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Abstract

In this paper, we consider the problem of maximizing the worst user signal to interference noise

ratio (SINR) for massive multiple input multiple output (MaMIMO). We reformulate the nonlinear

optimization model as a joint chance-constrained geometric program. We propose a neurodynamic ap-

proach to solve the obtained problem. Our numerical results indicate that our approach outperforms

the state-of-art convex approximations used to solve joint chance-constrained geometric problems.

Keywords: Dynamical neural network, Geometric programming, Wireless networks, Joint chance
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1. Introduction

The Massive Multiple Input Multiple Output (MaMIMO) is an emerging technology for new

communication systems and the Internet of Things (IoT). It is based on the use of hundreds of

antennas interfering with each other. It is one of the candidate techniques for 5G and also a candidate

to succeed 4G LTE and LTE-A. The introduction of MaMIMO insured higher connectivity, the ability5

to adapt to high density environments, reduced transmission latency for augmented reality, energy

efficiency meeting green communications guidelines and a better quality of signal paths and security.

In recent years, MaMIMO resource allocation has been studied in several works. Xuanhong et al.

[1] investigate a joint resource allocation algorithm to improve spectrum efficiency and throughput.

Mosleh et al. [2] study a resource allocation problem for downlink cell-free massive MIMO networks.10

Yin et al. [3] deal with the Mobility Problem of Massive MIMO using Extended Prony’s Method.

Dikmen & Kulac [4] examine power allocation algorithms for MIMO systems. Salah et al. [5] propose

an adaptive optimization technique focusing on maximizing Energy Efficiency in adaptive massive

MIMO networks.

In this paper, we propose a neurodynamic approach to solve a joint chance constrained nonlinear15

optimization model where the aim is to maximize the worst user SINR. Adasme et al. [6] propose a

local search algorithm that allows obtaining feasible solutions for the problem of maximizing the worst
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user SINR for Massive MIMO. Mei & Zhang [7] derive a tractable lower bound of the average signal-to-

interference-plus-noise ratio (SINR) at the receiver of each user, based on which two average-signal-

to-average-interference-plus-noise ratio (ASAINR) balancing problems are formulated to maximize20

the minimum ASAINR among all users.

We reformulate our problem as a geometric optimization problem. Geometric programming was

introduced by Duffin et al. [8] in 1967. Since then, geometric programming have been used to

model and solve several optimization problems in several areas, i.e, aircraft design [9], communi-

cation systems [10], digital circuit optimization [11], information theory [12] ... . To model the25

uncertainty within the optimization problem, we use a joint chance constrained approach. Joint

chance-constrained programming has been widely studied and applied to model real world problems,

i.e, lot-sizing problems with stochastic demand [13], call center workforce scheduling under uncertain

call arrival forecasts [14], optimal power flow [15] ... . To solve optimization problems with joint

chance constraints many works were conducted to give deterministic equivalents and study the op-30

timality conditions. Cheng & Lisser propose a second-order cone programming approach for linear

programs with joint probabilistic constraints. You et al. [16] use data-driven models to solve pro-

grams with joint chance constraints. Ono et al. [17] present a novel dynamic programming algorithm

to approximate joint chance constraints.

The rest of the paper is organized as follows. In Section 2, we first give a brief description of35

the MaMIMO resource allocation problem we are studying. Then, we present a joint probabilistic

geometric formulation of the problem of maximizing the worst user Signal to Interference Noise Ratio

and we give the optimality conditions of the obtained problem. Based on the partial KKT system

obtained in Section 2, we propose in Section 3 a neurodynamic approach to solve the initial problem.

In Section 4, we conduct some numerical results in order to evaluate the performances of our approach.40

2. Problem formulation

We consider a single cell area, see Figure 1, which is composed of a set of U = {1, ...,K} users.

We assume that each user uses only one antenna to receive the data from the base station. The base

station is equipped with T antennas. We aim to maximize the worst user SINR subject to some limits

on the power assigned to each user. The SINRi for user i can be expressed as follows [18]

SINRi =
pi|gHi gi|2∑

j∈U,j ̸=i

pj |gHi gj |2+|σi|2
(1)

We formulate our optimization problem as follows

max
p∈IRK

++

min
i∈U

pi|gHi gi|2∑
j∈U,j ̸=i

pj |gHi gj |2+|σi|2
, (2)

s.t Pmin ≤ pi ≤ Pmax,∀i ∈ U , (3)

where pi is the power to be assigned for each user i ∈ U . gi ∈ CT×1, gHi ∈ C1×T and σ2
i are the

beam domain channel vector associated to user i ∈ U , its Hermitian transpose and Additive White
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Gaussian Noise (AWGN), respectively. We finally assume that the AWGN behaves according to an

independent complex Gaussian distribution with zero mean and unit variance (σi ∼ CN (0, 1)) while

each entry in vectors gi and gHi is a complex number that is assumed to behave as a quasi-static

independent and identically distributed Rayleigh fading channel. Pmin and Pmax define the lower

and the upper bounds for each power variable, respectively.

Transmitters Receivers

Signal from T1 received at R1

Interference from T2 to RK

Noise generated by receiver R1

Figure 1: Signal to Interference plus Noise Ratio, illustration

Let aij = |gHi gj |2|gHi gi|−2 and bi = |σi|2|gHi gi|−2 and by introducing an additional variable w we

rewrite (2)-(3) as

max
p∈IRK

++,w∈IR++

w, (4)

s.t
∑

j∈U,j ̸=i

aijpjp
−1
i w + bip

−1
i w ≤ 1,∀i ∈ U , (5)

Pmin ≤ pi ≤ Pmax,∀i ∈ U . (6)

An equivalent minimization problem is given by

min
p∈IRK

++,w∈IR++

w−1, (7)

s.t
∑

j∈U,j ̸=i

aijpjp
−1
i w + bip

−1
i w ≤ 1,∀i ∈ U , (8)

Pmin ≤ pi ≤ Pmax,∀i ∈ U . (9)

We consider the case where the coefficients aij and bi are not completely known and normally

distributed and pairwise independent, i.e., aij ∼ N (µij , σ
2
ij) and bi ∼ N (µi, σ

2
i ). We then replace the

deterministic constraint (8) with the following joint constraint

P

 ∑
j∈U,j ̸=i

aijpjp
−1
i w + bip

−1
i w ≤ 1,∀i ∈ U

 ≥ 1− ϵ. (10)
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with 1 − ϵ is a given confidence level. We use joint chance constraint instead of using individual45

constraints because the joint chance constraint ensures that the constraint as a whole is satisfied to a

certain confidence level. The individual chance constraints even if they are easier to solve, they only

guarantee that each constraint is satisfied to a certain confidence level.

Using the pairwise independence between the coefficients and by introducing auxiliary variables

yi ∈ IR+, ∀i ∈ U , we give the following deterministic equivalent for the joint constraint (10)50

∑
j∈U,j ̸=i

µijpjp
−1
i w + µip

−1
i w + ϕ−1(yi)


√ ∑

j∈U,j ̸=i

σ2
ijp

2
jp

−2
i w2 + σ2

i p
−2
i w2

 ≤ 1,∀i ∈ U , (11)

∏
i∈U

yi ≥ 1− ϵ, (12)

0 ≤ yi ≤ 1,∀i ∈ U , (13)

We write then (7)-(9) equivalently as

min
p∈IRK

++,w∈IR++

w−1,

s.t
∑

j∈U,j ̸=i

µijpjp
−1
i w + µip

−1
i w +

ϕ−1(yi)


√ ∑

j∈U,j ̸=i

σ2
ijp

2
jp

−2
i w2 + σ2

i p
−2
i w2

 ≤ 1,∀i ∈ U , (SP)

1− ϵ−
∏
i∈U

yi ≤ 0,

−yi ≤ 0, yi − 1 ≤ 0,∀i ∈ U ,

Pmin − pi ≤ 0, pi − Pmax ≤ 0,∀i ∈ U .

The obtained equivalent deterministic problem (SP) is nonconvex, we apply then the logarithmic

transformation ri = log(pi), xi = log(yi), ∀i ∈ U and t = log(w) and obtain the following problem

min exp(−t), (14)

s.t
∑

j∈U,j ̸=i

µijexp(rj − ri + t) + µiexp(t− ri) (15)

+ϕ−1(exi)


√ ∑

j∈U,j ̸=i

σ2
ijexp(2rj − 2ri + 2t) + σ2

i exp(2t− 2ri)

 ≤ 1,∀i ∈ U ,

log(1− ϵ)−
∑
i∈U

xi ≤ 0, xi ≤ 0, i ∈ U , (16)

log(Pmin)− ri ≤ 0, ri − log(Pmax) ≤ 0,∀i ∈ U . (17)

Let z = (r, t)T , for the sake of simplicity we write the optimization problem as

min f(z), (18)

s.t gi(z, x) ≤ 0,∀i ∈ U , (19)

l(x) ≤ 0, hi(x) ≤ 0, i ∈ U , (20)

vi(z) ≤ 0, wi(z) ≤ 0,∀i ∈ U . (21)
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where f(z) = exp(−t),l(x) = log(1 − ϵ) −
∑
i∈U

xi, hi(x) = xi, vi(z) = log(Pmin) − ri, wi(z) =

ri − log(Pmax) and

gi(z, x)

=
∑

j∈U,j ̸=i

µijexp(rj − ri + t) + µiexp(t− ri)

+ ϕ−1(exi)


√ ∑

j∈U,j ̸=i

σ2
ijexp(2rj − 2ri + 2t) + σ2

i exp(2t− 2ri)

− 1

Lemma 1. Problem (18)-(21) is biconvex on (z, x).

Proof. The convexity on z is straightforward. We have x 7→ ex is convex and ϕ−1(.) is non decreasing,

then x 7→ ϕ−1(ex) is convex. (18)-(21) is then convex on x. The conclusion follows.

Definition 1. Let z∗ ∈ IRK+1, x∗ ∈ IRK , α
(1)
i , α

(2)
i , β, γi, λi and ζi, i ∈ U such that

∇zf(z
∗) +

∑
i∈U

α
(1)
i ∇zgi(z

∗, x∗) +
∑
i∈U

γi∇zvi(z
∗) +

∑
i∈U

λi∇zwi(z
∗) = 0, (22)

β∇xl(x
∗) +

∑
i∈U

α
(2)
i ∇xgi(z

∗, x∗) +
∑
i∈U

ζi∇xhi(x
∗) = 0, (23)

α
(1)
i gi(z

∗, x∗) = 0, γivi(z
∗) = 0, λiwi(z

∗) = 0, α
(1)
i ≥ 0, γi ≥ 0, λi ≥ 0, i ∈ U , (24)

βl(x∗) = 0, α
(2)
i gi(z

∗, x∗) = 0, ζihi(x
∗) = 0, β ≥ 0, α

(2)
i ≥ 0, ζi ≥ 0, i ∈ U , (25)

then (z∗, x∗) is a partial KKT point of (SP).

The optimality conditions of problem (SP) are given in the following theorem55

Theorem 2. Let α(1) = (α
(1)
1 , ..., α

(1)
N )T , α(2) = (α

(2)
1 , ..., α

(2)
N )T , γ = (γ1, ..., γN )T , λ = (λ1, ..., λN )T ,

ζ = (ζ1, ..., ζN )T , g = (g1, ..., gN )T , v = (v1, ..., vN )T , w = (w1, ..., wN )T and h = (h1, ..., hN )T , we

write (22)-(25) equivalently as

∇zf(z
∗) +∇zg(z

∗, x∗)Tα(1) +∇zv(z
∗)T γ +∇zw(z

∗)Tλ = 0, (26)

β∇xl(x
∗) +∇xg(z

∗, x∗)Tα(2) +∇xh(x
∗)T ζ = 0, (27)

gi(z
∗, x∗)Tα(1) = 0, v(z∗)T γ = 0, w(z∗)Tλ = 0, α(1) ≥ 0, γ ≥ 0, λ ≥ 0, (28)

βl(x∗) = 0, g(z∗, x∗)Tα(2) = 0, h(x∗)T ζ = 0, β ≥ 0, α(2) ≥ 0, ζ ≥ 0, (29)

Let z∗ ∈ IRK+1, x∗ ∈ IRK , (z∗, x∗) is a partial optimum of (SP) if and only if (z∗, x∗) is a partial

KKT point of (SP). Moreover, if α
(1)
i = α

(2)
i then (z∗, x∗) is a KKT point of (SP).

Remark 3. The main lines of the proof of Theorem 2 are given in [19].
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3. Neurodynamic approach60

In this Section, we aim to construct a continuous-time dynamical system that converges to a

KKT point of (SP). Therefore, we propose a dynamical neural network described by the following

dynamical system

dz

dt
= −(∇zf(z) +∇zg(z, x)

T (α+ g(z, x))+ +∇zv(z)
T (γ + v(z))+ +∇zw(z)

T (λ+ w(z))+), (30)

dx

dt
= −(∇xl(x)

T (β + l(x))+ +∇xg(z, x)
T (α+ g(z, x))+ +∇xh(x)

T (ζ + h(x))+), (31)

dα

dt
= (α+ g(z, x))+ − α, (32)

dγ

dt
= (γ + v(z))+ − γ, (33)

dλ

dt
= (λ+ w(z))+ − λ, (34)

dβ

dt
= (β + l(x))+ − β, (35)

dζ

dt
= (ζ + h(x))+ − ζ. (36)

For convenience, let y = (z, x, α, γ, λ, β, ζ) we write the dynamical system (30)-(36) shortly as

dy

dt
= η(y) (37)

y(t0) = y0, (38)

where y0 is a given initial point. A generalized circuit implementation of neural network (30)-(36) is

given in Figure 2

Now we study the stability and convergence properties for (30)-(36).

Theorem 4. Let y = (z, x, α, γ, λ, β, ζ) an equilibrium point of (30)-(36), then (z, x) is a KKT65

point of (SP). Furthermore, if (z, x) is a KKT point of (SP) then there exists (α, γ, λ, β, ζ) such that

(z, x, α, γ, λ, β, ζ) is an equilibrium point of (30)-(36).

Proof. Let y = (z, x, α, γ, λ, β, ζ) an equilibrium point of (30)-(36), then dz
dt = 0, dx

dt = 0, dα
dt = 0,

dγ
dt = 0, dλ

dt = 0 dβ
dt = 0 and dζ

dt = 0.

We have that dα
dt = 0 ⇐⇒ (α+ g(z, x))+ − α ⇐⇒ {α ≥ 0 , g(z, x) ≤ 0 and αT g(z, x) = 0 } ,70

Similarly, we have dγ
dt = 0 ⇐⇒ {γ ≥ 0 , v(z) ≤ 0 and γT v(z) = 0 } and dλ

dt = 0 ⇐⇒ {λ ≥ 0 ,

w(z) ≤ 0 and λTw(z) = 0 } .

Furthermore, we have dz
dt = 0 ⇐⇒ −(∇zf(z) +∇zg(z, x)

T (α + g(z, x))+ +∇zv(z)
T (γ + v(z))+ +

∇zw(z)
T (λ + w(z))+) = 0 ⇐⇒ ∇zf(z

∗) + ∇zg(z
∗, x∗)Tα + ∇zv(z

∗)T γ + ∇zw(z
∗)Tλ = 0. We

obtain then, equations (26) and (28) of the partial KKT system (26)-(29). Following the same steps75

we obtain equations (27) and (29).

The controverse part of the theorem is straightforward.

Theorem 5. For any initial point (z(t0), x(t0), α(t0), γ(t0), λ(t0), β(t0), ζ(t0)), there exists an unique

continuous solution (z(t), x(t), α(t), γ(t), λ(t), β(t), ζ(t))for (30)-(36).
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Figure 2: A block diagram for the neural network (30)-(36)

Proof. Since ∇zf(z), ∇zg(z, x), ∇xg(z, x), ∇zv(z), ∇zw(z), ∇xl(x) and ∇xh(x) are continuously80

differentiable on open sets, then all the second terms of the differential equations (30)-(36) are locally

Lipschitz continuous. According to the local existence of ordinary differential equations also known

as Picard–Lindelöf Theorem [20], the neural network (30)-(36) has a unique continuous solution

(z(t), x(t), α(t), γ(t), λ(t), β(t), ζ(t)).

To prove the stability and convergence of the dynamical neural network (30)-(36), we first show85

the negative semidefiniteness of the Jacobian matrix ∇η(y) that we are going to use while defining

the Lyapunov functions.

Theorem 6. The Jacobian matrix ∇η(y) is negative semidefinite.

Proof. Without loss of generality, we assume that β+ l(x) ≥ 0 and that there exists 0 ≤ p, q, r, s ≤ K

such that

(α+ g)+ = (α1 + g1(z, x), α2 + g2(z, x), ....., αp + gp(z, x), 0, ...., 0︸ ︷︷ ︸
K−p

),

(γ + v)+ = (γ1 + v1(z), γ2 + v2(z), ....., γq + vq(z), 0, ...., 0︸ ︷︷ ︸
K−q

),

(λ+ w)+ = (λ1 + w1(z), λ2 + w2(z), ....., λr + wr(z), 0, ...., 0︸ ︷︷ ︸
K−r

),

(ζ + h)+ = (ζ1 + h1(x), ζ2 + h2(x), ....., ζs + hs(x), 0, ...., 0︸ ︷︷ ︸
K−s

).
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We represent the Jacobian matrix of η in the following form∇η(y) =



A1 A2 A3 A4 A5 0 0

B1 B2 B3 0 0 B6 B7

C1 C2 C3 0 0 0 0

D1 0 0 D4 0 0 0

E1 0 0 0 E5 0 0

0 F2 0 0 0 0 0

0 G2 0 0 0 0 G7


,

where

A1 = −
(
∇2

zf(z) +

p∑
i=1

((αi + gi)∇2
zg

p
i (z, x)) +∇zg

p(z, x)
T∇zg

p(z, x) +

q∑
i=1

((γi + vi)∇2
zv

q
i (z))

+∇zv
q(z)

T∇zv
q(z) +

r∑
i=1

((λi + wi)∇2
zw

r
i (z)) +∇zw

r(z)
T∇zw

r(z)

)
,

A2 = −
( p∑

i=1

((αi + gi)∇x∇zg
p
i (z, x)) +∇xg

p(z, x)
T∇zg

p(z, x)

)
,

A3 = −∇zg
p(z, x)T , A4 = −∇zv

q(z)
T
, A5 = −∇zw

r(z)
T
,

B1 = −
( p∑

i=1

(αi + gi)∇z∇xg
p
i (z, x) +∇zg

p(z, x)
T∇xg

p(z, x)

)
,

B2 = −
( p∑

i=1

((αi + gi)∇2
xg

p
i (z, x)) +∇xg

p(z, x)
T∇xg

p(z, x) +∇2
xl(x) +∇xl(x)

T∇xl(x)

+

s∑
i=1

((ζi + hi)∇2
xζ

s
i (x)) +∇xh

s(x)
T∇xh

s(x)

)
,

B6 = −∇xl(x)
T , B7 = −∇xh

s(x)
T
, C1 = ∇zg

p(z, x),

C2 = ∇xg
p(z, x), C3 = Sp = −

 Op×p Op×(K−p)

O(K−p)×p I(K−p)×(K−p)

 , D1 = ∇zv
q(z),

D4 = Sq = −

 Oq×q Oq×(K−q)

O(K−q)×q I(K−q)×(K−q)

 , E1 = ∇zw
r(z), E5 = Sr = −

 Or×r Or×(K−r)

O(K−r)×r I(K−r)×(K−r)

 ,

F2 = ∇xl(x), G2 = ∇xh
s(x), G7 = Ss = −

 Os×s Os×(K−s)

O(K−s)×s I(K−s)×(K−s)

 .

We rewrite then the Jacobian matrix ∇η as

∇η(y) =



A1 A2 A3 A4 A5 0 0

AT
2 B2 B3 0 0 B6 B7

−AT
3 −BT

3 Sp 0 0 0 0

−AT
4 0 0 Sq 0 0 0

−AT
5 0 0 0 Sr 0 0

0 −BT
6 0 0 0 0 0

0 −BT
7 0 0 0 0 Ss


=


A1 A2

AT
2 B2

B

−BT S

,90
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where B =

A3 A4 A5 0 0

B2 B3 0 0 B6 B7

 and S =



Sp 0 0 0 0

0 Sq 0 0 0

0 0 Sr 0 0

0 0 0 0 0

0 0 0 0 Ss


. Since g is biconvex, then

∇2
zg

p and ∇2
xg

p are positive semidefinite. Using the convexity of v, w, l, and h, we have that the

matrices ∇2
zv, ∇2

zw, ∇2
xl and ∇2

xh are positive semidefinite. Furthermore, observe that for any square

matrix M , we have that MTM is positive semidefinite. We conclude then that

A1 A2

AT
2 B2

 is negative

semidefinite [21]. It is clear that S is negative semidefinite, we have then ∇η is negative semidefinite95

[21].

The following definition and lemma are used later to prove the stability of the dynamical neural

network (30)-(36).

Definition 2. A mapping F : IRn −→ IRn is said to be monotonic if

(x− y)T (F(x)− F(y)) ≥ 0, ∀x, y ∈ IRn
100

Lemma 7. [22] A differentiable mapping F : IRn −→ IRn is monotonic, if and only if the Jacobian

matrix ∇F(x), ∀x ∈ IRn, is positive semidefinite.

Theorem 8. The dynamical neural network (30)-(36) is stable in the sense of Lyapunov and converges

to a KKT point of (SP).

Proof. Let ỹ an equilibrium point of (30)-(36) and let V1 the following Lyapunov function V1(y) =105

||η(ỹ)||+ 1
2 ||y − ỹ||2.

We have dV1(y)
dt = dη(y)

dt

T
η(y) + η(y)T dη(y)

dt + (y − ỹ)T dy
dt . On the other hand, dη

dt = dη
dy

dy
dt . We have

then, V1(y) = η(y)T (∇η(y)T +∇η(y))η(y) + (y − ỹ))T η(y). Since ∇η is negative semidefinite, then

η(y)T (∇η(y)T +∇η(y))η(y) ≤ 0. Moreover, by Lemma 7 we have (y − ỹ))T η(y) ≤ 0. We conclude

that dV1(y)
dt ≤ 0 and since V1 is positive we have that the dynamical neural network (30)-(36) is stable110

in the sense of Lyapunov [23].

Observe that 1
2 ||y − ỹ||2≤ V1(y), then there exists a convergent subsequence (y(tk))k≥0 such that

lim
k−→∞

tk = +∞ and lim
k−→∞

y(tk) = ŷ where ŷ satisfies dV1(ŷ)
dt = 0.

We have by LaSalle’s invariance principle [24] that the neural network converges to the largest in-

variant set contained in S which is defined by S = {y(t)|dV1(y)
dt = 0}.115

Notice that dy
dt = 0 ⇔ dV1(y)

dt , we have then that ŷ is an equilibrium point of the dynamical system

(30)-(36).

We introduce a second Lyapunov function defined as follows V2(y) = ||η(ỹ)||+ 1
2 ||y − ŷ||2. Since V2 is

continuously differentiable, η(ẑ) = 0 and lim
k−→∞

y(tk) = ŷ then lim
t−→∞

V2(y(t)) = V2(ŷ) = 0. On the

other hand, we have dV2(y)
dt ≤ 0 which leads to 1

2 ||y− ŷ||2≤ V2(y). We conclude that lim
t−→∞

∥y − ŷ∥ = 0120

and then lim
t−→∞

y(t) = ŷ. We proved then, that the neural network (30)-(36) is convergent in the sense

of Lyupanov to an equilibrium point ŷ = (ẑ, x̂, α̂, γ̂, λ̂, β̂, ζ̂) where (ẑ, x̂) is a KKT point of of problem

(SP).
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4. Numerical experiments

In this Section, we conduct preliminary numerical results in order to evaluate the performances125

of our approach. For this purpose, all the numerical experiments were done using Python. To

compute the partial derivatives and the jacobians, we use the package autograd. To generate the

random instances, we use the package numpy.random. The ODEs of the recurrent dynamical neural

networks are solved using the function solve ivp of scipy.integrate library. We run our algorithms on

Intel(R) Core(TM) i7-10610U CPU @ 1.80GHz. For the numerical experiments, we set Pmin = 0.1,130

Pmax = 0.5, ϵ = 0.1, we generate the complex vectors gi ∈ CT×1 and gHi ∈ C1×T for each i ∈ U

according to an independent complex Gaussian distribution function with zero mean and variance

equal to one. Then, we multiply each of these vectors by a factor in the set {3.0, 4.0, 5.0, 7.0}. We

generate the parameter σi for each i ∈ U according to an independent complex Gaussian distribution

function with zero mean and variance equal to one. The variables aij and bi are then computed as135

explained in Section 2. We assume that µij = aij , µi = bi and we vary the values of σij and σi in

{0.1, 0.2, 0.3}. We compare our neural network with the state-of-the-art based convex approximations

approach [25]. We only account for the quality of the solution and do not record the CPU time as

current ODE solvers are time consuming.

4.1. Convergence analysis140

We first solve (SP) for K = 5 for different feasible initial point y0, we observe the convergence

process of the neural network for each case. We observe, see Figure 3, that the neural network

converges to the same final value for the different starting points.

Figure 3: Convergence of the neural network different starting points y0

4.2. Joint constraints vs. individual constraints

In order to show the advantage of using joint constraints instead of individual constraints to deal145

with the uncertainty in constraints (8), We solve (SP) for different values of users, i.e., from K = 2 to

K = 20 for both joint and individual chance constraints. We generate 100 instances of the stochastic

variables aij and bi and observe the number of times where the constraints (8) were not respected

and we call them violated scenarios (VS for short). We recapitulate the obtained results in Table

10



K Individual constraints VS Joint constraints VS

2 5.45 16 5.99 6

3 6.87 21 7.43 9

5 35.57 39 36.99 8

7 48.98 53 50.43 11

10 39.40 62 41.68 10

15 82.30 84 85.21 12

20 113.65 82 117.33 10

Table 1: Individual constraints vs. Joint constraints for different values of K

1. Column one gives the number of users K, columns two and three give the optimal solution and150

the number of VS obtained using the individual constraints. Columns four and five represent the

the optimal solution and the number of VS obtained using the joint constraints. We observe that

the number of VS while using individual constraint is larger than the number of VS while using the

joint constraints. The difference in VS number becomes more important as the value of K increases.

Using joint chance constraints ensures a better cover for the risk area.155

4.3. The dynamical neural network vs. a sequential algorithm

For the sake of comparison we solve problem (SP) using the neurodynamic approach in addition to

the sequential algorithm proposed in [25]. The obtained results are recapitulated in Table 2. Column

one gives the number of users K, columns two and three give the optimal solution and the number160

of VS obtained using the sequential algorithm. Columns four and five represent the optimal solution

and the number of VS obtained using the dynamical neural network. Finally, column six gives the

gap between the two solutions which is computed as follows GAP =
(SolutionSA−SolutionNN)

SolutionSA
×

100, with SolutionNN and SolutionSA are the objective values obtained with the neural network and

the sequential algorithm, respectively. We observe that the dynamical neural network gives better165

solutions compared to the sequential algorithm. Moreover, the number of violated scenarios for the

solutions obtained using the neurodynamical approach is slightly fewer than this obtained using the

sequential algorithm.

Now we consider the case where K = 5 and we vary the value of ϵ in [0.05, 0.4]. We recapitulate the170

obtained results in Table 3. We observe that as ϵ increases the problem becomes less conservative.

Moreover, we observe that the gap between the two approaches increases as ϵ increases as shown in

Figure 4 and the number of violated scenarios increases see Figure 5. The difference in the number

of violated scenarios becomes more significant as ϵ increases, hence the neurodynamical approach

ensures a better robustness.175
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K Sequential Algorithm VS Neural Network VS GAP

2 5.40 12 5.10 6 5.88

3 25.77 10 25.61 8 0.62

5 28.97 11 28.88 9 0.31

7 68.79 10 68.56 8 0.33

10 70.81 21 69.68 14 1.62

15 84.43 7 84.39 6 0.04

20 117.37 13 117.33 10 0.03

Table 2: Neural network vs. the sequential algorithm for different values of K

ϵ Sequential Algorithm VS Neural Network VS GAP

0.05 30.23 4 29.89 2 1.13

0.1 29.47 15 29.07 9 1.37

0.15 28.96 22 28.53 11 1.50

0.2 28.56 32 28.10 19 1.63

0.3 27.87 54 27.40 26 1.71

0.4 27.30 63 26.81 34 1.82

Table 3: Neural network vs. the sequential algorithm for different values of ϵ

Figure 4: Evolution of GAP function to ϵ

.

Figure 5: Evolution of VS function to ϵ

.

5. Conclusion

This paper proposes a neurodynamic approach to maximize the worst user signal to interference

noise ratio. We first give a geometric formulation for the maximization problem then we derive a

stochastic formulation to deal with the uncertainty of wireless channels. Based on the partial KKT180

system of the obtained deterministic equivalent problem for the stochastic formulation, we propose a

convergent dynamical system to solve the problem of maximizing the worst user signal to interference

noise ratio. The dynamical neural network has the advantage of converging directly to a solution

without using any convex approximation, unlike the state-of-art methods. In the numerical Section,

we compare the performances of our neurodynamic approach to a sequential algorithm and show that185

12



our method gives better upper bounds for the optimal solution and covers better the risk area.
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