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Toddler-inspired learning induces hierarchical object
representations
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University Clermont-Ferrand
Clermont-Ferrand, France
arthur.aubret@uca.fr

Abstract—Humans learn to both visually recognize individual
objects and categorize them at different levels of abstraction.
Such multi-semantic representation is crucial to efficiently reason
about the world. However, it is currently unclear how such
representations could be learned with the very sparse labeling
available to human learners. To answer this question we let an
artificial agent play with objects while occasionally “hearing”
their category label. Our agent assigns similar representations
to a) similarly labelled and b) close-in-time visual inputs. We
show that our agent learns a 2-level hierarchical representation
that first aggregates different views of objects and then brings
together different objects to form categories. Interestingly, we do
not observe a trade-off between each semantic content. Our work
suggests that the temporal structure of visual experience during
object play together with occasional labeling suffice for learning
a hierarchically structured object/category representation.

Index Terms—hierarchical representation, representation
learning, embodiment

I. INTRODUCTION

Children quickly start to learn to both recognize a specific
object independently of its viewpoint/distance (object recogni-
tion) and build categories that support generalization to novel
exemplars (category recognition). On the one hand, several
works suggest that object recognition is learnt by semantically
associating views that are close in time in an unsupervised way
[Wood and Wood, 2018]. On the other hand, the functional
use that defines objects’ human-assigned categories may come
from the intertwining between their similarity based on their
global shape, associated word (label) or the later acquisition
of conceptual knowledge [Landau et al., 1998]. In practice,
infants better categorize with labels even though they only
need few labels to generalize objects to categories [LaTourrette
and Waxman, 2019].

Machine learning methods have been used to model how
toddlers learn each of these semantic representations [Zhai
et al., 2019], [Schneider et al., 2021]. Yet, it remains unan-
swered how these two semantic representations can coexist.
Here, we investigate the relation of two semantic contents
inside one learnt representation. We take inspiration from how
toddlers interact with their world and let an agent interact with
3D toy objects, with an unseen social partner who sometimes
gives the category label of the object being manipulated (“ba-
nana”). We learn the representations with a contrastive learning
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(CL) algorithm fed with image/label (cross-modal consistency)
and image/next-image (temporal consistency) pairs. In CL,
inputs that are often paired develop similar representations. We
assume the brain uses similar principles to learn an internal
representation of the world. We experimentally show that our
bio-inspired agent builds a 2-level hierarchical representation:
the first level aggregates different views from a single object;
the second levels groups objects into categories.

II. METHOD

a) Environment: In order to marginalize the impact of
colors and backgrounds on category recognition [Aubret et al.,
2022], we use the simplest environment introduced in [Aubret
et al., 2022] (cf. Figure 1c). We place an agent in an empty
environment where it can interact with more than 2,000
untextured 3D toys distributed among 105 common categories
[Stojanov et al., 2021]. The agent acts on two timescales:
1) At each timestep, the agent rotates the object in front
of it (between 0 and 360 degrees on the yaw axis) and
potentially receives the category label of this object according
to a probability p;.; 2) every 10 timesteps, it replaces its
current object by a new randomly sampled one.

b) Contrastive learning: In order to learn from the
different inputs, we combine two different loss functions. The
first one guarantees the cross-modal label-vision consistency
of the representation; the second one ensures the temporal
consistency of the representation. For both, we train a neural
network fy to minimize the SimCLR loss [Chen et al., 2020],
which is given, for each sample x; in the minibatch, by:
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where x refers to the visual inputs, IV is the size of the mini-
batch and 7 is the temperature hyper-parameter. The difference
between the two loss functions comes from the computation
of z. For temporal consistency, z; = fg(prev(z;)) is the
representation of the previous image. For cross-modal consis-
tency, z; = g.,(l;) is the representation of the one-hot label ;.
Therefore, the whole loss is L(z, fo(prev(z))) + L(z, gu(1)).
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Fig. 1. Curves show the mean +/- standard deviation over 3 random seeds.
a) and b) respectively show the test category and test object as a function
of label probability. (c) Examples of different bananas and airplanes used in
(e). Neither object recognition (bananas) nor category recognition (airplanes)
are always visually obvious. (d) V-measure score as a function of label
probability, computed using true category labels and the last clusters of a
105-clusters agglomerative clustering applied on the features output by f.
(e) Dendogram showing the hierarchy of clusters generated by a smaller
agglomerative clustering. Same color indicates the same category.

c) Training and evaluation: we use the same neural
network f as [Aubret et al., 2022]. Our label encoder g, is
a fully connected neural network with 2 hidden layers of 256
units. During training, the agent stores its interactions and
labels in a replay buffer and learns on a randomly sampled
minibatch between each interaction with the environment.
To evaluate the representation, we freeze the weights of our
trainable networks and train a linear classifier on top of the
representation using the true labels. The linear classifier is
trained and evaluated on the same objects as in training
(validation set) or different objects (test set).

III. EXPERIMENTS

Our experiments aim to assess whether we manage to learn
a representation endowed with a structure that reflects several

semantic contents, i.e., objects’ identity and their category.

We observe in Figure 1(a) that the more labels are given,
the higher the test category accuracy. More importantly, in
1(b) we see that using labels does not hurt the quality of
individual object recognition, suggesting that both the object
identity and its category can be reliably retrieved from the
representation. The V-measure score displayed in Figure 1(d)
(closer to one is better) validates that this improvement of
accuracy is associated with a representation whose structure
better reflects the labeling.

To give an intuitive illustration of these quantitative results,
we randomly selected 60 images (2 views X 5 objects X 6
categories) in the validation set and applied an agglomerative
clustering on them. The features were learnt without labels.
In Figure 1(e), we observe that the algorithm quickly clusters
different views of the same object (distance close to 0). Even
without labels, different objects are clustered slightly later
according to their category (same color, distance close to
~ 1.3). We conclude that the learnt representation has captured
the hierarchical object/category structure.

IV. CONCLUSION

We investigated the representations learnt by an agent that
interacts with objects in a toddler-inspired way. The agent
exploits temporal consistency and sparse labeling through
a SimCLR loss function. We showed that this results in a
hierarchical representation retaining object identity and class
information. Our results offer an explanation how infants may
effectively learn hierarchical object/category representations
despite receiving only sparse label information.
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