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Abstract – In this study, the global surface urban heat island (SUHI) for 1711 cities 

during 2003–2019 was quantified by the dynamic urban-extent (DUE) scheme with the 

land surface temperature datasets from Moderate Resolution Imaging 

Spectroradiometer Terra and Aqua through the Google Earth Engine platform. The 

global pattern and regional contrasts of SUHI intensity (SUHII), and the interannual 

changing rate of SUHII (δSUHII) were revealed at the annual, summer, and winter 

scales. Further, the associated driving factors for long-term SUHII were explored from 

a temporal perspective. The main findings are as follows: (1) Globally, the global mean 

SUHII over 2003–2019 for annual daytime (1.32 °C) and annual nighttime (1.09 °C) 

by DUE are generally higher than that by previous simplified urban-extent (SUE) 
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scheme. Accordingly, the summer daytime and nighttime SUHIIs are 1.98 °C, 1.05 ℃, 

while the winter daytime and nighttime SUHIIs are 0.76 ℃, and 1.10 ℃. (2) The annual, 

summer, and winter δSUHIIs are 0.11 °C/decade, 0.27 °C/decade, and -0.06 °C/decade, 

respectively, at daytime, and 0.07 °C/decade, 0.09 °C/decade, and 0.10 °C/decade, 

respectively, at nighttime. (3) The global SUHII and δSUHII demonstrates evident 

regional contrast. The warm temperate and snow zones show distinct seasonal 

variations from summer to winter for daytime SUHII. Specifically, the negative daytime 

SUHII is detected for the arid zone, which exhibits the highest day-night variation and 

shows decreasing trend. (4) The global SUHII and δSUHII indicate distinct latitudinal 

variations, and an additional flip-flop (daytime SUHII < nighttime SUHII) region is 

detected between 10 °S and 20 °S. (5) The long-term daytime SUHII are negatively 

regulated by the urban-rural difference on evaporative cooling of vegetation; while at 

nighttime, it is negatively affected by the urban-rural difference on surface 

thermophysical properties. It implies the urban greening and surface properties should 

be specifically concerned to increase the evaporation cooling and reduce the heat 

retention in SUHII mitigation. 

Keywords: Global surface urban heat island, long-term trend, MODIS, Google Earth 

Engine 

 

1. Introduction 

Since the beginning of the 21st century, rapid urbanization has caused tremendous 

pressure on the urban ecological environment (Vitousek et al., 1997). Urban expansion 

and its associated anthropogenic activities regularly influence the ground surface 

properties and urban climate conditions, thereby disturbing the surface energy balance 

(Grimm et al., 2008). Consequently, the phenomenon of urban heat island (UHI), in 

which urban regions are warmer than their neighboring hinterlands, occurs in most 

global cities and urban clusters and can threaten the sustainable development of 

mankind. Therefore, scientific characterization of the global UHI patterns and its long-

term variation is urgently required (Oke, 1982; Bai et al., 2018). 

The UHI effect has been quantified using air temperature records acquired from 
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ground observations across urban zones and their vicinities, a phenomenon known as 

canopy UHI (Arnfield, 2003; Hu et al., 2019). With the development of remote sensing 

technology, sufficient land surface temperature (LST) data was provided with large 

spatial coverage and encouraged the study of the surface UHI (SUHI) through new 

perspectives (Jin, 2012). Up to present, multiple studies on the spatiotemporal patterns, 

driving mechanisms, and mitigation strategies of SUHI, ranging from local, national, 

and regional to global scales, have been reported based on satellite data (Quan et al., 

2014; Zhou et al., 2014a; Peng et al., 2018; Yu et al., 2019; Zhou et al., 2013; Peng et 

al., 2012; Clinton and Gong, 2013; Lai et al., 2021a). However, the long-term SUHI 

variation and its driving factors has rarely been fully detected at a global scale (Zhou et 

al., 2019; Li et al., 2020b; Simwanda et al., 2019; Wu and Ren, 2019). 

The quantification methods for SUHI intensity (SUHII) by using either land 

use/land cover (LULC) or LST patterns were most popular in current SUHI studies. 

Other than the massive computation process in LST pattern methods (Zhou et al., 2016; 

Rajasekar and Weng, 2009), the LST difference method based on the LULC were 

generally employed; that is, the rural LST was subtracted from urban LST to indicate 

the SUHII (Zhou et al., 2015; Santamouris, 2015; Yao et al., 2018b; Yao et al., 2017; 

Chakraborty et al., 2020). After identifying the urban clusters and rural regions based 

on LULC, the SUHII is readily calculated (Peng et al., 2012; Clinton and Gong, 2013; 

Zhou et al., 2014a). The Moderate Resolution Imaging Spectroradiometer (MODIS) 

sensors observe the ground surface nearly four times in a day and have been recording 

data regularly for over 20 years. It can not only provide global LST data with a spatial 

resolution of 1 km (Li et al., 2013), but also is able to observe atmospheric and surface 

properties concomitantly, making it the most suitable data source for comprehensive 

research on the SUHII patterns and its driving mechanisms (Li et al., 2018). Nowadays, 

with the global long-term thermal infrared remote sensing LST data, it is convenient 

and feasible to provides reliable results for spatiotemporal studies of the SUHI at 

multiple scales (Zhou et al., 2014b; Clinton and Gong, 2013; Pede and Mountrakis, 

2018; Weng et al., 2004; Weng et al., 2019; Fu and Weng, 2018). However, the 

identification scheme of urban extent in current global SUHII studies is inconsistent, 
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and generally ignored the fact of urban sprawl by employing relatively obsolete urban 

extent, which is certainly deem to affect the estimation of SUHII (Yao et al., 2018a). 

For an instance, SUHI for more than 3000 global settlements was first 

characterized using MODIS LST data averaged over a short period from 2003 to 2005 

with impervious surface product in 2001 to identify individual urban areas (Zhang et 

al., 2010), followed by the SUHI study on 419 global large cities using the MODIS 

Aqua LST dataset over 2003–2008 after defining the urban clusters with land cover 

datasets (Peng et al., 2012), and the SUHI study on global cities between 55 °S–71 °N 

(defined by a global urban extent datasets) in 2010 with the MODIS Terra/Aqua LST 

data by a comparison of 5 km and 10 km buffers as the rural region (Clinton and Gong, 

2013). These limited global studies did not completely analyze the long-term evolution 

of land use changes or the global SUHI patterns. To better understand the global SUHI 

dynamics, further investigations on the land use change using satellite data and an 

increased time range are required. In a most recent study, 15 years of the MODIS LST 

data prior to 2017 were used to detect the global SUHII by differentiating the 

continuous urban regions from rural pixels enclosed in fixed urban boundaries 

(Chakraborty and Lee, 2019). With the urban expansion in later years, some urban 

pixels transcend the urban extents, leading to a reduction of urban data and imprecise 

results in quantifying SUHI. Moreover, the rural pixels close to the urban cluster will 

overestimate the rural background LST, as a consequence need to be purified. Given 

this, the quantification methodology of urban extent is necessary in updating to improve 

the rigor and credibility of the global long-term SUHI research. 

The crucial driving factors for SUHI have been explored by combining global 

products involving meteorology, urbanization and human activity with statistical 

models for decades(Li et al., 2020b). However, the relationship between spatially 

distributed SUHII and associated drivers may not necessarily be consistent with the 

relationships between interannual variations in SUHII and its associated factors for 

certain cities across years (Yao et al., 2018b). In recent years, the long-term trends of 

SUHII and the driving factors across time have gradually raised attention in several 

literatures (Yao et al., 2021; Li et al., 2020a). Specifically, few studies have concerned 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



on the driving factors for long-term SUHII dynamics at global scale. It is necessary to 

employ analytical method to explore the driving factors from a new perspective, 

meanwhile figure out the main driving factors and its contribution to the long-term 

trends of SUHIIs with the urbanization process. 

In this study, a dynamic urban-extent (DUE) scheme by employing city clustering 

algorithms (CCA) and excluding the urban fringe from rural region was conducted to 

better capture the urban sprawl and produce global long-term SUHII. The 

spatiotemporal dynamics of global long-term SUHII during 2003–2019 by the 

improved DUE scheme was investigated. The Google Earth Engine (GEE) cloud 

computation platform (Tamiminia et al., 2020; Gorelick et al., 2017) was exploited for 

the long-term SUHII quantification. Subsequently, the global, climatic and latitudinal 

variations of SUHII were systematically explored. Afterwards, the inter-annual trends 

of global SUHII were depicted. Finally, the potential driving factors concerning the 

long-term surface properties, climate condition and urbanization process for interannual 

SUHII were analyzed from a temporal perspective. 

 

2. Data and Methods 

2.1 Data 

MODIS version 6 Terra (~10:30 am, ~22:30 pm, local solar time) and Aqua 

(~01:30 am, ~13:30 pm, local solar time) 8-days composite LST products (MOD11A2 

and MYD11A2, respectively) were processed to extract the 8-day LST data for 2003–

2019 (Li et al., 2021). The collected images were re-projected to the WGS84 

geographic coordinate system and resampled to a spatial resolution of 1 km for further 

analysis. Only clear sky pixels with an average LST error less than 2 K were used. Later, 

similar projections and sampling schemes were executed for other raster datasets to 

maintain data consistency. 

The annual MODIS LULC type dataset (MCD12Q1) at a spatial resolution of 500 

m was employed to identify the urban and non-urban pixels based on the classification 

scheme by the International Geosphere Biosphere Programme. In addition, global 

elevation data (GTOPO30) with a horizontal grid spacing of 30 arc seconds were used 
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for data filtering. The mid-year population and central location information were 

obtained from the latest World Urbanization Prospects (2018 Revision) issued by the 

Population Division of the Department of Economic and Social Affairs of the United 

Nations (United-Nations, 2019), which provides the present urban and rural populations 

of all countries and major global urban clusters. During 1990–2018, the population in 

large global cities with more than 300 000 inhabitants increased at an average annual 

rate of 1.8%, of which approximately 60% were at a high risk of exposure to at least 

one of the six natural disasters (cyclones, droughts, floods, earthquakes, landslides, and 

volcanic eruptions); furthermore, this number is increasing (United-Nations, 2019). 

Therefore, cities with a population more than 0.3 million in 2019 were selected for this 

study. Further, the projected world maps of the Köppen-Geiger climate classification 

for 2001–2025 were used (Rubel and Kottek, 2010). 

The MOD13A2 and MYD13A2 datasets with a spatial resolution of 1 km at an 

interval of 16-day during 2003–2019 were used to extract the enhanced vegetation 

index (EVI). The MCD43A3 datasets at a spatial resolution of 500 m were employed 

to acquire the daily surface white-sky albedo (WSA). The TerraClimate dataset 

including monthly accumulated precipitation, wind speed and atmospheric water vapor 

condition, the daily MCD19A2 datasets containing aerosol optical depth (AOD) at 1 

km pixel resolution, and the gridded population of world dataset (GPWv411) at a spatial 

resolution of approximately 1 km and at an interval of 5 years, were also used. 

2.2 Methods 

2.2.1 Dynamic urban-extent (DUE) method 

Urban and rural regions were initially recognized to mask the LST datasets prior 

to calculating the SUHII. To capture the dynamic urban extents across years, the urban 

and rural regions were defined year-by-year, which we call the DUE scheme. Firstly, 

the CCA was employed, which have been widely introduced to identify urban clusters 

for large-scale SUHI studies (Rozenfeld et al., 2008). Based on the interconnection of 

urban regions, an iterative search was executed to identify the urban clusters with 

MATLAB. The longitudes and latitudes of each urban center were selected as initial 

points to activate the CCA (Peng et al., 2012; Peng et al., 2018). In total, 1711 global 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



cities with total population above 0.3 million in 2019 were predefined, and the urban 

clusters during 2003–2019 were annually identified for each city. The diagram of the 

urban regions identified by CCA for Beijing in sample years was displayed in Figure 1. 

 

Figure 1 Diagram of urban regions identified by CCA for Beijing in sample years (2003, 2008, 

2013, and 2018). 

Secondly, the rural clusters were annually defined as the equiareal buffer zone 

around each urban cluster. Considering the interaction between the urban centers and 

their suburbs, the first buffer ring was an urban fringe, which was excluded to acquire 

a relatively pure rural region (Peng et al., 2018). Finally, water body pixels were 

eliminated because of their high specific heat capacity, which could overestimate 

SUHII at daytime and underestimate SUHII at nighttime. Additionally, discrete urban 

pixels enclosed in rural regions were excluded. Furthermore, since elevation differences 

between urban and rural pixels also influence SUHII, rural pixels with an elevation 

difference of 200 m from the mean urban elevation were excluded, which corresponds 

to the accuracy of LST data (under 2 K) and meanwhile can ensure sufficient percentage 

of pixels with valid LST data for SUHII quantification. The workflow to produce the 

yearly urban and rural region by DUE is shown in Figure 2. 
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Figure 2 Workflow to produce the yearly urban and rural regions by DUE. 

2.2.2 Quantification of instantaneous, annual, and seasonal SUHIIs 

The yearly dynamic urban and rural regions during 2003–2019 were uploaded to 

the GEE platform, and the SUHII was calculated as the mean LST difference between 

the urban and rural regions with the MODIS datasets in GEE. Firstly, the 8-day 

instantaneous SUHIIs for a single city at four time points t  (satellite overpass time) 

were calculated using Equation (1): 

_ _t t urban t ruralSUHII T T                        (1) 

here, the subscript t  represents the four time points when Terra transits at around 

10:30 and 22:30 local solar time, and Aqua transits at around 13:30 and 01:30 local 

solar time, respectively. 
_t urbanT  and 

_t ruralT  are the mean LSTs for the urban and 

rural regions. It should be noted that the instantaneous 
tSUHII  with less than 50% of 

valid pixels in urban or rural regions were removed to not only ensure the LST coverage, 

but also provide sufficient days for analysis (Lai et al., 2021b). 

Later, the instantaneous 
tSUHII  from MOD and MYD were averaged to obtain 

the SUHII at daytime ( DSUHII ) and nighttime (
NSUHII ), respectively, for each urban 

cluster using Equations (2)–(3): 

1030 1330

2

day day

D

SUHII SUHII
SUHII


                   (2) 
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2230 0130

2

night night

N

SUHII SUHII
SUHII


                  (3) 

here, the subscripts 1030day , 2230night , 1330day , and 0130night  denote the 

timepoints when Terra or Aqua transits. 

Thereafter, the 
DSUHII  and 

NSUHII  were temporally averaged, respectively, 

for each city at annual (
ADSUHII  and 

ANSUHII ), summer (
SDSUHII  and 

SNSUHII ) 

and winter (
WDSUHII  and 

WNSUHII ) scales. The summer months of June, July, and 

August and the winter months of December, January, and February for the Northern 

Hemisphere are opposite to that for the Southern Hemisphere.  

2.2.3 Temporal average and interannual trend of SUHII over 2003–2019 at 

multiple spatiotemporal scales 

To depict the spatial pattern of global 1711 SUHIIs, the 
ADSUHII , 

ANSUHII , 

SDSUHII , 
SNSUHII , 

WDSUHII , and WNSUHII  were temporally averaged over 

2003–2019, respectively, to obtain the long-term mean SUHII ( SUHII ) at annual 

(
ADSUHII  and 

ANSUHII ), summer (
SDSUHII  and 

SNSUHII ), and winter 

(
WDSUHII  and 

WNSUHII ) scales. 

To reveal the changing rate of SUHII (δSUHII) for each urban cluster, the Mann-

Kendal (MK) test was firstly used to detect whether the interannual trends exist 

(Fernandes and G. Leblanc, 2005). Later, δSUHII was calculated using the Theil-Sen 

estimator (Sen’s slope), which was used to compute the linear rate of change using the 

median of the slopes of all the lines through pairs of points in a particular time series 

(Mondal et al., 2015). These non-parametric tests have been widely used to study the 

trends of environmental changes (Hamed, 2008; Thompson and Paull, 2017; Planque 

et al., 2017). Finally, the interannual trends of SUHII were determined by the MK test 

(p<0.05) for four levels: significant increase, insignificant increase, significant decrease, 

and insignificant decrease. Later, the δSUHII for annual ( ADSUHII , ANSUHII ), 
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summer (
SDSUHII ,

SNSUHII ), and winter (
WDSUHII ,

WNSUHII ) scales were 

calculated using Sen’s slope. The framework of the quantification of SUHII and the 

spatiotemporal pattern analysis were described in Figure 3. 

Yearly Rural 

region mask

Mean rural 

LST (8-day)

Mean urban 

LST (8-day)

MODIS 

Terra/Aqua

8-day LST

Yearly Urban

region mask

SUHIID SUHIINSUHII10:30/13:30 SUHII22:30/01:30

Clear-sky pixels

( LST error < 2K)

Summer average Winter averageAnnual average

SUHIIANSUHIIAD SUHIIWNSUHIIWDSUHIISNSUHIISD

Theil-Sen 

Slope

Temporal 

Average

Global Pattern Regional Contrast Latitudinal Variation

δSUHIIAN

δSUHIIAD

δSUHIIWN

δSUHIIWD

δSUHIISN

δSUHIISD

MK Test

ADSUHII

ANSUHII
WNSUHIISNSUHII

SDSUHII WDSUHII

 

Figure 3 The framework of the (a) Quantification of surface urban heat island intensity (SUHII) by 

DUE, and the analysis scheme of the (b) Spatiotemporal pattern of global SUHII. 

2.2.4 Global, climatic, and latitudinal contrast of SUHII and δSUHII 

The regional contrast of SUHII  and δSUHII were investigated at global, 

climatical and latitudinal scales. Since background climate conditions are a driving 

force for global SUHI patterns, a partition scheme based on climate conditions was 

employed. Global region was categorized into five major climate zones, including 

equatorial, arid, warm temperate, snow, and polar zones referring to the Köppen-Geiger 

climate classification scheme (Rubel and Kottek, 2010). (Figure 4). Subsequent 

regrouping of the urban clusters according to these categories resulted in 430, 280, 806, 

188, and 2 urban clusters in the equatorial, arid, warm temperate, snow, and polar zones, 

respectively. Five urban clusters not enclosed in any climate zone were excluded from 

the following analysis. The polar zone containing only two urban clusters was excluded 

due to the inadequate samples in a statistical sense, therefore only the first four climate 
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zones were adopted. Accordingly, the SUHII  (
ADSUHII , 

ANSUHII , 
SDSUHII , 

SNSUHII , 
WDSUHII , and 

WNSUHII ) and SUHII  (
ADSUHII ,

ANSUHII , 

SDSUHII ,
SNSUHII , 

WDSUHII ,and 
WNSUHII ) were spatially averaged by 

climate zones and at global scale to detect their regional contrast. 

 

Figure 4 Spatial distribution of 1711 global urban clusters with population over 0.3 million with the 

background climate zones. 

Considering the effect of solar radiation on SUHII along different latitude zones, 

the global urban regions were divided latitudinally into 5° intervals to investigate the 

regional averages of SUHII  and δSUHII. The city center of the urban cluster was used 

to determine the latitudinal zone location. Subsequently, the SUHII  (
ADSUHII , 

ANSUHII , 
SDSUHII , 

SNSUHII , 
WDSUHII , and 

WNSUHII ) and δSUHII 

(
ADSUHII ,

ANSUHII , SDSUHII , SNSUHII , 
WDSUHII ,and 

WNSUHII ) 

were spatially averaged across the latitudinal division. 

2.2.5 Driving factors 

According to the findings of previous studies (Li et al., 2020b; Sun et al., 2016; 

Yang et al., 2019; Sun et al., 2019; Manoli et al., 2019; Zhao et al., 2014), several 

potential factors associated with the surface properties, background climate conditions 

and urbanization process were picked out to analyze the driving mechanisms of global 

SUHII at multiple time scales. The surface EVI, WSA and AOD differences between 
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urban and rural regions (ΔEVI, ΔWSA, ΔAOD) were calculated by the method in 

Equation (1). The precipitation (MP), wind speed (WDS), and relative humidity (RH, 

ration of actual vapor density to saturation vapor density) were averaged in urban region 

to represent the climate condition. As for the factors related to urbanization, the mean 

urban population density (POD) was assumed invariant within a year, and POD for the 

years lacking the GPWv411 data was derived from the nearest year, while the urban 

area (UA) was calculated according to the previously recognized urban clusters. 

Thereafter, ΔEVI, ΔWSA, MP, WDS, RH, and ΔAOD were averaged into annual, 

summer, and winter scales. Pearson’s correlation analysis between SUHII and the 

aforementioned indexes (ΔEVI, ΔWSA, MP, WDS, RH, ΔAOD, POD, and UA) were 

conducted for each city across the years (2003-2019), which is different from the 

analytical perspective across the space (cities) concerned in previous global SUHI 

studies (Clinton and Gong, 2013; Peng et al., 2012). 

To further analysis the drivers for δSUHII, the interannual trends of ΔEVI, ΔWSA, 

MAP, WDS, RH, ΔAOD, POD, and UA (δΔEVI, δΔWSA, δMP, δWDS, δRH, δΔAOD, 

δPOD, and δUA) were calculated by Sen’s slope. The multiple stepwise regression was 

conducted to figure out the main drivers and their contributions to δSUHII. 

 

3. Results 

3.1 Spatiotemporal pattern of SUHII 

3.1.1 Global pattern 

Figure 5 shows the spatial distribution of global SUHIIs at annual, summer, and 

winter scales. At annual scale, the 
ADSUHII  varies between -5.15 and +5.85 °C, the 

ANSUHII  varies between -0.91 and +3.21 °C across the globe; the negative 
ADSUHII  

(i.e., cold islands) are observed frequently, particularly in northern Africa, the Middle 

East, and parts of western India, where the urban clusters are generally enclosed by a 

desert terrain. The urban LST in these regions is generally affected by 

evapotranspiration cooling of surface vegetation in the urban at daytime (Mohajerani 

et al., 2017). The vegetation activities weaken at nighttime, while the thermal storage 
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at daytime and anthropogenic heat flux cause a positive nighttime SUHII. This is 

consistent with the findings of Peng et al. (2012) and Chakraborty and Lee (2019). In 

summer, the 
SDSUHII  (-6.02 - +7.46 °C) are generally higher than 

SNSUHII  (-1.44 

- +3.44 °C), and the spatial patterns of 
SDSUHII  is similar to that of 

ADSUHII . In 

winter, the 
WDSUHII  (-4.65 - +5.47 °C) and 

WNSUHII  (-1.10 - +4.13 °C) are 

generally weaker than the summer SUHIIs. Additionally, the negative 
WDSUHII  are 

observed in north China, with arid and semi-arid cities distributed in the northwest 

region and frequent heavy air pollution events observed in the northeast region due to 

cold winters. 

 

Figure 5 Spatial distributions of global SUHIIs averaged over 2003–2019 for 1711 cities at (a) 

annual daytime (
ADSUHII ), (b) annual nighttime (

ANSUHII ), (c) summer daytime (
SDSUHII ), (d) 

summer nighttime (
SNSUHII ), (e) winter daytime (

WDSUHII ), and (f) winter nighttime 

(
WNSUHII ). 
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Figure 6 presents the global 1711 δSUHIIs during 2003–2019 at annual, summer 

and winter scales. At the annual scale, the majority of the 
ADSUHII  ranges between 

-1.85 and +1.06 °C/decade. The maximal variations are -3.06 °C/decade for Ardabil 

(Iran) and 3.26 °C /decade and Bur Sa'id (Egypt), respectively. The 
ANSUHII  ranges 

between -1.11 and +0.83 °C/decade. The increasing trends are significantly observed in 

most global regions, especially in developing Asian countries (e.g., India, China), 

whereas the decreasing trends are observed in North Africa and the Middle East, 

indicating an increased magnitude of SUHII where negative 
ANSUHII  are more 

frequent. In summer, the increasing and decreasing trends are similar as that in annual 

scale, whereas with a higher changing rate ( SDSUHII , SNSUHII ) due to the higher 

magnitude of SHUII in summer (Figure 5). In winter, the 
WDSUHII  are significantly 

negative worldwide especially in North Africa and North of China with negative 

WDSUHII  (Figure 5), while the 
WNSUHII  are significantly positive in India and 

Northern China, which are presently experiencing rapid urbanization and population 

growth. 
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Figure 6 Spatial distributions of the changing rate of global 1711 SUHIIs (δSUHII, at 95% confidence 

interval) during 2003–2019 at (a) annual daytime (
ADSUHII ), (b) annual nighttime (

ANSUHII ), (c) 

summer daytime (
SDSUHII ), (d) summer nighttime (

SNSUHII ), (e) winter daytime (
WDSUHII ), 

and (f) winter nighttime (
WNSUHII ). 

3.1.2 Regional contrast 

Figure 7 provides a summary of the regional contrast of the spatially averaged 

SUHII  and δSUHII during 2003–2019 in terms of the four major climate zones 

(equatorial, arid, warm temperate and snow) and the global average. According to 

Figure 7 (a)-(c), the global mean values of 
ADSUHII  and 

ANSUHII  are 1.32 °C and 

1.09 °C, respectively, which are relatively higher than that by SUE (0.85 °C and 0.55 °C) 

(Chakraborty and Lee, 2019). The global mean values of 
SDSUHII  and 

SNSUHII  

are 1.98 ℃ and 1.05 ℃, respectively, and 0.76 ℃ and 1.10℃ for 
WDSUHII  and 

WNSUHII , respectively. With respect to the climatical contrast, annually, the equatorial 
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zone demonstrates the most evident 
ADSUHII , followed by the warm temperate and 

snow zones, and arid zones with negative values; while at nighttime, higher 
ANSUHII  

are presented by the snow and arid zones, followed by the warm temperate and 

equatorial zones. In summer, both of the strongest 
SDSUHII  and 

SNSUHII  occur in 

the snow zone, which are in the equatorial and snow zones in winter. 

Overall, the daytime SUHIIs are positive in all climate zones except the arid zone, 

which generally turned to positive at nighttime. Nevertheless, both the daytime and 

nighttime SUHII in arid zone demonstrate positive value in previous studies 

(Chakraborty and Lee, 2019). The 
SDSUHII  are generally higher than the 

SNSUHII  

except in the arid zone, while the 
WDSUHII  are lower than 

WDSUHII  other than the 

equatorial zone. The seasonal variations from summer to winter are relatively higher in 

the snow and warm temperate zones at daytime, and in the equatorial zones at nighttime. 

The day-night variation of SUHII in the arid zone is evidently observed with a transition 

from negative SUHII (daytime) to positive SUHII (nighttime), especially in winter. 

However, this pattern is more distinct in summer than in winter in the other zones. 

Figure 7 (d)-(f) depict the regional average of δSUHII during 2003–2019 for 

different climate zones and at global scale. It should be noted that only the significant 

δSUHII after MK test (at 95 significant interval) were involved. For the global, the 

ADSUHII  and SDSUHII  are 0.11 °C/decade and 0.27 °C/decade, respectively, 

whereas the 
WDSUHII  is -0.06 °C/decade. At nighttime, both 

ANSUHII , 

SNSUHII , and 
WNSUHII  presents increasing changing rates of 0.07 °C/decade, 

0.09 °C/decade and 0.10 °C/decade, respectively. 
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Figure 7 Comparison of the regional averages of the temporally averaged SUHII at (a) annual 

(
ADSUHII , 

ANSUHII ), (b) summer (
SDSUHII , 

SNSUHII ), and (c) winter (
WDSUHII , 

WNSUHII ) 

scales, and the changing rates of SUHIIs (δSUHIIs) at (d) annual ( ADSUHII , ANSUHII ), (e) 

summer ( SDSUHII , SNSUHII ), and (f) winter ( WDSUHII , WNSUHII ) scales, for each climate 

zone and at global scale during 2003–2019. The color bars represent the mean values, the error 

bars denote its standard errors. 

With respect to the regional contrast of the δSUHIIs, annually, the warm temperate 

zone exhibits the most evident 
ADSUHII  (0.18 °C/decade), followed by the 

equatorial zone (0.16 °C/decade); while the 
ADSUHII  in arid zone decreases (-

0.18 ℃/decade), which generally possess negative SUHII value on regional average. 

The snow zone also shows relatively lower decreasing rate of 
ADSUHII  (-

0.07 ℃/decade). The positive  ANSUHII  indicates increasing trend and the warm 

temperate zone shows the highest increasing rate (0.09 ℃/decade) among all regions. 

In summer, the  SDSUHII  indicates increasing trend for the equatorial 

(0.38 ℃/decade), warm temperate (0.37 ℃/decade), and snow (0.06 ℃/decade) zones, 
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whereas decreases for the arid zone (-0.20 ℃/decade); at nighttime, the  SNSUHII  

presents increasing trend for the warm temperate (0.16 ℃/decade), snow 

(0.04 ℃/decade), and arid (0.03 ℃/decade) zones, whereas decreases slightly for the 

equatorial zone (-0.02 ℃/decade). In winter, the  WDSUHII  only increases in the 

equatorial zone (0.13 ℃/decade), while it shows decreasing trends for snow (-

0.39 ℃/decade), arid (-0.24 ℃/decade), and warm temperate (-0.07 ℃/decade) zones; at 

nighttime, the  WNSUHII  in all zones demonstrate increasing trends with the highest 

slope for the arid zone (0.12 ℃/decade). 

Overall, the SUHIIs in equatorial zone increase except in summer nighttime. The 

arid zone shows decreasing and increasing trends for DSUHII  and 
NSUHII , 

respectively. The DSUHII  and 
NSUHII  in warm temperate zone increase except for 

WDSUHII . The snow zone demonstrates decreasing trends for 
ADSUHII  and 

WDSUHII  yet increasing trends in other temporal scales. 

3.1.3 Latitudinal variation 

Figure 8 presents the latitudinal averages of SUHII  and the δSUHIIs at 5 ° belt. 

For the analytical aspect, the distribution of number of cities for each climate zone 

across the latitudinal belts is presented in Figure 8 (g). At the annual scale in Figure 8 

(a), the SUHII variations across the latitudinal belts were more evident at daytime. The 

ADSUHII  peaks were distributed at approximately 55 °N, 20 °S, 40 °S, and the equator, 

and they were higher than the 
ANSUHII  between 15 °N–10 °S, north of 40 °N, and 

south of 20 °S. The day-night contrast was reversed (flip-flop) beyond these regions, 

which were mainly distributed in the arid and semi-arid cities (Figure 8 (g)). These 

results are consistent with previous findings(Chakraborty and Lee, 2019) except for an 

extra flip-flop zone between 10 °S and 20 °S. In summer (Figure 8 (b)), both the 

daytime and nighttime variations fluctuated more significantly than in winter, while no 

diurnal reversal was observed along the latitudinal belts. Moreover, the 
SDSUHII  

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



increased sharply north of 35 °N. In winter (Figure 8 (c)), the flip-flop phenomenon 

was observed north of 10 °N and south of 10 °S, except for the relatively high daytime 

values between 20 °S and 25 °S. Overall, the daytime SUHII  exhibited more evident 

latitudinal variations than the nighttime SUHII , and the seasonal contrast of latitudinal 

variations for SUHII  from summer to winter were more prominent at daytime. 

 

Figure 8 Latitudinal variations of global (a)-(c) SUHII, (d)-(f) changing rate of SUHII (δSUHII), and 

(g) number of cities for each climate zone across the latitudinal zone at a 5 ° interval. 

In Figure 8 (d)-(f), the significant δSUHII after MK test (at 95 significant interval) 

were averaged. In Figure 8 (d), the 
ADSUHII  shows increasing trends in a majority 

of latitudinal belts (maximum of 0.32 ℃/decade at around 30 °S) except the region 

between 10 °N–20 °N and 30 °N–40 °N. The increasing trends occur for  ANSUHII  

between 10 °N–40 °N, while it generally decreases beyond this region (the peak value 

is -0.18 ℃/decade between 0 °S–5 °S), which present unobvious increasing trend 

between 15 °S–25 °S (lower than 0.13 ℃/decade). In summer (Figure 8 (e)), the 

 SDSUHII  demonstrate relatively stronger increasing trend across each latitudinal 

belts, whose peaks is between 25 °S–30 °S (0.68 ℃/decade). It only decreases slightly 

at around -0.08 ℃/decade between 35 °N–40 °N; at nighttime, the  SNSUHII  
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evidently decrease between 15 °S–10 °N (lower than -0.20 ℃/decade), beyond which it 

generally increases yet with relatively smaller slope than that for  SDSUHII  (except 

for the region between 35 °N–40 °N). In winter (Figure 8 (f)), the  WDSUHII  present 

increasing trends between 15 °S–25 °N and south of 25 °S, beyond which it generally 

decrease (the peak value is -0.52 ℃/decade at around 35 °N–40 °N); at nighttime, the 

 WNSUHII  show slight increasing trends between 25 °S–10 °S and 0 °–40 °N while 

decrease beyond these regions and reach peak slope of -0.77 ℃/decade at the north poles. 

Overall, the increasing trend with regards to δSUHII occurs more frequently near 

the equator at daytime, whereas it demonstrates decreasing trend between 35 °N–40 °N 

where the majority of cities are distributed in arid zone. At nighttime, the δSUHII 

generally decrease near equator, as well as near the pole belts in winter. 

3.2 Comparison of SUHII quantified by different methods 

3.2.1 Global pattern of long-term SUHIIs 

The findings of the 419 largest global cities selected by Peng et al. (2012) were 

compared with the average annual, summer and winter SUHIIs of this study (Figure 9). 

The results by DUE in this study were compared to that by SUE in Chakraborty and 

Lee (2019) for Terra and Aqua, which are shown above and below zero axis, 

respectively. The daytime and nighttime SUHIIs by DUE are relatively higher than that 

by SUE. With respect to the findings of Peng (Peng et al., 2012), only results from Aqua 

are presented below the zero axis. The daytime SUHIIs by Peng are slightly lower, and 

the nighttime SUHIIs are similar compared to that by DUE. Specifically, the SUHIIs 

from Terra and Aqua by DUE are more dispersed with a larger standard deviation than 

that by SUE and Peng methods. 
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Figure 9 Comparison of global mean SUHII in the present study (DUE) with previous research 

(SUE (Chakraborty and Lee, 2019) and Peng (Peng et al., 2012)) at (a) annual, (b) summer, and 

(c) winter scales from Terra (above zero axis) and Aqua (below zero axis). The color bar and error 

bar represent the mean value and the standard deviations of SUHII, respectively. 

It should be noted that to identify the urban range, some satellite towns were 

physically connected to a large urban cluster through the CCA algorithm; thus, a total 

of 389 cities was included in this study, which was compared with the findings of 419 

cities in Peng et al. (2012). Moreover, the time spans are 2003–2019, 2000–2017, and 

2003–2008 for the three studies, respectively, which could also cause a discrepancy in 

SUHII. Except for the aforementioned factors, the MODIS data in this study were 

filtered with LST errors below 2 K, which considerably altered the proportion of valid 

samples for the spatiotemporal integration during the SUHII analysis (Lai et al., 2018). 

The comparison of urban and rural regions identified by SUE and DUE schemes 

(Chakraborty and Lee, 2019) are illustrated in Figure 10. With the obsolete landcover 

information, both the urban and rural regions defined by SUE is incomplete in contrast 

with the latest urban extent in 2019 by DUE. Comparatively speaking, the DUE scheme 

in this study is better to depict the long-term SUHII trends with yearly dynamic urban-

extent. 
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Figure 10 Comparison of urban and rural regions identified by (a) SUE and (b) DUE methods with 

background landcover in Beijing, 2019. The sky-blue line indicates the urban extent identified by 

SUE and DUE, and the black, purple, and dark green polygons represent the urban fringe, urban 

region, and rural region, respectively. 

3.2.2 Global SUHIIs and their monthly variations in 2019 

To further compare the DUE scheme with previous research, the global SUHII in 

2019 was quantified by SUE by employing the consistent LST data source and data 

filtering scheme as in 2.2.1. Figure 11 shows the comparison of global DSUHII  and

NSUHII  calculated by DUE and SUE in 2019 at annual, summer and winter scales. 

The correlation coefficients between SUHII by DUE and SUE are above 0.8. The root-

mean-square error (RMSE) of SUHII by DUE and SUE was between 0.47- 1.15 ℃. 

Generally, the DUE scheme produced relatively larger magnitude of SUHII with the 

highest mean bias error (MBE) at summer daytime (MBE = 0.38 ℃). 

Afterwards, the comparison of regional averaged monthly variation of SUHII by 

DUE and SUE was conducted (Figure 12). The magnitude of monthly SUHII by DUE 

is relatively higher than that by SUE, except for the arid zone, which in fact is due to 

the larger absolute value of negative SUHII at daytime. Nevertheless, the patterns of 

the monthly curve were similar in these two methods. Therefore, it is rational to 

speculate that the interannual trends for different regions by DUE and SUE are 

consistent. 
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Figure 11 Comparison of global SUHIIs calculated by DUE and SUE in 2019 for (a) annual daytime, 

(b) summer daytime, (c) winter daytime, (d) annual nighttime, (e) summer nighttime, and (f) winter 

nighttime. 

 

 
Figure 12 Monthly variation of regional averaged daytime SUHII ( DSUHII ) and nighttime SUHII 

( NSUHII ) for (a) equatorial, (b) arid, (c) warm temperate, (d) snow, and (e) global zones by DUE 

(solid curve) and SUE (dashed curve). 
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3.3 Driving factors for interannual SUHII 

The correlation results between the SUHIIs and each of the associated factors are 

presented in Figure 13. Concerning the surface properties, the ΔEVI is significantly 

related to SUHII for most of the cities (19%-53%), while the ΔWSA significantly affect 

SUHII in fewer cities (16%-28%). As for the climatic and atmospheric conditions, the 

SUHII are regulated by MP and RH in about 20% of cities, whereas less controlled by 

the WDS and ΔAOD in 10%-15% of cities. With respect to the urbanization process, 

the POP and UA is significantly correlated with annual SUHII in about 40% of cities, 

and the proportion is reduced to lower than 30% in summer and winter. 

The greatest sensitivity of SUHII to ΔEVI occurs at daytime with negative 

correlation across years, which is can be attributed to the evaporative cooling effect of 

vegetation. At nighttime, the SUHII is more frequently negatively correlated with 

ΔWSA, which is related to the surface thermophysical properties. In regards of the 

climate factors, the MP regulate daytime SUHII with positive contribution, and 

nighttime SUHII with negative contribution. The land surface in natural rural regions 

generally exhibits a higher water retention ability to increase the rural soil moisture 

with increased precipitation. With a large surface resistance, the rural surface 

evaporation increases along with the gradual increase in LST, thereby increasing the 

SUHII. Additionally, the surface heat capacity increases in natural rural surfaces, and 

the LST gradually decreases at night, contributing to a lower SUHII with increased 

precipitation (Yao et al., 2018b; Du et al., 2016). The RH is related to precipitation and 

thus demonstrates similar contribution to SUHII as MP. The WDS mainly reduce SUHII, 

due to the fact that wind can weaken the aerodynamic resistance in urban regions, which 

in turn increases the sensible heat flux and decreases SUHII. As for the ΔAOD 

reflecting the atmospheric pollution, it is positively correlated with SUHII at annual 

scale by enhancing the longwave radiation (Cao et al., 2016). Regarding POD and UA, 

the positive correlations with SUHII arise, for urban clusters with high PD and large 

UA are assumed to release more anthropogenic heat to amplify SUHII. 
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At the global scale, the ΔEVI and ΔWSA tend to be the most dominate associated 

factors for daytime and nighttime SUHII, respectively. The MP and RH affect SUHII 

in limited proportion of cities, while the WDS, ΔAOD, POD and UA exhibited a 

marginal effect on SUHII, despite the fact that they could be dominant at the local 

climate scale (Sun et al., 2019). 

 

Figure 13 The correlations between associated factors and the SUHII across years in terms of (a) 

the proportion of cities with significant (p>0.05) correlations among all cities (N=1711); the 

proportion of cities with (b) positive correlations and (c) negative correlations, compared to all the 

significant correlations in (a). The numbers in the square denote the percentage value. The 

abbreviations in horizonal axis represent annual daytime and nighttime (AD, AN), summer 

daytime and nighttime (SD, SN), and winter daytime and nighttime (WD, WN). 

The contribution from the slope of each factor (δΔEVI, δΔWSA, δMP, δWDS, 

δRH, δΔAOD, δPOD, and δUA) to δSUHII were indicated by coefficient determination 

(R2) percentage in the multiple stepwise regression (Table 1). The δΔEVI and δΔWSA 

prove to be the main driving factors for daytime and nighttime δSUHIIs, respectively. 

The result shows that the city with greater δΔEVI is associated with smaller daytime 

δSUHII, and vice versa. The δΔEVI contributes around 34%, 52%, and 34% to the 

daytime δSUHIIs at annual, summer and winter scales, respectively. With respect to the 

δΔWSA, it mainly contributes negatively to the nighttime δSUHII, whose contributions 

are near 24%, 25%, and 21% at the annual, summer and winter scales, respectively. 

Specifically, the coefficients of the δΔEVI at nighttime and the δΔWSA at daytime for 

δSUHIIs are estimated at the significant interval of 95% (p<0.05) yet with minor 

contribution (<6%) and thus should be ignored. 
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Table 1 The contribution (R2, %) of each driving factor for the interannual slope of SUHII 

 δSUHIIAD δSUHIIAN δSUHIISD δSUHIISN δSUHIIWD δSUHIIWN 

δΔEVI 34.02 4.50 52.21 9.56 33.80 0.53(*) 

δΔWSA 3.49 24.25 6.86 24.57 2.44 20.90 

(*: p>0.05) 

It is worth noting that the slopes of climatic factors (δMP, δWDS, δRH, δΔAOD) 

were not involved in the final investigation, which exhibit unobvious interannual trends 

due to the insufficient samples during such a short period (2003-2019). The δPOD and 

δUA are positively correlated with δSUHII in a minority of cases, whereas the 

correlation is unobvious, thus excluded during the multiple linear stepwise regression. 

 

4. Discussions 

4.1 Spatiotemporal pattern of global SUHII 

The spatiotemporal patterns global SUHII and the δSUHII for the 1711 cities were 

investigated at annual, summer and winter scales. Compared with the existing global 

long-term studies, the SUHIIs quantified by DUE were generally higher than that by 

simplified urban extent (SUE). In DUE, the CCA algorithm was introduced to identify 

the annual dynamic urban clusters during 2003-2019, other than the fixed patterns 

derived from the landcover information in old years (Clinton and Gong, 2013; 

Chakraborty and Lee, 2019), to trace the urban sprawl more accurately. Moreover, 

urban fringes were excluded from the urban periphery in the rural definition. During 

practical applications, the influence of the SUHI footprint while refining the reference 

LST data in rural pixels can be avoided (Peng et al., 2012; Peng et al., 2018), based on 

which our results showed a marginal disparity with the previous findings. By comparing 

the current findings with previous global SUHII studies in 3.2, the difference was 

probably due to the urban-rural extraction algorithm, data source and data filtering 

scheme, and varying time spans, thereby verifying the reliability of our findings to some 

extent despite minor differences. By keeping these factors consistent, the further 
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comparison between DUE and SUE in 2019 showed similar monthly variation patterns. 

Given this, the improved DUE is assumed feasible for the long-term global SUHII study, 

especially for the Asian and African cities with tremendous urban sprawl in the recent 

years. 

4.2 Regional contrast of SUHII 

To reveal the regional contrasts, the global and climatic averages of the SUHII and 

δSUHII were further investigated. Regarding the climatic averages, evident seasonal 

variations in daytime SUHII were observed in the warm temperate and snow zones. 

Vegetation activity significantly contributed to daytime SUHII in these regions; 

however, it did not contribute to strong seasonality in the arid and equatorial zones. 

Consequently, the summer and winter SUHIIs differed in these zones. In this study, 

negative SUHII was observed in the arid zone, which was contrary to the findings of 

Chakraborty and Lee (2019). These opposite observations may be due to the definition 

of urban regions; furthermore, a negative SUHII is acceptable since the cold island 

effect is frequently observed in the arid urban regions (Rasul et al., 2017; Haashemi et 

al., 2016). 

The regional δSUHIIs also showed evident climatic contrasts. Overall, the daytime 

SUHII increased evidently in equatorial and warm temperate zones especially in 

summer, which was supposed to change with the variation of vegetation activities and 

decrease in winter. While the arid zone showed decreasing trend for daytime SUHII, 

which generally exhibits negative value. 

4.3 Latitudinal variation of SUHII 

The latitudinal variations of the global SUHIIs and δSUHII were revealed in this 

study. The latitudinal variation for global SUHII is prominent especially in daytime, 

and the amplitude is more evident in summer, which can be explained by the fact that 

the DSUHII  is generally regulated by solar radiation which become stronger during 

summers. Furthermore, the seasonal contrast of latitudinal patterns for global SUHII 

from summer to winter were more obvious at daytime, which were probably affected 

by the seasonal evolution of vegetation activity that were less prominent at nighttime. 
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At the annual scale, the flip-flop phenomenon occurred in the arid and semi-arid 

zones. This was consistent with the findings of previous studies in these regions 

(Lazzarini et al., 2013; Chakraborty et al., 2017). However, the latitudinal variation in 

our study exhibited a second day-night reversal between 10 °S and 20 °S, which was 

contrary to the findings of Chakraborty and Lee (2019). The urban distribution shown 

in Figure 8 (g) indicated that the number of equatorial and warm temperate cities 

increased considerably between 10 °S and 20 °S. In our study, the day-night range 

(difference between maximum and minimum value) of SUHIIs in the arid and 

equatorial zones were 1.77 ℃ and 1.28 ℃, respectively, which were observed as 0.53 ℃ 

and 0.88 ℃, respectively, by Chakraborty and Lee (2019). Therefore, with high 

nighttime SUHII in the arid zone and low nighttime SUHII in the equatorial zone, the 

negative day-night differences in the arid cities observed in our study may have 

contributed to the flip-flop phenomenon between 10 °S and 20 °S, where Chakraborty 

and Lee (2019) observed a day-night gap above zero. 

4.4 Driving factors and mitigation implications 

Generally, the positive and negative correlations of each driving factor for the 

SUHIIs demonstrate the similar pattern with the previous findings (Peng et al., 2012). 

Nevertheless, the correlation analysis for each city from a temporal perspective in this 

study is capable of figuring out the drivers exhibiting significant correlations with 

SUHII variations across years. Furthermore, the multiple stepwise regression analysis 

between δSUHII and the trend of associated driving factors was carried out reveal the 

main contributors to the interannual trend of global SUHII. Generally, high vegetation 

cover causes high evaporative cooling (Zhou et al., 2016), and thus, a higher ΔEVI 

could lower the daytime SUHII, especially in summer, while the weakened vegetation 

activity at nighttime or in winter had a low influence on the nighttime SUHII. The 

ΔWSA, which reflect the surface properties are more frequently negatively correlated 

with the nighttime SUHII. WSA is highly related to the surface physical properties, 

which are determined by the surface specific heat capacity, heat conduction, and heat 

diffusion. The latter is a key factor in controlling the surface heat flux at daytime SUHII. 

Generally, surfaces with lower WSAs reflect less solar radiation and increase the heat 
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storage at nighttime, thus the decreased ΔEVI also causes an increased SUHII at 

nighttime (Oke, 1982; Arnfield, 2003; Stewart and Oke, 2012). 

The contribution of lower δΔEVI and δΔWSA to the increasing of δSUHII implies 

that the surface properties during urbanization process, which was vulnerable to human 

activities, should be concerned specifically in mitigation policy to avoid its adverse 

impact on urban environment and human well-being. At city scale, to improve the 

greening rate in urban region is necessarily an efficient scheme in reducing the 

difference of sensible heat flux between urban and rural surfaces. Further, the greener 

the city, the lower the coverage of the imperious surface in urban region, which also 

affect the evaporation cooling (Deilami et al., 2018). In urban construction, high-albedo 

materials are recommended to reduce the heat retention in urban surface (Mohajerani 

et al., 2017). The urban landscape configuration such as reasonability distributed water 

bodies, additional shade trees and ground level planting are likewise to better transform 

the solar radiation into evaporation (Aleksandrowicz et al., 2017). At regional scale, 

policymakers should also pay specific attention to the vegetation coverage on the urban 

fringe around SUHII hotspot (Filho et al., 2017). 

4.5 Implications and prospects 

Assessing the spatiotemporal patterns of global SUHI through remote sensing 

technology have been topical issues since several decades. However, most studies used 

either fixed urban extent or limited land cover data of urban and rural regions that could 

cause imprecise SUHII calculations for long-term assessments. In this study, we 

identified the yearly dynamic urban and rural regions by an improved DUE scheme to 

maintain the consistency and reliability of long-term SUHII. To the best knowledge of 

the authors, this has not been implemented in previous large-scale SUHII studies. 

Comparison of our findings with those of previous studies indicated that different 

quantifications of urban and rural regions may affect the spatiotemporal SUHI patterns. 

This is an important consideration for global SUHI studies. 

Our findings indicated that the magnitude and interannual trends of SUHII 

exhibited regional contrasts and showed disparities from previous global studies. Apart 

from the key factors discussed in section 3.2, the percentage and weight of cities with 
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positive and negative SUHII values can also lead to the offset between “heat island” 

and “cold island”. For better interpretation of the local phenomena, the positive and 

negative SUHIIs could be separately investigated considering the potential differences 

in their spatiotemporal patterns in diverse contexts.  

The crucial driving factors for SUHI have been explored by combining global 

products involving meteorology, urbanization and human activity with statistical 

models for decades(Li et al., 2020b). However, the relationship between spatially 

distributed SUHII and associated drivers may not necessarily be consistent with the 

relationships between interannual trends of SUHII and its associated factors for certain 

cities across years (Yao et al., 2018b). In recent years, the long-term trends of SUHII 

and the driving factors across time have gradually raised attention in several literatures 

(Yao et al., 2021; Li et al., 2020a). Specifically, few studies have concerned on the 

driving factors for long-term SUHII dynamics at global scale. It is necessary to employ 

analytical method to explore the driving factors from a new perspective, meanwhile 

figure out the main driving factors and its contribution to the long-term trends of 

SUHIIs. In this study, a preliminary attempt for the driving factors for the δSUHII was 

conducted. The analytical method from the temporal perspective was different from the 

previous studies that executed the regression analysis across space (cities) at global 

scale. The findings were assumed to made some implications in urban planning. 

However, the explanation rates of δΔEVI, δΔWSA are insufficient (lower than 60%) in 

this study. According to the findings of previous studies (Li et al., 2020b; Sun et al., 

2016; Yang et al., 2019; Sun et al., 2019; Manoli et al., 2019), several potential factors 

associated with the background climate conditions and urbanization were also the 

driving mechanisms of global δSUHII. Assessing the additional potential driving 

factors regarding anthropogenic activities (e.g., human heat flux) and urban landscapes 

is necessary to fully reveal the driving mechanisms of δSUHIIs with the urbanization 

process (Cao et al., 2016; Li et al., 2018; Liu and Weng, 2009; Lu and Weng, 2006; 

Weng and Lu, 2008; Huang and Wang, 2019). 

In should be noted that the SUHII was a clear-sky product, which inevitably caused 

errors in overlooking the cloudy sky LST pixels while interpreting SUHII. The SUHII 
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derived from full LST coverage were to be further investigated with the development 

of global long-term all-sky LST products. 

 

5. Conclusions 

In this study, GEE was used to assess the spatiotemporal patterns and investigate 

the driving factors of global long-term SUHII during 2003–2019. Specifically, an 

improved DUE method by incorporating the CCA algorithm was implemented to better 

quantify the SUHII dynamics over years. The DUE scheme generally produced higher 

SUHII values compared with previous SUE algorithm. Further, the DUE was validated 

with previous global studies and proved to be feasible to capture the long-term trend of 

global SUHII with the urban sprawl. The main findings in the present study can be 

summarized as: 

(1) The global mean 
ADSUHII , 

ANSUHII , 
SDSUHII , 

SNSUHII , 
WDSUHII , and 

WNSUHII  over 2003–2019 are 1.32 °C, 1.09 °C, 1.98 °C, 1.05 ℃, , 0.76 ℃, and 

1.10 ℃, respectively. 

(2) At daytime, the 
SDSUHII  and 

SNSUHII  increased significantly at a changing 

rate of 0.11 °C/decade and 0.27 °C/decade, respectively; whereas the 
WDSUHII  

decreased (-0.06 °C/decade). At nighttime, the 
ANSUHII , 

SNSUHII  and 

WNSUHII  increase at 0.07 °C/decade, 0.09 °C/decade and 0.10 °C/decade, 

respectively. 

(3) The global SUHII exhibited evident regional contrast, with significant seasonal 

variations in daytime SUHII  in the warm temperate and snow zones, while these 

variations were not observed in the arid and equatorial zones. Negative daytime 

SUHII  for the arid zone were detected, which showed decreasing trend. 

(4) The latitudinal variation for global SUHII is evident especially in daytime, and an 

additional flip-flop region with weaker 
ADSUHII  than 

ANSUHII  was found 
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between 10 °S and 20 °S. Generally, the 
DSUHII  demonstrate increasing trend 

more frequently near the equator and between 35 °N–40 °N. While the 
NSUHII  

generally decrease near equator, as well as near the pole belts in winter. 

(5) Generally, a lower δΔEVI could increase the daytime δSUHII, while the decreased 

δΔWSA causes an increased δSUHII at nighttime. The contribution rates of δΔEVI 

are 34%, 52%, and 34% at the annual, summer and winter scales, respectively. The 

δΔWSA referring the surface thermophysical properties made 24%, 25%, and 21% 

percentage of contributions to the nighttime δSUHII at the annual, summer and 

winter scales, respectively. In SUHII mitigation, the long-term variation of urban 

surface properties in terms of evaporation cooling and heat retention should be 

concerned specifically. 
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