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Abstract: The relationship between land surface temperature (LST) and environmental factors is
complex and nonlinear. To determine these relationships for China, this study analyzed the driving
effects of air temperature, vegetation index, soil moisture, net surface radiation, precipitation, aerosols,
evapotranspiration, and water vapor on LST based on remote-sensing and reanalysis data from
2003–2018, using a convergent cross-mapping method. During the study period, air temperature
and net surface radiation were the dominant drivers of LST with a cross-mapping skill above 0.9.
Vegetation index and evapotranspiration were the secondary drivers of LST with a cross-mapping
skill that was higher than 0.5. Except for air temperature and net surface radiation, the direction
and strength of the effects of the driving factors on LST were related to the climate type. The effects
of air temperature and net radiation on LST diminished from north to south, indicating that LST
was more sensitive to air temperature and net radiation in energy-limited regions. However, the
effects of vegetation index and evapotranspiration on LST varied significantly across climate zones;
that is, positive effects were mostly in non-monsoonal zones and negative effects were primarily
in monsoonal zones. Our results quantified the driving role of environmental factors on LST and
provided a comprehensive understanding of LST dynamics.

Keywords: land surface temperature; driving factors; causality; convergent cross mapping

1. Introduction

In a complex climate system, anomalies in key variables often lead to chain effects,
disrupt related variables, and even cause fluctuations in the entire system. Land surface
temperature (LST), a central element in the climate system, plays a fundamental role in
assessing land-atmosphere interactions and climate change. It is defined as a high priority
parameter by the International Geosphere-Biosphere Programme and as an important cli-
mate variable by the Global Climate Observing System (GCOS) of the World Meteorological
Organization [1]. LST anomalies have a significant impact on energy cycles, ecological
balance, and even human life. Unfortunately, the drivers that cause changes in LST are not
accurately determined. Therefore, detecting the causal relationship between drivers and
LST is crucial for analyzing both temperature anomalies and climate change.

Over the past few decades, significant results have been obtained for LST and its
drivers, such as the relationship between surface cover type, NDVI (Normalized Difference
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Vegetation Index), elevation, soil moisture, evapotranspiration, and surface radiation with
LST [2–6]. Generally, studies have focused on the urban heat island effect, heat wave
phenomenon, or the effect of vegetation changes on LST [7–10]. There are limited studies
analyzing the relationship between LST and environmental factors from causality perspec-
tive, especially the analysis of multiple environmental factors and LST. Several non-causal
methods have been frequently used to analyze the relationship between environmental
factors and LST in previous studies, including the correlation coefficient method [11], linear
regression [12], stepwise regression [13,14], and geographically weighted regression [15,16].
In addition, most studies have statistically analyzed the correlations between LST and envi-
ronmental factors on a time series, assuming that the environmental factors with significant
correlations are the drivers of LST. However, they have ignored the basic principle that
correlations are not causal. Therefore, when studying the interaction between LST and
environmental factors, it is important to determine whether there is a causal relationship
between the two.

In recent years, there has been a proliferation of approaches to causality analysis,
which can be classified into qualitative process models and data-driven models. Qual-
itative process models require sufficient theory and experience to analyze the causality
of things; however, obtaining accurate and sufficient process knowledge is difficult and
time-consuming. By contrast, data-driven approaches can provide multiple ways to find
causal relationships based on large amounts of historical data. Data-driven methods have
been widely applied to identify the causal relationships between variables [17–25]. The
Granger causality (GC) test proposed by Granger [26] is considered to be one of the earliest
data-driven causality detection methods. The GC test assumes that a causal relationship
exists between two variables if the prediction of one variable can be significantly improved
by combining the information from another variable. However, GC tests require variables
to be independent of each other; therefore, they are not suitable for causality detection of
nonlinear systems with coupled relationships. The geographic detector method proposed
by Wang et al. [27] determines the role of influencing factors through the spatial divergence
between the independent and dependent variables, which not only detects the influencing
factors, but also provides the magnitude of the ability of the influencing factors to explain
the spatial divergence of the dependent variables. However, it has certain requirements
with respect to the data types of variables, especially the causality of continuous time series
variables detection. Thus, the results can be anomalous.

The empirical dynamic modeling (EDM) causality detection method was proposed
by Sugihara et al. [17]. This convergent cross mapping (CCM) method is a practical data-
based causality detection method based on Takens’ theorem to identify causal relationships
in complex nonlinear systems with coupling. According to historical studies, the CCM
method can effectively identify causal relationships in non-separable nonlinear systems,
while being an equation-free statistical method that is not controlled by models [28]. The
CCM method can not only identify causal relationships between variables while effectively
eliminating the effects of other factors, but can also eliminate pseudo-causal relationships
caused by synchronization effects [29]. In addition, the high sensitivity of CCM methods
to weakly coupled relationships in nonlinear systems can lead to their increasing interest
and applications in various fields, such as fisheries, medicine, chemistry, climate change,
environmental pollution, and ecology [30–34]. However, to the best of our knowledge, few
studies have focused on the causal relationship between LST and environmental elements
based on the CCM method.

The main objectives of this study were to (1) identify the causal relationships between
LST and environmental factors based on the CCM method, (2) screen and eliminate pseudo-
causal relationships caused by synchronous effects between LST and environmental factors,
and (3) explore the direction and intensity of the driving factors on LST using scenario
exploration. The remainder of this paper is organized as follows. Section 2 presents the
data sources for the environmental factors. Section 3 introduces the methodology. Section 4
provides the results before the discussion in Section 5, and Section 6 concludes the study.
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2. Materials and Methods
2.1. Satellite Products

The National Aerodynamics and Space Administration (NASA) Earth Observing Sys-
tem (EOS) Terra and Aqua satellites, equipped with MODIS (Moderate-Resolution Imaging
Spectroradiometer) sensors, were launched in December 1999 and May 2002, respectively.
In this study, several MODIS land products (V006) were used, including MODIS/Aqua
Land Surface Temperature monthly L3 Global 0.05◦ SIN Grid (MYD11C3), MODIS/Aqua
Normalized Difference Vegetation Index monthly L3 Global 0.05◦ CMG (MYD13C2),
MODIS/Aqua Aerosol daily L2 10 km × 10 km Product (MYD04_L2), MODIS/Terra
Evapotranspiration 8-day L4 Global 500 m SIN Grid (MYD16A2), and MODIS/Aqua Total
Precipitable Water Vapor daily L2 5 km × 5 km Product (MYD05_L2).

The MYD11C3 product was obtained by synthesizing and averaging the values of the
corresponding months in the MYD11C1 product. This product provided LST estimates
for day (1:30 p.m.) and night (1:30 a.m.) overpass times [35–38]. This study limited the
analysis to high-quality clear-sky pixels with an LST error ≤ 1 K using the MYD11C3
quality control (QC) layer. The MODIS Aqua overpass time roughly corresponded to the
daily maximum LST, which occurred in the afternoon, and the daily minimum LST, which
was after midnight. Therefore, the average of the two LSTs was used in this study.

As an indicator closely related to green biomass and leaf area indices at regional and
global scales, NDVI has been widely recognized for studying the relationship between LST
and vegetation [39]. The MYD13C2 product is analogous to MYD13C1 (Vegetation Indices
16-Day L3 Global 0.05◦ CMG) but is based on MYD13A3 (Vegetation Indices Monthly L3
Global 1 km SIN Grid) for a monthly temporal resolution. All other specs are maintained
and the production features are retained. In this study, the MYD04_L2 and MYD05_L2 prod-
ucts were used to obtain AOD (Aerosol Optical Depth) and WV (Water vapour) factors. The
selected bands of the two products were AOD_550_Dark_Target_Deep_Blue_Combined
and water vapor infrared.

The MYD16A2 product was an 8-day composite dataset produced at a spatial resolu-
tion of 500 m. The algorithm used for the MYD16 product was based on the logic of the
Penman-Monteith equation, which included inputs of daily meteorological reanalysis data
along with Moderate Resolution Imaging Spectroradiometer (MODIS) remotely sensed
data products, such as vegetation property dynamics, albedo, and land cover [40].

2.2. ESA-CCI Soil Moisture Data

The soil moisture dataset was provided by the European Space Agency (ESA)
(http://esa-soilmoisture-cci.org (accessed on 1 November 2021)). ESA released the global
soil moisture product, which included active microwave products, passive microwave
products, and combined active-passive microwave products [41]. In this study, the com-
bined active-passive microwave product was analyzed from 2003 to 2018. The dataset
had a spatial resolution of 0.25◦ × 0.25◦ [42]. Moreover, its applicability in China was
demonstrated by An et al. (2016) [43].

2.3. ERA5-Land and CRU Data

ERA5-Land is a reanalysis dataset that provides a consistent view of the evolution
of land variables over several decades at an enhanced resolution compared with ERA5.
ERA5-Land was produced by replaying the land component of the European Center for
Medium-Range Weather Forecast (ECMWF) ERA5 climate reanalysis [44]. Three products
were used in this study, including air temperature at 2 m above the ground, surface net
solar radiation, and surface net thermal radiation, with a spatial resolution of 0.1◦ × 0.1◦.
The surface net solar radiation and surface net thermal radiation data were used to calculate
the surface net radiation.

Monthly precipitation data from the latest version of the Climatic Research Unit
Version 4.04 (CRU TS4.04) for the period 2003–2018 were used in this study. The CRU
dataset was developed by the University of the East Anglia Climatic Research Unit. The

http://esa-soilmoisture-cci.org
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CRU dataset was found to have a better temporally continuous availability than traditional
weather station observations [45].

All data from 2003 to 2018 were spatially and temporally scaled at a uniform resolution
of 0.05◦ and monthly time steps, respectively. Spatial resampling to a 0.05◦ resolution
was performed by applying bilinear interpolation. Daily and 8-day composite data were
averaged to obtain the monthly values. Data with zero values are treated as invalid pixels.
A summary of these data is presented in Table 1.

Table 1. Basic information about the satellite observation and reanalysis data used in this study.

Data Product Spatial Resolution Temporal Resolution

Land Surface
Temperature MYD11C3 0.05◦ (~5.6 km) Monthly

Normalized Difference
Vegetation Index MYD13C2 500 m (0.5 km) 8-day

Aerosol Optical Depth MYD04_L2 10 km Daily
Net Evapotranspiration MYD16A2 500 m (0.5 km) 8-day

Water Vapor MYD05_L2 5 km Daily
Soil Moisture ESA-CCI 0.25◦ (28 km) Daily

Air Temperature ERA5-Land 0.1◦ (11.2 km) Monthly
Surface Net Solar

Radiation ERA5-Land 0.1◦ (11.2 km) Monthly

Surface Net
Thermal Radiation ERA5-Land 0.1◦ (11.2 km) Monthly

Precipitation CRU 0.5◦ (56 km) Monthly

3. Method

To analyze the causality between LST and its related environmental factors, five main
procedures for causality detection were summarized as follows: (1) The CCM method was
used to identify the causality between LST and environmental factors. (2) The seasonal sur-
rogate test (SST) was used to remove pseudo-causality between the LST and environmental
factors caused by the seasonal synchronization effect. (3) Multivariate EDM helped examine
whether environmental factors had a stronger causal effect on LST. (4) The ECCM (Extend
Convergence Cross Mapping) method was used to further identify pseudo-causality due
to generalized synchronization and Moran effects. (5) Multivariate scenario exploration
was employed to determine the direction and strength of the real driver on LST. Details of
each procedure are described in the following sections. A flowchart of causality detection
between the LST and environmental factors is shown in Figure 1.

3.1. CCM

The CCM provides a way to identify the causal relationship between two variables in
a complex nonlinear system. The fundamental principle of the CCM method is as follows.

If variable x in a system acts on variable y, the historical information of x is recorded
by y. The time series of y can be used to recover the historical information of x; that is,
the historical values of y can be used to map the time series of x. Details can be found
in the three animations provided by Sugihara et al. [17] (http://science.sciencemag.org/
content/suppl/2012/09/19/science.1227079.DC1 (accessed on 1 November 2021)). For the
CCM analysis, the simplex projection was used to predict x with the historical information
of y [46]. Cross-mapping skill (ρccm) was defined as the Pearson correlation coefficient
ρ between the predicted and actual values of x. If the value of ρccm increased with the
length of the time series and convergence was achieved, the causal effect of x on y could
be determined. The Mann-Kendall monotonicity detection method (M-K test) was used
to determine the convergence of ρccm [47,48]. The validity of the CCM detection results is
determined by the convergence of ρccm, whereby the CCM method requires the time series
length of the data to be greater than 30 [17]. To further improve the accuracy of the results
in this study, we only detect the pixels with time series length greater than 90.

http://science.sciencemag.org/content/suppl/2012/09/19/science.1227079.DC1
http://science.sciencemag.org/content/suppl/2012/09/19/science.1227079.DC1
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To explore the driving factors of LST, eight environmental factors including air temper-
ature (TA), normalized difference vegetation index (NDVI), soil moisture (SM), net surface
radiation (RN), precipitation (PRE), aerosol optical depth (AOD), evapotranspiration (ET),
and water vapor (WV) were selected as potential driving variables. In this study, the CCM
method was used to analyze whether the aforementioned eight environmental factors
affected the response variable LST.
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3.2. SST

A similar seasonal cycle between LST and an environmental factor may result in a
high value of ρccm, even if there is no causal relationship. This phenomenon is described as
the seasonal synchronization effect [17,29]. In this case, the CCM method could not fully
distinguish real causality or spurious correlation [49]. A null test with a surrogate time
series was considered as an effective method to address this problem [20].

The time series of an environmental factor with seasonal cycle changes {Z} was de-
composed into seasonal cycle series {Zs} and short-term fluctuation series {∆d}. {∆d} was
randomly shuffled to obtain a new fluctuation series {∆d*}. Then, {∆d*} was added to the
seasonal cycle series {Zs} to obtain the surrogate time series of the environmental factor,
that is, {Z*} = {Zs} + {∆d*}. It has been established that {Z*} has the same seasonal cycle
series as {Z} but a different fluctuation series. If {Z} is indeed the driver of LST, LST will be
sensitive not only to the seasonal cycle series {Zs}, but also to the fluctuation series {∆d}.
Therefore, LST should be better at predicting the actual series {Z} than the surrogate series
{Z*}. The shuffling procedure was repeated 500 times to produce a set of surrogate series of
environmental factors. The value of ρccm between the LST and each surrogate series was
calculated. The environmental factor was retained if the value of ρccm between the LST
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and the actual series of environmental factors was significantly higher than that between
the LST and the 500 surrogate series. Otherwise, the environmental factor was considered
to have no causal relationship with LST and was rejected. Finally, a non-parametric one-
sample Wilcoxon test was chosen to estimate whether the actual series of environmental
factors had a stronger effect on LST than the surrogate series at a significant level (p < 0.05).

3.3. Multivariate EDM

For causality detection among random variables, the CCM method may not be able
to accurately identify the driving effect of an environmental factor on LST, due to data
limitations, such as time series length and breakpoints in the time series [29]. In this
study, multivariate EDM was used to determine whether an environmental factor had
a significant driving effect on LST by comparing the improvement in EDM forecasting
skills [50]. In other words, if an environmental factor had a driving effect on LST, it would
significantly improve the forecasting skill of the model by adding environmental factors
into the multivariate EDM model.

In this study, a multivariate EDM model composed of the time series of an environ-
mental factor and the lagged time series of LST was used to forecast the LST. Forecasting
skill (ρ) is the correlation coefficient between the time series of the forecasted and the
original LST. Forecast improvement is the difference between the forecasting skill of the
model with the environmental factor (ρwith_factor) and that without the environmental
factor (ρwithout_factor), that is, forecast improvement ∆ρ = ρwith_factor − ρwithout_factor. A
non-parametric one-sample Wilcoxon test was used to test the significance (p < 0.05) of the
forecasting improvement of the multivariate EDM model.

3.4. ECCM

In a complex system, the accuracy of causality detection is affected by the generalized
synchronization and the Moran effects [29], which cannot be removed by the SST and
multivariate EDM methods. Ye et al. (2015) addressed the above problems by considering
different time lags. In an actual causal relationship, the driving variable x can only act
on the present or future values of the response variable y and not on the past values of y.
Therefore, in the cross-mapping process, the response variable y can only predict the present
or past values of the driving variable x, but not the future values of x. Accordingly, when
using the CCM method to detect causality between variables x and y, if there is a time lag
in the driving effect, the time lag must be non-positive. Based on this concept, Ye et al. [29]
proposed an extension of the CCM method (ECCM). First, the set of lagged time series
of variable x was established; ρccm between each lagged time series and variable y was
calculated separately, and the time lag corresponding to the optimal ρccm was selected.
If time lag ≤ 0, there was a driving effect of variable x on y, and the driving effect has a
time lag of lag length. If time lag > 0, there is no driving effect of x on y. In this study, we
performed ECCM detection for all environmental factors and LST.

3.5. Multivariate Scenario Exploration

After removing the pseudo-causal relationship between the environmental factors and
LST, a scenario analysis was conducted to further explore the direction and strength of the
driving effect of the true driver on LST. Multivariate scenario analysis based on EDM is a
method for empirically assessing the effect of small changes in the driver on LST, which
can effectively assess the response of LST to fluctuations in the driver [20]. The specific
steps of multivariate scenario analysis are detailed below. Taking air temperature (TA) as
an example, we predicted the effect of small changes in TA on LST for a corresponding lag
length. The multivariate EDM model in this study included the lagged coordinates of the
LST and the time series of TA:

LST(t + lag) ≈ f (LST(t), LST(t − 1), . . . , LST(t − (E − 2)), TA(t)) (1)



Remote Sens. 2022, 14, 3280 7 of 26

This equation was obtained with S-maps, where E is the optimal number of coordinates
for the model to make predictions. For each historical time point t, this study predicted
the LST with a small increase (+∆TA/2) and a small decrease (−∆TA/2) in the historically
measured driver TA(t). To compare the strength of the effect of TA on LST in different
regions, ∆TA was used, which corresponded to ~5% of the standard deviation of TA
across China.

LST+(t + lag) ≈ f (LST(t), LST(t − 1), . . . , LST(t − (E − 2)), TA(t) + ∆TA/2) (2)

LST−(t + lag) ≈ f (LST(t), LST(t − 1), . . . , LST(t − (E − 2)), TA(t)− ∆TA/2) (3)

∆LST(t)/∆TA = (LST+(t + lag)− LST−(t + lag))/∆TA (4)

The value of ∆LST(t)/∆TA indicates the magnitude of the effect of TA on LST and
the sign indicates the direction of the effect.

4. Results
4.1. Spatial Pattern of LST and Environmental Factors

Figure 2 displays the spatial distribution of the multi-year mean LST and eight envi-
ronmental factors in China from 2003 to 2018. The spatial distribution of LST showed an
obvious latitudinal characteristic; that is, it decreased with increasing latitude. In addition,
it showed different patterns influenced by altitude. For example, the Qinghai-Tibet Plateau
in the southwest, which is the highest-altitude region in China, showed low temperatures
at lower latitudes. The spatial distribution of TA was basically the same as that of LST,
but it was approximately 5–9 K lower in magnitude than LST. NDVI and SM showed a
distribution pattern that increased gradually from northwest to southeast, whereas RN and
PRE showed a gradual increase from south to north. AOD was significantly higher in the
northwest desert region and in the eastern region with higher population density; however,
it was lower in all other regions. The magnitude of ET was strongly related to vegetation
type; therefore, it was similar to NDVI in terms of spatial distribution. However, there
was a large amount of missing data (blank areas in Figure 2h) in the northwest because
the region was covered with deserts, especially Gobi. WV decreased from the coast to the
inland and was at its lowest in the Qinghai-Tibet Plateau region, due to its leading altitude
and topography.

4.2. Causality Detection Process between LST and Environmental Factors

To clearly express the process of causality detection between LST and environmental
factors, a pixel with grassland land cover type from the PMC region was selected as an
example for a detailed demonstration. To ensure more stable results, each pair of cross-
mapping processes was repeated 100 times [19], and the average of the 100 results was used
as the final result. Figure 3 shows the detection results between LST and each environmental
factor, with the horizontal axis being the length of the time series and the vertical axis being
the ρccm between LST and environmental factors.

As shown in Figure 3, the ρccm curves between LST and each environmental factor
exhibited different trends with an increase in the length of the time series. Among them,
ρccm between RN and LST, TA and LST, and NDVI and LST increased rapidly with increas-
ing time series length, and converged to 0.99, 0.97, and 0.91, respectively. This indicated
strong potential causal relationships between RN and LST, TA and LST, and NDVI and
LST. Although the ρccm between ET and LST, PRE and LST, and WV and LST showed
monotonically increasing and converging characteristics, the corresponding ρccm values at
convergence were relatively small, that is, 0.48, 0.42, and 0.38, respectively. This revealed
that the strength of the potential causal relationships between them and LST was relatively
low. The ρccm values between SM and LST, and AOD and LST decreased with increasing
time series, indicating that there was no causal relationship between them and LST. The
monotonic convergence of ρccm between environmental factors and LST was tested using
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the Mann-Kendall monotonicity test [51]. The results showed that ρccm between LST and
all variables, except SM and AOD, showed significant monotonic increases (p < 0.05) and
convergence characteristics.
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(sub_TRMC), and tropical monsoon climate region (TRMC).
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A pseudo-causal relationship between LST and environmental factors can be caused
by seasonal synchronization effects. For this reason, SST tests were conducted for LST
and environmental factors, except SM and AOD. The test results are shown in Figure 4,
where the red circles indicate the ρccm between LST and environmental factors, and the
boxes indicate the ρccm between LST and the 500 seasonal surrogate series of environ-
mental factors. The red solid circles demonstrate that the ρccm between the LST and the
environmental factor is significantly larger than the ρccm between the seasonal surrogate
series and the environmental factor; that is, the causal relationship between the LST and
the environmental factor is not influenced by seasonal synchronization effects. The red
hollow circles indicate a pseudo-causal relationship between the LST and environmental
factors caused by seasonal synchronization effects. The SST results showed a pseudo-causal
relationship between PRE and LST within this pixel.
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Figure 4. SST detection between LST and environmental factors for the pixel selected from PMC
region. The red circles indicate the ρccm between LST and environmental factors. The box plot shows
the distribution of ρccm between LST and the 500 seasonal surrogate series of environmental factor,
which has the same seasonal cycle with the environmental factor. The top and bottom of the box are
the upper and lower quartiles, the middle thick line is the median, and the vertical portion extending
above and below is the range of the data, with the furthest point being 1.5 times quartile. Beyond
that is the outlier, indicated by a gray circle.

In the case of random variables, CCM and SST causality tests can be misleading
because of data limitations. In this study, variables that passed the SST test were introduced
into the multivariate EDM model, and this pseudo-causality was removed by examining
the extent to which the variables improved the forecasting skill of the multivariate EDM
model. Figure 5 shows the improvement in the forecast skill of the multivariate EDM
model for LST with the addition of each environmental factor separately. The blue bars
indicate the forecast skill of the multivariate EDM model for LST without the addition of
environmental factors, whereas the red bars indicate the degree of improvement in the
model forecast skill with the addition of environmental factors. Overall, the forecast skill of
the multivariate EDM model was significantly improved by the addition of TA, NDVI, RN,
ET, and WV to this pixel (p < 0.05), indicating that there was a causal relationship between
the above five environmental factors and LST. RN (0.22) had the greatest improvement in
the forecast skill of the model, followed by NDVI (0.17), WV (0.11), TA (0.08), and ET (0.07).

Detection of the generalized synchrony effect and the Moran effect between variables
is still an indispensable step in causality detection; therefore, this study further performed
the ECCM test between the LST and the five environmental factors mentioned above. The
spurious driving effect of the environmental factors on LST was removed by determining
the time lag length of the effect of environmental factors on LST. Figure 6 shows the results
of the ECCM between the LST and each environmental factor. The time lags set in this study
were four months before and after LST, and the optimal ρccm between the five environmental
factors and LST were all negative. This demonstrated that the environmental factors had
a real driving effect on LST and were not affected by the generalized synchronization
effect or the Moran effect. The lag lengths also represented the lags in the driving effect of
environmental factors on LST.
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In summary, after performing CCM causality tests between LST and environmental
factors, and conducting pseudo-causality tests, such as SST, multivariate EDM, and ECCM
tests, we identified TA, NDVI, RN, ET, and WV as drivers of LST change within this pixel.

Once the drivers of LST were identified, the direction and strength of the effects of
the drivers on LST were analyzed using multivariate scenario analysis. Figure 7 shows the
degree of response of the LST to small changes in the five drivers within this pixel, with the
horizontal axis showing the drivers and the vertical axis indicating the degree of response
of the LST. The results revealed that TA, NDVI, and RN had a positive driving effect on
LST; that is, LST increased as the driving factor increased. Moreover, ET and WV had a
negative driving effect on LST, that is, LST decreased as the driving factor increased. In
addition, RN had the strongest effect on LST with a mean value of 0.58, followed by NDVI
with a mean value of 0.13. TA had a relatively weak positive driving effect on LST with
a mean value of 0.10. ET and WV had weak negative effects on LST with mean values of
−0.04 and −0.02, respectively.
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4.3. Result of CCM and SST Tests of China

Causality tests were conducted on a pixel-by-pixel basis to examine the causal relation-
ships between LST and each environmental factor across China. The spatial distribution of
ρccm between the LST and each environmental factor, as shown in Figure 8, was the result
of the CCM and SST tests. The right-hand side of each panel corresponds to the latitudinal
distribution of the mean value of ρccm. Overall, the ρccm of TA and RN were above 0.8 and
0.7, respectively, followed by NDVI and ET. However, the spatial variability between them
was large, with variations ranging from 0.1 to 0.98 and 0.2 to 0.95, respectively. The ρccm of
SM, PRE, AOD, and WV were relatively small.

From the perspective of latitudinal distribution, the ρccm of TA increased with increas-
ing latitude and was less than the mean value of 0.94 south of 37◦N, and greater than the
mean value of 0.94 between 37◦N and 53◦N. It saw a decline north of 53◦N. The ρccm of
NDVI also increased with increasing latitude, but increased rapidly between 30◦N and
35◦N, and then decreased between 35◦N and 40◦N. This may be because the region between
30–35◦N is the highest altitude Qinghai-Tibet Plateau region, while 35◦–40◦N falls within
the largest desert in China. The ρccm of the SM varied less with latitude, fluctuating around
a mean value of 0.43. The ρccm of RN had similar distribution characteristics to TA with
respect to latitude, with a mean value of 0.91. The ρccm of the PRE was generally lower
south of 32◦N and north of 53◦N, as compared to the other latitudinal zones. The ρccm of
AOD was significantly higher than the mean between 38◦N and 43◦N. This is because the
main surface cover type in this region was bare ground with little rain, high dust content
in the air, and increased aerosol impact on LST. The ρccm of ET gradually increased from
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low to high latitudes, with a mean value of 0.70. The ρccm value of WV also increased with
increasing latitude, but with a smaller mean value of 0.31.
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Figure 9 presents the statistics of ρccm between LST and each environmental factor
across climate zones. The results showed that the ρccm values of TA and RN were still
relatively strong compared to other factors in the same climate zone. TA and RN had
the strongest ρccm in TCC regions with mean values of 0.98 and 0.97, respectively, while
they had the weakest ρccm in TRMC with mean values of 0.89 and 0.90, respectively. For
NDVI and ET, the strongest mean values of ρccm were found in the TMC region, with mean
values of 0.84 and 0.80, respectively. This may be due to the significant seasonal variation in
vegetation in the TMC region, which strengthens the influence of NDVI on LST. In addition,
the warmer and wetter monsoon climate enhanced the role of ET. However, the ρccm values
of NDVI and ET were the weakest in the TRMC region, with mean values of 0.38 and 0.54,
respectively. This suggested that the strength of the potential causal relationships between
NDVI and LST as well as ET and LST were limited by hydrothermal conditions.
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Figure 9. Boxplots of ρccm between LST and each environmental factor in China and each climate
zone. (a) China (b) TCC region (c) TMC region (d) PMC region (e) sub_TRMC region (f) TRMC
region. The upper and lower short lines represent 95% confidence intervals, the horizontal line is the
median, and the square indicates mean.

4.4. Pseudo-Causality Detection by Multivariate EDM

Figure 10 demonstrates the results of the multivariate EDM test between the environ-
mental factors and LST after detection using CCM and SST. It can be seen that the results of
multivariate EDM are presented in two categories: the forecast skill of the model with im-
provement (blue) and without improvement (yellow). For regions where the forecast skill
of the multivariate EDM was not improved, causal relationship between the environmental
factor and LST was considered to be pseudo-causal.

As can be seen from Figure 10, the forecast skill of the multivariate EDM with the
addition of RN was significantly improved over the full domain, with only a sporadic area
in the southern part of the Tibetan Plateau showing no improvement, accounting for less
than 1%. Apart from RN, the forecast skill of the model after the addition of TA, PRE, ET,
or WV also showed remarkable improvement; the regions that did not show betterment
accounted for less than 10%. Pseudo-causality between NDVI and LST accounted for
13.29% of the total, mainly in the northern high latitudes where vegetation was sparse.
Multivariate EDM detected a high proportion of pseudo-causal relationships between AOD
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and LST, at 25.26%, which was spread over most of the eastern region. SM had the highest
pseudo-causal relationship with LST (43.33%), occupying almost all of northern China.
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indicate that the forecast skills did not show improvement.

4.5. Pseudo-Causality Detection by ECCM

Figure 11 provides an overview of the results of ECCM detection between LST and
environmental factors. Numerous positive time lags were detected for all factors due
to generalized synchrony and Moran effects. Of these, the positive lag between TA and
LST accounted for just 10.16%. Nearly 50% of these were distributed in the PMC region,
probably because the PMC region was at an extremely high altitude and had the lowest
air temperature in the study area. Therefore, its causal relationship with LST was not
significant. The positive lag between RN and LST was 24.9%; approximately 20% of the
positive lags were distributed in the TCC and TMC regions. With the exception of TA and
RN, the positive lag between LST and other environmental factors was evenly distributed
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across different climatic zones, accounting for over 30%. In particular, two factors, AOD
and SM, accounted for approximately 50% of the positive lags. Thus, the causality of PRE
and AOD with LST was not only weak, but at least half of them were false. However,
a positive time lag detected between environmental factors and LST only indicates that
environmental factors have no driving effect on LST. They do not negate the absence of a
driving effect of LST on environmental factors.
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positive time lag and the blue area indicates pixels with negative time lag.

After pseudo-causal elimination with SST, multivariate EDM, and ECCM, the pro-
portion of each environmental factor as a driver of the LST was determined. As shown in
Figure 12, the highest percentage of driving factors among the environmental factors at the
national scale was TA, accounting for 50.11%. ρccm had a mean value of 0.96. From different
climate zones, the mean value of ρccm between TA and LST, as well as the percentage as
a driving factor, showed a gradual decrease from north to south, indicating that LST was
influenced by TA in its scope and intensity, both of which gradually weakened from north



Remote Sens. 2022, 14, 3280 16 of 26

to south. The ρccm of TA within the TCC was the largest, with a mean value of 0.98, and
the percentage of driving factor was 70%. The mean value of ρccm within the TRMC was
the smallest (0.90), with 11.08% as the driving factor. In addition to TA, RN also had a
relatively high share of 46.9%, with a mean ρccm of 0.92. The climatic zone with the largest
ρccm of RN was TCC with a mean value of 0.96 and a driver share of 46.91%, while the
climatic zone with the largest driver share was PMC (57.74%), with a mean ρccm of 0.92.
The proportion of NDVI as a driver of LST at the national scale was 34.28%, with a mean
ρccm of 0.65. TMC was the climate zone with the largest ρccm of NDVI, with a mean value
of 0.84 and a percentage of drivers of 45.87%. ET as a driver of LST was relatively low at
25.4%, but ρccm was higher than NDVI with a mean value of 0.74. The climate zone with
the highest proportion of ET as a driver of LST was TMC, with a proportion of 40.54% and
a mean value of 0.81 for ρccm. The percentages of drivers in SM, AOD, PRE, and WV were
16.43%, 19.71%, 30.14%, and 30.36%, respectively, and with the mean ρccm of 0.48, 0.37, 0.36,
and 0.34, respectively.
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4.6. Effect of Driving Factors on LST

Having identified the drivers of LST over the study period, we analyzed the driving
effect of the drivers. Figure 13 shows the spatial distribution of the results of the scenario
analysis between each driver and LST. The red areas indicate a positive effect of the
drivers on LST and the blue areas indicate a negative effect of the drivers on LST. The
results revealed that there was a positive effect on LST at the national level, as shown
in Figure 13a,d. A similar relationship between TA, RN, and LST was also reported in
previous studies [52–54]. The positive effects of NDVI on LST were mostly found in the
TCC and PMC regions (Figure 13b); however, both climate regions had restricted energy
access. The negative effect of NDVI on LST was mostly observed in the TMC, sub_TRMC,
and TRMC regions. This result reaffirmed the conclusion of Karnieli et al. [55] that the
interaction between LST and NDVI is positive when energy is limited (high latitude or
high altitude) and negative when energy is available [56]. In addition, the positive effect
of ET on LST was mainly concentrated in the eastern part of the TCC region, most of the
PMC region, and central part of the sub_TRMC region. Sun et al. [2] stated that the limits
of TA and SM should be considered when analyzing the relationship between ET and LST.
However, in this study, the interaction between ET and LST were related to land cover
type. AOD had a predominantly positive effect on LST, whereas the regions that showed a
negative effect were mainly located in the western part of the TCC region. Studies have
shown that the impact of aerosols on climate depends not only on the quantity of aerosols
but also on their optical properties. Aerosols affect LST by influencing the solar radiation
reaching the surface. Scattering aerosols having a cooling effect as they reduce the energy
received at the surface, whereas absorbing aerosols have a warming effect [55]. The large
amount of dust aerosols produced in the Taklamakan Desert in northwest China increased
the reflection of solar radiation from the surface, which may have been the main reason for
the negative effect of AOD on LST. The positive effect of AOD on LST embodied in other
regions was mainly due to the anthropogenic emissions of absorptive aerosols.

The latitudinal distribution shows the strength of the effect of each driver on LST and
its variation with latitude. Overall, among the drivers, only TA and RN had a positive
effect on LST. The intensity of the effect of both was greater, ranging between 0 and 1.5.
The effect of NDVI on LST varied across latitudes, with a negative effect south of about
27◦N and north of 53◦N, and a positive effect between 27◦N and 53◦N. The intensity of the
effect of NDVI on LST was mostly distributed between −0.4 and 0.4. Furthermore, ET had
a significant positive effect on LST between 25◦N and 38◦N, reaching 0.2.

In different climatic regions, there were significant differences in the manner and
intensity of the effect of the driver (Figure 14). At a national level, the positive effect of
TA on LST was 46.42%, whereas the negative effect was only 0.69%. In terms of the mean
value of the intensity of the effect TA on LST, it was maximum in the TMC region with
a mean value of 0.97, in minimum in the TRMC region with a mean value of 0.35. This
indicated that the effect of TA on LST was stronger at higher latitudes. The strength of
RN’s effect on LST was second only to that of TA, with 41% positive and 1.4% negative
effects. Regarding the mean value of the effect of RN on LST, the climatic region with the
strongest effect of RN on LST was TMC with a mean value of 0.69; the weakest was TRMC
with a mean value of 0.22. The positive effect of NDVI on LST was 22.27% and the negative
effect was 8.56%. Of these, TCC, TMC, PMC, and sub_TRMC were positive and the highest
within PMC, with a mean value of 0.15, while in TRMC, they were mainly negative with a
mean value of −0.01. On LST, ET had a positive effect of 15.11% and a negative effect of
9.93%, with a greater intensity within PMC and sub_TRMC, with mean values of 0.19 and
0.17, respectively.
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Figure 13. Spatial and latitudinal distribution of the direction of the effect (∆LST/∆factor) of each
driver on LST. (a) TA (b) NDVI (c) SM (d) RN (e) PRE (f) AOD (g) ET (h) WV. For the spatial
distribution panel the red areas indicate a positive effect (∆LST/∆factor > 0) on LST, while the blue
areas indicate a negative effect (∆LST/∆factor < 0) on LST.
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(a) TA (b) NDVI (c) SM (d) RN (e) PRE (f) AOD (g) ET (h) WV. The bars indicate the mean value
of the strength of the effect of each driver on LST within different climate zones, the red upper
triangles indicate the proportion of positive effects, and the lower triangles indicate the proportion of
negative effects.
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5. Discussion
5.1. Type of Causal Relationship between LST and Drivers

Recent studies have focused on the relationship between single variables and
LST [10,11,14,57]. The identification of the driving role of multiple variables on LST and
their dominant factors has rarely been studied. Furthermore, correlation analysis has been
used in the methods used to study the relationship between LST and influencing factors,
but it needs to be emphasized that correlation does not mean that a causal relationship
exists. This study attempted to explore the dominant drivers of LST in terms of the causal
relationship between multiple factors and LST. The CCM method, which is suitable for
causality detection in nonlinear dynamical systems, was used to detect the causal relation-
ship between each environmental factor and LST. The CCM test results were verified by
SST, multivariate EDM, and ECCM, which showed that TA and RN were strong drivers of
LST and had a much higher positive effect than other factors. Furthermore, NDVI and ET
had relatively strong driving effects on LST, but they had both positive and negative effects
in different regions.

In addition, the CCM method was used to identify whether there was a causal re-
lationship between environmental factors and LST, but it could not determine whether
the driving effect was unidirectional or bidirectional. To determine the interaction pattern
between each driver and LST, this study used the CCM method to test the driving effect
of LST on environmental factors and performed a pseudo-causality test. The interactions
between LST and environmental factors were classified into three categories: environmental
factors driving LST, LST driving environmental factors, and mutual drive.

Figure 15 show the spatial distribution of the pattern of causal interaction between
LST and drivers and the share of each type, respectively. Total of the three causality
types between RN and LST accounted for 79.38% of the country and 20.62% had no
causality (Figure 15d). Among them, bidirectional causality accounted for 48.49% and was
widely distributed, while the type of LST-driven RN accounted for 20.23% and was mainly
distributed in the TCC and southern part of TMC, where RN was lower. Second to RN,
the areas with causality between TA and LST accounted for 78.04% of the whole country
land area, while 21.96% of the areas had no causality (Figure 15a). The type of causality
was mainly bidirectional, accounting for 63.36% of the country, and was mainly distributed
in the TCC, TMC, and PMC regions. The causality between NDVI and LST was 34.18%,
16.31%, and 16.34% for bidirectional, LST-driven NDVI, and NDVI-driven LST, respectively,
and 33.18% had no causality (Figure 15b). PRE was the only variable among the selected
environmental factors that was dominated by reverse causality, that is, LST-driven PRE
type causality was dominant (31.32%), and mainly in the TCC and PMC areas, which was
higher than the proportion of bidirectional causality at 24.79% (Figure 15e). In addition, the
WV-driven LST causality type accounted for the largest proportion of the three causality
types (25.21%). For SM and AOD, no causality has a large percentage of the country, with
68.81% and 57.9%, respectively.

Overall, the causality between LST and most drivers was predominantly bidirectional.
On the other hand, few drivers, such as PRE and WV, were predominantly unidirectional.
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5.2. Bidirectional Causality between LST and Drivers

For the bidirectional causality type, there is a need to understand the stronger direction.
To this end, we calculated the difference (∆ρccm) between ρccm in the positive direction
(factor driving LST) and ρccm in the negative direction (LST driving factor).

Figure 16 shows the variation in ∆ρccm with latitude. Overall, all variables were
dominated by negative differences, except for TA, which was dominated by positive
differences. In the interaction between TA and LST, the intensity of the TA driving LST
north of 37◦N was higher than that of the LST driving TA. The difference between 37◦N and
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33◦N was close to 0, indicating that the strength of the interaction between LST and TA was
similar in this interval. Negative peaks occurred between 33◦N and 27◦N, and fluctuations
in the difference were greater south of 27◦N, which may be due to the small amount of data
in this region. Generally, the difference in the strength of the causality between TA and LST
in both directions was small, with ∆ρccm ranging from −0.05 to 0.1. The causality between
NDVI and LST was dominated by the LST-driven NDVI direction throughout the country.
The absolute value of ∆ρccm decreased gradually from south to north, indicating that LST
drove NDVI more in the south. The difference in the strength of the two-way causality
between RN and LST was also relatively small, dominated by LST-driven RN. There was a
trend of stronger RN driving LST south of 25◦N, with a negative peak between 25◦N and
40◦N. This decreased rapidly because of the extremely high altitude of the Tibetan Plateau
in this region. The ∆ρccm between AOD and LST only showed a positive peak between
30◦N and 35◦N, with negative values in all other latitudinal zones, as the Beijing-Tianjin-
Hebei region with high AOD values was distributed in this latitudinal zone. The strength
of AOD driving LST was higher than that of LST driving AOD. The relationship between
ET and LST was also dominated by LST driving ET, and ∆ρccm was relatively stable at
all latitudes.
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In summary, even though there was a bidirectional causal relationship between LST
and each environmental factor, the dominant causal relationship was still in the direction
of LST driving environmental factors.

In this study, CCM, SST, multivariate EDM, and ECCM were used to identify the
true drivers of LST among environmental factors and to explore the interaction patterns
between LST and drivers through multivariate scenario analysis. However, the complexity
of surface eco-physical systems prevented a complete list of all variables associated with
LST, and the diversity of data sources introduced inevitable errors in the experimental
results. Therefore, a complete understanding of LST can be obtained from an integrated
treatment of these constraints, which will provide a basis for future research.

6. Conclusions

This study explored the driving role of environmental factors (TA, NDVI, SM, RN, PRE,
AOD, ET, and WV) and LST during 2003–2018 in China using the CCM, SST, multivariate
EDM, and ECCM methods.

All environmental factors had driving effects on LST. However, after the removal of
pseudo-causality and the comparison of the driving strength of each variable, TA and RN
were concluded to be the dominant factors with high driving strengths, followed by NDVI
and ET.

All drivers had positive as well as negative effects on LST, except for TA and RN,
which only had positive effects on LST. The intensity of the effects of TA and RN on LST
showed signs of weakening from high northern latitudes to low latitudes, indicating that
LST was more strongly driven by TA and RN in regions with lower energy. The positive
effects of NDVI and ET on LST were mainly distributed in the TCC and PMC zones,
while the negative effects were mainly distributed in the TMC, sub_TRMC, and TRMC
regions. This indicated that the direction of NDVI and ET effects on LST were limited
by hydrothermal conditions. Overall, the positive effects were more significant at high
latitudes and altitudes.

There are three types of causal relationships between LST and each environmental
factor, that is, factor-driven LST, LST-driven factor, and bidirectional drive. However, the
bidirectional causal relationship between LST and the driver is dominant. In addition, the
categorization of causal relationships between LST and factors revealed that LST driving
factors were dominant in quantity, except for SM and WV. In terms of driving strength, the
driving effect of LST on factors was stronger than the driving strength of factors on LST,
except for TA.

Our results quantify the driving effects of environmental factors on LST; however,
future studies should explore the relationships between surface type, elevation, and slope
orientation to fully understand the dynamics of LST.
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