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Abstract 7 

LiDAR is a promising tool for fast and accurate measurements of trees. There are several 8 

approaches to estimate aboveground woody biomass using LiDAR point clouds. One of the most 9 

widely used method consists in fitting geometric primitives (e.g. cylinders) to the point cloud, 10 

thereby reconstructing both the geometry and topology of the tree. However, current algorithms 11 

are not suited for accurate estimation of the biomass of finer branches, because of the unreliable 12 

point dispersions from the movements induced by wind, occlusion in the upper canopy, or the 13 

relatively large laser footprint compared to the structure diameter. 14 

We propose a new method that couples point cloud-based reconstructions and structural 15 

models to estimate accurately the aboveground woody biomass of trees, including finer 16 

branches. The model was trained using branch samples from the trees, and accurately predicted 17 

the biomass with 1.6% nRMSE at the segment scale from a k-fold cross-validation. It also gave 18 

satisfactory results when up-scaled to the branch level with a significantly lower error (13% 19 

nRMSE) and bias (-5%) compared to fitting cylinders to the point cloud (nRMSE: 92%), or using 20 

the pipe model theory (nRMSE: 31%). 21 

The model was then applied to the whole-tree scale, and showed that the sampled trees had 22 

more than 1.7km of structures in average, and that 96% of that length was coming from the 23 

twigs (i.e. <5 cm diameter). Our results showed that neglecting twigs lead to a significant 24 

underestimation of tree aboveground woody biomass (-21%) in our study case. 25 

The structural model approach is promising for unbiased large-scale estimations, and could be 26 

used as a new way for accurate estimation of the standing biomass without the need for tree 27 

cutting. 28 

Keywords: tree; walnut; agroforestry; laser; architecture; allometry; topology; Multi-Scale Tree 29 

Graph 30 
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1. Introduction 32 

The three-dimensional reconstruction of plants with high accuracy is crucial for many fields 33 

(Calders et al., 2015). For example, it is used to precisely estimate the carbon stock of large 34 

populations of trees in forests and agroforestry systems, a key information to better understand 35 

the functioning of the terrestrial carbon cycle. It is also frequently used to estimate the 36 

aboveground woody biomass for logging, or to parameterize functional-structural plant models 37 

to simulate radiation interception, fluxes of carbon, water and nutrients, biomass allocation, or 38 

even assessing and optimizing innovative planting designs (Perez et al., 2018).  39 

LiDAR is a promising tool for fast and precise acquisition of data at large scale (Dassot et al., 40 

2011; Calders et al., 2020). There are several algorithms for the reconstruction of tree topology 41 

and geometry from LiDAR point clouds (Thies et al., 2004; Calders et al., 2020), and one of the 42 

most successful attempt to date is by generating Quantitative Structural Models (QSM) using e.g. 43 

TreeQSM (Raumonen et al., 2013) to adjust cylinders to the point cloud. However, this method 44 

tends to overestimate the volumes of the branches towards the top of the canopy (Wilkes et al., 45 

2017) and the smaller branches (Demol et al., 2022). This is mainly due to occlusion, wind effect, 46 

co-registration errors and laser footprint that becomes large compared to the diameter of 47 

branches smaller than 2 cm (Abegg et al., 2021). Some attempts have been made to correct for 48 

the beam divergence issue (Wilkes et al., 2021), but correcting for wind effect, occlusion or 49 

under-sampling is more difficult. 50 

New approaches are emerging to reduce such errors by coupling LiDAR data with structural 51 

models. For example Hu et al. (2021) report that TreeQSM made inaccurate individual branch 52 

extraction, and used four consecutive empirical models instead to estimate the positions of the 53 

whorl along the trunk, the number of branches in the whorls, the branch basal area and finally 54 

their biomass. Unfortunately, this approach needs a consequent database to parameterize each 55 

model, and with the assumption that the reconstruction of the branches is incorrect, the method 56 
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uses only a small portion of the rich LiDAR data (i.e. points of the main axes), neglecting valuable 57 

information such as actual number of axis, their lengths and the tree topology. 58 

We agree that coupling LiDAR data, 3D reconstruction software and structural models is 59 

promising and can reduce the sensitivity to occlusion, co-registration errors and laser footprint. 60 

However, we argue that this method can be further improved by exploiting the full extent of the 61 

information from the LiDAR point clouds, by extracting more features from the tree such as 62 

lengths, topology and spatial arrangements of all the structures, including small branches. 63 

In this study, we present a new approach for the estimation of the aboveground woody biomass 64 

with LiDAR. The approach uses 1/ the Plantscan3d software (see 2.3.1) to finely reconstruct the 65 

tree topology and geometry; 2/ a statistical model based on tree structural features (i.e. 66 

allometric relationships) to estimate the cross-sectional area of the structures; and 3/ the 67 

volumes of the structures and the wood density for the estimation of the aboveground woody 68 

biomass. 69 

The structural model is then applied to the whole trees to compute general features and visually 70 

assess its performance when upscaling. 71 

2. Material and methods 72 

2.1. Experimental site 73 

The experimental site is located in Roumassouze in the South of France (44°03'29.6 "N 4°06'43.5 74 

"E). It is an agroforestry system based on hybrid walnut trees (Juglans regia × J. nigra) 75 

associated with a diversified and organic vegetable production. This experiment was conducted 76 

on a plot of three hectares planted in 1996 with a tree spacing of 10 m x 10 m (i.e. 100 trees ha-77 

1). The trees were thinned at 90 trees ha-1 in 2011, and lightly pruned in 2015 by removing the 78 

lower branches (c.a. 1.9 kg dry mass tree-1). The trees were free growing since then. 79 

  80 
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2.2. Measurements 81 

2.2.1. LiDAR acquisition 82 

Measurements were conducted on three walnut trees from the experimental site. Two branches 83 

per tree were identified, one close to the ground and the other upper in the tree canopy. 84 

Reflective tape was placed at the branch basis for identification in the point cloud and for further 85 

measurements. 86 

The three trees were scanned prior to destructive sampling and without leaves on March 2021 87 

with a Riegl VZ-400 LiDAR scanner (RIEGL Laser Measurement Systems GmbH). Twenty 88 

positions were scanned both in upright and tilted positions. The scans were then co-registered 89 

with RiScan Pro 2.11.3 using the reflective targets positioned in the field. 90 

2.2.2. Destructive method 91 

The six branches identified by reflective tape were cut at their basis. Measurements of topology, 92 

wood density, woody biomass and dimensions were performed. The branches were 5.5 m long 93 

in average, with a total of c.a. 390 m of segments measured by hand.  94 

The topology was encoded for each branch using the Multi-scale Tree Graph (MTG) format 95 

(Godin and Caraglio, 1998), and described using three complementary scales: the branch, the 96 

axis and the segments. The axis (A) were defined as the succession of segments produced by the 97 

apical meristem, and the segments (S) as the wood portion between two ramifications (Figure 98 

1).  99 

The branching order of each axis were determined considering the first (i.e. principal) axis as an 100 

axis of order one by convention. Then the branching order recursively increased for each 101 

branching point. A total of 5287 topological data point were collected in the six branches. 102 

The fresh and dry density of the branches were estimated from the average value of ten sections 103 

evenly sampled along the principal axis (A1) for each branch. Fresh biomass was measured for 104 

the whole branch and for each second order axis (A2) including the structures of lower order. 105 
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The biomass of the first order axis (A1) was then calculated as the total branch biomass minus 106 

the cumulated biomass of the second order axis, unless there are missing measurements for A2, 107 

in which case it was not used for comparison (i.e. branches 13-h and 13-l). 108 

Radius was measured at the mid-point of each segment with two perpendicular orientations 109 

using digital calipers. Segment length was also recorded with a measuring tape. The volume of 110 

each segment was then computed using the radius and length considering segments as cylinders. 111 

The biomass of each segment was estimated using the volume and average wood density. This 112 

method was found sufficient when comparing the computed biomass of the axis with the actual 113 

measurement with a scale (see Figure A 1).  114 

All measurements were encoded into the MTG as attributes. 115 

 116 

Figure 1: Schematic representation of the topological encoding of a branch at three scales: the branch, the 117 
axis, and the segment. The axes are defined as the succession of segments produced by the apical meristem, 118 
and the segments as the wood portion between two ramifications, including the portion of the ramification at 119 
the apex. Axes are numbered by branching order, segments by acropetal index on the axis. 120 

2.3. Reconstruction 121 

2.3.1. Plantscan3D 122 

The plantscan3D software (https://github.com/openalea/plantscan3d) was used for the 123 

reconstruction of the topology, length and diameter of the branches and the whole-trees from 124 

https://github.com/openalea/plantscan3d
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the LiDAR point clouds (Figure 2). The topology was reconstructed using the skeletonization 125 

algorithm from Xu et al. (2007). This algorithm first builds a Riemannian graph by connecting 126 

the k closest neighbors points. The graph is then segmented into clusters of points using the 127 

distance from a root point, and the center of each cluster is finally used as nodes for the tree 128 

skeleton (Boudon et al., 2014). Light manual corrections were performed to ease the comparison 129 

with the destructive method, for example by correcting the branching type between nodes (i.e. 130 

branch or follow), or the position of the base of a branch when two ramifications are branching 131 

close to each other. The radius of each segment was estimated using the average point distance 132 

algorithm that fits a cylinder to the neighbor points. 133 

The resulting topology was exported as an MTG file, and further processed with the 134 

MultiScaleTreeGraph.jl package (Vezy, 2022). 135 

 136 
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Figure 2. Fully automated reconstruction of the topology and geometry of the six branches using Plantscan3d. 137 
The branch is named after the tree index and the position in the tree: high (h) or low (l). 138 

2.3.2. Pipe model theory (PMT) 139 

The pipe model derives from a simple and intuitive theory that states that each leaf in a plant is 140 

connected to the stem base via a pipe with a constant cross-sectional area (Shinozaki et al., 141 

1964; Valentine, 1985). One of the property of the theory is that “the conductive surface area of a 142 

stem at a given height is equal to the cumulative basal area of its daughter axes above that height” 143 

(Lehnebach et al., 2018). In this paper, we used a simplified formulation earlier defined by 144 

Leonardo da Vinci that replaces the conductive cross-sectional area by the total cross-sectional 145 

area (CSA). This theory is over-simplified but simpler to use with LiDAR data where only the CSA 146 

is available. In practice, we used this method to compute the diameters of all segments in a 147 

branch or tree starting from the basal segment, and iteratively partitioning the CSA to its 148 

children segments, weighted by the total number of terminal segments in the child subtree. This 149 

model was applied on the MTG of the branches to estimate the diameters of all segments using 150 

the radius of the first segment estimated by plantscan3D as a starting point. 151 

2.3.3. Structural model 152 

The new method presented in this paper uses Plantscan3d to reconstruct the skeleton of a 153 

branch or tree, and a model based on structural traits to compute the CSA of the structures. To 154 

do so, a statistical linear model is defined and fitted using manual measurements at segment and 155 

axis scale only using features we can also derive from LiDAR point clouds such as: 156 

- CSA estimated using the PMT 157 

- Total length of the subtree 158 

- Branching order 159 

- Relative acropetal position of the segment (i.e. from the tip) on its axis  160 

- Number of segments in the subtree 161 

- Number of terminal segments 162 
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- Number of segments on the axis 163 

- Length of the axis 164 

The first step for building such model is to identify which candidate variable explains the 165 

variability in the cross-sectional area of the segments. The p-value of each variable selected for 166 

the model was controlled for its significance, and all variables with a p-value lower than 0.05 167 

was discarded from the model.  168 

The second step consisted in the evaluation of the robustness of the model using a k-fold cross-169 

validation (k = 10). The model is trained and evaluated k-times on sub-samples of the data, 170 

which helps computing the out-of-sample nRMSE. 171 

In the third step, we trained the model using the whole dataset to compute its parameters for 172 

use in the reconstructions, and evaluate its accuracy with the in-sample nRMSE. 173 

Finally, the last step was to apply the model on the MTG obtained from the Plantscan3d 174 

reconstruction to predict the cross-sectional area of any segment in the tree or branch. 175 

2.4. Merging manual and LiDAR-based reconstructions 176 

Matching the results of the manual measurements and the model reconstructions is not trivial 177 

because a little difference in e.g. the definition of the main axis or in the position of the base of a 178 

branch can lead to very different MTG outputs. Furthermore, the manual measurements were 179 

performed months after the LiDAR acquisition, which eventually lead to missing broken 180 

structures in the manual measurements. 181 

To alleviate these issues, the MTG of both methods were compared manually, and all axes that 182 

could be recognized in both were identified with a unique identifier. In this paper, all 183 

comparisons between manual and LiDAR-derived measurements are done using these axes. 184 

2.5. Data and code availability 185 
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The code developed in this study for analysis, modelling, 3D reconstruction, statistics and figures 186 

is available on a GitHub repository (https://github.com/VEZY/Biomass_evaluation_LiDAR) and 187 

fully archived on Zenodo (Vezy et al., 2022). 188 

3. Results 189 

3.1. Axis length 190 

The axes lengths estimated by Plantscan3d using the LiDAR point clouds were compared to the 191 

destructive measurements. The comparison is performed using the total length of all segments 192 

forming an axis. As expected, the lengths estimated by Plantscan3d were close to the manual 193 

measurements, with only 1% nRMSE and a bias close to zero (0.2%), which indicates that the 194 

error is not cumulative (Figure 3).  195 

The estimation is correct for all the range of axis lengths whatever the number of segments, and 196 

the error is conservative between trees, which shows the genericity of the method. 197 

 198 

https://github.com/VEZY/Biomass_evaluation_LiDAR
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Figure 3. Measured (x-axis) and predicted (y-axis) length at axis scale. Normalized Root Mean Squared Error 199 
(nRMSE): 1%; Modelling Efficiency (EF): 0.99; Normalized Bias: 0.2%. The branch is named after the tree 200 
index and the position in the tree: high (h) or low (l). 201 

 202 

3.2. Model training and evaluation 203 

The final model had six variables, and obtained an nRMSE of 1.58% ±0.4 on the cross-validation 204 

evaluation, and 1.4% when trained on the full dataset. Two variables did not explain 205 

significantly the variability in the cross-sectional area and were excluded from the model: the 206 

number of segments on the axis and the length of the axis. 207 

Table 1. Linear model fitting summary (i.e. structural model). Coef.: estimate of the coefficients; Std. Error: 208 
standard error; t: t-value; Pr(>|t|): p-value; Lower/Upper 95 %: lower and upper values of the confidence 209 
interval; CSA: cross-sectional area; PMT: pipe model theory. 210 

Variable Coef. Std. Error t Pr(>|t|) Lower 95% Upper 95% 

CSA from the PMT 0.52 0.015 34.34 <1e-99 0.49 0.55 

Path length of the subtree 0.015 0.0007 21.35 <1e-94 0.0139 0.0167 

Branching order 6.38 1.28 5.00 <1e-06 3.88 8.89 

Segment index on axis 10.94 0.41 26.65 <1e-99 10.13 11.74 

N of terminal segments -10.14 2.13 -4.77 <1e-05 -14.31 -5.97 

N segments on the subtree 4.47 1.05 4.2 <1e-04 2.40 6.54 

As expected, the CSA computed using the PMT was the variable with the highest importance (t-211 

value= 34, Table 1), followed by the index of the segment on the axis (t-value= 27), and the total 212 

length of the subtree (t-value= 21). Although significant, the three other variables had a lower 213 

importance (|t-value| ≤ 5) in the model. 214 
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 215 

Figure 4. Measured (x-axis) and predicted (y-axis) cross-sectional area (CSA) at segment scale by the 216 
structural model (SM, this study), or the pipe model theory (PMT). The branch is named after the tree index 217 
and the position in the tree: high (h) or low (l). 218 

The structural model presented the lowest error for the prediction of the segments’ CSA 219 

compared to the standard PMT, especially for the lower branch of tree 11 (11-l) that was 220 

systematically overestimated by the PMT (Figure 4). The structural model predicted the 221 

segments’ CSA with higher accuracy than the PMT for all computed statistics; with an nRMSE 222 

half as high and a bias five times lower (Table 2). 223 

Table 2. Prediction accuracy of the models related to Figure 4 (n = 3461 each). RMSE: Root Mean Squared 224 
Error, nRMSE: normalized RMSE, EF: Modelling Efficiency, nBias: normalized bias. Best statistics are 225 
highlighted in bold. PMT: Pipe Model Theory, SM: Structural Model (this study). 226 

Model RMSE nRMSE EF Bias nBias 

PMT 103.3 0.02 0.95 17.92 0.0035 

SM 57.7 0.01 0.98 2.89 0.0007 
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3.3. Model evaluation with destructive measurements 227 

The model was evaluated using destructive measurements of the branches’ woody biomass with 228 

a scale. The average point distance algorithm from Plantscan3d lead to a poor estimation of 229 

branch biomass with a systematic overestimation, an nRMSE of 92% (+3.38 kg) and an nBias of 230 

82% (2.99 kg, Table 3). The PMT improved the estimation with only 31% nRMSE but 231 

systematically underestimated the biomass by 27%, which represented c.a. -1 kg in average. 232 

 233 

Figure 5. Measured (x-axis) and predicted (y-axis) fresh wood biomass at branch scale. Branch scale is 234 
defined as the sum of the biomass of all manually identified axes to control for the error induced by missing 235 
structures between LiDAR scans and destructive measurements. P3D: Plantscan3d reconstruction using the 236 
average point distance algorithm; PMT: Pipe Model Theory; SM: Structural Model (this study). The branch is 237 
named after the tree index and the position in the tree: high (h) or low (l). 238 

The structural model however was the only model to present a modelling efficiency (EF) close to 239 

one, with a value of 0.87. It also presented a lower nRMSE of 13% and a bias closer to zero (-240 

5%). The slight bias towards underestimation came from one branch in particular (-23%), the 241 
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highest branch from tree 13 (13-h), that presented a high number of broken axes (35). The error 242 

was relatively higher for the finer structures though, with an error of 20% for structures below 243 

10 cm diameter. 244 

Table 3. Statistics about the model prediction of the fresh biomass at branch scale (n = 6, see Figure 5). RMSE: 245 
Root Mean Squared Error, nRMSE: normalized RMSE, EF: Modelling Efficiency, nBias: normalized bias. Best 246 
statistics are highlighted in bold. P3D: Plantscan3d; PMT: Pipe Model Theory; SM: Structural Model (this 247 
study). 248 

Model RMSE nRMSE EF Bias nBias 

P3D 3.38 0.92 -5.95 2.99 0.82 

PMT 1.14 0.31 0.21 -0.99 -0.27 

SM 0.47 0.13 0.87 -0.19 -0.05 

3.4. Model application 249 

The structural model was applied at the whole tree level over the three walnut trees. The 250 

distribution of the aboveground woody biomass was similar between trees according to the 251 

three supervised classes of segment diameter. The trunk represented in average 50% of the 252 

biomass, the main branches 29%, and the twigs 21% (Figure 6). The total length of the 253 

structures in the tree represented in average 1735 m, with 96% of that length coming from the 254 

twigs. 255 

 256 
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Figure 6. Relative distribution of the aboveground woody biomass estimated by the structural model for each 257 
segment diameter class in the three walnut trees. Twigs: [0, 5); Main branches: [5, 15); Trunk: [15, 50) cm. 258 

Overall, the coupling of LiDAR point clouds, Plantscan3d skeletonization and the structural 259 

model lead to precise 3D reconstructions of the targeted branches and the whole trees (Figure 260 

7). At the branch level, even the smallest structures were satisfactorily reconstructed by the 261 

skeletonization, and connection paths were correct despite the complexity of some structures. At 262 

tree scale, the trunk base reconstruction was not completely visually realistic because it only 263 

used one segment, but its estimated volume was probably close to reality. The estimated 264 

topology of the structures in the tree was also close to observations at this scale, which is 265 

particularly surprising considering there were no parameter except the number of nodes, and no 266 

manual corrections applied after the fully automatic reconstruction of the branch and tree. 267 

 268 
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Figure 7. Co-registered LiDAR point-cloud (left panels) and 3D reconstruction using the structural model 269 
(right panels) of a sampled branch (top panels, 11-h) and a whole tree (bottom panels, 12). Note that the 3D 270 
reconstruction was done at the segment level, which implies that the trunk base has only one segment. 271 

4. Discussion 272 

Our first assumption was that we could improve on the method developed by Hu et al. (2021) by 273 

using the full extent of the LiDAR data for the estimation of the aerial woody biomass. It was 274 

based on the hypothesis that Plantscan3d was able to provide a correct estimation of the 275 

topology and length of all structures in the tree, including finer branches. Our results validated 276 

this assumption, showing that axis length estimations were close to the destructive 277 

measurements across the whole range of sizes with almost zero bias (0.2%), which is important 278 

when scaling-up to the tree or plot scale. 279 

The main objective of this study was to design, train and evaluate a new approach for a more 280 

precise estimation of the aboveground woody biomass. As expected, our results showed that 281 

using the traditional approach of fitting the LiDAR point cloud to estimate the diameter of the 282 

structures gave unsatisfactory predictions of the biomass with a systematic overestimation 283 

(nRMSE: 92%, Figure 5, Table 3). This error can be explained by the noise in the point cloud 284 

induced by the significant footprint of the laser or the movements of the branches from wind 285 

and due to occlusion that lead to an insufficient sampling of some structures. 286 

The PMT, another standard method that only rely on the topology and diameter estimated at the 287 

base, was also tested and gave acceptable results with an nRMSE of 31% and a bias of -27%. The 288 

results are particularly impressive giving that no parameters were used for this method except 289 

for the diameter at the base and the number of nodes from base to main axis tip. We propose 290 

that this model should be used in a first approximation of the biomass when no further data is 291 

available. 292 

The new method presented in this paper showed that including structural-based knowledge to 293 

the modelling process significantly improved the estimation of the diameters. The structural 294 
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model predicted segments diameters with only 1% nRMSE, and gave satisfactory results when 295 

applied to the branch scale for the prediction of the woody biomass, with a significantly lower 296 

error (13% nRMSE) and bias (-5%) compared to the other methods. Furthermore, the error was 297 

primarily driven by one branch (13-h) and was already observed on the prediction of the cross 298 

section (Figure 4) of one of the widest axis for both the PMT and the structural model. Knowing 299 

the process of estimation of both models, this indicates that the error most probably came from 300 

the high number of broken structures in this branch, which hinders a proper estimation due to a 301 

loss of information about the variables used in the model, and most notably the number of 302 

terminal segments and the total length of the subtree. 303 

For comparison, Calders et al. (2015) reported whole-tree nRMSE of 16.1% and 9.68% nBias 304 

using TreeQSM. Kunz et al. (2017) measured whole tree volumes and used TreeQSM for the 305 

reconstruction with average nRMSE of 22.7% and 6% nBias, and Burt et al. (2021) showed only 306 

2.8% relative error using TreeQSM on whole trees. It is important to note that those reported 307 

errors would most probably be higher if reported only for the twigs as they are in this study, 308 

because most of the error comes from structures with lower diameters, which represented 21% 309 

of the total biomass in this study. Demol et al. (2022) showed for example that 80-83% of the 310 

bias from their whole-tree reconstruction originated from the structures with a diameter lower 311 

than five centimeters, and the structures below or equal 10 cm diameter had errors of c.a. 139%, 312 

when we report errors of only 20% with our method. 313 

The structural model allowed for a better estimation of the branches biomass with very little 314 

bias, which is required for computations at the tree or plot level. However, it requires data for 315 

training, unlike the simple PMT or the biased mean point distance algorithm. In our study, two 316 

people were able to measure one branch per day, including cutting, measuring biomass of the 317 

whole branch and of the secondary axis, full topology, and segments diameter and length. The 318 

model is trained once, and can be applied without further parameterization. This is particularly 319 
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true when considering that Plantscan3d does not require any complex parameters to 320 

reconstruct tree topology and spatial arrangement. This allows for fast estimations of the 321 

aboveground woody biomass at larger scale, or repeated estimations for the monitoring of 322 

growth and development. 323 

One of the most interesting result of this study is how the structural model is generic enough to 324 

predict the cross-sectional area of all structures in the tree, although trained only over two 325 

branches per tree. The application of the structural model to the whole tree showed that 326 

structures with a diameter lower than 5 cm represented 22% of the tree aerial woody biomass. 327 

These results indicate that a substantial portion of the biomass can be lost if not properly used 328 

or handled. 329 

The 3D reconstruction of the trunk base at tree-level is slightly unrealistic because only one 330 

segment was used. This issue can be easily corrected using the mean point distance algorithm 331 

from Plantscan3d for the structures with largest diameters instead. These bigger structures are 332 

not prone to the issues presented in this paper, so algorithms using the LiDAR point cloud to 333 

compute the diameters should be sufficient. The quality of the whole-tree reconstruction shows 334 

that the skeletonization algorithm from Plantscan3d is highly suitable for this task, especially 335 

considering that it only uses one parameter (i.e. the total number of nodes between the base and 336 

the tip of the main axis) on which it has little sensitivity. For comparison, TreeQSM uses more 337 

than twenty parameters, and its reconstructions were shown to be highly sensitive to the 338 

parameter values (Demol et al., 2022). 339 

The new method presented in this study is promising but need further applications on other 340 

conditions. Further work may investigate the minimal and optimal set of data needed to define 341 

and parameterize the architectural model giving an acceptable prediction error. The method 342 

was also found sensitive to a high number of broken structures, which means that the estimation 343 

of the aerial woody biomass of highly pruned trees must be done with caution, unless trained 344 
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specifically on such data. In any case, further improvements to the method should include a way 345 

of accounting for pruned structures, by e.g. using the LiDAR-derived diameters as a first 346 

approximation to identify were the structure deviate from the PMT, and mark those nodes as 347 

potential pruning sites. 348 

5. Conclusion 349 

The Plantscan3d software was able to reconstruct the branches topology and axis lengths with 350 

high accuracy. Visual evaluations showed it also performed correctly at the whole-tree level, 351 

even for finer branches. Our results confirm that LiDAR point-clouds can be used for accurate 352 

reconstructions of trees, except for the estimation of finer branches diameters. 353 

In this study, we present a new method for the estimation of the diameters and woody biomass 354 

of trees. It outperformed the two standard approaches of adjusting cylinders to the LiDAR point-355 

cloud or using the pipe model theory. The method is designed to use most of the information 356 

extractable from the LiDAR point cloud, while controlling the effect of under-sampling (i.e. 357 

occlusions), light winds or laser footprint. The structural model was applied at the whole-tree 358 

level, and showed that 96% of the length and 21% of the biomass were located in the finer 359 

branches with a diameter lower than 5 cm. These results indicate that most of the studies that 360 

do not account for finer branches could miss a substantial part of the biomass in the trees. 361 

The structural model approach could pave the way for a better assessment of whole-tree 362 

aboveground woody biomass using LiDAR, with very low need for destructive sampling for 363 

model training and validation, while controlling errors induced by wind, low sampling and laser 364 

footprint. 365 
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Appendix A 380 

The estimation of the woody biomass from the structural model used the dimensions of the 381 

segments and an average wood density. The error coming from this estimation can be computed 382 

using only the destructive measurements. We can compare the reference fresh biomass 383 

measured using a scale with the biomass estimated from the average fresh wood density and the 384 

volume computed from the segment dimensions (i.e. diameter and length) measured by hand. 385 
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 386 

Figure A 1. Fresh biomass measured with a scale on the field (x) compared to its calculation using an average 387 
branch fresh wood density and segment volume estimated with the segment’s radius and length (y). Each 388 
point is an axis on the branch. First order axis biomass is defined as the sum of its segments biomass, 389 
excluding higher order axis, and second order axis biomass is defined as the sum of all segments it bears. 390 
RMSE: 105.81g, nRMSE: 1%, EF: 0.99. 391 

The results show that the computed axis biomass from its volume and an average wood fresh 392 

density was close to the scale measurement, with a low nRMSE of 1% and a modelling efficiency 393 

close to one.  394 
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