
HAL Id: hal-03838621
https://hal.science/hal-03838621

Submitted on 3 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Cutting-Plane Method for Sublabel-Accurate
Relaxation of Problems with Product Label Spaces

Zhenzhang Ye, Bjoern Haefner, Yvain Quéau, Thomas Möllenhoff, Daniel
Cremers

To cite this version:
Zhenzhang Ye, Bjoern Haefner, Yvain Quéau, Thomas Möllenhoff, Daniel Cremers. A Cutting-Plane
Method for Sublabel-Accurate Relaxation of Problems with Product Label Spaces. International
Journal of Computer Vision, 2023, 131 (1), pp.346-362. �10.1007/s11263-022-01704-7�. �hal-03838621�

https://hal.science/hal-03838621
https://hal.archives-ouvertes.fr


Springer Nature 2021 LATEX template

A Cutting-Plane Method for Sublabel-Accurate Relaxation of
Problems with Product Label Spaces

Zhenzhang Ye1*, Bjoern Haefner1,
Yvain Quéau2, Thomas Möllenhoff3 and Daniel Cremers1

1Department of Informatics, Technical University of Munich, Garching, Germany.
2Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, Caen, France.

3Center for AI Project, RIKEN, Tokyo, Japan.

*Corresponding author(s). E-mail(s): zhenzhang.ye@tum.de;
Contributing authors: bjoern.haefner@tum.de; yvain.queau@ensicaen.fr;

thomas.moellenhoff@riken.jp; cremers@tum.de;

Abstract
Many problems in imaging and low-level vision can be formulated as nonconvex variational problems.
A promising class of approaches to tackle such problems are convex relaxation methods, which consider
a lifting of the energy functional to a higher-dimensional space. However, they come with increased
memory requirements due to the lifting. The present paper is an extended version of the earlier
conference paper by Ye et al. (2021) which combined two recent approaches to make lifting more
scalable: product-space relaxation and sublabel-accurate discretization. Furthermore, it is shown that
a simple cutting-plane method can be used to solve the resulting semi-infinite optimization problem.
This journal version extends the previous conference work with additional experiments, a more detailed
outline of the complete algorithm and a user-friendly introduction to functional lifting methods.
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1 Introduction
In this paper, we present a convex optimization
framework for total-variation regularized problems
of the following form:

inf
u:Ω→Γ

∫
Ω

c(x, u1(x), . . . , uk(x)) dx

+

k∑
i=1

λiTV(ui).

(1)

The set Γ = {(γ1, . . . , γk) ∈ RN : γi ∈ Γi, i =
1 . . . k} is defined by k individual submanifolds

Γi ⊂ RNi with N = N1 + . . .+Nk. The individual
Γi are required to be bounded subsets of RNi .

Since the focus of this paper are imaging appli-
cations we assume Ω ⊂ R2 to be a rectangular
domain but the approach is easily generalized to
higher dimensional or non-rectangular domains.

We make no special assumptions on the cost c :
Ω×Γ→ R≥0 in (1) and allow it to be a general non-
negative nonconvex function. This turns (1) into
an overall nonconvex optimization problem, which
can be challenging to solve using standard gradient-
based methods. Moreover, we do not assume that
we are able to compute gradients, projections or
proximal operators of the cost function c(x, u(x)).
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Our approach only requires function evaluations.
This allows us to consider degenerate costs that
are out of reach for gradient-based approaches.

The regularizer in (1) is a separable total
variation regularization TV(ui) on the individual
components ui : Ω→ RNi weighted by a parame-
ter λi > 0. The total variation (TV) (Chambolle
et al., 2010; Rudin et al., 1992) encourages a spa-
tially smooth but edge-preserving solution. It can
be defined as the following equation:

TV(ui) := sup
p:Ω→RNi×2

∥p(x)∥∗≤1

∫
Ω

⟨Divx p(x), ui(x)⟩dx (2)

=

∫
Ω

∥∇ui(x)∥ dx,

where by ∇ui(x) ∈ RNi×2 we denote the Jacobian
matrix and by ∥ · ∥∗ the dual norm of ∥ · ∥. The last
equality in (2) holds for sufficiently smooth ui.

The convex relaxation approach we use in this
paper works for general convex and nonconvex
regularizers which depend on the Jacobian ∇ui,
see Möllenhoff and Cremers (2019); Pock et al.
(2009, 2010); Vogt et al. (2020). However, the main
focus of this paper is an efficient implementation
of the data cost c, and therefore we consider only
the separable total variation (2).

Motivation and Applications.
To motivate Problem (1), let us consider some prac-
tical applications in low-level vision and imaging.
One example is the variational estimation of opti-
cal flow between two RGB images I1, I2 : Ω→ R3,
see Horn and Schunck (1981). In that case, Γ1 =
Γ2 = [a, b] ⊂ R models the displacement between
the two images and the cost function is given by a
photometric error.

Often, Γi is a curved manifold, see, e.g., the
applications presented by Lellmann, Strekalovskiy,
et al. (2013); Weinmann et al. (2014). Examples
include Γi = S2 for normal field processing (Lell-
mann, Strekalovskiy, et al., 2013), SO(3) for motion
estimation (Görlitz et al., 2019) or the circle S1 for
processing of cyclic data (Cremers & Strekalovskiy,
2013; Steinke et al., 2010).

Many real-wolrd applications requires to esti-
mate multiple quantities in a joint fashion. This
naturally leads to the formulation of product space
which is considered in (1), where Γ = Γ1× . . .×Γk.

In this case, each Γi models one quantity of interest
that one aims to estimate.

A prominent approach to address joint opti-
mization problems of this form are alternating
procedures such as expectation maximization
(Dempster et al., 1977), block-coordinate descent
and alternating direction-type methods (Boyd et
al., 2011). There, the idea is to estimates a sin-
gle quantity while holding the other ones fixed.
However, these approaches usually depend on a
good initialization and are easy to get stuck in
a very poor local optima. Therefore, the goal of
this paper is to instead consider a convex relax-
ation of Problem (1). The relaxed problem can
then be solved to global optimality with standard
proximal methods such as the primal dual algo-
rithm (Pock & Chambolle, 2011). These methods
are usually well parallelizable. Thus, they can be
efficiently implemented on GPUs, allowing to solve
large-scale problems in a reasonable time.

Contributions.
The main difficulty with convex approaches to (1)
is the large memory requirements which are inher-
ent to a lifted problem formulation which renders
the problem convex. In order to improve the
memory-efficiency of relaxations, two disparate
ideas have been considered in previous work:
sublabel-accurate liftings (Möllenhoff et al., 2016)
and product-space relaxations (Goldluecke et al.,
2013). In this paper, we combine both approaches
and present a sublabel-accurate implementation of
Goldluecke et al. (2013). Unlike previous liftings
(Möllenhoff et al., 2016; Möllenhoff & Cremers,
2017; Vogt et al., 2020), our approach does not
require epigraphical projections and can therefore
be applied in a black-box fashion, requiring only
evaluations of the cost c.

Our main contribution is a simple way to
implement the resulting semi-infinite optimization
problem with a cutting-plane method. Moreover,
we show that using this method, we can achieve a
lower energy than the product-space lifting (Gold-
luecke et al., 2013) on optical flow estimation and
manifold-valued denoising problems.

This journal paper is an extended version of the
conference paper (Ye et al., 2021). In particular, we
offer the following contributions over the conference
version:
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◦ We have added additional background and
explanations on the basics of functional lifting
to Section 2 and Section 3.
◦ In Section 4 we added the detailed update

equations for the primal-dual algorithm.
◦ We added additional figures and explana-

tions to Section 5 to illustrate and provide
an intuition of our algorithm on a simple
example.
◦ We added additional experiments on optical

flow and manifold-valued image denoising to
Section 5 and evaluated our method on a
larger set of images.

Overview of the paper.
After this introduction, we provide in Section 2
an introduction to functional lifting methods for
Problem (1), review existing works and explain our
contributions relatively to them. We summarize the
convex relaxation for (1) and its discretization in
Section 3. The proposed cutting-plane method and
sampling strategy which we use to implement the
discretized relaxation are presented in Section 4. In
Section 5 we evaluate our method on a toy problem
and several real-world imaging applications. Our
conclusions are eventually drawn in Section 6.

2 An introduction to
functional lifting

Let us first consider a simplified version of Prob-
lem (1) where Ω consists only of a single point, i.e.,
the nonconvex minimization of one data term:

min
γ∈Γ

c(γ1, . . . , γk). (3)

A well-known approach to the global optimization
of (3) is a lifting or stochastic relaxation proce-
dure, which has been considered in diverse fields
such as polynomial optimization (Lasserre, 2000),
continuous Markov random fields (Bauermeister et
al., 2021; Fix & Agarwal, 2014; Peng et al., 2011),
variational methods (Pock et al., 2008), and black-
box optimization (de Boer et al., 2005; Ollivier
et al., 2017; Schaul, 2011). The idea is to relax
the search space in (3) from γ ∈ Γ to probability

distributionsu ∈ P(Γ) and solve1

min
u∈P(Γ)

∫
Γ

c(γ1, . . . , γk) du(γ1, . . . , γk). (4)

Due to linearity of the integral wrt. u and convexity
of the relaxed search space, this is a convex problem
for arbitrary cost c. Moreover, the minimizers of
(4) concentrate at the optima of c and can hence
be identified with solutions to (3). However, if Γ is
a continuum, this problem is infinite-dimensional
and therefore challenging.

We illustrate the conceptual difference between
the formulation (3) and (4) on a one-dimensional
example in Figure 1.

Discrete/traditional multilabeling.
In the context of Markov random fields (Ishikawa,
2003; Kappes et al., 2013) and multilabel opti-
mization (Chambolle et al., 2012; Lellmann et
al., 2009; Lellmann & Schnörr, 2011; Zach et al.,
2008) one typically discretizes Γ into a finite set
of points (called the labels) Γ = {v1, . . . ,vℓ}. This
turns (4) into a finite-dimensional linear program
minu∈∆ℓ ⟨c′,u⟩ where c′ ∈ Rℓ

≥0 denotes the label
cost and ∆ℓ ⊂ Rℓ is the (ℓ− 1)-dimensional unit
simplex. If we evaluate the cost at the labels, this
program upper bounds the continuous problem (3),
since instead of all possible solutions, one consid-
ers a restricted subset determined by the labels.
Since the solution will be attained at one of the
labels, typically a fine meshing is needed. Similar
to black-box and zero-order optimization methods,
this strategy suffers from the curse of dimension-
ality. When each Γi is discretized into ℓ labels,
the overall number is ℓk which quickly becomes
intractable since many labels are required for a
smooth solution. This limits the method to be
applied on more practical problems. Additionally,
for pairwise or regularizing terms, often a large
number of dual constraints has to be implemented.
In that context, the work from Lellmann, Lell-
mann, et al. (2013) considers a constraint pruning
strategy as an offline-preprocessing.

1P(Γ) is the set of nonnegative Radon measures on Γ with
total mass u(Γ) = 1.
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Fig. 1 Traditional optimization vs. optimization over a space of probability distributions. In the top row, going from left to
right, we illustrate a traditional gradient-based local optimization method on a nonconvex problem of the form (3). Given
a bad initialization, the algorithm might get stuck in a poor local optimum. The bottom row illustrates an optimization
procedure on the relaxed problem (4). Due to convexity of the objective and search space of probability measures, the
solution concentrates at a Dirac distribution centered around a global optimum.

Sublabel-accurate multilabeling.
The discrete-continuous MRF (Fix & Agarwal,
2014; Zach, 2013; Zach & Kohli, 2012) and lift-
ing methods (Laude et al., 2016; Möllenhoff et
al., 2016; Möllenhoff & Cremers, 2017) attempt
to find a more label-efficient convex formulation.
These approaches can be understood through dual-
ity (Fix & Agarwal, 2014; Möllenhoff & Cremers,
2017). Applied to (3), the idea is to replace the
cost c : Γ→ R with a dual variable q : Γ→ R:

min
u∈P(Γ)

sup
q:Γ→R

∫
Γ

q(γ1, . . . , γk) du(γ1, . . . , γk),

s.t. q(γ) ≤ c(γ) for all γ ∈ Γ. (5)

The inner supremum in the formulation (5) maxi-
mizes the lower-bound q. Additionally, if the dual
variable is sufficiently expressive, this problem is
actually equivalent to (4).

Approximating q, for example with piecewise
linear functions on Γ, one arrives at a lower-bound
to the nonconvex problem (3). It has been observed
in a recent series of works (Laude et al., 2016;
Möllenhoff et al., 2016; Möllenhoff & Cremers,
2017; Vogt et al., 2020; Zach & Kohli, 2012) that
piecewise linear dual variables can lead to smooth
solutions even when q (and therefore also u) is
defined on a rather coarse mesh. As remarked by
Fix and Agarwal (2014); Laude et al. (2016); Möl-
lenhoff et al. (2016), for an affine dual variable
this strategy corresponds to minimizing the con-
vex envelope of the cost, minγ∈Γ c

∗∗(γ), where c∗∗

denotes the Fenchel biconjugate of c.

The implementation of the constraints in (5)
can be challenging even in the case of piecewise-
linear q. This is partly due to the fact that
Problem (5) is a semi-infinite optimization problem
(Blankenship & Falk, 1976), i.e., an optimization
problem with infinitely many constraints. The
works (Möllenhoff et al., 2016; Zach & Kohli, 2012)
implement the constraints via projections onto the
epigraph of the (restricted) conjugate function of
the cost within a proximal optimization frame-
work. Such projections are only available in closed
form for some choices of c and expensive to com-
pute if the dimension is larger than one (Laude
et al., 2016). This limits the applicability in a
“plug-and-play” fashion.

Product-space liftings.
The product-space lifting approach (Goldluecke et
al., 2013) attempts to overcome the aforementioned
exponential memory requirements of labeling meth-
ods in an orthogonal way to the sublabel-based
methods. The main idea is to exploit the product-
space structure in (1) and optimize over k marginal
distributions of the probability measure u ∈ P(Γ),
which we denote by ui ∈ P(Γi). Applying Gold-
luecke et al. (2013) to the single data term (3) one
arrives at the following relaxation:

min
{ui∈P(Γi)}

sup
{qi:Γi→R}

k∑
i=1

∫
Γi

qi(γi) dui(γi)

s.t.
k∑

i=1

qi(γi) ≤ c(γ) for all γ ∈ Γ. (6)
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Since one only has to discretize the individual
Γi this substantially reduces the memory require-
ments from O(ℓN ) to O(

∑k
i=1 ℓ

Ni). While at first
glance it seems that the curse of dimensionality is
lifted, the difficulty is moved to the dual, where
we still have a large (or even infinite) number of
constraints. A global implementation of the con-
straints with Lagrange multipliers as proposed in
Goldluecke et al. (2013) again leads to the same
exponential dependency on the dimension.

As a side note, readers familiar with optimal
transport may notice that the supremum in (6)
is a multi-marginal transportation problem (Car-
lier, 2003; Villani, 2008) with transportation cost c.
This view is mentioned by Bach (2019) where
relaxations of form (6) are analyzed under submod-
ularity assumptions.

In summary, the sublabel-accurate lifting meth-
ods, discrete-continuous MRFs (Möllenhoff et al.,
2016; Zach & Kohli, 2012) and product-space lift-
ings (Goldluecke et al., 2013) all share a common
difficulty: implementation of an exponential or even
infinite number of constraints on the dual variables.

Summary of our contribution.
Our main contribution is a simple way to imple-
ment the dual constraints in an online fashion
with a random sampling strategy which we present
in Section 4. This allows a black-box implemen-
tation, which only requires an evaluation of the
cost c and no epigraphical projection operations as
in Möllenhoff et al. (2016); Zach and Kohli (2012).
Moreover, the sampling approach allows us to pro-
pose and implement a sublabel-accurate variant
of the product-space relaxation (Goldluecke et al.,
2013) which we describe in the following section.

3 Product-space relaxation
Our starting point is the convex relaxation of (1)
presented in Goldluecke et al. (2013); Strekalovskiy
et al. (2014). In these works, Γi ⊂ R is chosen to
be an interval. We first denote the Lagrangian as:

L({ui}, {qi}, {pi}) =
k∑

i=1

∫
Ω

∫
Γi

qi(x, γi) (7)

−Divx pi(x, γi) du
x
i (γi) dx. (8)

Following Vogt et al. (2020) we consider a general-
ization to manifolds Γi ⊂ RNi which leads us to

the following relaxation:

min
{ui:Ω→P(Γi)}

sup
{qi:Ω×Γi→R}
{pi:Ω×Γi→R2}

L({ui}, {qi}, {pi}),

s.t. ∥PTγi
∇γi

pi(x, γi)∥∗ ≤ λi, ∀i, x, γi, (9)
k∑

i=1

qi(x, γi) ≤ c(x, γ), ∀x, γ (10)

This cost function appears similar to (6) explained
in the previous section, but there are two differ-
ences. First, we now have marginal distributions
ui(x) for every x ∈ Ω since we do not consider only
a single data term anymore. The notation dux

i

in (8) denotes the integration against the prob-
ability measure ui(x) ∈ P(Γi). The variables qi

play the same role as in (6) and lower-bound the
cost under constraint (10). The second difference
is the introduction of additional dual variables
pi and the term −Divx pi in (8). Together with
the constraint (9), this can be shown to imple-
ment the total variation regularization as in
Lellmann, Strekalovskiy, et al. (2013); Vogt et al.
(2020). Following Vogt et al. (2020), the derivative
∇γipi(x, γi) in (9) denotes the (Ni×2)-dimensional
Jacobian considered in the Euclidean sense and
PTγi

the projection onto the tangent space of Γi

at the point γi.
To get an intuition on the total variation regu-

larization, we use a concrete example to illustrate
how (8) and (9) implement it. Consider the case
when the labeling variable ux

i = δu(x) is given as
a Dirac measure at every point x. As a concrete
example, we consider k = 1 for simplicity. The
term in (8) then simplifies to∫

Ω

−Divx p(x, u(x)) dx (11)

=

∫
Ω

⟨∇γp(x, u(x)),∇u(x)⟩ dx, (12)

which follows by applying the chain-rule and the
fact that p has compact support. Finally, taking
a point-wise supremum over p inside the integral
in (12) under the dual-norm constraint (9) gives
us the total variation of u:

∫
Ω
∥∇u(x)∥ dx, which

is the same as defined in (2).
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3.1 Finite-element discretization
We approximate the infinite-dimensional prob-
lem (8) by restricting ui, pi and qi to be piecewise
functions on a discrete meshing of Ω×Γi. The con-
sidered discretization is a standard finite-element
approach and largely follows the work from Vogt
et al. (2020). Unlike the forward-differences con-
sidered in Vogt et al. (2020) we use lowest-order
Raviart-Thomas elements (see, e.g., Caillaud and
Chambolle (2020), Section 5) in Ω, which are
specifically tailored towards the considered total
variation regularization.

Discrete mesh.
We approximate each di-dimensional manifold Γi ⊂
RNi with a simplicial manifold Γh

i , given by the
union of a collection of di-dimensional simplices Ti.
We denote the number of vertices (“labels”) in the
triangulation of Γi as ℓi. The set of labels is denoted
by Li = {vi,1, . . . ,vi,ℓi}. As assumed, Ω ⊂ R2 is
a rectangle which we split into a set of faces F
of edge-length hx with edge set E . The number of
faces and edges are denoted by F = |F|, E = |E|.

Data term and the ui, qi variables.
We assume the cost c : Ω × Γ → R≥0 is con-
stant in x ∈ Ω on each face and denote its value
as c(x(f), γ) for f ∈ F , where x(f) ∈ Ω denotes
the midpoint of the face f . Similarly, we also
assume the variables ui and qi to be constant
in x ∈ Ω on each face but continuous piecewise
linear functions in γi. They are represented by coef-
ficient functions uh

i ,q
h
i ∈ RF ·ℓi , i.e., we specify

the values on the labels and linearly interpolate
inbetween. This is done by the interpolation oper-
ator Wi,f,γi : RF ·ℓi → R which given an index
1 ≤ i ≤ k, face f , and (continuous) label posi-
tion γi ∈ Γi computes the function value based on
barycentric coordinates: Wi,f,γiu

h
i = ui(x(f), γi).

Note that after discretization, ui is only defined on
Γh
i but we can uniquely associate to each γi ∈ Γh

i

a point on Γi.

Divergence and pi variables.
Our variable pi is represented by coeffi-
cients ph

i ∈ RE·ℓi which live on the edges in Ω
and the labels in Γi. The vector pi(x, γi) ∈ R2

is obtained by linearly interpolating the coeffi-
cients on the vertical and horizontal edges of
the face and using the interpolated coefficients

to evaluate the piecewise-linear function on Γh
i .

Under this approximation, the discrete divergence
Divhx : RE·ℓi → RF ·ℓi is given by (Divhx p

h
i )(f) =(

ph
i (er) + ph

i (et)− ph
i (el)− ph

i (eb)
)
/hx where

er, et, el, eb are the right, top, left and bottom
edges of f , respectively.

Total variation constraint.
Computing the operator PTγi

∇γi
is largely inspired

by Vogt et al. (2020), Section 2.2. It is implemented
by a linear map Di,f,α,t : RE·ℓi → Rdi×2. Here,
f ∈ F and α ∈ [0, 1]2 correspond to a point x ∈ Ω
while t ∈ Ti is the simplex containing the point cor-
responding to γi ∈ Γi. First, the operator computes
coefficients in Rℓi of two piecewise-linear functions
on the manifold by linearly interpolating the values
on the edges based on the face index f ∈ F and
α ∈ [0, 1]2. For each function, the derivative in sim-
plex t ∈ Ti on the triangulated manifold is given by
the gradient of an affine extension. Projecting the
resulting vector onto the di-dimensional tangent
space for both functions leads to a di × 2-matrix
which approximates PTγi

∇γi
pi(x, γi).

Final discretized problem.
Plugging our discretized ui, qi, pi into (8), we
arrive at the following finite-dimensional optimiza-
tion problem:

min
{uh

i ∈RF ·ℓi}
max

{ph
i ∈RE·ℓi},

{qh
i ∈RF ·ℓi}

h2
x ·

k∑
i=1

⟨uh
i ,q

h
i −Divhx p

h
i ⟩

+
∑
f∈F

i{uh
i (f) ∈ ∆ℓi}, (13)

s.t. ∥Di,f,α,tp
h
i ∥∗ ≤ λi,

∀i ∈ [k], f ∈ F , α ∈ {0, 1}2, t ∈ Ti, (14)
k∑

i=1

Wi,f,γiq
h
i ≤ c (x(f), γ) ,∀f ∈ F , γ ∈ Γ, (15)

where i{·} is the indicator function. In our appli-
cations, we found that it is sufficient to enforce
the constraint (14) at the corners of each face
which corresponds to choosing α ∈ {0, 1}2. Apart
from the infinitely many constraints in (15), this is
a finite-dimensional convex-concave saddle-point
problem and can be tackled by many numerical
optimization algorithms.
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3.2 Solution recovery
Before presenting in the next section how we
propose to implement the constraints (15), we
briefly discuss how a primal solution {uh

i } of the
above problem is turned into an approximate solu-
tion to (1). To that end, we follow Lellmann,
Strekalovskiy, et al. (2013); Vogt et al. (2020) and
compute the Riemannian center of mass via an
iteration τ = 1, . . . , T :

V τ
j = loguτ

i
(vi,j), (16)

vτ =

ℓi∑
j=1

uh
i (f, j)V

τ
j , (17)

uτ+1
i = expuτ

i
(vτ ). (18)

Here, u0
i ∈ Γi is initialized by the label with the

highest probability according to uh
i (f, ·). loguτ

i
and

expuτ
i

denote the logarithmic and exponential map-
ping between Γh

i and its tangent space at uτ
i ∈ Γi,

which are both available in closed-form for the
manifolds we consider here. In our case T = 20
was enough to reach convergence. For flat man-
ifolds, T = 1 is enough, as both mappings boil
down to the identity and (18) computes a weighted
Euclidean mean.

In general, there is no theory which shows that
uT (x) = (uT

1 (x), . . . , u
T
k (x)) from (18) is a global

minimizer of (1). Tightness of the relaxation in
the special case k = 1 and Γ ⊂ R is shown in Pock
et al. (2010). For higher dimensional Γ, the tight-
ness of related relaxations is ongoing research; see
Ghoussoub et al. (2021) for results on the Dirich-
let energy. By computing a-posteriori optimality
gaps, solutions of (8) were shown to be typically
near the global optimum of Problem (1); see, e.g.,
Goldluecke et al. (2013).

4 Implementation of the
constraints

Though the optimization variables in (13) are finite-
dimensional, the energy is still difficult to optimize
because of the infinitely many constraints in (15).

Before we present our approach, let us first
describe what we refer to as the baseline method
for the remainder of this paper. As the base-
line approach, we consider the direct solution of
(13) where we implemented the constraints only

at the label/discretization points L1 × . . . × Lk

via Lagrange multipliers (this strategy is also
employed by the global variant of the product-
space approach (Goldluecke et al., 2013)). This
baseline actually corresponds to a single outer iter-
ation Nit of the proposed Algorithm 1, with a large
number Mit of inner iterations.

We aim for a framework that allows for solving
a better approximation of (15) than the baseline
while being of similar memory complexity. To this
end, Algorithm 1 alternates the following two steps:

1) Sampling. Based on the current solution
we prune previously considered but feasible con-
straints and sample a new subset of the infinitely
many constraints in (15). From all the current sam-
pled constraints, we consider the most violated
constraints for each face, add one sample at the
current solution and discard the rest.

2) Solving the subsampled problem.
Considering the current finite subset of con-
straints, we solve Problem (13) using a primal-dual
method (Chambolle & Pock, 2011) with diagonal
preconditioning (Pock & Chambolle, 2011). Both
constraints (14) and (15) are implemented using
Lagrange multipliers.

These two phases are performed alternatingly,
with the aim to eventually approach the solution
of the continuous problem (13). In practice, a fixed
number of outer iterations Nit is set. While we
do not prove convergence of the overall algorithm,
convergence results for related procedures exist; see,
e.g., Blankenship and Falk (1976), Theorem 2.4.

The detailed algorithm is explained in Algo-
rithm 1. The cost matrix C is constructed by
evaluating c(x(f), γ) at proposed samples Sf . We
denote ξ and ν as the Lagrange multipliers. The
Lagrange multiplier ξ is initialized by a warm-start
strategy, i.e. ξit keeps same if we have the same
proposed sample from previous outer iteraion. The
prox of a function g with step size τ is defined as:

proxτg(x) = argmin
y

1

2τ
∥x− y∥+ g(y) (19)

Our constraint sampling strategy is detailed
in Algorithm 2. For each face in F , it generates
a finite set of “sublabels” Sf ⊂ Γ at which we
implement the constraints (15). Next, we provide
the motivation behind each line in the algorithm.
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Algorithm 1 Proposed algorithm for problem (1).
Input: c : Ω× Γ→ R, λi > 0, Nit > 0, Mit > 0, n > 0, δ > 0, r > 0.

1: uh,0
i = 1/ℓi, q

h,0
i = 0, ph,0

i = 0.
2: S0f = L1 × . . .× Lk.
3: for it = 0 to Nit do
4: Construct interpolation matrix Wit

i and cost matrix Cit based on Sitf from Algorithm 2.
5: Initialize ξiti with the warm-start strategy.
6: Construct the diagonal preconditioners Tit

u , Tit
ν , Tit

ξ , Σit
p and Σit

q by Pock and Chambolle (2011).
7: for j = 0 to Mit do
8: ph,j+1

i = ph,j
i +Σit

p (−h2
x · (Divh

x)
Tuh,j

i +DT
i,α,tν

j
i )

9: qh,j+1
i = qh,j

i +Σit
q (h

2
x · u

h,j
i − (Wit

i )
T ξji )

10: p̄h,j
i = 2ph,j+1

i − ph,j
i

11: q̄h,j
i = 2qh,j+1

i − qh,j
i

12: uh,j+1
i = prox·∈∆ℓi (u

h,j
i −Tit

u (q̄
h,j
i −Divh

xp̄
h,j
i ))

13: νj+1
i = proxλTit

ν ∥·∥2
(νji −Tit

ν Di,v,tp̄
h,j
i )

14: ξj+1
i = prox·≥0(ξ

j
i −Tit

ξ (C
it −

∑k
i W

it
i q̄

h,j
i ))

15: end for
16: Get sampled Sit+1

f for each face by Algorithm 2.
17: end for

Algorithm 2 Sampling strategy at face f ∈ F .
Input: Solution u = (u1, . . . , uk) at face f ,

sublabel-set Sf , n, δ, r.
/* global exploration */

1: S ′f ← uniformSample(Γ, n)
/* local exploration around solution */

2: S ′f ← S ′f ∪ localPerturb(u, δ, n)
/* remove feasible constraints */

3: Sf ←
{
γ ∈ Sf :

∑k
i=1 qi(f, γ) > c(f, γ)

}
/* add the most violated r samples */

4: Sf ← top-k(S ′f , r) ∪ Sf
/* have one sample at current solution */

5: Sf ← Sf ∪ {u}.
6: Return Sf

Random uniform sampling (Line 1).
To have a global view of the cost function, we
consider a uniform sampling on the label space Γ.
The parameter n > 0 determines the number of
the samples for each face.

Local perturbation around the mean
(Line 2).
Besides the global information, we apply local per-
turbation around the current solution u. In case
the current solution is close to the optimal one,

this strategy allows us to refine it with these sam-
ples. The parameter δ > 0 determines the size of
the local neighbourhood. In our experiments, we
always used a Gaussian perturbation with δ = 0.1.

Pruning strategy (Lines 3-4).
Most samples from previous iterations are dis-
carded because the corresponding constraints are
already satisfied. We prune all current feasible
constraints as in Blankenship and Falk (1976). Sim-
ilarly, the two random sampling strategies (Lines 1
and 2) might return some samples for which the
constraints are already fulfilled. Therefore, we only
consider the samples with violated constraints and
pick the r most violated from them. This prun-
ing strategy is essential for a memory efficient
implementation as shown later.

Sampling at u (Line 5).
Finally, we add one sample which is exactly at
the current solution u ∈ Γ to have at least one
guaranteed sample per face. In the next section,
we illustrate the behavior of Algorithm 1 on a
toy problem, and evaluate its performance on real-
world imaging problems.
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Fig. 2 Illustration of the baseline algorithm. (a) Five sam-
ples (red dots) from the labels are considered (b) The dual
variable q satisfies the constraints on the samples. However,
q is not globally optimal as it violates the constraint on the
optimal solution (“green > blue”).

5 Numerical validation
Our approach and the baseline are implemented in
PyTorch. Code for reproducing the following exper-
iments can be found here: https://github.com/
zhenzhangye/sublabel_meets_product_space.
Note that that one of the runtime bottlenecks
of our sampling strategy is creating the samples
and picking the most violated r as shown in Algo-
rithm 2. Additionally, the sparse matrix operations
and the PDHG updates can be more efficiently
implemented in CUDA, as all PDHG updates can
be executed in a single CUDA kernel, compared
to PyTorch’s multiple kernel calls. Therefore, a
specialized implementation as in Goldluecke et al.
(2013) will allow the method to scale by factor
10− 100× in favor of runtime.

5.1 Illustration of the Algorithm
First of all, we consider a simplistic minimization
problem on a single nonconvex data term:

c(u) = min


−4u+ 2.4, u ∈ [0.1, 0.35),

4u− 0.4, u ∈ [0.35, 0.6],

2, otherwise,
(20)

with 5 labels to illustrate the behavior of both, the
baseline algorithm and our sampling strategies.

Figure 2 depicts the baseline’s behavior. While
it only evaluates the energy on the labels, five sam-
ples are considered as illustrated by the red dots in
Figure 2 (a). Figure 2 (b) shows the dual variable

qh
i after it iterations. Since the algorithm is maxi-

mizing qh
i , the green and red dots should overlay

(e.g. the second label) when it converges. Despite
the convergence, the resulting qh violates the con-
straints significantly close to the optimal solution
(“green > blue”). Therefore, to attain the global
optimal solution, the baseline approach needs more
labels which requires more memory.

The motivation of random uniform sampling
(Line 1, Algorithm 2) and local perturbation
around the mean (Line 2, Algorithm 2) in our
sampling strategy is intuitively clear. However, as
demonstrated later in the experiment of a trun-
cated quadratic energy, sampling at u (Line 5,
Algorithm 2) is critical for the stability of our
method. A comparison in Figure 3 helps to show
the necessity of this strategy. We ran two exper-
iments with the identical settings except for the
sampling at u. After a given number of iterations,
the dual variable qh is approximately optimal, as
indicated in Figure 3 (a). Our pruning strategy
(Line 3, Algorithm 2) removes all of the proposed
samples since all of them satisfy the constraints. As
a result, the subproblem becomes unconstrainted
on that dual variable qh and its update has no
significance, Figure 3 (b). To solve this problem,
we propose to always at least have one sample at
u even when qh is nearly optimal, cf. Figure 3 (c).
As illustrated in Figure 3 (d), this can avoid the
degeneration of qh as it is still constrained.

Finally, the complete sampling strategy is illus-
trated in Figure 4. As shown in Figure 4 (a), the
primal-dual method can obtain the optimal qh for
the sampled subproblem. Our sampling strategy
can provide necessary samples and prune the feasi-
ble ones, cf. Figure 4 (b). These few but meaningful
samples lead the qh to achieve global optimality,
cf. Figure 4 (c).

5.2 Truncated Quadratic Energy
In this section, we study the numerical effect of
each line in Algorithm 2. We evaluate our method
on the truncated quadratic energy c(x, u(x)) =
min{(u(x) − f(x))2, ν}. where f : Ω → R is the
input data as show in Figure 5. For this specific
experiment, we generate a 64 × 64 gray image
degraded with Gaussian noise of standard devia-
tion σ = 0.05 and 5% salt-and-pepper noise. The
parameters are chosen as ν = 0.025, λ = 0.25,
Nit = 10, Mit = 200, n = 10 and r = 1. To reduce

https://github.com/zhenzhangye/sublabel_meets_product_space
https://github.com/zhenzhangye/sublabel_meets_product_space
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Fig. 4 Illustration of our proposed sampling strategies. (a) Two samples (red dots) are considered leading to the shown
optimal dual variable q after running primal-dual iterations. (b) The two samples are pruned because the constraints are
feasible. Several random samples are proposed (gray dots) and only one of them is picked (red dot). (c) One more sample on
uit is added and the q is refined.

the effect of randomness, we run each algorithm
20 times and report mean and standard deviation
of the final energy for different number of labels in
Table 1. We want to emphasize that more labels
have benefits for both baseline and our algorithm.
Nevertheless, the proposed approach can reach
lower energies with the same number of labels and
similar memory requirements.

As can be seen in this table, adding uniform
sampling and picking the most violated constraint
per face (Lines 1 and 4 of Algorithm 2) already
decreases the final energy significantly. We also

(a) (b)
Fig. 5 (a) The original 64 × 64 grayscale image. (b)
Degraded with Gaussian noise of standard deviation σ =
0.05 and 5% salt-and-pepper noise.

consider local exploration around the current solu-
tion (Line 2), which helps to find better energies
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Labels Baseline +Line 1&4 +Line 2 +Line 3 +Line 5
Energy 4589 (±0.00) 2305 (±3.73) 2291 (±3.6) 8585 (±130.4) 2051 (±10.7)
Time [s] 3 8.98 22.77 23.22 23.22 23.33

Mem. [Mb] 11.21 13.94 15.53 11.65 12.05
Energy 2582 (±0.00) 2020 (±2.68) 2012 (±1.3) 7209 (±116.7) 1969 (±3.6)
Time [s] 7 74.13 16.02 16.61 15.56 18.38

Mem. [Mb] 28.35 32.96 33.49 28.356 28.68
Energy 2029 (±0.00) 1935 (±1.14) 1926 (±0.7) 5976 (±75.7) 1901 (±3.7)
Time [s] 13 183.80 37.65 38.84 38.29 38.22

Mem. [Mb] 52.85 60.55 60.94 54.35 54.73
Table 1 Ablation study indicating the effect of individual lines in Algorithm 2. Numbers in parentheses indicate the
standard deviation across 20 runs.

at the expense of higher memory requirements.
The pruning strategy (Line 3) circumvents this
memory issue, however the energy deteriorates
dramatically because some faces could end up hav-
ing no samples after pruning. Therefore, keeping
the current solution as a sample (Line 5) per face
prevents the energy from degrading. Including all
these sampling strategies, the proposed method can
achieve the best energy and runtime, at comparable
memory usage to the baseline method.

We further illustrate the comparison on the
number of iterations and time between the base-
line and our proposed method in Figure 6. Due to
the replacement on the samples, we have a peak
right after each sampling phase. The energy how-
ever converges immediately, leading to an overall
decreasing trend.

Additionally, we compare our method to the
baseline on a more practical dataset CBSD from
Martin et al. (2001). This dataset contains 68
images and noisy ones with additive white Gaus-
sian noise (5% in this experiment). The number
of labels is 7 for both methods. 5K iterations are
performed on the baseline method, while we set
Nit = 10 and Mit = 500 to get a fair compari-
son. The other parameters are chosen as λ = 0.25,
n = 50 and r = 1. The results are shown in
Figure 7. Our method outpeforms the baseline
among all the images regarding both energy and
peak signal-to-noise ratio (PSNR).

5.3 Manifold-value Denoising
To show the flexibility of our algorithm, we next
evaluate it on a manifold-valued denoising problem
in HSV color space. The hue component of this
space is a circle, i.e., Γ1 = S1, Γ2,Γ3 = [0, 1].

The data term of this experiment is still a
truncated quadratic energy, where for the hue com-
ponent the distance is taken on the circle S1. The

input images (Baker et al., 2011; Martin et al.,
2001) are degraded with the same setting as above.

Both the baseline and our method are imple-
mented with 7 labels. First of all, we evaluate the
impact of the most violated r samples. As shown
in Figure 8, The maximum difference of energy
and memory is only 0.8% and 0.06%, respectively,
which can be considered almost constant wrt. r.
Therefore, we pick r = 5. To get an equal number
of total iterations, 30K iterations are performed
on the baseline, while we set Nit = 100 outer iter-
ations with Mit = 300 inner primal-dual steps
for our method. Other parameters are chosen as
λ = 0.015 and n = 30. As shown in Figure 9,
our method can achieve a lower energy than the
baseline. Qualitatively, since our method imple-
ments the constraints not only at the labels but
also inbetween, there is less bias.

5.4 Optical flow
Given two input images I1, I2, we compute the
optical flow u : Ω → R2 for the label space Γ =
[a, b]2. We use a simple ℓ1-norm for the data term,
i.e. c(x, u(x)) = ∥I2(x) − I1(x + u(x))∥1 and set
the regularization weight as λ = 0.04. The baseline
approach runs for 50K iterations, while we set
Nit = 50 and Mit = 1000 for a fair comparison.
Additionally, the parameters are chosen as n = 20
and r = 1 in Algorithm 2.

We consider three methods for this experiment:
the baseline, the method from Laude et al. (2016)
and ours. The method from Laude et al. (2016)
approximates the dataterm in a piecewise convex
manner and requires a specific epigraph projec-
tion for the dataterm. Though it can attain lower
energy, our approach requires less memory and
tackle any cost function in a simple black-box fash-
ion. Table 2 summarizes the quantitative results
obtained on the Middleburry dataset (Baker et al.,
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Fig. 6 Comparison between the baseline and our approach on a 64× 64 grayscale image shown in Figure 5, degraded with
Gaussian and salt-and-pepper noise. Our approach finds lower energies in fewer iterations and less time than the baseline,
which implements the constraints only at the label points.

#Labels 3 7 11 15 19

Rel. Energy 50.91%(±6.54%) 64.15%(±9.83%) 73.68%(±11.17%) 79.40%(±9.70%) 80.69%(±11.23%)

Rel. Memory 99.84%(±0.75%) 100.02%(±0.07%) 99.99%(±0.04%) 99.99%(±0.03%) 99.98%(±0.04%)

Rel. aep 91.94%(±7.79%) 99.92%(±3.17%) 98.67%(±1.63%) 99.43%(±1.78%) 100.71%(±1.16%)

Rel. aae 82.34%(±8.68%) 95.19%(±5.74%) 94.93%(±6.15%) 96.55%(±5.85%) 100.86%(±3.97%)

Table 2 We compute the optical flow on the Middlebury dataset Baker et al. (2011) using our method and the baseline for
a varying amount of labels. Given an equal number of labels/memory, our sampling strategy performs favorably to an
implementation of the constraints at the labels. The relative numbers of energy, memory, average endpoint error (aep) and
average angular error (aae) are calculated as “mean( Ours

Baseline )” across all 8 datasets. The number in the parentheses resemble
the standard deviation. The detailed table with all results can be found in the appendix.

2011), while the detailed absolute numbers can be
found in the appendix. This table shows how our
approach performs relatively to the baseline, i.e.
“mean( Ours

Baseline )”, e.g. for three labels our energy is
50.91% of the baseline energy for all 8 datasets,
while using 99.84% of the baseline’s memory and
having an average end point error (aep) and aver-
age angular error (aae) of 91.94% and 82.34% of
the baseline error metrics, respectively. To enable
qualitative comparison, we visualize in Figure 10
the results on two of the datasets. The remain-
ing qualitative results on the Middlebury data

set (Baker et al., 2011) are shown in the appendix.
Our method outperforms the baseline approach
regarding energy under the same number of labels
and requires the same amount of memory. Because
Laude et al. (2016) uses a tighter relxation on the
label space, they can achieve lower energy with a
smaller number of labels. However, it runs out of
memory easily while the proposed method scales
better wrt. memory consumption.
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both the energy and memory vary very little (0.8% and
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6 Conclusion and Limitations
In this paper we made functional lifting methods
more scalable by combining two advances, namely
product-space relaxations (Goldluecke et al., 2013)
and sublabel-accurate discretizations (Möllenhoff
& Cremers, 2017; Vogt et al., 2020). This com-
bination is enabled by adapting a cutting-plane
method from semi-infinite programming (Blanken-
ship & Falk, 1976). This allows an implementation
of sublabel-accurate methods without difficult
epigraphical projections.

Moreover, our approach makes sublabel-
accurate functional-lifting methods applicable to
any cost function in a simple black-box fashion. In
experiments, we demonstrate the effectiveness of
the approach over a baseline based on the product-
space relaxation (Goldluecke et al., 2013) and
provided a proof-of-concept experiment showcasing
the method in the manifold-valued setting.

Future work will concentrate on applying and
adapting the presented framework to solve large
inverse problems in computer vision with multi-
ple data terms, different regularizers and several

manifold-valued optimization variables in a joint
fashion. However, it is not obvious if our presented
cutting plane approach is easily applicable for such
large problems or if novel ideas have to be pursued.
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A Additional Optical Flow
Results

Table 3 shows the energy and memory requirement
as well as the average endpoint error (aep) and
average angular error (aae) for the baseline, the
method from Laude et al. (2016) and our approach
across different number of labels for all 8 used
Middlebury datasets (Baker et al., 2011). Figure 11
and Figure 12 visualize the remaining optical flow
results on the Middlebury dataset (Baker et al.,
2011) using the baseline, the method from Laude
et al. (2016) and ours for a varying amount of
labels. Note that the approach from Laude et al.
(2016) leverages a tighter discretization on the label
space and is implemented on CUDA. Though their
approach achieves better energy under fewer labels,
ours has a better scability.
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#Labels 3 11 19

Baseline Laude et al.
(2016) Ours Baseline Laude et al.

(2016) Ours Baseline Laude et al.
(2016) Ours

D
im

et
ro

do
n Energy 8326.07 3233.34 4789.68 4607.09 2805 3982.92 4161.21

OOM

3886.04

Memory [Mb] 244.45 573 245.43 1795.51 10296 1795.76 4583.72 4582.42

Time [s] 83.86 470.3 904.6 967.3 2274.7 2881.9 1375.1 3883.3

aep [px] 1.39 1.15 1.31 1.08 1.15 1.08 1.07 1.08

aae [◦] 0.57 0.45 0.49 0.34 0.48 0.34 0.33 0.34

G
ro

ve
2

Energy 24919.9 9815.9 10873.84 10344.75 8798.9 7679.19 8600.58

OOM

7340.10

Memory [Mb] 330.25 786 331.43 2426.97 13941 2426.33 6220.34 6220.34

Time [s] 294.7 606.1 1195.2 911.2 3501.2 3801.2 1375.1 3883.3.4

aep [px] 1.74 1.41 1.88 1.77 1.64 1.74 1.80 1.78

aae [◦] 0.48 0.26 0.46 0.37 0.34 0.35 0.38 0.37

G
ro

ve
3

Energy 56730.6 14789 31917.5 25943.1 14039 12891.6 16402.7

OOM

10451.8

Memory [Mb] 334.9 783 334.9 2427.3 13926 2427.3 6220.6 6213.1

Time [s] 998.1 579.9 1195.6 923.3 3926.8 3809.3 1245.9 3919.3

aep [px] 3.08 1.97 2.58 2.19 2.11 2.09 2.09 2.07

aae [◦] 0.79 0.28 0.65 0.37 0.33 0.31 0.31 0.30

H
yd

ra
ng

ea

Energy 36943.87 11598 17622.77 9857.40 5634 6829.89 7793.58

OOM

6416.15

Memory [Mb] 244.27 586 245.29 1795.06 10320 1795.59 4582.12 4582.42

Time [s] 850.2 394.3 904.0 381.0 2824.7 2890.6 443.6 2713.9

aep [px] 3.01 2.56 2.62 1.89 1.67 1.87 1.78 1.81

aae [◦] 0.85 0.65 0.63 0.26 0.27 0.25 0.23 0.24

R
ub

be
rW

ha
le Energy 13142.73 4526 6069.95 6375.56 3948 5198.42 5502.00

OOM

5020.85

Memory [Mb] 246.38 576 246.52 1796.18 10303 1795.76 4583.00 4582.27

Time [s] 170.8 442.9 905.8 806.9 2810.6 2881.8S 1091.6 2704.9

aep [px] 0.94 0.76 0.81 0.71 0.72 0.70 0.68 0.69

aae [◦] 0.60 0.45 0.48 0.39 0.42 0.38 0.37 0.37

U
rb

an
2

Energy 31765.19 10153 18200.39 11083.50 9562 8775.62 7694.50

OOM

6523.03

Memory [Mb] 332.54 760 333.05 2426.33 13863 2426.33 6220.34 6220.34

Time [s] 1303.9 543.9 1196.6 876.7 3410.7 3806.6 938.9 3926.3

aep [px] 5.79 6.01 5.38 4.62 5.91 4.51 4.24 4.26

aae [◦] 0.85 0.36 0.72 0.32 0.39 0.28 0.23 0.22

U
rb

an
3

Energy 25991.05 7901 14622.53 10966.07 6696 7809.14 10303.19

OOM

6587.87

Memory [Mb] 332.63 763 328.53 2426.97 13848 2426.79 6220.34 6220.34

Time [s] 1302.7 677.8 1194.8 786.3 3904.7 3805.6 1019.3 3925.1

aep [px] 4.83 3.91 4.63 4.10 4.30 4.10 4.06 4.11

aae [◦] 0.68 0.32 0.60 0.34 0.37 0.34 0.31 0.32

V
en

us

Energy 24589.15 8203 10429.92 10475.71 4151 8155.96 9775.23

OOM

7897.65

Memory [Mb] 173.16 404 170.64 1263.71 7247 1262.51 3231.28 3230.04

Time [s] 369.7 256.8 669.3 396.5 1957.8 2135.2 573.1 2026.8

aep [px] 2.63 2.28 2.30 2.08 2.21 2.09 2.08 2.12

aae [◦] 0.74 0.45 0.50 0.32 0.42 0.32 0.31 0.33
Table 3 We compute the optical flow on the Middlebury dataset (Baker et al., 2011) using the baseline, the method from
Laude et al. (2016) and ours for a varying amount of labels. We denote the out of memory error as OOM. Given an equal
number of labels/memory, our sampling strategy performs favorably to an implementation of the constraints at the labels
comparing to the baseline. Additionally, our method obtains a better scalibilty than the one from Laude et al. (2016).
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Fig. 11 Part I: We visualize the optical flow on the Middlebury dataset (Baker et al., 2011) using baseline, the method
from Laude et al. (2016) and ours for a varying amount of labels for qualitative inspection. OOM stands for out of memory.
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#Labels 3 7 11 15 19
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Fig. 12 Part II: We visualize the optical flow on the Middlebury dataset (Baker et al., 2011) using baseline, the method
from Laude et al. (2016) and ours for a varying amount of labels for qualitative inspection. OOM stands for out of memory.
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