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Intelligent Omni-Surfaces (IOSs) for the MIMO
Broadcast Channel

Abdelhamed Mohamed, Nemanja Stefan Perović, Member, IEEE, Marco Di Renzo, Fellow, IEEE

Abstract—In this paper, we consider intelligent omni-surfaces
(IOSs), which are capable of simultaneously reflecting and
refracting electromagnetic waves. We focus our attention on the
multiple-input multiple-output (MIMO) broadcast channel, and
we introduce an algorithm for jointly optimizing the covari-
ance matrix at the base station, the matrix of reflection and
transmission coefficients at the IOS, and the amount of power
that is reflected and refracted from the IOS. The distinguishable
feature of this work lies in taking into account that the reflection
and transmission coefficients of an IOS are tightly coupled.
Simulation results are illustrated to show the convergence of
the proposed algorithm and the benefits of using surfaces with
simultaneous reflection and refraction capabilities.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) have emerged as
a promising approach to improve the wireless communication
channel quality and to extend the network coverage [1],
[2]. However, the vast majority of works consider surfaces
that can only reflect the incident signals, which limits the
coverage capabilities offered by RISs [3], [4]. To tackle this
problem, the recently proposed concept of intelligent omni-
surface (IOS) provides 360◦ coverage thanks to surfaces that
can simultaneously reflect and refract the incident signals [5].
The reflection and refraction capabilities of the incident elec-
tromagnetic waves are controlled through the optimization of
two interlinked sets of reflection and transmission coefficients.
In general, in other words, it is not possible to control the
reflection and transmission coefficients independently.

Recently, a few research works have analyzed the perfor-
mance of IOSs. In [6], the authors investigate the weighted
sum-rate maximization under quality of service requirements
and unit modulus constraints for the IOS elements, by utilizing
the successive convex approximation method. In [7], the
energy efficiency maximization problem is studied, and an
optimization algorithm is proposed for jointly optimizing the
transmit power and the passive beamforming at the IOS. In
[8], the weighted sum-rate of an IOS-aided multiple-input
multiple-output (MIMO) system is maximized by using the
alternating optimization method. The precoding matrices are
obtained by the Lagrange dual method, while the reflection and
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transmission coefficients are obtained by the penalty concave-
convex method. Interested readers can consult [9], [10], [11],
[12] for further information on IOSs.

In contrast to the available works, we focus our attention on
optimizing the IOS in the MIMO broadcast channel. Also, for
the first time, we explicitly take into account the dependence
between the reflection and transmission coefficients, based on
a recently implemented IOS prototype [13]. Specifically, the
main contributions of this paper are as follows:

• We utilize the duality between the broadcast channel and
the multiple access channel to maximize the achievable
sum-rate. We formulate a joint optimization problem
for the users’ covariance matrices, the reflection and
transmission coefficients, and the power ratio between
the reflected and transmitted power. We analyze the case
studies with continuous-valued and discrete-valued phase
shifts for the reflection and transmission coefficients, and
we assume that they are not independent of each other.

• Due to the non-convexity of the formulated optimization
problem, and the coupling between the optimization vari-
ables in the objective function, we propose an alternat-
ing optimization algorithm to solve the aforementioned
problem. The optimal users’ covariance matrices are
obtained by applying the dual decomposition and the
block coordinate maximization (BCM) method, while the
optimal phase shifts of the reflection and transmission
coefficients of the IOS elements are formulated in a
simple expression. In addition, the power ratio between
the reflected and refracted power is computed iteratively
by utilizing the gradient ascent method.

• Simulation results show that the proposed algorithm
converges relatively fast (i.e., within a few iterations)
to a local optima. Moreover, we quantify the impact of
discretizing the reflection and transmission coefficients
for a two-state IOS testbed platform.

The paper is organized as follows. In Section II, we present
the system model for the IOS-aided MIMO broadcast channel.
In Section III, we formulate the optimization problem to
maximize the achievable sum-rate. In Section IV, we describe
the optimization algorithm to solve the optimization problem.
In Section V, we provide simulation results that illustrate the
achievable sum-rate. Conclusions are drawn in Section VI.

Notation: Bold upper and lower case letters denote matrices
and vectors, respectively. Cm×n denotes the space of m ×
n complex matrices. HT, HH , |H| and Tr(H) represent the
transpose, Hermitian transpose, the determinant and the trace
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Fig. 1: Aerial view of the considered communication system.

of H, respectively. The rank of H is denoted by rank(H) and
λmax(H) is the largest singular value of H, while (·)∗ denotes
the complex conjugate. The identity matrix is denoted by I and
the matrix inversion operation is denoted by INV (X).

II. SYSTEM MODEL

We consider an IOS-assisted multi-user MIMO broadcast
channel, where a multi-antenna base station (BS) with Nt an-
tennas communicate with K users, and each user is equipped
with Nr antennas. The total number of users in the reflection
and transmission sides of the IOS are denoted by KR and
KT , respectively, with K = KR +KT . We assume that the
BS and the users’ antennas form a uniform linear array (ULA),
and the inter-antenna separations are st and sr, respectively.
In addition, we assume that the IOS comprises N elements
that can simultaneously reflect and refract the incident signals.
Since the users can be located either in the reflection or the
transmission sides of the IOS, a single user receives either the
signal reflected or the signal refracted from the IOS.

To serve the users located in the reflection and trans-
mission sides simultaneously, each element of the IOS ap-
plies a complex-valued reflection and transmission coeffi-
cient. The matrix of N reflection or transmission coefficients
is denoted by F(θ) = diag(θ) ∈ CN×N , where θ =

{θr,θt}, and θr =
√
ρ
[
β̃r1 , β̃

r
2 , . . . , β̃

r
N

]T
∈ CN×1 and

θt =
√

1− ρ
[
β̃t1, β̃

t
2, . . . , β̃

t
N

]T
∈ CN×1. Specifically, the

parameter ρ ∈ [0, 1] is an optimization variable that accounts
for the amount of power that the IOS directs towards the
users in the reflection side (1 − ρ is the amount of power
directed towards the transmission side). Also, β̃rn and β̃tn are
the reflection and transmission coefficients of the IOS. These
reflection and transmission coefficients are interlinked and are
optimized in pairs for each IOS element, i.e.,

{
β̃rn, β̃

t
n

}
∈{

(β̃rs1, β̃
t
s1), (β̃rs2, β̃

t
s2), . . . , (β̃rsQ, β̃

t
sQ)
}

= Ψ, where Q is the
number of (reflection, transmission) coefficient pairs.

Due to the presence of the IOS, the end-to-end channel for
the kr ∈ [1, . . .KR]-user located in the reflection side is:

Hkr = Dkr + GkrF(θr)U = Dkr + Gkr

√
ρ

× diag
(
β̃r1 , β̃

r
2 , ..., β̃

r
N

)
U = Dkr +

√
ρ

N∑
n=1

β̃rngn,krun

(1)

and the end-to-end channel for the kt ∈ [1, . . .KT ]-user
located in the transmission side is:

Hkt = Dkt + GktF(θt)U = Dkt + Gkt

√
1− ρ

× diag
(
β̃t1, β̃

t
2, ..., β̃

t
N

)
U = Dkt +

√
1− ρ

N∑
n=1

β̃tngn,ktun

(2)
In a compact form, we have:

Hk(θ) = Dk + GkF(θ)U (3)

where Dk ∈ CNr×Nt denotes the channel matrix between the
BS and the k-th user, U ∈ CN×Nt denotes the channel matrix
between the BS and the IOS, and Gk ∈ CNr×N denotes the
channel matrix between the IOS and the k-th user.

To simplify the notation, we write Hk instead of Hk(θ),
where the dependence on θ is implicit. Thus, the received
signal at the k-th user is written as:

yk = Hkxk +
∑K

j=1,j 6=k
Hkxj + nk (4)

where Hk ∈ CNr×Nt is the channel matrix for the k-th user,
xk ∈ CNt×1 is the transmitted signal intended for the k-th
user, and xj ∈ CNt×1 for j 6= k are the transmitted signals
intended for other users, which act as interference for the
detection of xk. The noise vector nk ∈ CNr×1 consists of
independent and identically distributed (i.i.d.) elements whose
distribution is CN (0, N0), where N0 is the noise variance.

III. PROBLEM FORMULATION

We are interested in maximizing the achievable sum-rate
of the considered IOS-aided wireless communication system.
To accomplish this, we exploit the fact that the achievable
rate region of a Gaussian MIMO broadcast channel can be
achieved by dirty paper coding (DPC) [14]. DPC enables us
to reduce the interference in a communication system, i.e.,
to perfectly eliminate the interference term

∑
j<k Hkxj for

the k-th user. In this regard, the ordering of the users clearly
matters. Let π be an ordering of users, i.e., a permutation of
the set {1, 2, . . . ,K}. Then, for this ordering, the achievable
rate for the k-th user can be computed as [15, Eq. (3)]:

Rπ(k) = log2

∣∣∣I + Hπ(k)

(∑
j≥k Sπ(j)

)
HH
π(k)

∣∣∣∣∣∣I + Hπ(k)

(∑
j>k Sπ(j)

)
HH
π(k)

∣∣∣ (5)

where Sk = E
{
xkx

H
k

}
� 0 is the input covariance matrix of

user k. We assume a sum-power constraint at the BS, i.e.:∑K

k=1
Tr
(
Sk
)
≤ P (6)

where P is the maximum total power at the BS. Therefore, the
achievable sum-rate optimization problem for the RIS-assisted
MIMO broadcast channel can be expressed as:



max
S,β̃

l
,ρ

K∑
k=1

log2

∣∣∣I + Hπ(k)

(∑
j≥k Sπ(j)

)
HH
π(k)

∣∣∣∣∣∣I + Hπ(k)

(∑
j>k Sπ(j)

)
HH
π(k)

∣∣∣ (7a)

s.t.
∑K

k=1
Tr
(
Sk
)
≤ P ; Sk � 0,∀k, (7b){

β̃rn, β̃
t
n

}
∈ Ψ; ∀n ∈ [1, 2, . . . , N ], (7c)

0 ≤ ρ ≤ 1 (7d)

where β̃
l

= {β̃
r
, β̃

t
} and l ∈ {r, t},.

To solve this problem, we exploit the duality between the
MIMO broadcast channel and the multiple access channel,
as recently done in [16]. Accordingly, we reformulate the
optimization problem in (7) as follows:

max
S̄,β̃

l
,ρ

f(S̄, β̃, ρ) = log2

∣∣∣I +

K∑
k=1

HH
k S̄Hk

∣∣∣
s.t.

∑K

k=1
Tr
(
S̄k
)
≤ P ; S̄k � 0, ∀k,{

β̃rn, β̃
t
n

}
∈ Ψ; ∀n ∈ [1, 2, . . . , N ],

0 ≤ ρ ≤ 1,

(8)

where HH
k represents the dual multiple access channel cor-

responding to Hk and S̄k is the dual multiple access input
covariance matrix of the k-th user. Once the input covariance
matrices (S̄k)Kk=1 in the dual multiple access channel are
found, the corresponding covariance matrices (Sk)Kk=1 in the
broadcast channel are obtained from [15, Eq. (11)], as:

Sk = B
−1/2
k FkG

H
k A

1/2
k S̄kA

1/2
k GkF

H
k B
−1/2
k (9)

where Ak = I + Hk(
∑k−1
i=1 Si)H

H
k , Bk = I +∑K

i=k+1 HH
i S̄iHi, and FkΛkG

H
k is the singular value de-

composition of B
−1/2
k HH

k A
−1/2
k .

IV. PROPOSED OPTIMIZATION METHOD

To solve the formulated problem, we propose an alter-
nating optimization method. The users’ covariance matrices
are optimized by exploiting the dual decomposition method
in [16]. The reflection and transmission coefficients of the
IOS are obtained by generalizing the method in [17], which
is applicable to reflecting surfaces, under the assumption of
continuous-valued coefficients. The corresponding discrete-
valued reflection and transmission coefficients are obtained
by projecting the obtained solutions onto the feasible set of
possible discrete values. Moreover, we present a gradient-
based method for optimizing the power ratio.

A. Covariance Matrix Optimization

For given values of the power ratio and the reflection and
transmission coefficients, the achievable sum-rate optimization
problem in (8) is simplified as follows:

max
S̄

log2

∣∣∣I +

K∑
k=1

HH
k S̄kHk

∣∣∣ (10a)

s.t. S̄ ∈ S (10b)

where S̄ , (S̄k)Kk=1 for S = {S̄ |
∑K
k=1 Tr

(
S̄k
)
≤ P ; S̄k �

0 ∀k}. As described in [16], [18], the optimization problem
in (10) is solved by using the dual decomposition Lagrangian
and the accelerated block coordinate maximization methods.

B. IOS Optimization

For given
{
S̄k
}K
k=1

and ρ, the optimization problem in (8)
with respect to β̃ln, l ∈ {r, t}, can be written as follows:

max
β̃l
n

f(β̃ln) = log2

∣∣∣I +

K∑
k=1

HH
k S̄Hk

∣∣∣
s.t.

{
β̃rn, β̃

t
n

}
∈ Ψ; ∀n ∈ [1, 2, . . . , N ]

(11)

To tackle this problem, we first optimize both β̃rn and β̃t

by assuming that they are continuous-valued and independent
coefficients, and we then project the obtained solutions onto
the set of feasible discrete phase shifts, by taking into account
that the reflection and transmission coefficients are interlinked.

For ease of writing, we define the variables Gk =
[g1, . . . ,gn], U = [uT1 , ...,u

T
n ]T , and

D̄k =

{
Dr
i ∀i ∈ {1, ...,KR}

Dt
j ∀j ∈ {1, ...,KT}

(12)

ḡn,k =

{
grn,i ∀i ∈ {1, ...,KR}
gtn,j ∀j ∈ {1, ...,KT}

(13)

Under the assumption that β̃rn and β̃tn can be optimized
independently (this is removed next by projecting on the
feasible set), the objective function can be rewritten as follows:

f(β̃ln) = log2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I +


KR∑
k=1

(
D̄k +

N∑
n=1

√
ρβ̃rnḡn,kun

)H
×Sk

(
D̄k +

N∑
n=1

√
ρβ̃rnḡn,kun

)


+


KT∑
k=1

(
D̄k +

N∑
n=1

√
1− ρβ̃tnḡn,kun

)H
×Sk

(
D̄k +

N∑
n=1

√
1− ρβ̃tnḡn,kun

)


∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(14)

Thus, for optimizing β̃rn, we have:

f(β̃rn) = log2

∣∣∣Ar
n + β̃rnBr

n + β̃r∗n BrH
n

∣∣∣ (15)

and, for optimizing β̃tn, we have:

f(β̃tn) = log2

∣∣∣At
n + β̃tnBt

n + β̃t∗n BtH
n

∣∣∣ (16)

where:

Br
n =
√
ρ

KR∑
k=1

(D̄H
k +

N∑
l=1,n6=l

√
ρβ̃r∗l uHl ḡHl,k)Skḡn,kun (17)

Bt
n =

KT∑
k=1

(
√

1− ρD̄H
k +

N∑
n 6=l

(1− ρ)β̃t∗l uHl ḡHl,k)Skḡn,kun

(18)



Algorithm 1: AO algorithm to solve (8)

Input: S̄(0),
{
β̃r(0), β̃t(0)

}
and ρ(0) with feasible values

1 Set i← 0
2 repeat
3 Compute (S̄

(i+1)
k )Kk=1 according to Algorithm 2 in [16]

4 for n = 1, 2, . . . , Nris do
5 β̃

∗(i+1)
n = exp(−j arg(σn)) using (21)

6 Apply the phase shift projection procedure, if
required, based on (22)

7 end
8 ρ(i+1) = PD

(
ρ(i) + υ(i)∇ρf(ρ)|ρ=ρ(i)

)
9 i← i+ 1;

10 until a stopping criterion is met
Output: S• = S(i), ρ• = ρ(i) and

{
β̃r•(i), β̃t•(i)

}

Ar
n = I +

KT∑
k=1

(D̄k +
N∑
n=1

√
1− ρβ̃tnḡn,kun)H

×Sk(D̄k +
N∑
n=1

√
1− ρβ̃tnḡn,kun) +

KR∑
k=1

ρuHn ḡHn,kSkḡn,kun

+
KR∑
k=1

(D̄H
k +

N∑
l=1,n6=l

√
ρβ̃r∗l uHl ḡHl,k)

×Sk(D̄k +
N∑

l=1,n6=l

√
ρβ̃rl ḡl,kul)

(19)

At
n = I +

KR∑
k=1

(D̄k +
N∑
n=1

√
ρβ̃rnḡn,kun)H

×Sk(D̄k +
N∑
n=1

√
ρβ̃rnḡn,kun) +

KT∑
k=1

(1− ρ)uHn ḡHn,kSkḡn,kun

+
KT∑
k=1

(D̄H
k +

N∑
l=1,n6=l

√
1− ρβ̃t∗l uHl ḡHl,k)

×Sk(D̄k +
N∑

l=1,n6=l

√
1− ρβ̃tl ḡl,kul)

(20)
The optimal solution of the optimization problem in (14) is

then given by [16]:

β̃∗rn = exp(−j arg(σrn)) (21a)

β̃∗tn = exp(−j arg(σtn)) (21b)

where σrn and σtn are the only non-zero eigenvalues of
(Ar

n)
−1

Br
n and (At

n)
−1

Bt
n, respectively.

The obtained continuous-valued solution of the reflection
and transmission coefficients is denoted by

{
β̃∗rn , β̃

∗t
n

}
= SC.

The corresponding discrete-valued solution in the considered
feasible set is obtained by projecting SC on the discrete set
Ψ. As a case study, we consider the IOS prototype in [13],
where each IOS element can be configured in two states, where
each state is identified by a pair of reflection and transmission
coefficients, i.e.,

{
(β̃rS1, β̃

t
S1), (β̃rS2, β̃

t
S2)
}

= {S1, S2} = Ψ.
In this case, the projection can be formulated as follows:{
β̃r•, β̃t•

}
=

{
(βrS1, β

t
S1) , ‖SC − S1‖2 < ‖SC − S2‖2

(βrS2, β
t
S2) , otherwise

(22)
where

{
β̃r•, β̃t•

}
denotes the reflection and transmission

coefficients that minimize the distance between the solution
of the continuous-valued case and the feasible discrete set.

C. Power Ratio Optimization

For given values of
{
S̄∗k
}K
k=1

and
{
β̃r•, β̃t•

}
, the optimiza-

tion problem in (8) can be explicitly rewritten as:

max
ρ

f(ρ) = log2

∣∣∣I +

K∑
k=1

HH
k S̄kHk

∣∣∣ (23a)

s.t. 0 ≤ ρ ≤ 1 (23b)

The objective function f(ρ) can be rewritten as:

f(ρ) = log2

∣∣∣∣∣I +

K∑
k=1

HH
k SkHk

∣∣∣∣∣ (24)

= log2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

I + 2
√
ρ
KR∑
k=1

N∑
n=1

β̃r∗n uHn ḡHn,kSkD̄k

+2
√

1− ρ
KT∑
k=1

N∑
n=1

β̃t∗n uHn ḡHn,kSkD̄k

+
KR∑
k=1

 N∑
n=1

N∑
n=1

ρβ̃r∗n β̃
r
nuHn ḡHn,kSkḡn,kun

+D̄H
k SkD̄k


+
KT∑
k=1

 N∑
n=1

N∑
n=1

(1− ρ)β̃t∗n β̃
t
nuHn ḡHn,kSkḡn,kun

+D̄H
k SkD̄k



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(25)

In order to find the optimal value of the power ratio ρ, we
solve the equation f

′
(ρ) = 0, where f

′
(ρ) is the first-order

derivative of f(ρ). For ease of notation, let us define:

X1 =
∑KR

k=1

∑N

n=1
β̃r∗n uHn ḡHn,kSkD̄k (26)

X2 =
∑KT

k=1

∑N

n=1
β̃t∗n uHn ḡHn,kSkD̄k (27)

Y1 =
∑KR

k=1

∑N

n=1

∑N

n=1
β̃r∗n β̃

r
nuHn ḡHn,kSkḡn,kun (28)

Y2 =
∑KT

k=1

∑N

n=1

∑N

n=1
β̃t∗n β̃

t
nuHn ḡHn,kSkḡn,kun (29)

X̄ = I +
∑KR

i=1
HiSiH

H
i +

∑KT

j=1
HjSjH

H
j (30)

The first-order and second-order derivatives, f
′
(ρ) and

f
′′
(ρ), respectively, can be formulated as:

f ′(ρ) = ∇ρf(ρ) = Tr

(
X̄−1

( (
X1√
ρ −

X2√
1−ρ

)
+ (Y1 −Y2)

))
(31)

f ′′(ρ) = − 1
ln 2

(
INV (X̄)

)2
×

(
0.5
(
−3/2
√
ρX1 + −3/2

√
1− ρX2

)
X̄

+
((

X1√
ρ −

X2√
1−ρ

)
+ (Y1 −Y2)

)2

)
(32)

where ∇ρf(ρ) is the gradient of f(ρ) with respect to ρ.
The objective function in (23a) is a concave function with

respect to ρ, since the second derivative in (32) is no greater
than zero. Therefore, the optimization problem in (23a) has a
single optimum value. However, it is hard to find a closed-form
solution by solving f

′
(ρ) = 0. Thus, we utilize the projected

gradient (PG) method. Specifically, ρ in the (i+1)-th iteration
is updated as follows:

ρi+1 = PD
(
ρi + υi∇ρf(ρ)|ρ=ρi

)
(33)
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Fig. 2: Continuous-valued coefficients.
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Fig. 3: Discrete-valued coefficients.

where υi in (33) is the step size that is updated by using the
backtracking line search method in [16], and the projection
operator PD is defined as:

ρ̂ = PD(ρ) =

{
ρmin ρ• < ρmin

ρ• ρmin 6 ρ• 6 ρmax

ρmax ρ > ρmax
(34)

where ρ• and ρ̂ are the solutions obtained before and after
implementing the projection, and ρmin and ρmax are the
minimum and maximum values for ρ, respectively.

V. SIMULATION RESULTS

In this section, we evaluate the achievable sum-rate of the
proposed algorithms with the aid of Monte Carlo simulations.
Specifically, we compare the sum-rates under the assumption
that the reflection and transmission coefficients are continuous-
valued and independent values, and under the assumption that
they are interlinked and belong to a discrete set.

The simulation setup is the following: the carrier frequency
is f = 2 GHz (the wavelength is λ = 15 cm), st = sr =
sris = λ/2 = 7.5 cm, the network topology is given in Fig. 1,
Nt = 8, P = 1 W, and N0 = −110 dB. The IOS consists of
Nris = 15 × 15 = 225 elements placed in a 15× 15 square
formation. The users are equipped with Nr = 2 antennas and
are randomly distributed within the disks shown in Fig. 1. The
results are averaged over 100 independent channel realizations.

The achievable sum-rate is reported in Fig. 2 and Fig. 3. The
proposed algorithm converges in a few iterations. By closing
analyzing the sum-rate of the users located in the reflection and
transmission sides of the IOS, we observe that the sum-rate
loss in Fig. 3 as compared to Fig. 2 is due to the non-unitary
value of the reflection and transmission coefficients for the
considered feasible set in [13, Table 1].

VI. CONCLUSION

In this paper, we have proposed optimization algorithms
for maximizing the sum-rate in IOS-aided MIMO broadcast
channels. We have optimized the covariance matrices at the
transmitter, the reflection and transmission coefficients of
the IOS, and the ratio between the reflected and refracted
power. The simulations results demonstrate that the presented
algorithm provides a rapid convergence rate in a few iterations.
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