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 Abstract—The derivation of microwave land surface emissivity
(MLSE) under various weather conditions from the microwave
radiometer plays a crucial role in acquiring land surface and
atmospheric parameters. Nevertheless, currently, most existing
studies mainly focus on the clear-sky scenarios owing to a lack of
cloudy-sky land surface temperature (LST) and uncertainties in
simulating the scattering and emission properties of atmospheric
hydrometeors. Under this background, with satellite observations
and the random forest (RF) model, this study proposes a method
to estimate the MLSE under cloudy skies. First, clear-sky MLSEs
with satisfactory accuracy are retrieved by using the brightness
temperatures (BTs) from the Advanced Microwave Scanning
Radiometer-Earth sensor, LSTs from the Moderate Resolution
Imaging Spectroradiometer, and atmospheric profiles from the
ERA5 reanalysis. Then, the relation among the clear-sky MLSE
and related impact factors is built with the RF and extended to
the cloudy-sky environment for generating all-weather MLSEs
with a 0.25° . The results show that the input datasets present a
considerable impact on the calculation of instantaneous MLSE,
and a 5.73 K bias of ERA5 LST may generate a 0.014-0.021 error
in the MLSE from 6.9 to 89 GHz horizontal polarization, while
the impacts of BT and profile uncertainties on the MLSE are
smaller. The retrieved clear-sky MLSE is coincident with the
existing MLSE for the spatiotemporal variations, and there is an
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average difference range from -0.035 to 0.035 in January 2008.
Meanwhile, the constructed RF model can successfully apply to
cloudy-sky status and recover the MLSE image gaps affected by
cloud contamination.

Index Terms—All-weather, AMSR-E product, error analysis,
microwave land surface emissivity, random forest.

I. INTRODUCTION

HE microwave land surface emissivity (MLSE) is a key
parameter many researchers use to investigate the physical

processes of earth-atmosphere interactions at the regional and
global scales [1-3]. It is defined as the ratio of the emitted
radiance of the surface material to that of a blackbody at the
same temperature level and changes with the frequencies due
to the difference in penetration depth of the microwave [1]. In
reality, the MLSE variable can be widely applied in many
research fields, such as the retrieval of atmospheric variables
such as water vapor content (WV), cloud liquid water (CLW),
and precipitating water [4-8]; the estimation of soil moisture
(SM) [9-11]; the research of vegetation phenology change
[12-14]; and the application of multi-source data assimilation
in the numerical weather prediction systems [15-18]. As a
result, a reliable and large range of estimation of MLSE
images under various weather status is of great significance
and is conducive to understanding and revealing the water and
energy exchange between the land and the atmosphere.

In contrast with the estimation of microwave emissivity on
the ocean, the derivation of MLSE is more difficult due to its
high temporal variability and spatial heterogeneity caused by
the complex surface geophysical characteristics and geometric
morphology, which include the SM, soil texture, land surface
roughness, land-cover type, and vegetation optical depth, etc.
[19, 20]. For a better understanding of surface parameters and
atmospheric properties over land regions, over the past three
decades, considerable progress has been made in estimating
the MLSE using three main methods: the physical modeling
calculation, one-dimensional variational retrieval, and satellite
observation-based retrieval [2, 3, 18, 19, 21-31]. Among them,
the physical model-based estimation primarily simulates the
MLSE data by modeling the interaction between land surface
components and the electromagnetic wave; but, these models
require abundant auxiliary parameters that are not readily
available or observable at continental or global scales, e.g., the
surface roughness, soil dielectric properties, forest structures,
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and snow grain sizes, etc. [20]. Representative models mainly
include the Advanced Integral Equation Model (AIEM)
proposed by Chen et al. [22], the LandEM embedded in the
Community Radiative Transfer Model (CRTM) proposed by
Weng et al. [19], and the Community Microwave Emission
Model (CMEM) developed by the European Centre for
Medium-Range Weather Forecasts (ECMWF) [16, 29]. The
one-dimensional variational retrieval method mainly uses the
Bayes principle to obtain an optimal estimation of MLSEs by
blending the observed background fields from various data
sources, whereas it is necessary to establish an accurate initial
guess of surface emissivity. For instance, the ECMWF used
the Special Sensor Microwave Imager (SSM/I) MLSE dataset
as the initial guess to propose a calculation tool, i.e., A Tool to
Estimate Land Surface Emissivities at Microwave Frequencies
(TELSEM) [18, 28]. Compared with the above two methods,
the satellite observation-based retrieval takes advantage of the
passive microwave (PMW) satellite data to obtain the spatially
continuous MLSEs over a large range. In general, this method
is based on the radiative transfer equation (RTE) and makes
full use of BTs at the top of the atmosphere (TOA), land
surface temperatures (LSTs), and atmospheric profiles. Thus,
this approach possesses a reliable physical meaning and has
become the mainstream for obtaining the MLSE nowadays.

More recently, many scholars have employed the satellite
retrieval method to conduct research on the inversion of
microwave emissivity and have developed a series of MLSE
products [2, 6, 26, 30-34]. For instance, by assuming that the
atmospheric conditions under a clear sky status are transparent,
Wilke and Mcfarland [35] estimated the MLSE with the ratio
of BTs and LSTs. Nevertheless, in consideration of the evident
contributions of atmospheric properties to the BTs at the TOA,
some more accurate retrieval approaches were proposed by
considering the atmospheric attenuation, radiation, and land
surface emissions. Prigent et al. [2] and Karbou et al. [26]
yielded MLSE products under clear skies using the BTs from
the SSM/I radiometer and the Advanced Microwave Sounding
Unit sensor, respectively. In addition, some other radiometers
onboard low-Earth orbiting satellites were also applied to
estimate MLSEs, such as the Advanced Microwave Scanning
Radiometer for Earth Observing System (AMSR-E) [33, 36],
the AMSR2 [31], the Tropical Rainfall Measuring Mission
Microwave Imager [6], the WindSat onboard the Coriolis
satellite [37], the Microwave Analysis and Detection of Rain
and Atmospheric Structures [38], and the Chinese Microwave
Radiation Imager onboard the FY-3B satellite [39]. With these
MLSE products, some relevant studies, like the error source
analysis of MLSE estimate [40, 41], the comparison among
various MLSE datasets [42, 43], and the satellite retrievals of
atmospheric and vegetation phenology parameters, have been
widely conducted [14, 44]. Despite this progress, the surface
emissivity retrieval based on the satellite observation is mostly
designed to operate under clear-sky conditions. Few studies
used this kind of approach to generate cloudy-sky MLSEs.
Generally, there are two key reasons to explain this issue. First,
it is relatively difficult to correct the atmospheric contributions
from cloudy-sky status due to the lack of cloud/rain properties

(e.g., the vertical profiles of cloud water, cloud ice, total rain,
total snow, effective cloud fraction) and the uncertainty of the
atmospheric radiation transmission simulation, which directly
controls the atmospheric correction in all-sky situation [30]. In
particular, for higher frequencies, the atmospheric absorption,
emission, and scattering of surface signals are stronger, and a
large amount of uncertainty will arise in this case. Second,
currently, the estimates of MLSEs mostly depend on clear-sky
LSTs derived from the thermal infrared (TIR) bands, like the
Moderate Resolution Imaging Spectroradiometer (MODIS)
LST because there are no adequate all-weather LST dataset.
Although some reanalysis datasets provided all-weather skin
temperatures, the accuracies of these data and their impacts on
MLSEs still remain problematic, especially at cloudy skies.

Recently, several researchers have estimated the cloudy-sky
MLSEs. By assuming that the difference between the MLSEs
under clear and cloudy skies can be ignored, Aires et al. [23]
used a neural network approach to retrieve surface emissivities
between 19 and 85 GHz from the SSM/I BTs and clear-sky
MLSE previously calculated. Using the microwave radiative
transfer model, Lin and Minnis [45] combined the SSM/I BTs
and the ground observation radiances at the southern Great
Plains to retrieve the MLSE in both clear and cloudy skies. In
addition, Baordo and Geer [46] retrieved all-sky MLSEs using
the BTs from the SSM/I and the effective cloud fraction
properties from the ECMWF by considering the impacts of
clear and cloudy skies on the BTs. Hu et al. [34] estimated the
MLSEs of China under both clear and cloudy skies using the
AMSR-E BTs, MODIS cloud-layer properties, and reanalysis
skin temperatures as well as atmospheric profiles from the
ERA-20C with the forward simulation. In spite of this, these
works still need to be further investigated. On the one hand,
the uncertainties of input datasets (i.e., LST and profiles of
temperature and humidity) play a crucial role in the MLSE
estimates. On the other hand, because the effects of clouds on
the microwave radiation are relatively complicated, using the
radiative transfer model to correct the atmospheric effect in
the presence of clouds/rain is difficult due to its limitations [47,
48]. Thus, it remains necessary to develop a new scheme to
obtain the MLSEs under various weather circumstances.

According to the above statement, the main objective of this
study is to construct a method by integrating the advantages of
remote sensing retrieval and a machine learning algorithm for
acquiring MLSE datasets under clear and cloudy skies. Then,
applying this method to the China region in 2008 to reveal the
spatiotemporal characteristics of MLSE. Likewise, given that
the difference of MLSEs between clear and cloudy skies is not
significant [23] and the MLSE sensitivity to the atmospheric
properties is less [34], we assume that the relations between
the clear-sky MLSEs and related variables could be extended
to cloudy-sky conditions. Then, we use the random forest (RF)
model to construct the nonlinear relations between the MLSE
and related impact factors under clear sky status to produce
cloudy-sky MLSEs. We believe that the proposed method can
help us to estimate MLSE better and contribute to providing
all-weather MLSEs, allowing us to understand the physical
processes of Earth-atmosphere interactions.
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The structure of this paper is organized as follows: Section
II describes the study area and the used datasets. Section III
summarizes the MLSE estimation method in clear and cloudy
skies. Section IV presents the impacts of input data sources on
clear-sky MLSE retrieval and displays the performances of
clear and cloudy skies MLSE estimates. Section V discusses
the possible factors impacting MLSE change, the sensitivity of
cloud characteristics to the MLSE, the difference between the
TIR-derived emissivity and MLSE, and the limitations of the
proposed method. Section VI provides the overall conclusions.

II. STUDY AREA AND DATASET USED

A. Study Area
A wide range of cloud and rain coverage in China hinders

the acquisition of cloudy-sky MLSEs in this region, especially
in southern China. Thus, this paper selected China as the study
area to implement the estimation of MLSEs under clear and
cloudy skies. China is situated in the eastern part of Eurasia
and the western part of the Pacific Ocean. The study region
includes diverse land-cover types. The topography mainly
contains plateaus, mountains, hills, basins, and plains, and
there is a pronounced terrain change trend, i.e., high in the
west and low in the east. Obviously, the unique geographical
location and topographical features contribute to the diversity
of China's climate, resulting in a particular distribution of high
precipitation in the southeast and a low precipitation rate in
the northwest. Fig. 1 presents the land-cover types and terrain
of the study area.

B. Data Collection Used
The data collections used in this study mainly contain: 1)

the input datasets used for clear-sky MLSE retrieval, 2) the
input datasets used for cloudy-sky MLSE calculation, 3) the
datasets used for error analysis of MLSE, and 4) the data used
for comparison of MLSE results. The overall characteristics of
the datasets used in this study are shown in Table I.

1) Input datasets used for clear-sky MLSE calculation

In order to retrieve clear-sky MLSE with the microwave
RTE, it is necessary to acquire the microwave BTs at the TOA,
LSTs, and atmospheric profiles of air temperature, humidity,
geopotential height, etc. As the AMSR-E and MODIS sensors
are onboard the Aqua satellite with good temporal consistency
between the obtained datasets in revealing the atmospheric
and terrestrial conditions, this study used the AMSR-E/Aqua
L2A Global Swath Spatially Resampled BT product and
MODIS/Aqua MYD11A1 LST product as main inputs. The
Aqua is a scientific research satellite in orbit around the Earth
that studies the atmospheric precipitation, surface evaporation,
and cycling of water. It probes the Earth twice per day, and the
transit times are at approximately 1:30 a.m. (descending orbit)
and 1:30 p.m. (ascending orbit) local time at the equator.

TABLE I
THE DATA COLLECTIONS USED IN THIS STUDY

Data collection Parameter Spatial
resolution

Temporal
resolution

Dataset used
for clear-sky

MLSE
calculation

AMSR-E/Aqua
L2A

Brightness temperature
(BT) 0.25° Daily

MODIS/Aqua
MYD11_A1

Land skin temperature
(LST) 1-km Daily

ERA5 hourly
data on pressure

levels

Geopotential height,
pressure,

air temperature,
relative humidity,
skin temperature

0.25° Hourly

Dataset used
for

cloudy-sky
MLSE

estimation

ERA5 hourly
data on single

levels

Leaf area index (LAI),
soil moisture (SM) 0.25° Hourly

SRTM DEM Elevation, slope,
surface roughness 30-m Statical

Soil texture Sand, silt, clay 1-km Statical

AMSR-E/Aqua
L2A PR, MPDI 0.25° Daily

Dataset used
for error

analysis of
MLSE

UWYO
sounding profile

Geopotential height,
pressure,

air temperature,
relative humidity

－ Daily

ERA-Interim
reanalysis

Geopotential height,
pressure,

air temperature,
relative humidity,
skin temperature

0.75° 6 hourly

JRA-55
reanalysis 1.25° 6 hourly

MERRA2
reanalysis 0.25° 3 hourly

NCEP/FNL
reanalysis 1.0° 6 hourly

NCEP/GFS
reanalysis 0.5° 6 hourly

Dataset used
for MLSE

comparison

Qiu_MLSE Clear-sky MLSE 0.25° Daily

MODIS/Aqua
MYD11_A1

Clear-sky TIR-derived
emissivity 1-km Daily

Fig. 1. The land-cover types and terrain of the study area. The land-cover
types are derived from the MODIS land-cover product (the classification
standard belongs to the international geosphere-biosphere programme,
IGBP) and altitude is acquired from the Shuttle Radar Topography Mission
(SRTM) Digital Elevation Model (DEM).
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The AMSR-E L2A BT product contains six channels at 6.9,
10.6, 18.7, 23.8, 36.5, and 89.0 GHz, with the horizontal (H)
polarization and vertical (V) polarization at each channel. Its
instantaneous field of view varies from 5.4 km at 89.0 GHz to
56 km at 6.9 GHz, and the Earth's incidence angle is 55° [49].
To match the resolutions of the higher frequency observations
to those of the lower frequencies, we employed the resampled
datasets having the closest location to the original satellite
detection footprint and reprojected them to a 0.25° grid that is
equidistant at the equator [50]. The AMSR-E/Aqua L2A data
can be freely obtained from the National Snow and Ice Data
Center (NSIDC) (https://nsidc.org/data).

The MYD11A1 LST is derived from channels 31 and 32 of
MODIS imagery using the generalized split-window algorithm
and is of the spatial resolution of 1 km [51]. A previous study
has demonstrated that the estimated LSTs have good accuracy
of less than 1 K for most homogeneous surfaces and have been
widely applied in LST-associated studies [52]. In this study,
MYD11A1 LSTs are downloaded from the NASA EARTH
DATA website (https://search.earthdata.nasa.gov/).

Meanwhile, we used the clear-sky profiles from the ERA5
reanalysis as input of the atmospheric radiation transfer model
(i.e., Monochromatic Radiative Transfer Model, MonoRTM
5.4) for calculating the transmittance (τ), atmospheric upward
radiance (Tu), and downward radiance (Td) values [48]. The
ERA5 data has good accuracy in revealing actual atmospheric
status [53], and it fuses vast amounts of historical observation
records into global estimates with advanced modeling and data
assimilation systems. This dataset is generally organized with
a regular latitude-longitude grid at a 0.25°×0.25° resolution in
GRIB or NetCDF format and has 37 pressure levels within an
hourly temporal resolution [54]. Here, the ERA5 profile fields
used at clear-sky conditions include the geopotential height,
pressure, air temperature, and relative humidity (RH). These
data can be derived from the Copernicus Climate Data Store
(https://cds.climate.copernicus.eu/cdsapp#!/home).

2) Input datasets used for cloudy-sky MLSE estimate

Since the spatiotemporal change of MLSE greatly depends
on the characteristics of vegetation, soil water content, soil
structure, and terrain factors, the datasets used for cloudy-sky
MLSE estimate in this paper mainly used the leaf area index
(LAI), SM, soil texture, surface roughness, elevation, slope,
and BT indexes that can be applied in the RF training and
input. In this study, LAI and SM datasets are provided by the
ERA5-Land hourly data, with a 0.25° grid resolution. The LAI
refers to one-half of the total green leaf area per unit
horizontal ground surface area for the high vegetation type,
and the SM belongs to the volume of water in soil layer 1 (0-7
cm) of the ECMWF Integrated Forecasting System. The soil
texture data is acquired from the Data Center for Resources
and Environmental Sciences, Chinese Academy of Sciences
(http://www.resdc.cn) and has a spatial resolution of 1 km.
The soil texture is defined by the composition of particle size,
namely, sand, silt, and clay. Elevation, slope, and roughness
data are calculated by using the digital elevation model (DEM)
derived from the Shuttle Radar Topography Mission (SRTM)

dataset, with a 30-m resolution [55].
In addition to the abovementioned datasets, since the heavy

precipitation, snow particle, and water body present evident
scattering effects on the estimation accuracy of MLSE [56],
we also adopted the total column rainwater, snow cover, and
land-sea mask datasets derived from the ERA5 hourly data on
single levels to filter these regions. They all have a 0.25° grid
resolution.

3) Datasets used for error analysis of MLSE estimate

In order to perform the error analysis of MLSE estimation,
the corresponding reanalysis profiles and skin temperatures
derived from five types of datasets, including the ERA-Interim,
the Japanese 55-year Reanalysis Data (JRA-55), the
Modern-Era Retrospective analysis for Research and
Application versions2 (MERRA2), the National Centers for
Environmental Prediction (NCEP)/Final Operational Global
Analysis (FNL), and the NCEP/Global Forecasting System
(GFS), are also employed to calculate AMSR-E MLSEs under
clear skies. After, the clear-sky MLSEs retrieved with the true
air-sounding profiles derived from the University of Wyoming
(hereafter UWYO profile), AMSR-E BTs, and MODIS LSTs
are used as the reference values to reveal the impacts of
different input data sources on MLSE calculation.

The introduction of each type of reanalysis data is presented
in detail in Table I. The UWYO profile is acquired at 0 and 12
Universal Time Coordinated (UTC) time, and the atmospheric
fields include geopotential heights, pressures, air temperatures,
and RH. As the Aqua overpass is at local times of 1:30 a.m.
and 1:30 p.m every day, all datasets in this section were
extracted on UTC 12 at 23 sounding stations (with longitudes
ranging from 15°E to 30°E) to guarantee the spatiotemporal
correspondence between UWYO profiles and AMSR-E BTs.
Detailed station information can refer to [53]. However, it is
worth mentioning that all the reanalysis datasets have various
atmospheric fields. For comparison purposes, we adopted the
same field information as the UWYO profile and processed
them in the same way as the ERA5 profile.

4) Datasets used for comparison of MLSE result

Due to the lack of actual in-situ MLSE observations, the
clear-sky MLSEs estimated in this study are evaluated using
the existing MLSE product. With the microwave BTs from the
AMSR-E/Aqua L2A, versions 2, the MYD11_L2 LSTs from
the MODIS/Aqua, and the MYD07_L2 atmospheric profiles
(20 pressure levels) from the MODIS/Aqua, Qiu et al. [36]
calculated the daily instantaneous MLSEs from 2002 to 2011
under clear-sky conditions over the global scale (hereafter
Qiu_MLSE). This dataset has been compared and tested with
the MLSE product of Karbou et al. [26] and can reveal actual
microwave radiance conditions from the surface. In this paper,
Qiu_MLSE can be freely acquired from the National Tibetan
Plateau Data Center of the Institute of Tibetan Plateau
Research, Chinese Academy of Sciences.

In addition, for further comparing the difference between
the TIR emissivity and MLSE in terms of spatial distribution,
we also used the MYD11A1 emissivity product in the MODIS

http://www.resdc.cn
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bands 31 and 32. These surface emissivity datasets are mainly
produced with the classification-based look-up table method,
which is derived from the land-cover type and its dynamic and
seasonal factors [57].

III. METHODOLOGY

The implementation flowchart of the proposed method is
depicted in Fig. 2. The overall structure can be divided into
three sections: the retrieval of clear-sky MLSE, the estimation
of cloudy-sky MLSE, and the result comparison.

A. Retrieval of Clear-sky MLSE
In general, the satellite observation-based MLSE retrieval is

mainly performed using the microwave RTE. Regarding the
non-scattering, plane-parallel atmosphere circumstances, the
BTs received by the radiometer for nonblack body boundaries
can be expressed as three processes from the PMW sensor to
the land surface: (i) radiation information emitted from the
land surface and attenuated by the atmosphere; (ii) upward
radiation emitted by the atmosphere; and (iii) downward
radiation from atmosphere component and cosmic background
reflected by the land surface and attenuated by the atmosphere
[58]. Based on the Rayleigh-Jean approximation, the MLSE at
a specific frequency range can be calculated from satellite
observations through the RTE [3]:

where MLSE(f, θ) is the surface emissivity at frequency f

and zenith angle θ; Tb(f, θ) is the BTs observed by the PMW
radiometer at frequency f and zenith angle θ (unit is K); and Ts

is the skin temperature, i.e., the effective radiating temperature
of the surface at the relevant frequency (unit is K); Tsky is the
cosmic background radiation (2.75 K).
Γ(f, θ) is the atmospheric optical thickness at frequency f

and zenith angle θ, and it is a mathematical function of the
atmospheric transmittance τ:

),(),(  fefΓ  (2)

Tu(f, θ) and Td(f, θ) represent the atmospheric upwelling and
downwelling radiations emitted by the atmosphere (unit is K),
respectively. For an isothermal atmosphere, Tu and Td can be
regarded as approximately equal and are calculated as follows:

where H is the atmospheric height (unit is km); T(z) is the
average temperatures of atmospheric components (unit is K);
and κ(f, z) is the atmospheric attenuation coefficient at the
frequency f and height z.

From Eq. (1), we can see the estimation of all-sky MLSE
requires an accurate characterization of air temperature, RH,
cloud property, and CLW values under all-weather conditions.
Another crucial input parameter is all-weather LST. However,
currently, it is relatively difficult to acquire all-weather LST
and cloud/rain profiles accurately. Thus, the direct retrieval of
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Fig. 2. The overall flowchart of the proposed method.
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MLSE under cloudy skies status is still troublesome. Here, we
derived the clear-sky MLSE as the sample dataset of the RF
model with Eq. (1) for acquiring cloudy-sky MLSE in the
subsequent step. The BTs, LSTs, and atmospheric profiles are
obtained from the AMSR-E BTs, MODIS LSTs, and ERA5
reanalysis data, respectively.

Before the MLSE under clear-sky conditions is retrieved,
the pre-processing has been implemented. All image pixels are
determined to be cloud-free status using collocated MODIS
1-km resolution cloud mask information and the QC file of
MYD11A1. Pixels are designated clear skies only when the
MODIS algorithm determines "Confident Clear" over the full
extent of the largest AMSR-E footprint size. Additionally, to
match the resolution between AMSR-E and MODIS datasets,
the MODIS LSTs were spatially aggregated to a 0.25° grid by
using an average aggregation algorithm. Since τ, Tu, and Td are
not directly available, the MonoRTM 5.4 model developed by
Atmospheric & Environmental Research (AER) is used to
calculate these three parameters [48] after the transit time and
land surface elevation of the ERA5 profile were interpolated
using the data processing method proposed by Zhu et al. [53].

B. Prediction of Cloudy-sky MLSEs
Although it is currently knotty to estimate the cloudy-sky

MLSE using the satellite observation-based MLSE retrieval
method, we can still implement this work by assuming the
relation between clear-sky MLSE and related impact variables
can be extended to cloudy-sky regions. The main cause is the
MLSE, as a unique parameter of the land surface, is primarily
influenced by surface properties and rarely by the atmosphere
status (in addition to the precipitation) [34, 59, 60]. In addition,
there is no significant difference in the MLSE between clear
and cloudy skies, according to the research of Aires et al. [23].
Since the RF model has relatively high performance and can
automatically settle the nonlinear relationships between the
independent variable and dependent variables in the data sets
compared with the traditional regressions [61, 62], it is applied
here to perform the training and result predictions of MLSE.
The basic component of RF regression is the decision tree, and
it mainly drives the data by constructing and averaging a large
number of randomized and decorrelated trees [61]. This
algorithm is insensitive to multiple collinearities of data sets
and can effectively avoid the overfitting of a regression model
by comprising multiple independent decision trees in the
learning procedure [61]. Finally, the RF-based predictions are
calculated for each regression tree separately, and then an
arithmetic average of the trees as the final forecast result is
performed.

The basic equation used for describing the RF prediction for
regression results based on the constructed trees is presented
as follows [61]:

where N represents the number of decision trees; Tj denotes
each tree; F is a prediction at a new point x as an averaged
prediction based on the constructed decision trees.

Before the RF estimation model is created, the selection of

the independent factor combination is crucial for the physical
parameter prediction [63]. We initially selected the following
variables as auxiliary factors to perform the training of RF
model due to their interactions with the MLSE: LAI, SM, sand,
silt, clay, surface elevation, slope, and land surface roughness.
Meanwhile, two AMSR-E BT indices, i.e., the microwave
polarization difference index (MPDI, (BTV-BTH)/(BTV-BTH))
and the polarization ratio (PR, BTH/BTV) at the corresponding
frequencies, were used as two key predictors because of their
strong correlation with the MLSE and insensitivity to cloudy
skies [64, 65]. However, it is worth noting that we did not
consider the land-cover types in the RF model training work,
even if it also impacts the change of MLSE. This is since the
above-selected impact variables more and less contain some
information of land-cover types. To prevent the model from
being too complex, thus leading to a overfitting issue during
the model construction, we adopted the variable importance
score of each variable to select the optimal MLSE predictors.
Here, the mean decrease in impurity (MDI) is used as the
variable importance measure index because it possesses high
efficiency and reliability [66]. Via the incessant training, the
variables with a low MDI value were removed until the RF
model residual reached the minimum. Fig. 3 presents MDI%
of ten critical variables at six AMSR-E frequencies with the
RF. After the feature selection, the final MLSE estimation
model with the RF can be expressed as MLSE=f(MPDI, PR,
elevation, sand, roughness, silt).

Cloudy-sky MLSE can be estimated using the constructed
model above. However, given that the RF requires sufficient
observation samples for training complex machine learning
model and has poor spatiotemporal migration capability since
it cannot extrapolate target values outside the range of the
training data [61], we selected clear-sky MLSEs on specific
date t and its adjacent time-series data before and after 1 day
(date t-1 day to t+1 day) as a suite of the datasets to train the
model and then predict the cloudy-sky MLSE on t day using
the above-selected optimal impact variables. There are two
main reasons for choosing three days as the time window for
the data training: 1) the MLSE is time-dependent and changes
obviously over larger temporal windows; and 2) the selected
time size can guarantee the data training volume and save
training time to a certain degree. However, it should be noted
that each model is trained based on the clear-sky MLSE
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Fig. 3. The MDI% of ten variables at six AMSR-E frequencies.
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obtained on a specific day; thus, all generated RF models are
specific to the date to be analyzed. The specific process of
training and predicting the cloudy-sky MLSEs using the RF
model is given in Fig. 4. After the cloudy-sky MLSEs were
estimated, we performed quality control and checked the
instantaneous microwave emissivity datasets by masking the
rain-covered, snow-covered, and water bodies-covered regions
and excluding the emissivity greater than 1 and less than 0 in
the end.

C. Accuracy Evaluation
Due to the lack of MLSE field measurements, Qiu_MLSE

is used as a reference dataset to verify our MLSE dataset
under clear-sky conditions. For convenient comparison, three
widely used metrics are used to quantify its accuracy,
including the root-mean-square error (RMSE), relative RMSE
(RRMSE), and coefficient of determination (R2). The RMSE
and RRMSE are adopted to evaluate the consistency between
the predicted MLSE (MLSEpre) and Qiu_MLSE (MLSEref), and
R2 is used to characterize the similarity between the predicted
MLSE (MLSEpre) and Qiu_MLSE (MLSEref). In general, in an
ideal circumstance, an RMSE close to 0 indicates the
predicted value is close to the actual situation. Additionally, an
RRMSE well below 0.5 denotes that the used method is more
reliable, and an R2 close to 1 indicates the predicted image
detail is more similar to the actual image. Three indices are
calculated as follows, respectively:

where n is the number of pixels in MLSE image; MLSEpre is
the predicted MLSE image; MLSEref refers to the referenced
Qiu_MLSE product; preMLSE is the mean of predicted MLSE;

refMLSE is the mean of Qiu_MLSE.

IV. RESULTS

A. Impacts of Input Datasets on Clear-sky MLSE Inversion
The retrieval accuracy of clear-sky MLSE plays a key role

in cloudy-sky MLSE estimation because the proposed method
requires accurate clear-sky MLSE data as training samples to
construct the estimated model. From Eq. (1), we perceive that
the deviation of input datasets such as BTs and LSTs acquired
by the sensors and atmospheric profiles would produce large
errors for the MLSE calculation. Thus, it is essential to point
out the impacts of input data on clear-sky MLSE estimates.
Because the radiometric noise in the AMSR-E BT is less than
1.1 K [50] and induces small uncertainties in the retrieved
surface emissivity [2], the MLSE retrieval errors caused by the
uncertainties of LSTs and atmospheric profiles are merely
discussed in this section.

The uncertainty in the LST is a leading source of MLSE
error, especially at the microwave frequencies below 19 GHz,
since the microwave radiation is more sensitive to the surface
than to the atmosphere [40]. As we used the MODIS LST,
which is of better accuracy, to calculate the MLSE under clear
skies, the produced MLSE errors due to it are not discussed
here. However, in previous studies, some MLSE estimations
used the reanalysis skin temperatures as the LST to calculate
the MLSEs [34, 39]. Hence, we mainly investigated the
impacts of multiple reanalysis skin temperatures on MLSE
estimates. In this study, the selected reanalysis skin
temperatures derive from the ERA5, ERA-Interim, JRA-55,
MERRA2, FNL, and GFS. Taking the MODIS LST as true
values, Table II first compares the differences among the six
types of reanalysis skin temperatures under clear skies at 23
sounding stations in 2008. As shown in Table II, the RMSE
differences between six reanalysis skin temperatures and
MODIS LST are all greater than 5.73 K and the RRMSE
differences are all greater than 0.5 K, indicating they all have
relatively poor accuracies. In contrast, the ERA5 data has the
optimal performance, followed by the ERA-Interim product,
MERRA2, NCEP/GFS, JRA55, and NCEP/FNL. Moreover,
using the clear-sky MLSEs retrieved with the UWYO profiles,
AMSR-E BTs, and MODIS LSTs at 23 sounding stations as
true MLSE values, Fig. 5 also investigates the impacts of six
reanalysis skin temperature products on the clear-sky MLSE
retrieval. The impact analysis in Fig. 5 shows that the LST
uncertainty is a pivotal factor impacting the estimate accuracy
of MLSE. Regarding the H polarization, the RMSEs of
clear-sky MLSE calculated caused by the ERA5 skin
temperature vary from 0.0137 at 6.9 GHz to 0.0212 at 89 GHz,
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TABLE II
SPATIAL RESOLUTIONS AND ACCURACIES OF SIX REANALYSIS SKIN

TEMPERATURES

ERA5 ERA-Interim JRA55 MERRA2 FNL GFS

Resolution 0.25° 0.75° 1.25° 0.25° 1.0° 0.5°

RMSE 5.73 5.85 16.83 7.12 10.88 10.48
RRMSE 0.55 0.56 1.61 0.68 1.04 1.01

R2 0.88 0.88 0.49 0.80 0.82 0.74

Fig. 4. The training and prediction of cloudy-sky MLSE with RF model.
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and its RRMSEs vary from 0.442 at 6.9 GHz to 0.607 at 23.8
GHz. Obviously, the RMSEs in the emissivity retrieval may
be as high as 0.0137 or more for a 5.73 K error of ERA5 skin
temperature. Therefore, it can be seen that the previous studies
that used some reanalysis skin temperatures to perform the
acquisition of MLSEs are flawed.

In addition to the impact of LST uncertainty, the uncertainty
in atmospheric profiles is another key factor causing MLSE
error. Fig. 6 presents the assessment results of six reanalysis
atmospheric profiles (i.e., the ERA5, ERA-Interim, JRA-55,
MERRA2, NCEP/FNL, and NCEP/GFS) in estimating MLSE
under clear skies. The clear-sky MLSEs retrieved with the
UWYO profiles, AMSR-E BTs, and MODIS LSTs at the same

stations are still used as references. Based on the RMSE,
RRMSE, and R2 statistics of the six reanalysis profile products
in calculating clear-sky MLSEs (see Fig. 6), we discover that
the retrieved MLSEs with six reanalysis profiles at frequencies
with higher atmospheric attenuation present the larger errors
(e.g., 23.8 and 89 GHz). In particular, RMSEs of retrieved
MLSEs using six reanalysis profiles are quite large at 89 GHz
(the RMSEs of all profiles are greater than 0.009 at this
frequency). The specific reasons for the poor performance can
be attributed to two aspects. First, these two frequencies tend
to have a strong sensitivity to WV or CLW parameters.
Second, as compared with the UWYO profile, all reanalysis
profiles have lesser pressure levels, so the calculated three

Fig. 5. Impacts of six reanalysis skin temperatures on the calculation of clear-sky MLSE for six AMSR-E frequencies. (a) RMSE change at H polarization; (b)
RRMSE change at H polarization; (c) R2 change at H polarization; (d) RMSE change at V polarization; (e) RRMSE change at V polarization; (f) R2 change at
V polarization.

Fig. 6. Impacts of six reanalysis profiles on the calculation of clear-sky MLSE for six AMSR-E frequencies. (a) RMSE change at H polarization; (b) RRMSE
change at H polarization; (c) R2 change at H polarization; (d) RMSE change at V polarization; (e) RRMSE change at V polarization; (f) R2 change at V
polarization.
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atmospheric parameters (Tu, Td, and τ) perform poorly for all
profile types. In a physical sense the high air attenuation
obscures the surface from view, which makes it more difficult
to measure surface emissivity accurately. However, as a whole,
the ERA5 profile generates the best performance. For the H
polarization, its RMSEs vary from 0.0003 at 6.9 GHz to 0.012
at 89 GHz, and the RRMSEs vary from 0.002 at 6.9 GHz to
0.097 at 89 GHz. The uncertainties produced by the errors of
the ERA-Interim, MERRA2, JRA-55, GFS, and FNL products
all present gradually increasing trends. This indicates that the
ERA5 has a desirable potential in terms of revealing actual
atmospheric conditions and greatly improving the accuracies
of clear-sky MLSEs estimates. This has been demonstrated in
our previous research [53]. However, we observe that the
impacts of the errors from profiles on the MLSE estimates are
lower. An RMSE of 12.87 K in the Td of NCEP/FNL produces
an RMSE of 0.027 for the MLSE at 89 GHz. Similar results
were also explored by Hu et al. [34], who found that the

MLSEs presented a 1-2% error to 10% bias of the temperature
profile. Some scholars also indicated that a 25% change in the
water vapor would lead to a global mean change in the MLSE
of 0.0016 at 6.9 GHz and 0.03 at 89.0 GHz [59, 60].

B. Performance of Clear-skies MLSE Retrieval
Because the estimated clear-sky MLSEs lack ground-truth

measurements that can be validated, we indirectly compared
the clear-sky MLSE estimated by us with the existing MLSE
product, i.e., Qiu_MLSE, from the spatiotemporal distribution.
Qiu_MLSE is mainly calculated under clear skies and applies
the same BT and similar LST product as the clear-sky MLSE
retrieved in this paper; thus, it is meaningful to perform the
contrast with this product.

The AMSR-E BTs have some missing values due to their
scanning swath. For convenient comparison, we calculated the
monthly average MLSE maps with the valid pixels by filtering
the cloudy and empty pixels. Fig. 7 presents the distribution

Fig. 7. The spatial distributions of monthly average clear-sky MLSEs derived from us and Qiu et al. in January 2008 for four AMSR-E frequencies. The
corresponding difference maps between two datasets are also given.
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maps of monthly average MLSEs in January 2008 at four
AMSR-E frequencies (i.e., 6.9, 18.7, 23.8, and 89 GHz). From
Fig. 7, we see the spatial distributions of monthly average
MLSEs are highly consistent between the two MLSE datasets
over China. They all display expected spatial structures that
are closely associated with changes in frequencies, land-cover
types, and topography. This further confirms the conclusion
that the atmospheric profile has little influence on surface
emissivity estimates. In addition, we note that the calculated
monthly average MLSEs obviously increase with increasing
frequency overall, but the high-latitude areas have some low
MLSEs at 89 GHz in Fig. 7. This is since the continuous
snowfall event in the winter presents a pronounced scattering
impact on the MLSE calculations at higher frequencies. In
terms of spatial distribution, the higher MLSEs are mainly
concentrated in the Loess Plateau, the Qinling mountainous
regions, the YunGui Plateau, and the southeast regions of the
study area, in which the surfaces are covered mostly by forests,
having a positive response to the MLSE at this frequency. In
contrast, low MLSE values are mostly found in the northern
Qinghai-Tibet Plateau and the northern Inner Mongolian
Plateau, where the land surfaces are covered mostly by sparse
vegetation and deserts. In addition, some rivers and coastal
regions also exhibit low to moderate MLSEs mainly due to the
prominent scattering derived from the water body and river.
Based on the distribution maps of differences between these
two MLSE datasets, we further validate that the retrieved
MLSEs are in line with Qiu_MLSE, with differences ranging
between -0.035−0.035 in January 2008 for the four selected
frequencies. However, the clear-sky MLSEs estimated have
underestimates in some mountainous regions (in particular, the
Qinghai-Tibet Plateau ) at 6.9, 18.7, and 23.8 GHz and present
an overestimate at 89 GHz as a whole. This maybe is
associated with the vertical stratification features of
atmospheric profile and microwave scattering. On the whole,
the clear-sky MLSEs estimated in this study have a
respectable precision and good spatial distribution
performance.

According to the statistical analysis of the monthly average
MLSEs from January to December 2008 at four land-cover
types: alpine meadow, desert, forest, and cropland, Fig. 8

further compares the time-series changes of the retrieved
MLSE in this paper and Qiu_MLSE at different months and
sites. These four kinds of land-cover types present different
sensitivities to MLSE changes, which can reflect the overall
trend of MLSE changes under actual natural conditions. From
the MLSE temporal changes, we discover that the retrieved
MLSEs under clear skies are accordant with Qiu_MLSE each
month. There is a small MLSE change over a short period of
time, and the possible impact of cloud covers on MLSEs is
mild. Especially for the forest and croplands, the two datasets
in these regions are more coincident, even if the water vapor
emission and heat energy transmission from the vegetation
canopy or the transpiration accelerate the formation of clouds
and rain. Since the SM and vegetation cover status in the Gobi
deserts and forests do not have obvious changes, the MLSEs
in these regions are more stable with little seasonal variations.
However, an abnormal phenomenon is perceived in the desert
region in which its MLSE values at all frequencies increased
suddenly in January and February 2008. This result is likely
because the snow cover in the Takla Makan Desert at that time
generated a typical scattering effect, and its MLSEs increased
with the decreasing frequency. Nevertheless, for the alpine
meadow and croplands, due to the growth change of grassland
and the irrigation period of crops, an evident seasonal change
trend is observed on the MLSE. Based on the above analysis,
it is not difficult to imagine that these anomalous MLSEs are
relevant to underlying surface variation and human activity.

C. Performance of the Cloudy-sky MLSE Estimates
It is essential to perform a systematic assessment of the RF

model before the cloudy-sky MLSEs are estimated for further
determining the applicability of the RF model. In this section,
approximately two-thirds of clear-sky MLSEs and predicted
factors from 31 December 2007 to 2 January 2008 were
randomly selected for training and tuning the RF model, and
the remaining one-third of the data pairs were used to evaluate
the performance of the MLSE estimation model. Taking the
estimated MLSE at 18.7 GHz as a sample, Fig. 9 exhibits the
performances of the RF models in predicting clear-sky MLSEs
at H polarization, V polarization, and polarization difference
(V-H). As shown in Fig. 9, in these three RF models, most

Fig. 8. The time-series differences between the retrieved MLSE and Qiu_MLSE at different months and sites. (a) 6.9 GHz, (b) 18.7 GHz, (c) 23.8 GHz, (d) 89
GHz.
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scatter points are concentrated near the 1:1 line, suggesting
that these prediction models can obtain satisfactory accuracies
in estimating instantaneous clear-sky MLSEs. In addition, they
display better validation statistic results, with the R2, RMSE,
and MAE ranging from 0.981 to 0.992, 0.0028 to 0.0053, and
0.0018 to 0.0034, respectively. Nevertheless, we also perceive

that the estimated clear-sky MLSEs at the H polarization are
poorer than the MLSEs at the V polarization and polarization
difference (V-H). This suggests that the relationship between
the clear-sky MLSEs and selected auxiliary variables for the V
polarization is stronger. In addition, a similar finding is also
presented in other AMSR-E frequencies, where the RMSEs of

Fig. 9. Scatterplots of the predicted clear-sky MLSE against the retrieved clear-sky MLSE at (a) H polarization, (b) V polarization, and (c) polarization
difference V-H.

Fig. 10. The estimated all-weather MLSEs and the retrieved clear-sky MLSEs in China on 1 January 2008. The corresponding all-weather MLSE statistic are
also given.



12

the estimated MLSEs at the V polarization are all less than
0.005. This is likely because the MLSE at the H polarization is
more sensitive to surface variables such as the soil roughness,
SM, and vegetation water content. However, as a whole, the
estimated clear-sky MLSEs with the RF model have higher
consistency with the retrieved clear-sky MLSEs, and there are
few differences. This finding demonstrates the selected factors
could better estimate MLSEs, and the RF has a good potential
to estimate cloudy-sky MLSE datasets over a wide range of
spatiotemporal scales.

After extending the relationship between clear-sky MLSEs
and related impact variables to cloudy conditions, Fig. 10 also
displays a case for the prediction of all-weather MLSEs on 1
January 2008. For comparison purposes, the clear-sky MLSEs
derived from the actual satellite instantaneous observations are
displayed. From Fig. 10, except for the impact of the AMSR-E
running orbit, 46.5% of the China region is covered by clouds,
and our strategy effectively predicts all-weather MLSE values
covering 97.3% of the total study area. This suggests that the
proposed method can successfully recover the image gaps
affected by cloud contamination as compared to the clear-sky
MLSEs. There is a relatively clear image texture even if the
MLSEs transition from the edge regions of the cloud cluster to
the neighboring cloud-free regions. The spatial distributions of
estimated MLSEs in cloudless areas are more consistent with

the actual MLSEs. However, due to the impacts of snowfall or
water bodies, some obvious image gaps are also observed in
lakes and rivers. Moreover, the cloudy-sky MLSE estimation
results present a good distribution that is closely associated
with land cover status. In the vegetated regions, the surface
emissivity reacts to the vegetation water content with a high
MLSE value; however, in the semiarid regions, the emissivity
polarization difference is relatively sensitive to the variability
in SM, and the emissivity is smaller. Meanwhile, from Fig
10(g)-(i), we note that the cloudy-sky MLSEs estimated at the
V polarization are generally greater than the cloudy-sky
MLSEs estimated at the H polarization. There are some more
concentrated MLSEs with a standard deviation (STD) of 0.027.
This result is in line with the MLSE change in the actual
situation and further demonstrates the dependability of the RF
model used in this study.

However, it is worth noting that, in this study, we merely
presented the spatial distribution of cloudy-sky MLSEs and
did not validate its accuracy because of the unavailability of
real surface emissivity products under cloudy-sky conditions.
In future research, for further verifying the performance of the
estimated cloudy-sky MLSE, using some auxiliary parameters
related to the MLSE changes (e.g., SM, vegetation phenology)
to analyze the spatiotemporal correlation is an indirect way.

Fig. 11. Time-series of AMSR-E derived horizontally polarized MLSEs, MPDI, and PR at four AMSR-E frequencies at four sites: (a) alpine meadow (b)
cropland. The corresponding curves of snow cover (black line), total precipitation value (Orange line), skin temperature (red line), and volumetric soil water
(blue line) observed at four land-cover types in China for 2008 are also shown.
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V. DISCUSSION

To provide more information regarding the estimates of
MLSEs, there are still some points that need to be discussed,
such as the potential impact factors of MLSE changes, the
sensitivity of cloud properties to the MLSE, the comparison
between the TIR-derived emissivity with clear-sky MLSE, and
the limitations of this method. This section will discuss them.

A. The Possible Impact Factors of MLSE Retrieval
Previous surface experiments have shown that the MLSE

varies considerably with changes in the SM and temperature
[41, 67]. Precipitation and snow cover also greatly influence
the MLSE since they can alter the land surface water potential
and its dielectric properties [58]. Hence, in this section, taking
the skin temperature, SM, snow cover, and total precipitation
derived from the ERA5-Land hourly data as four key impact
factors, we investigated the predominant factors affecting the
MLSE at various times and regions. To reduce the differences
among impact factors and MLSE in spatiotemporal resolutions,
all impact factors have been adjusted to a 0.25° resolution.
And then, the annual change curves of ERA5 skin temperature,
volumetric soil water, snow cover, and total precipitation are
respectively extracted at four sites with various land-cover
types. Meanwhile, the corresponding time series of AMSR-E
MLSEs at frequencies of 6.9, 18.7, 23.8, and 89 GHz and their
PR and MPDI indices for 2008 are also given.

As shown in Fig. 11(a)-(d), the estimated MLSEs present
significant variability with fluctuations in these four impacting
factors at the four specific sites in the given year. The MLSEs
exhibit apparent sensitivities to four selected parameters, and
the PR index is negatively correlated with the MPDI and has a
positive relationship with the MLSEs at the corresponding
frequencies. However, it is noted that skin temperature does
not display a strong response to the MLSE. These emissivity
variations are not correlated with the fluctuations of soil skin
temperatures, even if the skin temperature plays an essential
role in controlling the land surface heat and evapotranspiration
of soil/vegetation water content. Moreover, we observe that
the predominant factors influencing the changes in MLSE are
obviously different among the four land-cover types, and the
contribution intensity of different components of the surface to
the MLSE is highly frequency dependent. For the meadow and
cropland, the MLSEs at 6.9 GHz respond significantly to soil
water content due to a strong correlation between the MLSE
and change in the SM. In particular, in the cropland site, the
MLSEs and soil water display relatively consistent seasonal
change trends due to the on-farm irrigation during the crop
growing seasons (early spring, summer, and mid-autumn). The
alpine meadow site also presents a sudden change from June
to September 2008 because of the regular rainy season on the
Qinghai-Tibet Plateau. Meanwhile, the MLSEs at the selected
four frequencies become very low due to the unstoppable
snowfall in early spring and winter, suggesting that the snow

Fig. 11. Time-series of AMSR-E derived horizontally polarized MLSEs, MPDI, and PR at four AMSR-E frequencies at four sites: (c) forest (d) desert. The
corresponding curves of snow cover (black line), total precipitation value (Orange line), skin temperature (red line), and volumetric soil water (blue line)
observed at four land-cover types in China for 2008 are also shown.
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accumulation event acts as a perturbation factor affecting the
seasonal variation in the MLSE. However, for the remaining
two sites, their MLSE amplitudes are relatively stable for four
AMSR-E frequencies throughout the year. A slight fluctuation
trend is observed in the woodlands in the spring when the
vegetation canopy is relatively sparse, and the rainfall ratio is
increasingly frequent. However, a peculiar phenomenon of
MLSE in the desert site was found in January 2008 when an
evident trend of a sudden increase and then a decrease in the
MLSE was observed. This pattern is likely because, in the
transition season from winter to spring, when the snow begins
to melt and bare soil becomes wet, the MLSE is affected by
the SM and disturbed by the snowfall, and its fluctuation is
relatively large. As a consequence, comparing the MLSE
retrieval result with previous snowfall events is also an
indirect way to show the MLSE on rainfall-affected surfaces.

B. The Sensibility of Cloud Property to MLSE Estimation
Aires et al. [23] employed the neural network approach to

retrieve surface emissivity simultaneously based on the less

difference in MLSE between clear and cloudy skies. Hu et al.
[34] noted that the CLW had a negligible impact on MLSE
calculation. Thus, the estimation of cloudy-sky MLSE in this
study is mainly based on the hypothesis that the relationships
between clear-sky MLSE and related impact variables could
be extended to cloudy-sky conditions. Nevertheless, to further
verify this hypothesis, we discussed the sensitivity of cloud
cover status to the MLSE. To obtain information on the cloud
properties that are consistent with AMSR-E observations in
both space and time, the total cloud cover dataset derived from
the ERA5 hourly data on single levels is used in this section.

Fig. 12 first compares the yearly average MLSE distribution
maps under clear sky weather (total cloud cover < 10%) and
heavy cloudy sky weather (total cloud cover > 90%) during
2008. We found that the distribution of MLSE in China and
the mean values under these two weather conditions do not
change significantly for specific microwave frequencies. This
indicates that the possible impact of clouds on MLSE is mild.
From the point of view of contrastive analysis, it further
demonstrates that the cloudy-sky MLSE retrieval is feasible.

Fig. 12. The yearly average distributions of MLSEs under clear skies (total cloud cover < 10%) and heavy cloudy skies (total cloud cover > 90%) in 2008 for
four AMSR-E frequencies. The maps of differences between the two MLSEs are also given.
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Nevertheless, for 6.9 and 89 GHz frequencies, some apparent
MLSE changes are displayed in the Northeast China Plain, the
Taklimakan Desert, the Qinghai-Tibet Plateau, the Sichuan
Basin, and the middle and lower reaches of the Yangtze River
(see the right column in Fig. 12). This result may be due to the
unique sensitivity of the MLSE to certain frequencies and the
specific response of surface properties of these regions to the
MLSE [68]. At the same time, their vulnerable landscape
characteristics and particular climatic types are two important
causes driving these findings. As we mentioned previously,
the seasonal change in land-cover types and rainy seasons will
obviously alter the vegetation's biological property and soil
water-holding capacity on the land surface and further impact
the spatiotemporal variations in the MLSE, leading to some
abnormal values in the end.

Taking the MLSE map at 6.9 GHz as a case study, Fig. 13
further presents the scatter diagrams between the cloudy-sky
MLSEs and clear-sky MLSEs in the four seasons of 2008 to
explain the impacts of cloud cover on the MLSE. Meanwhile,
the difference value statistics between both are also given in
the probability distribution figure (see the bottom column of
Fig. 13). As we have seen from scatter diagrams, there is a
good correlation between cloudy-sky MLSEs and clear-sky
MLSEs for the four seasons of 2008 (R2 values are all greater
than 0.9), whereas their correlation in the summer is poorer
than that in the other seasons owing to the frequent heavy
cloud cover. Despite this, from the probability distribution
figure, we found that the differences between cloudy-sky
MLSEs and clear-sky MLSEs are generally smaller and
concentrate in a range from -0.05 to 0.05. The differences in
the mean values are less than 0.005, and the STDs are less
than 0.017 for the four seasons. In general, the possible impact
of clouds on the MLSE is also weak in different seasons.

C. Comparison between Thermal Infrared Emissivity with the
MLSE

Similar to the MLSE, land-surface emissivity derived from
the TIR band is also an important input variable for estimating
surface biophysical parameters, such as LST, land-cover types,
evapotranspiration, and PWV for a variety of research projects.
However, owing to the obvious difference between the two in
the physical mechanisms, there are different distributions and
change trends. Thus, in this section, we will further reveal the
changes of MLSE and compare the spatiotemporal difference
between TIR-derived emissivity and PMW-derived emissivity.
In consideration of the excellent temporal collocation between
AMSR-E and MODIS on the Aqua, the TIR emissivity from
the MODIS bands 31 and 32 are used.

By averaging the clear-sky TIR emissivities and microwave
surface emissivities for each day in 2008, Fig. 14 displays the
yearly average distribution maps of surface emissivities in
2008 for two MODIS bands and four AMSR-E frequencies.
Because of much higher variations in the emissivities in the
microwave range and the dependence of microwave BTs on
surface roughness and structures, yearly average MLSEs at
four AMSR-E frequencies all exhibit a larger variation range
from 0.70 to 0.98, and their spatial distributions closely
respond to vegetation coverage degree. Whereas the spectral
emissivity characteristics of the MODIS TIR bands 31 and 32
(wavelength range is 10.5-12.5µm) are very high compared to
MLSE. There is a smaller change range from 0.965 to 0.993
for these two MODIS TIR bands at various terrestrial land
cover backgrounds. Meanwhile, their spatial distributions are
closely related to land-cover types.

In addition, by making a statistic for the yearly average
emissivities at 15 land-cover types, we further observe from
Fig. 15 that the MLSEs at four frequencies dramatically vary

Fig. 13. The scatter diagrams between cloudy-sky MLSEs and clear-sky MLSEs and the difference value statistics of both in the four seasons of 2008.
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by land-covers, while the TIR-derived emissivities have a
steady trend. Taking 89 GHz as a case, for 15 surface types,
the vegetation-covered regions (IGBP code 1, 3, 4, 5, and 6)
display high emissivity values, followed by the grassland or
cropland (IGBP code 10, 11, 12, and 14), and the urban area
or barren regions (IGBP code 13 and 16). Under various
land-cover types, there is a relatively steady emissivity change
curve for the MODIS TIR bands 31 and 32. This finding has
been proved by the existing spectral emissivity measurements
of actual terrestrial materials, which indicate that the band
average emissivities in MODIS bands 31 and 32 are relatively
stable and known within about 0.01 for some land cover types,
such as dense evergreen canopies, lake, snow surface, and
most soils [69, 70]. Nevertheless, in the microwave frequency
range, different from the TIR spectrum range, soil emissivities
can rapidly vary from 0.6 for wet soil (about 30% volumetric
soil moisture) to 0.9 for dry bare soil (about 8%) [71]. The

emissivity of vegetation-covered surfaces varies obviously
with the frequency and depends on the vegetation growth
characteristics [72].

D. Limitations
Remotely sensed physical retrieval based on the RTE could

simulate relatively accurate microwave surface emissivities,
providing considerable convenience for building MLSE data.
The RF has some good advantages over traditional regression
methods for the accurate estimations of various atmospheric
and geophysical parameters. As a result, combining satellite
retrieval and machine learning model to realize the cloudy-sky
MLSE retrieval has considerable superiority. In this paper,
using each advantage of satellite observations and the RF
algorithm, the proposed MLSE estimation method can derive
cloudy-sky MLSEs at large spatiotemporal scales and present
significant application potential for vegetation phenology
monitoring, SM retrieval, atmospheric parameters derivation,
and snow characteristic detection. However, some limitations
are worth mentioning.

First, after the clear-sky MLSE is estimated, this study used
the RF algorithm to generate cloudy-sky MLSEs. This process
requires sufficient observation samples for the training model
and will waste time. To increase the model training speed, we
selected clear-sky MLSE datasets on date t and its adjacent
time-series data before and after one day (date t-1 to t+1) as a
suite of the data sets to train the model and then predicted the
cloudy-sky MLSEs on t with the selected variables. This will
lead to the generated RF models being specific to the day
being analyzed. Moreover, the accuracy of the RF model is
directly related to the regional distribution of training samples.

Fig. 15. The yearly average change trends of land surface emissivities at 15
land-cover types in 2008 for two MODIS bands and four AMSR-E
frequencies.

Fig. 14. The yearly average distributions of surface emissivities in 2008 for two MODIS bands and four AMSR-E frequencies.
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Therefore, the impact of the regional distribution of training
samples on the RF model also needs to be considered.

Second, in addition to the effect of input data on the MLSE
estimate, the quality of the method depends on other factors,
including the frequency, polarization, sensor overpass time,
incident angle, footprint, etc. [73]. Many previous studies also
have indicated that the MLSEs generated by different sensors
possess larger discrepancies, which are mainly caused by
systematic errors and random errors in the retrieval process
[20, 41]. At the same time, the systematic errors of MLSEs
significantly vary in different regions. Therefore, if this new
method can be applied to other sensor images and regions still
requires additional research.

Third, a comprehensive assessment of the uncertainty in the
MLSE estimate is a critical task for its wider applicability.
However, the lack of ground truth measurements at a large
scale makes validation difficult. In this study, we overcame
this lack of ground truth data by investigating the consistency
among the available microwave emissivity product from Qiu
et al. since this product used similar input datasets. However,
this comparison process was performed only under cloudless
skies. For further evaluation, investigating its relations with
some biophysical parameters, such as soil water content and
vegetation phenology, both spatially and temporally, is
another thinking that should be used in the future.

In addition, we should note that the derived MLSEs in this
study only represent the effective surface emissivity due to the
inconsistent physics‒volume-averaged temperature from the
PMW remote sensing versus skin temperature from the TIR
data. In addition, in the field of view of AMSR-E detection,
the pixel information is composed of different land-cover
backgrounds. These key problems are inevitable because of
the inherent nature of microwaves. Despite this, the acquired
MLSE still presents good scientific significance for revealing
the spatiotemporal changes in biogeochemistry, climatology,
hydrology, and ecology sciences.

VI. CONCLUSION

The rapid development of remote sensing technology has
produced a large number of algorithms for extracting MLSE
from PMW observations. Nevertheless, to our knowledge,
there has been limited research on estimating microwave
emissivity under various weather conditions. In this study, a
new method is proposed to estimate cloudy-sky MLSEs in
China by combining each advantage of satellite observation
and machine learning algorithm. The main conclusions are as
follows.

(1) The accurate calculation of clear-sky MLSE plays a vital
role in deriving the cloudy-sky MLSEs, which is subject to the
precision of input datasets. This study selected the ERA5
reanalysis profile and MODIS LST to perform the acquisition
of clear-sky MLSE, which is of more significant meaning. The
LST accuracy has evident impacts on the uncertainty of the
MLSE retrieval compared to that of atmospheric profiles. The
calculated atmospheric parameters derived from the ERA5 are
better than those output by the rest of the reanalysis profiles,
and the estimated MLSE RMSEs obviously vary from 0.0003

at 6.9 GHz to 0.012 at 89 GHz.
(2) Overall, the spatiotemporal distributions of clear-sky

MLSEs retrieved in this study are consistent with the product
developed by Qiu et al. The MLSE distribution is closely
associated with the changes in frequencies, surface types, and
topography. The differences between the estimated monthly
average MLSEs and Qiu_MLSE range from -0.035 to 0.035,
and the error distributions present an obvious underestimate as
a whole. Moreover, the seasonal cycle of clear-sky MLSEs
estimated is also coincident with the Qiu_MLSE product at
four kinds of land-cover backgrounds.

(3) The constructed RF model exhibits a desirable accuracy
in predicting the clear-sky MLSE, along with an RMSE of
0.0028 in the 18.7 GHz H polarization. These models can be
extended to the cloudy-sky status and successfully obtain an
MLSE of over 97.3% for the satellite-detected land area on a
typical cloudy day with a cloud fraction of 46.5%. Meanwhile,
after filling image gaps affected by cloud-cover contamination,
the proposed method generates a relatively clear and abundant
MLSE distribution pattern compared to the clear-sky MLSE
maps.

(4) Impact factor discussion of MLSE change, sensitivity
analysis of cloud-cover properties on MLSE estimates, and the
comparison between the TIR emissivity and MLSE suggest
that the MLSE is modulated by many surface parameters, such
as the LAI, SM, precipitation, snow cover, and land-cover
types. However, it is less impacted by cloud cover conditions.
This finding demonstrates that the proposed method is of
evident potential in deriving cloudy-sky MLSEs over a global
scale. However, some uncertainties still exist in this method,
such as the error source, method applicability, and verification
in different regions and sensors. Further research on the
cloudy-sky MLSE estimation is still needed.

ACKNOWLEDGMENT

The authors would like to acknowledge the U.S. National
Aeronautics and Space Administration (NASA) for the
provision of the MODIS LST and the ASTER GDEM dataset
(https://search.earthdata.nasa.gov/search); the National Snow
and Ice Data Center (NSIDC) for the provision of AMSR-E
brightness temperature and related datasets (https://nsidc.org/);
the European Centre for Medium-Range Weather Forecasts
(ECMWF) for providing the ERA5 reanalysis data product
(https://cds.climate.copernicus.eu/cdsapp#!/search?type=datas
et). In addition, we also acknowledge the Computer Network
Information Center, Chinese Academy of Sciences, China for
the provision of global land surface emissivity data under clear
skies status (https://datapid.cn/31253.11.sciencedb.113).

REFERENCES

[1] F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave remote
sensing–Activeand passive: Microwave Remote Sensing
Fundamentals and Radiometry, 3 ed., p.^pp. 186–255, MA, USA:
Addison-Wesley, Reading, 1981.

[2] C. Prigent, W. B. Rossow, and E. Matthews, “Microwave land
surface emissivities estimated from SSM I observations,” Journal

https://search.earthdata.nasa.gov/search


18

of Geophysical Research Atmospheres, vol. 102, no. D18, pp.
21867-21890, 1997.

[3] A. S. Jones, and T. H. VonderHaar, “Retrieval of microwave
surface emittance over land using coincident microwave and
infrared satellite measurements,” Journal of Geophysical
Research-Atmospheres, vol. 102, no. D12, pp. 13609-13626, 1997.

[4] A. S. Jones, and T. H. Vonder Haar, “Passive microwave remote
sensing of cloud liquid water over land regions,” Journal of
Geophysical Research Atmospheres, vol. 95, no. D10, pp.
16673-16683, 1990.

[5] S. J. English, “Estimation of temperature and humidity profile
information from microwave radiances over different surface
types,” Journal of Applied Meteorology, vol. 38, no. 10, pp.
1526-1541, 1999.

[6] F. A. Furuzawa, H. Masunaga, and K. Nakamura, “Development
of a land surface emissivity algorithm for use by microwave rain
retrieval algorithms,” SPIE Asia-Pacific Remote Sensing, vol. 8523,
8 November 2012, 2012.

[7] C. Birman, F. Karbou, and J. F. Mahfouf, “Daily rainfall detection
and estimation over land using microwave surface emissivities,”
Journal of Applied Meteorology and Climatology, vol. 54, no. 4,
pp. 880-895, 2015.

[8] D. B. Ji, J. C. Shi, C. Xiong et al., “A total precipitable water
retrieval method over land using the combination of passive
microwave and optical remote sensing,” Remote Sensing of
Environment, vol. 191, pp. 313-327, 2017.

[9] J. P. Wigneron, A. Chanzy, J. C. Calvet et al., “A simple algorithm
to retrieve soil moisture and vegetation biomass using passive
microwave measurements over crop fields,” Remote Sensing of
Environment, vol. 51, pp. 331-341, 1995.

[10] E. Njoku, T. Jackson, V. Lakshmi et al., “Soil moisture retrieval
from AMSR-E,” IEEE Transactions on Geoence & Remote
Sensing, vol. 41, no. 2, pp. 215-229, 2003.

[11] J. P. Wigneron, T. Jackson, P. O' Neill et al., “Modelling the
passive microwave signature from land surfaces: A review of
recent results and application to the L-band SMOS & SMAP soil
moisture retrieval algorithms,” Remote Sensing of Environment,
vol. 192, pp. 238-262, 2017.

[12] J. C. Shi, T. Jackson, J. Tao et al., “Microwave vegetation indices
for short vegetation covers from satellite passive microwave sensor
AMSR-E,” Remote Sensing of Environment, vol. 112, no. 12, pp.
4285-4300, 2008.

[13] L. J. Shi, Y. B. Qiu, and J. C. Shi, “Study of the microwave
emissivity characteristics of vegetation over the northern
hemisphere,” Spectroscopy and Spectral Analysis, vol. 33, no. 5,
pp. 1157-1162, 2013.

[14] R. Li, Y. P. Wang, J. H. Hu et al., “Spatiotemporal variations of
satellite microwave emissivity difference vegetation index in
China under clear and cloudy skies,” Earth and Space Science, vol.
7, no. e2020EA001145, pp. 1-15, 2020.

[15] F. Z. Weng, T. Zhu, and B. H. Yan, “Satellite data assimilation in
numerical weather prediction models. Part II: Uses of rain affected
microwave radiances for hurricane vortex analysis,” Journal of the
Atmospheric Sciences, vol. 64, no. 11, pp. 3910-3925, 2007.

[16] T. Holmes, M. Drusch, W. J. P. et al., “A global simulation of
microwave emission: Error structures based on output from
ECMWF's operational integrated forecast system,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 46, no. 3, pp.
846-856, 2008.

[17] P. Bauer, G. Ohring, C. Kummerow et al., “Assimilating satellite
observations of clouds and precipitation into NWP models,”
Bulletin of the American Meteorological Society, vol. 92, no. 6, pp.
ES25-ES28, 2011.

[18] F. Aires, C. Prigent, F. Bernardo et al., “A tool to estimate
land-surface emissivities at microwave frequencies (TELSEM) for
use in numerical weather prediction,” Quarterly Journal of the
Royal Meteorological Society, vol. 137, no. 656, pp. 690-699,
2011.

[19] F. Z. Weng, B. H. Yan, and N. C. Grody, “A microwave land
emissivity model,” Journal of Geophysical Research Atmospheres,
vol. 106, no. D17, pp. 20115-20123, 2001.

[20] S. Prakash, H. Norouzi, M. Azarderakhsh et al., “Estimation of
consistent global microwave land surface emissivity from
AMSR-E and AMSR2 observations,” Journal of Applied
Meteorology and Climatology, vol. 57, no. 4, pp. 907-919, 2018.

[21] J. T. Pulliainen, J. Grandell, and M. T. Hallikainen, “HUT snow
emission model and its applicability to snow water equivalent
retrieval,” IEEE Transactions on Geoscience & Remote Sensing,
vol. 37, no. 3, pp. 1378-1390, 1999.

[22] K. S. Chen, T. D. Wu, L. Tsang et al., “Emission of rough surfaces
calculated by the integral equation method with comparison to
three-dimensional moment method simulations,” IEEE
Transactions on Geoence & Remote Sensing, vol. 41, no. 1, pp.
90-101, 2003.

[23] F. Aires, C. Prigent, W. B. Rossow et al., “A new neural network
approach including first guess for retrieval of atmospheric water
vapor, cloud liquid water path, surface temperature, and
emissivities over land from satellite microwave observations,”
Journal of Geophysical Research Atmospheres, vol. 106, no. D14,
pp. 14887-14907, 2001.

[24] B. Ruston, F. Z. Weng, and B. H. Yan, “Use of a one-dimensional
variational retrieval to diagnose estimates of infrared and
microwave surface emissivity over land for atovs sounding
instruments,” IEEE Transactions on Geoscience & Remote Sensing,
vol. 46, no. 2, pp. 393-402, 2008.

[25] S. A. Boukabara, K. Garrett, and C. Grassotti, “Dynamic inversion
of global surface microwave emissivity using a 1DVAR approach,”
Remote Sensing, vol. 10, no. 5, pp. 1-18, 2018.

[26] F. Karbou, C. Prigent, L. Eymard et al., “Microwave land
emissivity calculations using AMSU measurements,” IEEE
Transactions on Geoscience & Remote Sensing, vol. 43, no. 5, pp.
948-959, 2005.

[27] C. Prigent, F. Aires, and W. B. Rossow, “Land surface microwave
emissivities over the globe for a decade,” Bulletin of the American
Meteorological Society, vol. 87, no. 11, pp. 1573-1584, 2006.

[28] C. Prigent, E. Jaumouille, F. Chevallier et al., “A parameterization
of the microwave land surface emissivity between 19 and 100 GHz,
anchored to satellite-derived estimates,” IEEE Transactions on
Geoscience & Remote Sensing, vol. 46, no. 2, pp. 344-352, 2008.

[29] P. de Rosnay, M. Drusch, A. Boone et al., “AMMA land surface
model intercomparison experiment coupled to the Community
Microwave Emission Model: ALMIP-MEM,” Journal of
Geophysical Research Atmospheres, vol. 114, no. D05108, pp.
1-18, 2009.

[30] J. Moncet, P. Liang, A. Galantowicz et al., “Land surface
microwave emissivities derived from AMSR-E and MODIS
measurements with advanced quality control,” Journal of
Geophysical Research Atmospheres, vol. 116, pp. D16104, 2011.

[31] S. Prakash, H. Norouzi, M. Azarderakhsh et al., “Global land
surface emissivity estimation from AMSR2 observations,” IEEE
Geoscience and Remote Sensing Letters, vol. 13, no. 9, pp.
1270-1274, 2016.

[32] Y. B. Qiu, J. C. Shi, M. T. Hallikainen et al., “The AMSR-E
instantaneous emissivity estimation and its correlation, frequency
dependency analysis over different land covers,” in IEEE
International Geoscience & Remote Sensing Symposium, IGARSS
2008, Boston, Massachusetts, USA, 2009, pp. 749-752.

[33] H. Norouzi, M. Temimi, W. B. Rossow et al., “The sensitivity of
land emissivity estimates from AMSR-E at C and X bands to
surface properties,” Hydrology and Earth System Sciences
Discussions, vol. 15, no. 11, pp. 3577-3589, 2011.

[34] J. H. Hu, Y. Y. Fu, P. Zhang et al., “Satellite retrieval of
microwave land surface emissivity under clear and cloudy skies in
China using observations from AMSR-E and MODIS,” Remote
Sensing, vol. 13, pp. 3980, 2021.

[35] G. D. Wilke, and M. J. Mcfarland, “Correlations between
Nimbus-7 scanning multichannel microwave radiometer data and
an antecedent precipitation index,” Journal of Applied
Meteorology and Climatology, vol. 25, no. 2, pp. 227-238, 1986.

[36] Y. B. Qiu, J. C. Shi, M. Hallikainen et al., “The AMSR-E
instantaneous emissivity estimation and its correlation, frequency
dependency analysis over different land covers,” in In Proceedings
of the IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), Boston, MA, USA, 2008, pp. 749-752.

[37] F. J. Turk, Z. S. Haddad, and Y. You, “Principal components of
multifrequency microwave land surface emissivities. Part I:
Estimation under clear and precipitating conditions,” Journal of
Hydrometeorology, vol. 15, no. 1, pp. 3-19, 2014.

[38] C. S. Raju, T. Antony, N. Mathew et al., “Mt-madras brightness
temperature analysis for terrain characterization and land surface



19

microwave emissivity estimation,” Current Science, vol. 104, pp.
1643-1649, 2013.

[39] Y. Wu, B. Qian, Y. S. Bao et al., “Microwave land emissivity
calculations over the Qinghai Tibetan plateau using FY-3BMWRI
measurements,” Remote Sensing, vol. 11, no. 19, pp. 2206, 2019.

[40] H. Yang, and F. Z. Weng, “Error sources in remote sensing of
microwave land surface emissivity,” IEEE Transactions on
Geoscience & Remote Sensing, vol. 49, no. 9, pp. 3437-3442,
2011.

[41] Y. Tian, C. D. Peters-Lidard, K. W. Harrison et al., “Quantifying
uncertainties in land-surface microwave emissivity retrievals,”
IEEE Transactions on Geoscience & Remote Sensing, vol. 52, no.
2, pp. 829-840, 2014.

[42] S. Ringerud, C. Kummerow, C. Peters-Lidar et al., “A comparison
of microwave window channel retrieved and forward-modeled
emissivities over the U.S. southern great plains,” IEEE
Transactions on Geoscience & Remote Sensing, vol. 52, no. 5, pp.
2395-2412, 2014.

[43] Y. Tian, C. D. Peters-Lidard, K. W. Harrison et al., “An
examination of methods for estimating land surface microwave
emissivity,” Journal of Geophysical Research: Atmospheres, vol.
120, no. 21, pp. 11114–111128, 2015.

[44] X. Cui, Z. Yao, Z. Zhao et al., “Use of double channel differences
for reducing the surface emissivity dependence of microwave
atmospheric temperature and humidity retrievals,” Earth and
Space Science, vol. 7, no. 5, pp. 1-26, 2020.

[45] B. Lin, and P. Minnis, “Temporal variations of land surface
microwave emissivities over the atmospheric radiation
measurement program southern great plains site,” Journal of
Applied Meteorology, vol. 39, no. 7, pp. 1103-1116, 2000.

[46] F. Baordo, and A. J. Geer, “Assimilation of SSMIS
humidity-sounding channels in all-sky conditions over land using a
dynamic emissivity retrieval,” Quarterly Journal of the Royal
Meteorological Society, vol. 142, no. 700, pp. 2854-2866, 2016.

[47] B. Lin, B. Wielicki, P. Minnis et al., “Estimation of water cloud
properties from satellite microwave, infrared and visible
measurements in oceanic environments: 1. Microwave brightness
temperature simulations,” Journal of Geophysical Research, vol.
103, no. D4, pp. 3873–3886, 1998.

[48] S. A. Clough, M. W. Shephard, E. J. Mlawer et al., “Atmospheric
radiative transfer modeling: A summary of the AER codes,”
Journal of Quantitative Spectroscopy and Radiative Transfer, vol.
91, no. 2, pp. 233-244, 2005.

[49] P. Ashcroft, and F. J. Wentz, “Algorithm Theoretical Basis
Document (ATBD) AMSR Level 2A algorithm remote sensing
systems: Santa Rosa, CA, USA,” 2000.

[50] P. Ashcroft, and F. J. Wentz, “AMSR-E/Aqua L2A global swath
spatially-resampled brightness temperatures; Version 3; NASA
national snow and ice data center distributed active archive center:
Boulder, CO, USA,” 2013.

[51] Z. M. Wan, “New refinements and validation of the collection-6
MODIS land-surface temperature/emissivity product,” Remote
Sensing of Environment, vol. 140, pp. 36-45, 2014.

[52] S. B. Duan, Z. L. Li, H. Li et al., “Validation of Collection 6
MODIS land surface temperature product using in situ
measurements,” Remote Sensing of Environment, vol. 225, pp.
16-29, 2019.

[53] X. M. Zhu, X. N. Song, P. Leng et al., “Performances of six
reanalysis profile products in the atmospheric correction of passive
microwave data for estimating land surface temperature under
cloudy-sky conditions,” International Journal of Digital Earth, vol.
15, no. 1, pp. 296-322, 2022.

[54] H. Hersbach, B. Bell, P. Berrisford et al., “The ERA5 global
reanalysis,” Quarterly Journal of the Royal Meteorological Society,
vol. 146, pp. 1999-2049, 2020.

[55] A. Chaieb, N. Rebair, and S. Bouazizb, “Vertical accuracy
assessment of SRTM Ver 4.1 and ASTER GDEM Ver 2 using
GPS measurements in central west of Tunisia,” Journal of
Geographic Information System, vol. 8, no. 1, pp. 57-64, 2016.

[56] F. C. Zhou, Z. L. Li, H. Wu et al., “A remote sensing method for
retrieving land surface emissivity and temperature in cloudy areas:
a case study over South China,” International Journal of Remote
Sensing, vol. 40, no. 5-6, pp. 1724-1735, 2019.

[57] W. Snyder, and Z. M. Wan, “BRDF models to predict spectral
reflectance and emissivity in the thermal infrared,” IEEE

Transactions on Geoence & Remote Sensing, vol. 36, no. 1, pp.
214-225, 1998.

[58] F. Z. Weng, and N. C. Grody, “Physical retrieval of land surface
temperature using the special sensor microwave imager,” Journal
of Geophysical Research: Atmospheres, vol. 103, no. D8, pp.
8839-8848, 1998.

[59] S. J. English, “Airborne radiometric observations of cloud
liquid-water emission at 89 and 157 GHz-application to retrieval of
liquid-water path,” Quarterly Journal of the Royal Meteorological
Society, vol. 121, pp. 1501-1524, 1995.

[60] Y. C. Zhang, W. B. Rossow, and P. W. Stackhouse, “Comparison
of different global information sources used in surface radiative
flux calculation: radiative properties of the near surface
atmosphere,” Journal of Geophysical Research-Atmospheres, vol.
111, 2006.

[61] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp. 5-32, 2001.

[62] C. Hutengs, and M. Vohland, “Downscaling land surface
temperatures at regional scales with random forest regression,”
Remote Sensing of Environment, vol. 178, pp. 127-141, 2016.

[63] X. M. Zhu, X. N. Song, P. Leng et al., “A framework for
generating high spatiotemporal resolution land surface temperature
in heterogeneous areas,” Remote Sensing, vol. 13, no. 19, pp. 3885,
2021.

[64] H. L. Gao, R. Fu, R. E. Dickinson et al., “A practical method for
retrieving land surface temperature from AMSR-E over the
Amazon forest,” IEEE Transactions on Geoence & Remote
Sensing, vol. 46, no. 1, pp. 193-199, 2008.

[65] E. Y. Zhao, C. X. Gao, X. G. Jiang et al., “Land surface
temperature retrieval from AMSR-E passive microwave data,”
Optics Express, vol. 25, no. 20, pp. 940-952, 2017.

[66] A. Mcgovern, R. Lagerquist, D. J. Gagne et al., “Making the black
box more transparent: Understanding the physical implications of
machine learning,” Bulletin of the American Meteorological
Society, vol. 100, no. 1, pp. 2175-2199, 2019.

[67] R. R. Ferraro, C. D. Peters-Lidard, C. Hernandez et al., “An
evaluation of microwave land surface emissivities over the
continental United States to benefit GPM-Era precipitation
algorithms,” IEEE Transactions on Geoscience & Remote Sensing,
vol. 51, no. 1, pp. 378-398, 2013.

[68] H. Norouzi, W. Rossow, M. Temimi et al., “Using microwave
brightness temperature diurnal cycle to improve emissivity
retrievals over land,” Remote Sensing of Environment, vol. 123, pp.
470-482, 2012.

[69] J. W. Salisbury, and D. M. D’Aria, “Emissivity of terrestrial
materials in the 8-14 µm atmospheric window,” remote Sensing of
Environment, vol. 42, pp. 83-106, 1992.

[70] W. G. Rees, “Infrared emissivities of Arctic land cover types,”
International Journal of Remote Sensing, vol. 14, pp. 1013-1017,
1993.

[71] T. J. Jackson, and P. E. O’Neill, “Salinity effects on the microwave
emission of soil,” IEEE Transactions on Geoence & Remote
Sensing, vol. 25, pp. 214-220, 1987.

[72] F. T. Ulaby, R. K. Moore, and A. K. Fung, Microwave Remote
Sensing: Active and Passive, Volume III, from Theory to
Applications, North Bergen, NJ: Book-Mart Press, Inc, 1986.

[73] H. Norouzi, M. Temimi, C. Prigent et al., “Assessment of the
consistency among global microwave land surface emissivity
products,” Atmospheric Measurement Techniques Discussions, vol.
7, no. 9, pp. 9993-10013, 2015.



20

Xin-Ming Zhu received the M.S. degree
from the Northwest University, Xi'an,
China, in 2018. He is currently working
toward the Ph.D. degree at the University
of Chinese Academy of Sciences, Beijing.

His current research interests include the
retrieval and spatio-temporal analysis of
land surface temperature and land surface

emissivity from passive microwave remote sensing.

Xiao-Ning Song received the Ph.D. degree
in cartography and geographical
information system from Graduated the
University of Chinese Academy of
Sciences, Beijing, China, in 2004.

She is currently a Professor with the
University of Chinese Academy of

Sciences. Her current research interests include quantitative
remote sensing and the application of remote sensing in
ecological environment.

Pei Leng received the Ph.D. degree in
cartography and geographical information
system from Graduated the University of
Chinese Academy of Sciences, Beijing,
China, in 2015.

He is currently an Associate Professor
with the Institute of Agricultural Resources
and Regional Planning, Chinese Academy

of Agricultural Sciences, Beijing. His current research
interests include the retrieval and validation of soil moisture
content.

Zhao-Liang Li received the Ph.D. degree in remote sensing
from Louis Pasteur University (currently called University of
Strasbourg), Strasbourg, France, in 1990.

Since 1992, he has been a Research Scientist with the
National Center for Scientific Research (CNRS), Illkirch,
France. In 2012, he joined the Institute of Agricultural
Resources and Regional Planning. He has participated in many
national and international projects, such as the NASA-funded
MODIS, the EC-funded program EAGLE, and the
ESA-funded program SPECTRA. He has authored more than
200 papers in international refereed journals. His research
interests include thermal infrared radiometry, parameterization
of land surface processes at large scale, and the assimilation of
satellite data to land surface models.

Xiao-Tao Li received the M.S. degree in
Mineral Resource Prospecting and
Exploration from Graduated the Shandong
University of Science and Technology,
Qingdao, China, in 2004.

He is currently a Professor with the
Chinese Institute of Water Resource and
Hydropower Research. His current

research interests include the drought monitoring and flood
monitoring using remote sensing image.

Liang Gao received the M.S. degree from
the Aerospace Information Research
Institute, Chinese Academy of Science,
Beijing, in 2020. He is currently working
toward the Ph.D. degree at the University
of Chinese Academy of Sciences, Beijing.

His current research interests include the
retrieval and validation of soil moisture

content using active microwave remote sensing.

Da Guo received the B.E. degree from the
Shandong University of Science and
Technology, Qingdao, China, in 2018. He
is currently working toward the Ph.D.
degree at the University of Chinese
Academy of Sciences, Beijing.

His current research interests include the
retrieval and validation of leaf area index

using laser radar remote sensing.


	I.INTRODUCTION
	II.STUDY AREA AND DATASET USED
	A.Study Area
	B.Data Collection Used
	1)Input datasets used for clear-sky MLSE calculation
	2)Input datasets used for cloudy-sky MLSE estimate
	3)Datasets used for error analysis of MLSE estimate 
	4)Datasets used for comparison of MLSE result


	III.METHODOLOGY
	A.Retrieval of Clear-sky MLSE
	B.Prediction of Cloudy-sky MLSEs
	C.Accuracy Evaluation

	IV.RESULTS
	A.Impacts of Input Datasets on Clear-sky MLSE Invers
	B.Performance of Clear-skies MLSE Retrieval
	C.Performance of the Cloudy-sky MLSE Estimates

	V.DISCUSSION
	A.The Possible Impact Factors of MLSE Retrieval
	B.The Sensibility of Cloud Property to MLSE Estimati
	C.Comparison between Thermal Infrared Emissivity wit
	D.Limitations

	VI.CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

