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In this work, a new method is presented in order to locate high order exceptional points (EP) arising in eigenvalue
problems. EP correspond to a particular tuning of some complex-valued parameters which render the problem
degenerate. These non-Hermitian degeneracies have raised considerable attention in the scientific community as
these can have a great impact in a variety of physical problems (PT-symmetry, thermo-acoustic or fluid-structure
instability, etc.) and their numerical solution. For applications dealing with dissipative acoustic waveguides,
strong modal attenuation can be achieved close to EP and a maximum of attenuation occurs at EP of high order
corresponding to the coalescence of more than two modes. The method is based on the automatic computation of
the successive derivatives of some selected eigenpairs with respect to the parameters so that, after recombination,
regular functions can be constructed. This algebraic manipulations permit to build a reduced order model allowing
i) to quickly solve the eigenvalue problem for other parameters values, ii) to follow modal branches, iii) to locate
higher order EPs. The method is applied to the particular case of a circular duct with a locally reacting liner at
its wall which admittance varies with azimuthal position. This particular application allows to gradually test the
proposed method with EP of increasing order.

1 Introduction
Acoustic treatments are often used to attenuate sound

propagation in guiding structures generally encountered
in HVAC, exhaust devices, and aircraft engines. In many
applications, the walls of the waveguide are acoustically
treated with absorbing materials, and it is usual for the
analysis to distinguish between two classes of liners
depending whether the latter is locally like perforated plate
bounded with honeycomb or non-locally reacting like porous
materials. In both cases, the propagation of sound waves
is best described in terms of duct acoustic modes and the
existence of exceptional point (EP) is known to be connected
with very strong modal attenuation [18, 2, 21, 15, 14]. At
the EP, eigenvalues and associated eigenvectors coalesce at a
branch point singularity in the parametric space. Moreover,
in the vicinity of the EP, perturbation analysis show that
eigenvalues take the form of a Puiseux series [6] i.e. a
series in fractional power of the parameter. From practical
point of view, this strong attenuation can be explained by a
transmission dominated by surface waves [2, 21].

Eigenvalue problems are ubiquous in all physics branch,
parametric eigenvalue problems have thus been the subject
of intensive research. In acoustic waveguides, the usual
parameters can be the frequency or the wall impedance.
Most approaches are based on first or second perturbation
order [8]. Recently, high order perturbation methods have
been proposed to optimize the numerical efficiency when
the parameter appears explicitly in the numerical model.
In [12, 5] the bordered matrix [1] is used for obtaining the
derivatives and the adjoint vector is used in [13, 9]. It is
noteworthy that the bordered matrix approach is limited
(at least in this form) to simple eigenvalue whereas [13]
extend the adjoint method for semisimple eigenvalue, ie a
repeated eigenvalue with different eigenvectors. However,
high order Taylor expansion of the eigenvalue is still limited
by the presence of branch point singularity. In [12], it
has been proposed to recombine the Taylor expansion
of the eigenvalue to build analytic functions which are
not affected by the singularity at the EP. This algebraic
manipulation allows to extend the radius of convergence
of the eigenvalue approximation [5], the localization of EP
using standard root-finding algorithms and the computation

of the associated Puiseux series up to an arbitrary order.
EP of order N (EPN) require more parameters and the

their localization become more challenging than EP2. In
addition, the eigenvalue sensitivity increases also with N
and the eigenvalue may become strongly dependent on
the rounding error and split [16]. Despite this, practical
realization have been done [4], although, to the best authors
knowledge, no generic algorithm exists for finding them.
The route to obtained high order EP is generally to work on
simple (or reduce) system and combine them [22].

The aim of this work is to propose i) a new perturbation
method for eigenvalue problem and ii) a generic algorithm
to locate EPN. For this purpose, a new framework, based on
analytic functions combining more than two eigenvalues to
improve the radius of convergence and to take into account
several parameters, is proposed. This can be done through
the new concept of partial characteristic polynomial (PCP),
which consists on reconstruct a part of the characteristic
polynomial 1 from the Taylor expansion of some selected
eigenpairs obtained at an initial value of the parameters.
To compute the successive derivatives, the bordered matrix
[1] is used here as in [12] (but other approaches can be
used). For new parameters values, the eigenvalues can be
obtained quickly as the roots of a low order polynomial.
The EP of order N can then be found by imposing that the
PCP and its N − 1 successive derivatives with respect to the
eigenvalue vanish. The main ingredient of the method are
given in sec. 2, an application to a 2D waveguide illustrating
the accuracy and the interest of the proposed method is
presented in sec. 3.

2 Partial characteristic polynomial
Let us consider a pair of eigenvalue, denoted by λ−(ν) and

λ+(ν), dependant on the scalar parameter ν. In [5], it has been
shown that the auxiliary functions

g(ν) = λ+ + λ−, (1)

h(ν) = (λ+ − λ−)2 , (2)

1. The characteristic polynomial cannot be computed for big matrices
obtained after standard discretization methods like FEM.
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are analytic even if the two eigenvalues present a branch
point singularity and that their Taylor series (denoted by
T•) is not convergent. In the same way, the product of the
eigenvalues is also an analytic function of ν. It follows that
analytic auxiliary functions (AAF) scheme,

λ±(ν) =
g(ν) ±

√
h(ν)

2
≈
Tg(ν) ±

√
Th(ν)

2
, (3)

behaves generally better than Puiseux or Taylor series to
reconstruct eigenvalue loci as a function of ν. In the vicinity
of its EP, the Puiseux series provides the good branch
structure of the eigenvalue Riemann surfaces. Nevertheless,
the implicit function theorem shows that Puiseux series
radius of convergence is limited by the presence of the next
EP even if this EP involved the same pair of eigenvalue,
while in this specific case AAF scheme remains analytic
and is able to accurately reconstruct the eigenvalues (but not
directly the branches).

Getting the eigenvalue from the analytic auxiliary
function is equivalent to find the roots of the polynomial

P(λ) = (λ − λ+)(λ − λ−)

= λ2 − (λ+ + λ−)λ + λ+λ−, (4)

whom coefficients are analytic functions of the parameter ν
(the explicit dependency of ν has been dropped for clarity).
In particular, in (3), the link between h and the polynomial
discriminant is obvious.

This approach can be generalized with the concept of
partial characteristic polynomial and to vectorial parameters
ν. For an analytic matrix function L(λ(ν), ν), its characteristic
polynomial P̂(λ, ν) is also an analytic function. Assuming
that P̂(λ, ν) can be split into

P̂(λ(ν)) =
(
λ−λ1(ν)

)
. . .

(
λ−λ`(ν)

)
. . .

(
λ−λL(ν)

)
· f (λ(ν)) (5)

where λ` stands for all the eigenvalues (counting their
multiplicities) present in a disk of the λ-complex plane and
f is an analytic function vanishing outside the disk. We call
this set Λ and it contains L = |λ| elements. We denotes by

P(λ, ν) =
(
λ − λ1(ν)

)
. . .

(
λ − λ`(ν)

)
. . .

(
λ − λL(ν)

)
(6)

the partial characteristic polynomial of L(λ(ν), ν). Using the
Vieta’s formulas, the coefficient of this polynomial can be
expressed as analytic function of the eigenvalue.

P(λ, ν) = aL(ν)λL + aL−1(ν)λL−1 + · · · + a0(ν), (7)

where

ak =
∑
c∈Ck

∏
i∈c

λi(ν), (8)

and the set Ck = {all ways to chose (k − |Λ|) different
eigenvalues in Λ}. For instance, for a quintic polynomial

build using a set of 5 eigenvalues, we get

a5 = 1, (9a)
a4 = −λ0 − λ1 − λ2 − λ3 − λ4 (9b)
a3 = λ0λ1 + λ0λ2 + λ0λ3 + λ0λ4 + λ1λ2 + λ1λ3 (9c)

+ λ1λ4 + λ2λ3 + λ2λ4 + λ3λ4,

a2 = −λ0λ1λ2 − λ0λ1λ3 − λ0λ1λ4 − λ0λ2λ3 (9d)
− λ0λ2λ4 − λ0λ3λ4 − λ1λ2λ3

− λ1λ2λ4 − λ1λ3λ4 − λ2λ3λ4,

a1 = λ0λ1λ2λ3 + λ0λ1λ2λ4 + λ0λ1λ3λ4 + λ0λ2λ3λ4 (9e)
+ λ1λ2λ3λ4,

a0 = −λ0λ1λ2λ3λ4. (9f)

Because each polynomial coefficient ak (k = 0, . . . , L−1)
is analytic, their Taylor series be obtained thanks to
multivariate Leibniz’ rule applied to (8) from the Taylor
series of each eigenvalue.

The final step is to solve the partial polynomial P(λ, ν)
for a given range of ν to recover the λi(ν) (i = 0, . . . , L − 1).
Depending of the number of eigenvalue in Λ, the roots can
be obtained numerically or analytically if the polynomial
is lower than 4. In practice, the numerical burden due
to the numerical roots is neglectable when compared to
eigenvalue computation of matrices obtained after standard
discretization methods like finite element method. This
representation also allow to locate EP.

2.1 Higher order EP location
EP corresponds generically to multiple roots of the PCP

for complex symmetric problems [17]. If the first derivative
∂λP(λ; µ, ν) vanishes, it corresponds to an EP2. If the second
derivatives also vanishes it corresponds to an EP3 and so
one. It is noteworthy that PCP derivative with respect to the
eigenvalue also vanishes for semisimple eigenvalue. Thus to
be sure to have an EP further checks may be required for
instance by inspecting Puiseux series coefficients [19].

To locate the finite set of EP3, we need to solve the
multivariate polynomial system

P(λ; ν) = 0,
∂λP(λ; ν) = 0,

∂2
λP(λ; ν) = 0,

(10)

with ν ∈ C2. The Bezout theorem (see [20] for instance)
ensures that this system has only discrete solutions.

The system can be solved using

• Newton solver. Since such approach need an initial
guess, a mesh parametric space is required and the
solver need to be called for all starting points. This
approach is generally fast but may miss some roots.
• Homotopy solver [20, 10]. This family of method are

able to find all the solution of (10) numerically. The
basic idea is to exploit analyticity to move slowly from
the solution of a trivial similar problem to the solution
of the real problem.
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Figure 1 – Lined duct with two admittances.

Both approaches are efficient, but due to the truncated Taylor
series, the number of spurious solutions may be huge. An
estimation can be obtained from the Bezout Number [20].

To filter the spurious roots, comparing solution for
two truncation orders in the ak Taylor series is generally
sufficient. It could also be combined with an estimation of
radius of convergence PCP terms.

3 2D duct application

3.1 Problem statement
We consider a two-dimensional acoustic waveguide of

infinite length and unit width lined with two admittances µ
and ν, as described in Fig. 1. This reference problem have
been already studied in [14] and can lead to a finite set of EP3
or a continuum of EP2. Their values are useful to validate the
proposed approach. In the duct, the acoustic pressure satisfies
the Helmholtz equation (e−iωt convention is adopted here)

∆p + k2
a p = 0, (11)

where ka = ω/ca is the wavenumber, ca is the sound speed
and ω is the angular frequency. On both walls, the liner
is assumed to be locally reacting which implies that the
pressure must satisfy the Robin boundary condition

∂y p = −µp, at y = 0 and, ∂y p = νp, at y = 1 (12)

Using invariance along the waveguide x-axis, the modal
analysis is performed by assuming that the pressure field can
be written in the separable form p = φ(y)eiβx. Here, function
φ(y) is the mode shape and β the axial wavenumber. The
weak formulation associated with the Helmholtz equation
gives

−

∫ 1

0
∂yψ · ∂yφ dy + (k2

a − β
2)

∫ 1

0
ψφ dy

+ µψ(0)φ(0) + νψ(1)φ(1) = 0, (13)

where ψ stands for the test function. Once the variational
formulation is discretized with linear Lagrangian finite
element, we obtain a generalized eigenvalue problem of the
form

L
(
λ(ν), ν

)
x(ν) =

(
−K + (k2

a − λ)M
+ ν1Γ1 + ν2Γ2

)
x(ν) = 0. (14)
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Figure 2 – Evolution of error on eigenvalue reconstruction
according to the number of mode in the PCP and the modulus
of the perturbation parameter δ.

To be consistent with our notation, we put λ = β2 and ν =

(µ, ν). Here, the vector x contains the finite element nodal
values of the acoustic pressure, the matrix Γi (i = 1, 2) stems
from the admittance boundary condition and K and M are
the standard stiffness and mass matrices respectively. We can
easily calculate formally the partial derivative of (14) with
respect to ν components and λ required to get the eigenvalue
derivative as described in [12].

3.2 Results
This approach is implemented in EasterEig [11] open

source framework dedicated to perturbation of eigenvalue
problem. We use 200 linear Lagrange element in the cross
section of the duct.

To illustrate the numerical efficiency of eigenvalue
reconstruction based on PCP, the absolute error E between
direct and PCP computation is given in Fig. 2 for increasing
values of the perturbation parameter δ such ν = ν0 + e0.3iδ.
The comparison is performed by combining the Taylor series
of 2, 4, 6 or 8 eigenvalues (sort by modulus) computed
at ν0 = (7.01265 − 4.76715i, 2.89872 − 2.47i). It can be
observed that increasing the number of eigenvalues in the
PCP strongly enhance the reconstruction quality. This can
be explained by a mutual regularization of the branch point
singularity in eigenvalue Taylor series. For this 1D problem,
the prediction is valid up to 2 digits for perturbation
parameter equal to 10, spanning most of interesting
admittance values with a single direct computation.

The second aspect of the proposed approach concerns
the EP location. Again, we start from ν0 = (7.01265 −
4.76715i, 2.89872 − 2.47i) and combine the 6 first
eigenvalues. The Homotopy method is used to solve
(10). Solution is a set containing the triplets (λ, µ, ν). The
found ν values that yields to EP3 are presented in Fig. 3.
Note that because of the symmetry of the problem, the role

3
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Figure 3 – Found EP3 solution from ν0 = (7.01265 −
4.76715i, 2.89872 − 2.47i)) and combining the 6 first
eigenvalues.

of ν and µ is interchangeable thus the solution are found
by pairs. It can be shown that several EP3 are accurately
identified among the spurious roots when two truncation
order are compared.

4 Conclusion
A new eigenvalue perturbation method has been

proposed. The method is based on the partial characteristic
polynomial concept. This approach allows to improve the
radius of convergence of eigenvalue reconstruction for
parametric problems depending on several parameters. This
representation also permits to locate higher order EP.

This generic approach can be applied on circular ducts
[7, 23]. For instance EP3 have been found for wall presenting
two lined parts separated by rigid wall portions. Work is on
going to better understand the merging mechanism and the
link with strong attenuation as observed in 2D ducts [14].

The method can also be applied to other parametric
eigenvalue problems like those arising in thermoacoustic
[9, 13], in topological acoustic waveguides [3] or in
structural dynamics.
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