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Abstract

This paper considers a noncovex geometric problem with two-sided joint probabilistic inequalities

constraints, namely rectangular constraints. We transform the stochastic problem into a determinis-

tic one. Further, we use a logarithmic transformation combined with the arithmetic-geometric mean

inequality to obtain a biconvex problem. Based on the biconvex structure of the obtained program

and the correspondent partial KKT system, we propose a dynamical neural network to solve the

initial rectangular problem. The main feature of our framework is to propose a converging method to

solve rectangular joint chance-constrained optimization problems without the use of any convex ap-

proximation unlike the state-of-the-art solving methods. To verify the performances of our approach,

we conducted several tests on a minimum transport cost problem and a shape optimization problem.

Keywords: Biconvex optimization, Joint probabilistic constraints, Rectangular programming,

Dynamical neural network, Lyapunov theory, Partial KKT system
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1. Introduction

Chance constrained programming was first introduced in by Charnes & Cooper (1959) to solve

optimization problems under various uncertainties. Since then, many studies introducing chance

constraints have been done. In this paper, we are interested in two-sided joint geometric chance

constraints called rectangular chance constraints.5

Perlumutter (1967) introduced geometric programming in 1967. Over the last few decades, geo-

metric programming has been used in several fields, e.g., aircraft design problems (Hoburg & Abbeel,

2012), communication systems (Chiang (2005)), power control (Chiang et al. (2007)), digital circuit

optimization (Boyd et al. Boyd et al. (2005)), biochemical systems (Liu et al. (2014)), operational am-

plifiers design ( Vanderhaegen & Brodersen (2004)), metal cutting optimization (Dupačová (2010)).10

To solve geometric programs with joint probabilistic constraints, Liu et al. (2016) approximate the

problem using piecewise linear functions, which leads to a lower bound. In order to find an upper

bound, they propose a sequential convex optimization algorithm. Liu et al. (2020) give an asymp-

totically tight approximation for rectangular programs with joint probabilistic constraints based on
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variable transformation and linear approximation methods. Xu (2014) gives a global optimization15

approach to solve signomial geometric programs using some convex transformation strategies.

In this paper, we use a dynamical neural network to solve a joint chance-constrained rectangular

problem. Different methods using dynamical systems were used to solve optimization problems. Fay-

busovich (1991) proposes dynamical systems to solve optimization problems with linear constraints.

Schropp & Singer (2000) use differential-algebraic equations to solve general smooth minimization20

problems. Inspired by quantum mechanics, Aluffi-Pentini et al. (1985) study the global minimizers by

following the paths of a system of stochastic differential equations. Effati & Nazemi (2006) propose

two recurrent neural network models for solving linear and quadratic programming problems.

In this paper, we study the following stochastic rectangular programming problem:

min
t∈RM

++

E

∑
i∈I0

ci

M∏
j=1

t
aij

j

 , (1)

s.t. P

αk ≤
∑
i∈Ik

ci

M∏
j=1

t
aij

j ≤ βk, k = 1, ....,K

 ≥ 1− ϵ, (2)

where ci, i ∈ Ik are uncorrelated normally distributed random variables , i.e., ci ∼ N (c̄i, σ
2
i ), c̄i ≥ 025

,0 < αk < βk The coefficients aij , i ∈ Ik, j = 1, ...,M are deterministic, and 1−ϵ is a given probability

level.

Liu et al. (2020) propose convex approximations based on the variable transformation to solve problem

(1)-(2) with an elliptical distribution. They give upper and lower bounds for the optimal solution.

Main contributions30

This paper studies a joint chance-constrained rectangular problem and proposes a recurrent neural

network to solve it. The main contributions of this paper are listed as follows.

(i) We reformulate joint constrained rectangular problems as a nonlinear biconvex deterministic

equivalent problem. To the best of our knowledge, this is the first time that rectangular problems

with joint probabilistic constraints are reformulated using neurodynamic system.35

(ii) Generally to solve stochastic problems with joint constraints, convex approximations of the

biconvex functions and the stochastic gradient methods are used. In our paper, we converge

directly to a good near-optimal solution of the studied problem.

(iii) The numerical experiments part shows the robustness of our neural network.

The rest of the paper is organized as follows. In Section 1, a deterministic biconvex equivalent40

problem is obtained using the arithmetic-geometric mean inequality combined with a logarithmic

transformation is given. In Section 2, we study the optimality conditions of the obtained biconvex

problem. In Section 3, we propose a dynamical neural network to solve problem (1)-(2) based on the

partial KKT system, and we study the convergence and the stability of the neural network. Finally,

we dedicate Section 4 to study the numerical performances of our neural network by solving a shape45

optimization problem.
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2. Deterministic biconvex equivalent problem

Problem (1)-(2) is a joint constrained program. To transform the joint constraints into determin-

istic ones, we assume that the row vector constraints are mutually independent. Then, we introduce

auxiliary variables yk, k = 1, ..,K and we rewrite the constraint (2) equivalently as50

P

αk ≤
∑
i∈Ik

ci

M∏
j=1

t
aij

j ≤ βk

 ≥ yk, k = 1, ..,K, (3)

K∏
k=1

yk ≥ 1− ϵ, 0 ≤ yk ≤ 1, k = 1, ..,K. (4)

The rectangular constraints (3) are equivalent to

P

∑
i∈Ik

ci

M∏
j=1

t
aij

j ≥ αk

+ P

∑
i∈Ik

ci

M∏
j=1

t
aij

j ≤ βk

− 1 ≥ yk, k = 1, ..,K. (5)

Then, we introduce two additional K-dimensional auxiliary variables z+, z− ∈ RK
+ Liu et al. (2020)

such that (5) is equivalent to

P

∑
i∈Ik

ci

M∏
j=1

t
aij

j ≥ αk

 ≥ z+k , k = 1, ..,K, (6)

P

∑
i∈Ik

ci

M∏
j=1

t
aij

j ≤ βk

 ≥ z−k , k = 1, ..,K, (7)

z+k + z−k − 1 ≥ yk, 0 ≤ z−k ; z+k ≤ 1, k = 1, ..,K, (8)
K∏

k=1

yk ≥ 1− ϵ, 0 ≤ yk ≤ 1, k = 1, ..,K. (9)

Deterministic reformulations of constraints (6) and (7) are given as follows. Cheng & Lisser (2012)

55

−
∑
i∈Ik

c̄i

M∏
j=1

t
aij

j + ϕ−1(z+k )

√√√√∑
i∈Ik

σ2
i

M∏
j=1

t
2aij

j ≤ −αk, (10)

∑
i∈Ik

c̄i

M∏
j=1

t
aij

j + ϕ−1(z−k )

√√√√∑
i∈Ik

σ2
i

M∏
j=1

t
2aij

j ≤ βk, (11)

Constraint (10) can be reformulated as follows

ϕ−1(z+k )
2
∑
i∈Ik

σ2
i

M∏
j=1

t
2aij

j ≤

∑
i∈Ik

c̄i

M∏
j=1

t
aij

j − αk

2

. (12)

We write (12) equivalently as

2αk

∑
i∈Ik

c̄i

M∏
j=1

t
aij

j −
∑
i∈Ik

∑
p∈Ik

c̄ic̄p

M∏
j=1

t
(aij+apj)
j + ϕ−1(z+k )

2
∑
i∈Ik

σ2
i

M∏
j=1

t
2aij

j ≤ α2
k,

which can be reformulated as

2αk

∑
i∈Ik

c̄i
M∏
j=1

t
aij

j + ϕ−1(z+k )
2
∑
i∈Ik

σ2
i

M∏
j=1

t
2aij

j

∑
i∈Ik

∑
p∈Ik

c̄ic̄p
M∏
j=1

t
(aij+apj)
j + α2

k

≤ 1. (13)
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We propose to approximate the denominator of constraint (13) with a monomial function by applying

the arithmetic-geometric mean inequality

∑
i∈Ik

∑
p∈Ik

c̄ic̄p
M∏
j=1

t
(aij+apj)
j + α2

k ≥
∏
i∈Ik

∏
p∈Ik

 c̄ic̄p
M∏
j=1

t
(aij+apj)

j

δip

δip (
α2

k

δ0

)δ0
,

where δ0 and δip are nonnegative parameter ∀i ∈ Ik and δ0 +
∑

i,p∈Ik

δip = 1

We write then problem (1)-(2) as60

min
t∈RM

++

∑
i∈I0

c̄i

M∏
j=1

t
aij

j , (14)

s.t.

2αk

∑
i∈Ik

c̄i

M∏
j=1

t
aij

j + ϕ−1(z+k )
2
∑
i∈Ik

σ2
i

M∏
j=1

t
2aij

j


∏
i∈Ik

∏
p∈Ik


c̄ic̄p

M∏
j=1

t
(aij+apj)
j

δip


−δip (

α2
k

δ0

)−δ0

≤ 1, k = 1, ...,K, (15)

∑
i∈Ik

c̄i

M∏
j=1

t
aij

j ϕ−1(z−k )

√√√√∑
i∈Ik

σ2
i

M∑
j=1

t
2aij

j − βk ≤ 0, k = 1, ...,K, (16)

z+k + z−k − 1 ≥ yk, 0 ≤ z−k ; z+k ≤ 1, k = 1, ..,K, (17)
K∏

k=1

yk ≥ 1− ϵ, 0 ≤ yk ≤ 1, k = 1, ..,K. (18)

We apply a logarithmic transformation of the problem by introducing rk = log(tk), xk = log(yk),

k = 1, ..,K. We obtain the following biconvex equivalent problem
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min
r∈RM

∑
i∈I0

c̄iexp


M∑
j=1

aijrj

 , (19)

s.t.
1∏

i∈Ik

∏
p∈Ik

δip

2αk

∑
i∈Ik

c̄iexp


M∑
j=1

aijrj

+ ϕ−1(z+k )
2
∑
i∈Ik

σ2
i exp


M∑
j=1

2aijrj




exp

∑
i∈Ik

∑
p∈Ik

−δip(ln(c̄i) + ln(c̄p))
M∑
j=1

(aij + apj)rj


(
α2
k

δ0

)−δ0

≤ 1, k = 1, ...,K, (20)

∑
i∈Ik

c̄iexp


M∑
j=1

aijrj

+

√√√√√∑
i∈Ik

σ2
i exp


M∑
j=1

2aijrj + log(ϕ−1(z−k )2)

− βk ≤ 0, k = 1, ...,K, (21)

log(1− ϵ)−
K∑

k=1

xk ≤ 0, xk ≤ 0, k = 1, ...,K,

exp(xk)− z+k − z−k + 1 ≤ 0, k = 1, ...,K, (22)

z+k − 1 ≤ 0, k = 1, ...,K, (23)

z−k − 1 ≤ 0, k = 1, ...,K, (24)

−z+k ≤ 0, k = 1, ...,K, (25)

−z−k ≤ 0, k = 1, ...,K. (26)

We define z = (z+, z−)T , f(r) =
∑
i∈I0

c̄iexp

{
M∑
j=1

aijrj

}
, h(x) = (log(1− ϵ)−

K∑
k=1

xk, x1, . . . , xK)T ,

l(x, z) = (exp(x1)− z+1 − z−1 + 1, ..., exp(xK)− z+K − z−K + 1)T ,

w(z) = (z1
+ − 1, . . . , zK

+ − 1, z1
− − 1, . . . , zK

− − 1,−z1
+, . . . ,−zK

+,−z1
−, . . . ,−zK

−)T and65

g(r, z) =



(
2α1

∑
i∈I1

c̄iexp

{
M∑
j=1

aijrj

}
+ ϕ−1(z+1 )

2
∑
i∈I1

σ2
i exp

{
M∑
j=1

2aijrj

})

∏
i∈I1

∏
p∈I1

 c̄ic̄pexp
{

M∑
j=1

(aij+apj)rj

}
δip


−δip (

α2
1

δ0

)−δ0
− 1

...(
2αk

∑
i∈Ik

c̄iexp

{
M∑
j=1

aijrj

}
+ ϕ−1(z+k )

2
∑
i∈Ik

σ2
i exp

{
M∑
j=1

2aijrj

})

∏
i∈Ik

∏
p∈Ik

 c̄ic̄pexp
{

M∑
j=1

(aij+apj)rj

}
δip


−δip (

α2
k

δ0

)−δ0
− 1

∑
i∈I1

c̄iexp

{
M∑
j=1

aijrj

}
+ ϕ−1(z−1 )

√√√√∑
i∈I1

σ2
i exp

{
M∑
j=1

2aijrj+

}
− β1

...

∑
i∈IK

c̄iexp

{
M∑
j=1

aijrj

}
+ ϕ−1(z−K)

√√√√ ∑
i∈IK

σ2
i exp

{
M∑
j=1

2aijrj+

}
− βK



, we write (19)-
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(26) as

minr∈RM f(r),

s.t. g(r, z) ≤ 0,

h(x) ≤ 0, (27)

l(x, z) ≤ 0,

w(z) ≤ 0.

3. Optimality conditions70

Now, we study the optimality conditions for problem (27). Since the problem is biconvex, we do

not talk about a KKT system but rather a partial KKT system (Jiang et al., 2021).

Definition 1. Let (r∗, z∗, x∗) ∈ Rm × R2K × RK , if there exists µ(1), µ(2), λ(1), λ(2), γ and ω such

that

∇f(r∗) + µ(1)T∇rg(r
∗, z∗) = 0, (28)

µ(1) ≥ 0, µ(1)T g(r∗, z∗) = 0, (29)

µ(2)T∇zg(r
∗, z∗) + λ(1)T∇zl(x

∗, z∗) + γT∇zw(z
∗) = 0, (30)

µ(2) ≥ 0, µ(2)T g(r∗, z∗) = 0, λ(1) ≥ 0, λ(1)T l(x∗, z∗), γ ≥ 0, γTw(z∗) = 0, (31)

λ(2)T∇xl(x
∗, z∗) + ωT∇xh(x

∗) = 0, (32)

λ(2) ≥ 0, λ(2)T l(x∗, z∗) = 0, ω ≥ 0, ωTh(x∗) = 0 (33)

Then (r∗, z∗, x∗) is called a partial KKT point of (27).

Remark 1. The vectors µ(1), µ(2), λ(1), λ(2), γ and ω in Definition 1 are equivalent to the Lagrange

multipliers in a KKT system.75

The following theorem is driven by the equivalence between a partial optimum and a partial KKT

point of a biconvex program.

Theorem 2. Let (r∗, z∗, x∗) ∈ RM ×R2K ×RK be a partial solution of (12), with respect to partial

Slater constraints qualification (Jiang et al., 2021) at (r∗, x∗). Then (r∗, z∗, x∗) is a KKT point of (27)

if and only if the partial KKT system (28)-(33) holds with µ(1) = µ(2) and λ(1) = λ(2). Furthermore,80

if µ(1) = µ(2) and λ(1) = λ(2) then (r∗, z∗, x∗) is a KKT point of (27).

Remark 3. The main idea of the proof of Theorem 2 can be found in Jiang et al. (2021).

4. A dynamical neural network approach

Based on the partial KKT system (28)-(33) obtained in the previous section, we construct a

dynamical neural network system that converges to a partial KKT point of (13). The dynamical

6



neural network is driven by the following system, where r, z, x, µ, λ, γ, and ω are time-dependent

variables

dr

dt
= −(∇f(r) +∇rg(r, z)

T (µ+ g(r, z))+), (34)

dz

dt
= −(∇zg(r, z)

T (µ+ g(r, z))+∇zl(x, z)
T (λ+ l(x, z))+ +∇zw(z)

T (γ + w(z))+), (35)

dx

dt
= −(∇xl(x, z)

T (λ+ l(x, z))+∇xh(x)
T (ω + h(x))+), (36)

dµ

dt
= (µ+ g(r, z))+ − µ, (37)

dλ

dt
= (λ+ l(x, z))+ − λ, (38)

dγ

dt
= (γ + w(z))+ − γ, (39)

dω

dt
= (ω + h(x))+ − ω. (40)

For the sake of simplicity, let y = (r, z, x, µ, λ, γ, ω) we rewrite the dynamical system (34)-(40)

equivalently as follows85 
dy
dt = Φ(y)

y(t0) = y0
.

The hardware implementation of the neural network (34)-(40) is provided in Figure 1.

To study the stability and the convergence of the proposed neural network, we first show the

equivalence between a partial KKT point (28)-(33) and an equilibrium point of (34)-(40).

Theorem 4. Let y = (r, z, x, µ, λ, γ, ω) ∈ RM × R2K × RK × R2K × RK+1 × RK × R4K , y is an90

equilibrium point of (34)-(40) if and only if (r, z, x) is a KKT point of (27).

Proof. Let (r, z, x, µ, λ, γ, ω) an equilibrium point of (34)-(40), then dr
dt = 0, dz

dt = 0, dx
dt = 0, dµ

dt = 0,
dλ
dt = 0, dγ

dt = 0 and dω
dt = 0.

dµ
dt = 0 ⇔ (µ + g(r, z))+ = µ ⇔ µ ≥ 0 and g(r, z) ≤ 0 and µT g(r, z) = 0 ⇔ (29) . We use the same

approach to obtain (31) and (33).95

dr
dt = 0 ⇔ ∇f(r) +∇rg(r, z)

T (µ+ g(r, z))+ = 0 ⇔ f(r) +∇rg(r, z)
Tµ = 0 ⇔ (28) . We obtain (30)

and (32) following the same steps. We conclude that (r, z, x) is a partial KKT system of (27). It is

easy to check the converse part of the theorem.

Now, to show the stability and the convergence of our neural network, we need first to prove the

negative semidefiniteness of the jacobian matrix ∇Φ(y).100

Theorem 5. The jacobian matrix ∇Φ(y) is negative semidefinite.

Proof. Let p, q, s, t ∈ N such that

(µ+ g)+ = (µ1 + g1(r, z), µ2 + g2(r, z), ....., µp + gp(r, z), 0, ...., 0︸ ︷︷ ︸
2K−p

),

(λ+ l)+ = (λ1 + l1(x, z), λ2 + l2(x, z), ....., λq + lq(x, z), 0, ...., 0︸ ︷︷ ︸
K−q

),

(γ + w)+ = (γ1 + w1(z), γ2 + w2(z), ....., γs + ws(z), 0, ...., 0︸ ︷︷ ︸
4K−s

),105
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Figure 1: The architecture of the neural network (26)-(32)

(ω + h)+ = (ω1 + h1(x), ω2 + h2(x), ....., ωt + ht(x), 0, ...., 0︸ ︷︷ ︸
K+1−t

).
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We write ∇Φ(z) =



A1 A2 A3 A4 A5 A6 A7

B1 B2 B3 B4 B5 B6 B7

C1 C2 C3 C4 C5 C6 C7

D1 D2 D3 D4 D5 D6 D7

E1 E2 E3 E4 E5 E6 E7

F1 F2 F3 F4 F5 F6 F7

G1 G2 G3 G4 G5 G6 G7


,

where,

A1 = −(∇2f(r) +
p∑

i=1

((µi + gi)∇2
rg

p
i (r, z)) +∇rg

p(r, z)
T∇rg

p(r, z)),

A2 = −(
p∑

i=1

((µi + gi)∇z∇rg
p
i (r, z)) +∇zg

p(r, z)
T∇rg

p(r, z)),110

A4 = −∇rg
p(r, z)T , A3 = 0, A5 = 0, A6 = 0, A7 = 0,

B1 = −(
p∑

i=1

((µi + gi)∇r∇zl
p
i (r, z)) +∇zg

p(r, z)
T∇rg

p(r, z)),

B2 = −(
p∑

i=1

((µi+gi)∇2
zg

p
i (r, z))+∇rg

p(r, z)
T∇zg

p(r, z)+
q∑

i=1

((λi+li)∇2
zl

q
i (x, z))+∇zl

q(x, z)
T∇zl

q(x, z)+

s∑
i=1

((γi + wi)∇2
zw

s
i (z)) +∇zw

s(z)
T∇zw

s(z)),

B3 = −(
q∑

i=1

((λi + li)∇x∇zl
q
i (x, z)) +∇zl

q(x, z)
T∇xl

q(x, z)),115

B4 = −∇zg
p(r, z)T , B5 = −∇zl

q(x, z)T , B6 = −∇zw
s(z)T , B7 = 0, C1 = 0,

C2 = −(
q∑

i=1

((λi + li)∇z∇xl
q
i (x, z)) +∇xl

q(x, z)
T∇zl

q(x, z)),

C3 = −(
q∑

i=1

((λi+ li)∇2
xl

q
i (x, z))+∇xl

q(x, z)
T∇xl

q(x, z)+
t∑

i=1

((ωi+hi)∇2
xh

t
i(x))+∇xh

t(x)
T∇xh

t(x)),

C4 = 0, C6 = 0, C5 = −∇xl
q(x, z)T , C7 = −∇xh

t(x)T ,

D1 = ∇rg
p(r, z)T , D2 = ∇zg

p(r, z)T ,D3 = 0 D4 = Sp = −

 Op×p Op×(2K−p)

O(2K−p)×p I(2K−p)×(2K−p)

,120

D5 = 0, D6 = 0,D7 = 0,

E1 = 0, E2 = ∇zl
q(x, z)T , E3 = ∇xl

q(x, z)T , E4 = 0, E5 = Sq = −

 Oq×q Oq×(K−q)

O(K−q)×q I(K−q)×(K−q),

,

E6 = 0, E7 = 0,

F1 = 0, F2 = ∇zw
s(z)T , F3 = 0, F4 = 0, F5 = 0, F6 = Ss = −

 Os×s Os×(4K−s)

O(4K−s)×s I(4K−s)×(4K−s),

,

F7 = 0,125

G1 = 0, G2 = 0, G3 = ∇xh
t(x)T , G4 = 0, G5 = 0, G6 = 0, G7 = St = −

 Ot×t Ot×(K+1−t)

O(K+1−t)×t I(K+1−t)×(K+1−t),

.

We rewrite the jacobian matrix ∇Φ as follows, ∇Φ(z) =



A1 BT
1 0 A4 0 0 0

B1 B2 B3 B4 B5 B6 0

0 BT
3 C3 0 C5 0 C7

−A4 −B4 0 Sp 0 0 0

0 −B5 −C5 0 Sq 0 0

0 −B6 0 0 0 Ss 0

0 0 −C7 0 0 0 St


,
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We can represent ∇Φ as ∇Φ(z) =

 A B

−BT C

 , where A =


A1 BT

1 0

B1 B2 B3

0 BT
3 C3

 , B =


A4 0 0 0

B4 B5 B6 0

0 C5 0 C7

 ,

and C =


Sp 0 0 0

0 Sq 0 0

0 0 Ss 0

0 0 0 St

 ,

Since w and h are convex and twice differentiable, there follows that ∇2
zw

s
i (z) and ∇2

xh
t
i(x) are posi-130

tive semidefinite. Furthermore, g and l are biconvex and twice differentiable, then we have ∇2
zg

p
i (r, z),

∇2
zl

q
i (x, z) ∇2

xl
q
i (x, z) are positive semidefinite (Gorski Jochen & Kathrin, 2007). It is easily shown

that ∇rg
p(r, z)

T∇zg
p(r, z), ∇zl

q(x, z)
T∇zl

q(x, z) and ∇xl
q(x, z)

T∇xl
q(x, z) are positive semidefinite.

We conclude that B2 and C3 are negative semidefinite and hence

B2 B3

BT
3 C3

 is negative semidefinite

(Foias & Frazho, 1990). Following the same steps, we show that A1 is negative semidefinite, and135

we conclude that A is negative semidefinite. We easily verify that C is negative semidefinite. We

conclude that ∇Φ is negative semidefinite.

Theorem 6. The neural network (34)-(40) is stable and converges to y∗ = (r∗, z∗, x∗, µ∗, λ∗, γ∗, ω∗)

where (r∗, z∗, x∗) is a KKT point of (27).

Before giving the proof of Theorem 6., we need to introduce the relationship between the mono-140

tocity of mapping and the semidefiniteness of its jacobian matrix.

Definition 2. Tyrrell et al. (1998) A mapping F : Rn −→ Rn is said to be monotonic if

(x− y)T (F (x)− F (y)) ≥ 0, ∀x, y ∈ Rn

Lemma 7. Tyrrell et al. (1998) A differentiable mapping F : Rn −→ Rn is monotonic, if and only if

the jacobian matrix ∇F (x), ∀x ∈ Rn, is positive semidefinite.145

Proof. of Theorem 6.

Let y∗ = (r∗, z∗, x∗, µ∗, λ∗, γ∗, ω∗) an equilibrium point of (34)-(40) and consider the Lyapunov func-

tion defined by V1(y) = ||Φ(y)||2+ 1
2 ||y − y∗||2. We have that dV1(y)

dt ≤ 0. In fact, dV1(y)
dt = (dΦdt )

TΦ +

ΦT dΦ
dt +(y−y∗)T dy

dt . Or since dΦ
dt = ∇Φ(y)Φ(y), then dV1(y)

dt = ΦT (∇Φ(y)T+∇Φ(y))Φ+(y−y∗)TΦ(y).

We use Theorem 5 and Lemma 7 to conclude.150

There follows that the neural network (34)-(40) is stable in the sense of Lyapunov.

Notice that V1(y) ≥ 1
2 ∥y − y∗∥2, consequently there exists a convergent subsequence (y(tk)k≥0) such

that limk−→∞y(tk) = ỹ and dV1(ỹ)
dt = 0.

Starting from a certain y0, we have by LaSalle’s invariance principle that the neural network converges

to the largest invariant set contained in M which is defined by M = {y(t)|dV1(y)
dt = 0}.155

Observe that dy
dt = 0 ⇔ dV1(y)

dt = 0, we have then that ỹ is an equilibrium point of (34)-(40).

Let show now that the neural network converges to ỹ. For this, we consider the following Lyapunov

function V2(y) = ∥Φ(y)∥2 + 1
2 ∥y − ỹ∥2.
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We have that V2 is continuously differentiable, V2(ỹ) = 0 and limk−→∞y(tk) = ỹ, then limt−→∞V2(y(t)) =

V2(ỹ) = 0.160

Additionally, since 1
2 ∥y − ỹ∥2 ≤ V2(y) then limt−→∞ ∥y − ỹ∥ = 0 and limt−→∞y(t) = ỹ. There fol-

lows that the neural network converges to an equilibrium point ỹ = (r̃, z̃, x̃, µ̃, λ̃, γ̃, ω̃) where (r̃, z̃, x̃)

is a KKT point of (27).

5. Numerical experiments

In order to test the performances of our proposed neural network, we study a first problem of165

minimizing the transportation cost. In a second subsection, we study a generalized shape optimization

problem to analyze the behavior of the neural network for different sizes of problems. All the numerical

experiments are done using Python. To compute the partial derivatives and the jacobians, we use the

package autograd. To generate the random instances, we use the package numpy.random. The ODEs

of the recurrent dynamical neural networks are solved using the function solve_ivp of scipy.integrate170

library. We run our algorithms on Intel(R) Core(TM) i7-10610U CPU @ 1.80GHz.

5.1. Minimizing transport cost problem

In order to shift V m3 grains from a warehouse to a factory, we can use an open rectangular box

of length x1 meters, of width x2 meters, and of height x3 meters Figure 3. The bottom costs c1, each

side costs c2 and each end costs c3. Each round trip of the box costs c4. We aim to find the minimum175

cost of transporting V m3 of grain.

We use a transporter to carry the box into the truck. The floor area of the box x1x2 must be less then

βfloorAfloor, where βfloor is the maximum occupancy rate and Afloor is the floor area and bigger then

αfloorAfloor to avoid wasting in capacity. The same thing applies for the wall area 2x1x3 + 2x2x3

that must be less than βwallAwall and larger then αwallAwall. We assume that the floor and the wall180

areas of the transporter are random.

Figure 2: The shape of the box Rao (2009)
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We reformulate then our minimization problem as

min x∈R3
++

c1x1x2 + 2c2x1x3 + 2c3x2x3 + c4
V

x1x2x3
,

s.t. P(αwallAwall ≤ 2x1x3 + 2x2x3 ≤ βwallAwall, (41)

αfloorAfloor ≤ x1x2 ≤ βfloorAfloor) ≥ 1− ϵ.

To solve problem (41) using our proposed neural network, we set αwall = αfloor = 50%, βwall =

βfloor = 95%, c1 = 80, c2 = 20, c3 = 30, c4 = 1, V = 80m3, 1
Awall

∼ N (1.0/6.0, 0.01) and
1

Afloor
∼ N (3.0, 0.01).185

The neural network converges to a minimum of 260.81 at x1 = 0.68m, x2 = 0.46m and x3 = 2.01m.

We follow the convergence of x1, x2 and x3 in Figure 4.

Figure 3: The convergence of the neural network of problem (33)

5.2. Stochastic shape optimization problem

In order to evaluate the performances of the proposed dynamical network, we introduce the

following shape optimization problem taken from Lisser et al. (2020). We remind that Awallj and190

Afloor are random and defined as in the previous subsection. The generalized problem is defined as

follows.

min x∈RM
++

m∏
i=1

x−1
i ,

s.t. P(αwall ≤
m−1∑
j=1

(
m− 1

Awallj

x1

m∏
i=2,i̸=j

xi) ≤ βwall, (42)

αfloor ≤ 1

Afloor

m∏
j=2

xj ≤ βfloor) ≥ 1− ϵ.

For comparison, we additionally solve the problem with individual constraints.

min x∈RM
++

m∏
i=1

x−1
i ,

s.t. P

αwall ≤
m−1∑
j=1

(
m− 1

Awallj

x1

m∏
i=2,i̸=j

xi) ≤ βwall

 ≥ 1− ϵ, (43)

P

αfloor ≤ 1

Afloor

m∏
j=2

xj ≤ βfloor

 ≥ 1− ϵ.
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We solve problem (43) using the same neural network where the value of yk in (3)-(4) is 1− ϵ for all

k = 1, ..,K.195

For the numerical experiments, we set ϵ = 0.05, 1
Afloor

∼ N (1.0/20.0, 0.01), 1
Awallj

∼ N (1.0/60.0, 0.001),

αwall = 0.5, βwall = 1.0, αfloor = 0.5 and βfloor = 1.0.

In order to check the robustness of our approach, we generate a set of 100 scenarios of the stochastic

constraints, and we visualize the number of violated scenarios (VS) for each problem.

The numerical results are represented in Table 1. Column one gives the number of variables m.200

Columns two, three, and four give the objective value of problem (43), the number of VS, and the

corresponding CPU time, respectively. Columns five, six, and seven give the objective value of prob-

lem (42), the number of VS, and the corresponding CPU time, respectively.

m Individual constraints Joint constraints

Obj value VS CPU Time Obj value VS CPU Time

3 0.039 3 35.27 0.042 0 25.82

5 0.117 6 61.60 0.120 3 92.20

7 0.230 4 86.36 0.236 2 80.32

10 0.440 3 203.84 0.456 1 169.57

15 0.909 5 444.26 0.907 5 531.83

20 1.384 4 1111.72 1.402 2 874.75

Table 1: Results of the generalized transportation problem for different values of m

We observe that the objective values of the two problems are relatively close. Nevertheless, the prob-

lem (42) covers better the risk region. In fact, we remark that the number of violated scenarios for205

m = 5 for problem (42) is equal to 3, whereas the number of violated scenarios for problem (43) is

equal to 6 as shown in Figures 4 and 5.

Figure 4: Out of 100 scenarios, the constraints were

violated 6 times

.

Figure 5: Out of 100 scenarios, the constraints were

violated 3 times

.

Finally, we test the impact of the confidence level 1 − ϵ. We solve then problems (42) and (43)

for different value of ϵ and we fix m = 5. The obtained results are recapitulated in Table 2. We

observe that as the value of ϵ increases, we obtain better minimal solutions. Although, the number of210
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VS increases. In fact, a higher value of means a larger risk area and a less restrictive minimization

problem.

ϵ Individual constraints Joint constraints

Obj value VS CPU Time Obj value VS CPU Time

0.1 0.115 8 39.34 0.121 1 66.67

0.15 0.113 7 39.44 0.115 5 38.02

0.2 0.112 28 74.80 0.114 15 44.32

0.3 0.109 31 49.87 0.111 24 49.84

0.4 0.107 48 44.21 0.109 39 52.20

Table 2: Results of the generalized transportation problem for different values of ϵ

To the best of our knowledge, the only work dealing with rectangular programs with joint prob-

abilistic constraints is Lisser et al. (2020). They propose new convex approximations based on the215

variable transformation and piecewise linear approximation methods to come up with lower and up-

per bounds for the optimal solutions. Since in the worst case, our neural network converges to a

partial optimum of the minimization problem, we converge then at worst to an upper bound of the

optimal solution. The advantage of our approach is that we don’t use any convex approximations

to approximate the optimal solution. Although, the neurodynamic approach takes more time to220

solve the stochastic rectangular programs as the size of the problem increases compared to the con-

vex approximations. Therefore, we must note that our approach doesn’t replace the existed convex

approximations but gives some promising results and opens the way for a new vision of the joint

probabilistic problems.

6. Conclusion225

This paper studied a particular case of rectangular problems with joint probabilistic constraints.

Using a log variable transformation, we transform the probabilistic model into a deterministic one.

We introduce a dynamical neural network to solve our program based on the partial KKT system of

the obtained deterministic biconvex problem. We show the neural network’s stability and convergence

to a partial KKT point of the initial problem. To show the performance of the approach, we study a230

minimum-cost transportation problem and a generalized shape optimization problem. Our numerical

experiments show that our dynamical neural network-based joint probabilistic model is more robust

than the individual probabilistic model counterpart.
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