-white matter (STN-WM) transitions, but are not as good for 

the direct STN-SNr transition. To improve the STN-SNr transition and STN lower border 

detection, we developed a computational analysis procedure that capitalizes on  several features 

from the power spectra of the MER and allows for high accuracy discrimination between the 

STN and the SNr.  

 

PATIENTS AND METHODS 

 

Patients and Surgery 

MERs were analyzed from 131 microelectrode trajectories that passed through both the STN and 

SNr of 81 Parkinson’s disease patients undergoing bilateral STN DBS implantation. The patients' 

demography and clinical state were as follows: mean age (62.1 years), mean disease duration 

(10.3 years), 36% female, mean unified Parkinson's disease rating scale - part III (UPDRS III) 

score OFF/ON therapy before surgery (51.1/19.4), and mean levodopa equivalent dosage 

(LED) before surgery (849.6 mg/day). Patient demographic information appears in Supporting 
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Information Table S4. This study was authorized and approved by the Institutional Review Board 

of Hadassah Hospital in accordance with the Helsinki Declaration (reference code: HMO-0064-

12). All patients were awake during surgery. Further details on the surgical procedure and data 

acquisition can be found in our previous reports.
12,23

 

 

Microelectrode recordings 

For both the left and right hemispheres, one or two parallel microelectrodes were inserted and the 

recording started 10 mm above the calculated target. Our trajectories followed a double-oblique 

approach towards the dorsolateral STN target. In most cases, two microelectrodes were used (Fig. 

1A): a ‘central’ electrode was directed at the center of the dorsolateral STN target (as per 

imaging) and often traversed STN and entered SNr without passing through the white matter. An 

‘anterior’ electrode was advanced 2 mm anterior to the central electrode (in the parasagittal 

plane) and therefore crossed STN-SNr area in a more ventral plane. In contrast to the central 

electrode, the anterior electrode often passed through the white matter before it entered the SNr. 

Analysis was not based on continuous recordings during the entire advance towards the 

dorsolateral STN target, but rather on segments of data recorded at specific points (without 

electrode movement; Fig. 1B). Segments of data were recorded for at least 4 seconds, after 0.5 

seconds of lowering the electrode. Further details on the microelectrode recordings and the 

intervals of the depths are presented as supporting information. 

  

Neural Datasets 

Page 43 of 58

John Wiley & Sons

Movement Disorders

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

7 

 

 

 

We divided our neuronal database into two parts. Training dataset was composed of 58 

trajectories (obtained from 30 PD patients) containing 2678 stable MERs recorded in the white 

matter before the STN, STN dorsolateral oscillatory region (DLOR), STN ventromedial non-

oscillatory region (VMNR), white matter after STN and SNr. A subset of this dataset, containing 

1720 MERs from the dorsal and ventral STN as well as SNr, was used for the support vector 

machine (SVM) procedure. Training dataset of 58 trajectories was also used to find the optimal 

parameters for the hidden Markov model (HMM). Seventy-three additional trajectories recorded 

from 51 other patients, and yielding 4526 stable MERs (test dataset) were used solely to test the 

robustness of the HMM detection. 

 

Root Mean Square (RMS) 

The RMS estimate was calculated from the multi-unit activity recorded by the microelectrode at 

each electrode depth. RMS values are susceptible to electrode properties (e.g., electrode 

impedance);
12

 hence, the RMS was normalized by the pre-STN (white matter) baseline RMS,
12,23

 

creating what we term the normalized RMS (NRMS).  

 

Power spectral density (PSD) 

Visual inspection of the average STN and SNr power spectra revealed significant differences in 

the 5-300 Hz domain. To identify the frequency band that contained the largest difference 

between the STN and the SNr we divided the 5-300 Hz range of the power spectra into 10 

approximately logarithmically spaced bands. For each band we calculated the mean power for 

each MER, and then evaluated the difference in the mean power between the STN and the SNr. 
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Using this method we identified which frequency bands had the largest difference between the 

STN and the SNr.  Additional details are presented in the supporting information.  

 

Support vector machine (SVM) discrimination of STN and SNr MERs 

In machine learning, SVMs are supervised learning models that are specifically designed to solve 

a classification problem offline, after all the data have been collected. For our SVM analysis, 

measurements in both time and frequency domains (based on the NRMS and power spectra of the 

MERs) were used as features for the SVM classification. The classification procedure used the 

NRMS and the ”100-150 Hz / 5-25 Hz Power Ratio” features, as well as their class label (STN or 

SNr) for each of the 1720 MERs in the training dataset. The performance of the SVM classifier 

was evaluated by 10-fold cross validation. Additional details are presented in the supporting 

information.  

 

The SVM requires labeling the MERs of each region, which is not amenable to real time use. 

Here we used the SVM to identify which features had the most information in terms of 

discriminating regions. However, once the optimal features had been selected, the SVM was no 

longer needed or used.   

 

The Hidden Markov Model  

The HMM takes the set of features extracted from the raw data as input, and provides the output 

clustering in real time. In previous reports,
23,24

 the HMM procedure was used to discriminate the 

STN from the white matter. This study goes beyond these previous works by designing a HMM 
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procedure with improved ability to detect the STN-exit by delineating the borders between the 

STN-SNr (even for cases without a WM gap between the STN and the SNr). Details on the 

HMM are provided in the supporting information. 

 

All statistical analyses were performed using custom-made MATLAB 7.5 routines (Mathworks, 

Natick, MA). The statistics presented in this report, if not specified otherwise, are the mean ± 

standard error of the mean (SEM); the criterion for statistical significance was set at P < 0.05 for 

all statistical tests. 

 

RESULTS 

Power Spectra features help to discriminate STN from SNr recordings 

The NRMS values calculated from the MERs were very effective in detecting the STN border 

with the white matter. As presented in the three examples in  Figure 2A, top panels, the STN-

entry and STN-exit borders appear as a sharp increase and decrease in the NRMS, 

respectively.
23,12

 In these “easy” cases the electrode traversed the STN and entered the SNr after 

passing through the white matter. The power spectra of these SNr (Fig 2A bottom panels) depict 

a unique signature:  blue vertical lines indicating a reduction in relative power at lower 

frequencies. However, some trajectories lacked a clearly defined STN-exit (e.g., Fig. 2B). These 

are the “hard” cases in which there is no clear transient reduction in the NRMS (NRMS gap), 

most probably because the electrode traversed the STN and entered the SNr without passing 

through the white matter after the STN. Though the SNr cannot be identified by the NRMS in 

these cases, the SNr was identified by the electrophysiologist and can be seen in the power 
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spectra (Fig. 2B bottom) as depicted by the vertical blue lines. These examples suggest that 

power spectra characteristics can be used to assist in detection of the STN exit, especially for 

cases without a STN-WM transition and NRMS gap. 

 

To evaluate the ability of the NRMS to distinguish the STN from the SNr, we calculated the 

distribution of their NRMS values. Figure 3A shows the overlap in the NRMS distribution of 660 

MERs in STN DLOR, 990 MERs in the STN VMNR, and 155 MERs in the SNr (training 

dataset). The significant overlap between the different distributions suggests that there is no clear 

separation between the STN and the SNr using NRMS. In contrast, Fig 3B, illustrating the mean 

PSD of the STN and SNr recordings, suggests that features from the PSD could be used to 

discriminate STN from SNr. In line with the characteristic signature of the STN and SNr in the 

spectrograms (Fig 2), the average PSDs of the two STN domains and the SNr revealed different 

non-overlapping features. The mean SNr PSD (Fig. 3B, green trace) presented decreased activity 

in the 5-25 Hz band as compared to the mean PSD of the STN DLOR, and VMNR (Fig. 3B, red 

and blue traces). In addition, the mean PSD in the SNr displayed increased activity in the 85-300 

Hz band (Fig. 3B, green trace). 

 

To determine quantitatively which part of the power spectra enables the best discrimination of the 

STN from the SNr, we examined 10 (approximately logarithmically distributed) bands along the 

frequency axis in the power spectra. The mean power in two different frequency bands - high 

frequency (100-150 Hz) and low frequency (5-25 Hz) - provided the greatest discrimination 

between STN and SNr (discrimination matrix of 10 bands presented in the Supporting 
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Information Table S1). We therefore calculated the ratio of the power of these two frequency 

bands and termed this new feature the “100-150 Hz / 5-25 Hz Power Ratio”. Figure 3C shows 

very little overlap in the distributions of STN and SNr power ratio values. 

 

Support vector machine (SVM) analysis confirms the utility of the power ratio for STN-SNr 

discrimination 

An SVM classifier was used to examine the ability of the “100-150 Hz / 5-25 Hz Power Ratio” to 

provide a robust discrimination between the SNr and STN. Figure 4 shows the result of an SVM 

classifier that was trained and tested on 155 randomly selected samples from the STN and all 155 

samples from the SNr. A linear-kernel decision boundary was used to classify the training set as 

SNr (hollow square; green) or STN (hollow triangle; blue); then new data points were classified 

as SNr (solid square; green) or STN (solid triangle; blue). Yellow circles represent the support 

vectors defining the decision boundary between the STN and SNr samples. Figure 4 further 

demonstrates the absence of correlation between NRMS and the “100-150 Hz / 5-25 Hz Power 

Ratio”. Both of these characteristics reinforce the utility of the power ratio feature as an 

additional attribute for classifying MERs. The discrimination performance of the SVM classifier 

for the entire training dataset using the two features, NRMS and “100-150 Hz / 5-25 Hz Power 

Ratio” was evaluated by 10-fold cross validation and is presented as an error matrix in the 

Supporting Information Table S2. The overall classification accuracy rate was 97.6%. 

 

Hidden Markov model (HMM) analysis enables reliable detection of STN exit  
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The HMM procedure uses MER features and trajectory history to enable real time decisions as to 

electrode placement. The use of trajectory history in addition to the MER features enable the 

HMM procedure to "neglect" recording glitches that a classification method (e.g., SVM) would 

classify incorrectly. Our previous HMM procedures
23

 did not include the SNr as a possible state 

and did not use the high frequencies (100-150 Hz) of the power spectrum. Here we extended the 

HMM procedure to discriminate between the STN and SNr using the “100-150 Hz / 5-25 Hz 

Power Ratio” and NRMS features, together with the depth of the trajectory (i.e., estimated 

distance to the target). The distribution of STN-exit borders was evaluated, and revealed that 77 

out of 131 trajectories (59%) had STN-WM transitions, and 54 out of 131 trajectories (41%) had 

STN-SNr transitions. 

 

Figure 5 presents three examples of a typical trajectory’s NRMS and PSD as well as the “100-

150 Hz / 5-25 Hz Power Ratio” feature. At each depth along the trajectory during the implant 

process the NRMS and power spectra features of the MERs are continually calculated and 

updated. Based on these calculations a new assessment by the HMM is made automatically in 

real time. An expert physiologist lowers the electrode along the trajectory until the red line 

appears (i.e., as determined by the real time HMM analysis). This indicates that the STN ventral 

border has been reached, followed by either the SNr or white matter. The three example 

trajectories illustrate the direct transition from the STN to SNr. The red line in the top panel 

illustrates the direct STN-SNr transition defined by the real time HMM analysis. It takes 99 ms in 

real time to process a new trajectory and determine whether it is STN or not, as illustrated by the 
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HMM running time in Fig. 5. The time to analyze each subsequent MER is less than a ms per 

MER, making this a practical method for use during DBS surgery.   

 

For each of the 58 trajectories in the training dataset, the HMM parameters (transition and 

emission matrices) were estimated from the other 57 trajectories (leave-one-out cross-validation). 

The resulting mean (of all 58 trajectories) HMM transition and emission matrices are presented in 

the Supporting Information Table S3.  

 

The performance of the HMM was assessed with two measures.  The first is the mean OUT 

location error. It is defined as the difference between the location (Human Expert’s 

Classification), which is the location of the transition defined by the neurophysiologist, and 

location(HMM), which is the HMM inferred location of the transition, both measured in mm of 

estimated distance to the target. The second measure is the OUT transition error which is defined 

as an OUT location error greater than 1 mm. Hits were the number of correctly detected OUT 

transitions. Misses were the number of OUT transitions (according to the human expert’s 

decision) that the HMM procedure did not detect.  

 

The OUT location error for both STN-SNr and STN-WM demonstrated better mean and standard 

deviation than that found by previous methods.
12,23

 The performance of the OUT location error 

on the training dataset had an error of 0.1 ± 0.34 mm (mean ± standard deviation) with 2 misses 

out of 58 trajectories (97% Hits).  
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The HMM procedure has to deal with a heterogeneous variation of trajectories, as some 

transitions are from VMNR STN to SNr and others from white matter before STN to SNr. 

Because an automatic detection algorithm that can be used in the operating room needs to 

function on novel data without being continually adjusted, it is important to demonstrate that the 

HMM procedure can work with completely novel data. Therefore, 73 other trajectories (from 51 

patients, all trajectories included both STN and SNr) were evaluated by the HMM procedure. The 

HMM procedure identified the STN-exit with error of 0.04 ± 0.18 mm. Using the 1 mm 

threshold, the OUT transition error of the novel dataset committed 4 misses out of 73 trajectories 

(94% Hits), which is better than that found when applying the previous HMM procedure
23

 and 

Bayesian method
12

 (12 misses out of 73 trajectories, 83% hits, and error = 0.50 ± 0.59 mm, 

respectively). The performance of the new HMM procedure was shown to be robust to the 

specified threshold because threshold values of 0.5 mm and 0.15 mm produced similar 

quantitative results (4 and 7 misses out of 73 trajectories, respectively).  

 

DISCUSSION 

We described a computational machine-learning procedure with a new feature; namely, the ratio 

of high frequency (100-150 Hz) power to low frequency (5-25 Hz) power, which enables  high 

accuracy discrimination of the STN from SNr. We used a SVM procedure to verify that the “100-

150 Hz / 5-25 Hz Power Ratio” is a reliable feature for discriminating the STN and SNr 

populations. Then, we utilized an HMM procedure using the MER features, together with the 

trajectory history to detect the STN exit either to the white matter (WM) or SNr.  
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The MERs along pre-planned trajectories are commonly used to confirm the STN territory during 

DBS surgery for Parkinson’s disease; however, there is a lack of consensus on whether the MER 

allows for reliable separation between the STN exit point and the SNr entry point. Across the 

ventral region of the STN there are fewer kinesthetic neurons,
22

 and the STN VMNR neurons are 

characterized by consistently reduced β band and increased gamma (30-100 Hz) activity.
13

 

Similarly, the discharge pattern of the neurons in the SNr (below the STN target) lack the β band 

and tremor frequency oscillations, but have  increased gamma activity.
14–18

 In addition, islands of 

cells have been observed with firing characteristics of both SNr and STN cells.
22

 Therefore, the 

electrophysiological determination of the transition from the STN to SNr is ambiguous and 

difficult to evaluate. 

 

Several studies have developed automatic detection and visualization not only for  the STN, but 

also  the SNr based on objective and quantitative MER features.
12,20,22,25–27

 Some of these studies 

have used features that require spike detection algorithms to identify the firing pattern.
25–27

 While 

these features may aid in detecting the STN ventral border near the SNr, it is still computationally 

challenging to calculate neuronal spike characteristics in a real-time intra-operative scenario.
12

 

Moreover, the ideal isolation of single units requires 5-10 microns steps of electrodes and is very 

time-consuming. In contrast, NRMS values that are based on unsorted multi-unit activity are easy 

to measure. The STN-entry and STN-exit  often manifest as a sharp increase and decrease in the 

NRMS, respectively.
23,12

 Some studies have used NRMS together with spectral features of the 

analog signal, which are computationally efficient to calculate.
20,22,27

 However, these spectral 
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features do not lead to reliable or robust identification of the transition between the STN and the 

SNr. Here, we divided the 5-300 Hz range power spectra into frequency bands. This division 

allowed us to determine which frequency bands contained the largest difference between the STN 

and the SNr, and to accurately detect the STN ventral border.  

 

When implementing the NRMS and features from the power spectra, there are several ways to 

differentiate the STN from the SNr using automatic detection methods. Some studies have 

proposed rule-based detection methods;
22,27

 however, they are unable to detect the direct STN-

SNr transitions. For example, despite the fact that Cagnan et al.
27

 used the power spectra of 

tremor, and the alpha band (3–12 Hz), beta band (13–30 Hz) and gamma band (31–100 Hz) as 

features, their algorithm still required a white matter gap in the trajectory between the STN and 

the SNr to detect the SNr. Furthermore, rule-based detection systems tend to be overly complex 

and may not generalize to other surgical centers. Other studies
12,23,25

 have used machine learning 

techniques to automatically extract the “rules” or decision boundaries to  discriminate between 

the STN and the SNr. These machine learning procedures are either unsupervised, and involve 

extracting patterns using unlabeled training data (that  still require labeling of the output),
25

 or 

supervised, that require the  labeling of the electrophysiological signals used for training.
12,23

 For 

example, Wong et al.
25

 used a clustering algorithm (unsupervised machine learning) that returns a 

pre-specified number of clusters, but then requires the human observer to label the clusters. The 

main drawback of these techniques is that they do not take the previous location of the MERs 

into account when determining the electrode's current location. A supervised technique that uses 

the electrode's location is HMM. For example, Zaidel et al.
23

 combined the power spectra of beta 
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band features and NRMS to locate the STN and its sub-territories. The two advantages of the 

HMM procedure are the short recording time needed for location analysis and low computational 

cost. Our approach goes beyond this previous work by delineating the borders between the STN-

SNr which thus enable intra-operative application with greater accuracy.  

 

Accurate discrimination between the STN and the SNr is of crucial importance for achieving 

optimal therapeutic benefits while avoiding psychiatric complications for PD DBS procedures. 

The beneficial effects of bilateral STN DBS on motor symptoms and quality of life have been 

repeatedly confirmed in patients with advanced PD;
28

 however, psychiatric complications 

induced by STN DBS have also been reported.
29,30

 In some patients with PD with impulse control 

disorders, their  abnormal behavior may be provoked by stimulation with a ventral contact of the 

DBS lead, and suppressed by switching off this contact.
6–9

 It also has been reported that 

manic
31,32

 and depressive
5
 symptoms are induced by stimulation of active contacts located in the 

SNr. On the other hand, the SNr is thought to be particularly involved in balance control during 

gait.
33

 The combined stimulation of the SNr and the STN has been reported to improve axial 

symptoms (including freezing of gait, balance, and posture) compared to standard STN 

stimulation.
10,11

 In summary, automatic and reliable localization of the direct STN-SNr transition 

and STN lower border detection could lead to improved localization of DBS leads and better 

DBS clinical outcomes. It takes 99 ms in real time to process a new trajectory and decide whether 

it is STN or not, making this a practical method for use during DBS surgery. This analysis tool 

can be easily learned and employed in the DBS operating room. Future studies might incorporate 
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MER data from multiple centers to test the applicability of these algorithms for automatic 

navigation in DBS surgery. 
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