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Abstract: Since cancer treatment by radio- and chemotherapy has been linked to safety concerns,
there is a need for new and alternative anticancer drugs; as such, compounds isolated from plants
represent promising candidates. The current study investigates the anticancer features of halimane
(11R*,13E)-11-acetoxyhalima-5,13-dien-15-oic acid (HAL) and the labdane diterpenes 1α,6β-diacetoxy-
8α,13R*-epoxy-14-labden-11-one (PLEC) and forskolin-like 1:1 mixture of 1,6-di-O-acetylforskolin
and 1,6-di-O-acetyl-9-deoxyforskolin (MRC) isolated from Plectranthus ornatus in MCF7 and FaDu
cancer cell lines. Cytotoxicity was assessed by MTT assay, ROS production by Di-chloro-dihydro-
fluorescein diacetate assay (DCFH) or Red Mitochondrial Superoxide Indicator (MitoSOX) and
Mitochondrial Membrane Potential (MMP) by fluorescent probe JC-1 (5′,6,6′-tetrachloro-1,1′,3,3′-
tetraethylbenzimidazolylcarbocyanine iodide). In addition, the relative amounts of mitochondrial
DNA (mtDNA) were determined using quantitative Real-Time-PCR (qRT-PCR) and damage to mito-
chondrial DNA (mtDNA) and nuclear DNA (nDNA) by semi-long run quantitative Real-Time-PCR
(SLR-qRT-PCR). Gene expression was determined using Reverse-Transcription-qPCR. Caspase-3/7
activity by fluorescence was assessed. Assessment of General In Vivo Toxicity has been determined
by Brine Shrimp Lethality Bioassay. The studied HAL and PLEC were found to have a cytotoxic effect
in MCF7 with IC50 = 13.61 µg/mL and IC50 = 17.49 µg/mL and in FaDu with IC50 = 15.12 µg/mL
and IC50 = 32.66 µg/mL cancer cell lines. In the two tested cancer cell lines, the phytochemicals
increased ROS production and mitochondrial damage in the ND1 and ND5 gene regions and reduced
MMP (∆Ψm) and mitochondrial copy numbers. They also changed the expression of pro- and
anti-apoptotic genes (Bax, Bcl-2, TP53, Cas-3, Cas-8, Cas-9, Apaf-1 and MCL-1). Studies demonstrated
increase in caspase 3/7 activity in tested cancer cell lines. In addition, we showed no toxic effect in
in vivo test for the compounds tested. The potential mechanism of action may have been associated
with the induction of apoptosis in MCF7 and FaDu cancer cells via the mitochondrial pathway;
however, further in vivo research is needed to understand the mechanisms of action and potential of
these compounds.

Keywords: Plectranthus ornatus; anticancer effect; apoptosis induction; diterpenes; mitochondrial pathway

1. Introduction

Cancer remains the leading cause of death worldwide. Given the morbidity and
mortality associated with this disease, as well as the significant economic burden, there
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is still an urgent need to develop more effective treatment strategies [1–3]. The disease
affects people in both developing and developed countries and its overall incidence is
further compounded by gradual aging of the population. An important approach to
alleviating this enormous burden on public health is cancer chemoprevention, the use
of synthetic or natural agents to inhibit, delay, or reverse carcinogenesis. Plants produce
diverse compounds, including secondary metabolites, that have been used as antibiotics,
painkillers, anticancer and cardioprotective drugs for over 5000 years. This enormous
potential of plant compounds, which has today been further refined by the development of
science and the ability to accurately identify plant-based bioactive compounds, has fostered
the development of new health-related technologies [4–6]. Research into the anticancer
properties of many plants is generating very promising results. About 80–90% of the
population in developing countries still uses drugs based on plant extracts. The isolation
and identification of biologically-active compounds of plant origin has led to the discovery
of new therapeutic agents, stimulating the development of the health and pharmaceutical
sectors [7–11].

Many of these compounds, such as vinblastine (VBL) and vincristine (VCR), etopo-
side, paclitaxel (Taxol®, Bristol-Myers Squibb, New York, USA), docetaxel, topotecan and
irinotecan, have been successfully used in anti-cancer therapy [4,12]. Currently, new phyto-
chemicals are sought, which can act as sources of new molecules for the development of
new, innovative drugs for many branches of medicine, including Oncology. One interesting
plant with a multidirectional action and strong biological properties is the genus Plectran-
thus, named after the Latin plecton meaning spur and anthos for flower, first described in
1788 by the French botanist Charles L’Héritier. In Africa and Asia, Plectranthus is mostly
used for digestion, pain, skin ailments and infections, whereas Caribbean populations have
exploited it for epilepsy symptom relief [13,14]. Our earlier studies confirm that diterpenes
(Roy, Deroy, Diroy, Parv) isolated from Plectranthus sp. induced apoptosis in a number of
cancer cell lines through various signaling pathways [15–17].

The secondary metabolites discovered in this genus have been classified as monoter-
penoids, sesquiterpenoids, diterpenoids and phenols, with the most diverse diterpenoids
being abietane diterpenoids. The labdane diterpenoid, forskolin, is found in Plectran-
thus barbatus and may explain some of its traditional uses [13]. Forskolin compounds
are known to have several biological activities regarding their cardiotonic, antiplatelet
anti-inflammatory and anticancer properties. Concerning their anticancer activity, recent
studies have demonstrated the potential of forskolin in effective cancer therapeutics in U937
acute myeloid leukemia cell lines, specifically by enhancing the antiproliferative effects of
a small molecule inhibitor, GSKJ4, by apoptotic cell death, as well as down-regulation of
the BCL2 protein, caspase 3 activation and PARP protein cleavage. The authors propose
that the presence of forskolin sensitizes the leukemia cells to the small molecule inhibitor,
GSKJ4, via a cAMP/PKA-mediated pathway. Similarly, forskolin was shown to potentiate
the antiproliferative effects of doxorubicin in triple negative breast cancer and sensitize
the MDA-MB-231 and MDA-MB-46 cell lines to doxorubicin [18–21]. Another labdane
diterpene is Plectronatin C (PLEC), isolated from Plectranthus ornatus. Earlier studies have
shown this compound to have moderate antifungal activity and to inhibit cyclooxygenase-2
(COX-2) [22,23]. In turn, diterpenes with a haliman skeleton (HAL) still have few pharma-
cological properties. In 2011, it was reported that some haliman derivatives derived from
haliman A diterpenes, namely haliman B-D diterpenes, are potent COX-2 inhibitors [22].

Plectranthus ornatus-isolated secondary metabolites such as HAL, PLEC and MRC
clearly have promising ethnopharmacology and bioactivity value. Therefore, the aim of
this work was to determine the biological activity of these diterpenes with regard to their
potential anti-cancer value.
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2. Results
2.1. Cytotoxicity

The cytotoxic effects of HAL, PLEC and MRC treatment against the MCF7 and FaDu
cell lines is given in Figure 1A,B. For the MCF7 cell line, HAL and PLEC had cytotoxic
effects, with IC50 values of 13.61 µg/mL and 17.49 µg/mL, respectively. Similarly, HAL
(IC50 = 15.12 µg/mL) and PLEC (IC50 = 32.66 µg/mL) demonstrated cytotoxic activity
against the FaDu cell line. In turn, the MRC showed a moderate cytotoxic effect for both
tested cell lines (stronger for the MCF7 cell line). The IC50 concentration for HAL and PLEC
was used for further studies, while the highest tested concentration was used for MRC.
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Figure 1. Effects of HAL, PLEC and MRC on the viability of (A) MCF7, (B) FaDu cells, as determined
by the MTT assay. Values represent the means ± SD as percent (%) of control values. Values on the
X-axis are shown as log10.

2.2. Reactive Oxygen Species (ROS) Generation

The ROS level in the MCF7 and FaDu cells was also measured after 12, 24 and 48 h
treatment with HAL, PLEC and MRC (Figure 2A,B). After 12 h incubation of MCF7 cells
with HAL and PLEC, the ROS level was significantly higher (p < 0.001) than controls and
this effect was maintained for up to 48 h. In the FaDu cell line, a significant increase in ROS
level was noted after 12 h of incubation with HAL and PLEC and that level was maintained
up until 48 h. MRC treatment did not result in any change in ROS level over the studied
time period for either cell line.
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2.3. Mitochondrial ROS Generation

Our study showed an increase in mitochondrial superoxide (referred to as mitochon-
drial ROS, or mROS) levels for both FaDu and MCF7 cancer cell lines tested after incubation
with HAL and PLEC compounds. No statistically significant changes were shown for the
MRC compound (Figure 3).
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Figure 3. Generation of mitochondrial superoxide in MCF7 and FaDu cells as detected with MitoSOX.
The cells were exposed to HAL, PLEC and MRC and, after 24 h of incubation, MitoSOX Red fluo-
rescence was measured using a microplate reader. Data are means ± SD (n = 3). *** (p < 0.001) as
compared with control (untreated) cells.

2.4. Mitochondrial Membrane Potential

The mitochondrial membrane potential (MMP) in the MCF7 cell line and FaDu cell
lines incubated with HAL, PLEC and MRC for 24 h are given in Figure 4A,B. In both lines,
a statistically significant reduction in MMP was observed after treatment with HAL and
PLEC, but not for MRC.
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2.5. Mitochondrial Copy Number

Additionally, 24 h of incubation with HAL and PLEC resulted in a lower mtDNA copy
number in both the MCF7 and FaDu cells compared to controls. However, no statistically
significant differences in mtDNA copy number were found for the cells treated with MRC
(Figure 5A,B).
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control group.

2.6. Quantification of Mitochondrial DNA (mtDNA) Damage

The results of mtDNA damage analysis resulting from 24 h HAL, PLEC and MRC
exposure is given in Figure 6. In the FaDu cell line, a significant (p < 0.001) increase in lesion
rate was noted in the ND1 and ND5 regions: 6.72 (ND1) and 7.67 (ND5) lesions per 10 kb
DNA treated with HAL, 5.43 (ND1) and 8.33 (ND5) lesions per 10 kb DNA after PLEC
treatment. In the MCF7 cells, HAL treatment exhibited higher mtDNA damage (8.89 lesions
per 10 kb DNA in ND1 and 8.78 lesions per 10 kb DNA in ND5) as did PLEC, being 5.88
for the ND1 region and 7.95 for the ND5 region. MRC treatment did not influence the level
of mtDNA damage.
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2.7. Quantification of Nuclear DNA (nDNA) Damage

No significant difference in the level of nDNA damage in the HPRT1 and TP53 regions
was found between treated cells and control MCF7 and FaDu cells (Figure 7).
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2.8. Changes in Gene Expression

The changes in Bcl-2, Bax, Cas-3, Cas-8, Cas-9, Apaf-1, MCL1 and TP53 gene expression
after treatment with HAL, PLEC and MRC in MCF7 and FaDu cell are given in Figure 8A,B.
For both tested lines, HAL and PLEC increased Bax, Cas-3,8,9, Apaf-1 and TP53 mRNA
level. Only Bcl-2 and MCL1 expression decreased in both lines.
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Figure 8. (A,B). Gene expression (Bax, Bcl-2 Cas-3, Cas-8, Cas-9, Apf-1 MCL1 and TP53) for MCF7
(panel A) and FaDu (panel B) cell lines after 24 h treatment with tested compounds. Data is presented
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2.9. Induction of Apoptosis

Significantly higher % apoptotic cell values were observed in MCF7 and FaDu after
treatment with HAL and PLEC compared to controls. However, no change was shown for
MRC (Figure 9).
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Q3 quadrant presents a fraction of late and early apoptotic cells, respectively.

2.10. Induction of Apoptosis (Caspase-3/7 Levels)

To test whether HAL, PLEC and MRC isolated from Plectranthus ornatus induced
apoptosis, we examined caspase 3/7 activity in FaDu and MCF7 cancer cells treated for
24 h. Two tested compounds HAL and PLEC showed significant effects on caspase 3/7
activation, while no statistically significant changes were shown for the compound MRC
(Figure 10).
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Figure 10. Action of HAL, PLEC and MRC on Caspase-3/-7 activity levels. MCF7 and FaDu cells
were treated with appropriate compounds for 24 h, stained with 5 µM CellEvent™ Caspase-3/-7
Green detection reagent for 30 min at 37 ◦C and fluorescence immediately measured. Data represents
the mean ± SD of three replicates. *** (p < 0.001) vs. untreated (control) cells.

2.11. General Toxicity in In Vivo Test

Our study showed no toxic effect in the Brine shrimp test for all compounds (HAL,
PLEC and MRC) at the tested concentration (100 µg/mL) after 24 h incubation (Figure 11).
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Figure 11. Mortality rate (%) of Artemia salina after 24 h exposure to HAL, PLEC and MRC from P.
ornatus. Values are expressed as the mean ± SD (n = 3). * p < 0.05; *** p < 0.001 comparison salt vs.
HAL, PLEC and MRC.
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3. Discussion

The plant kingdom is an important source of new pharmacologically active molecules,
providing a library of promising therapeutic agents that can be used in many branches
of medicine [24]. A huge number of popular drugs are derived directly or indirectly
from natural products, and many remain in clinical use, including in Oncology, such as
paclitaxel, vinblastine, vincristine and podophyllotoxin [4,25–27]. Despite the steadily
growing popularity of synthetic products, which has led to the many new drugs that exist
today, plant secondary metabolites remain key to drug design, as their basic structures serve
as templates for the synthesis or semi-synthesis of new substances to treat diseases [28,29].
Although the results of reports on the safety, efficacy and use of synthetic drugs remain
a matter of debate in the medical community, naturally occurring bioactive molecules
of plant origin still play a dominant role in the treatment of ailments due to their high
tolerance and acceptance by patients during treatment. The use of typical synthetic drugs
in chemotherapy is associated with serious side effects such as decreased appetite, hair loss,
gastrointestinal changes, neurological dysfunction, and drug resistance, which weaken the
patient and reduce the quality of life, both mentally and physically [16,24,26,28,30–33]. Studies
have shown phytochemicals to be less toxic and more effective, in some regards. Hence,
there is a great need to search the plant world for new compounds with potential medical
effects [28,34–37]. An interesting source of secondary metabolites is the genus Plectranthus
belonging to the Lamiaceae family. This genus comprises about 300 species distributed
in Tropical Africa, Asia and Australia and some species are well documented for their
ethnomedicinal uses [38]. Numerous studies have shown the content of various classes of
compounds and the molecules isolated from them have shown many interesting biological
properties. Cretton et al. described 11 terpenoids isolated from P. scutellarioides, among
which six compounds are previously undescribed phytochemicals, while investigating their
cytotoxic effects in human multiple myeloma stem cells (MM-CSCs) and multiple myeloma
plasma cells RPMI 8226 [38]. Our previous studies showed that abietane diterpenes can induce
apoptosis in many types of cancer cells through a variety of signaling pathways [17,39–41]. These
promising results prompted a further search for other active compounds of the Plectranthus
genus with potentially medical applications, particularly among the diterpenes.

Diterpenoid compounds are a large family of natural products whose biological
activity is enhanced by the presence of a lactone group. The diterpenoids include labdane,
the halimans and clerodans. These compounds have a decalin system with two fused rings
(A and B) and a side chain at position 9 [42,43]. In turn, biosynthetically, halimans and
clerodans appear to be related to labdans through a series of methyl and hydride shifts.
The halimans have an intermediate carbon skeleton between the labdan and clerodan
skeletons. Some of these compounds have been found to possess antitumor, antimicrobial
and mosquito repellent properties and to inhibit germination, and act as biomarkers for
tuberculosis; however, many of the halimane diterpenoids have not been biologically
evaluated [42–45].

This work examines the biological properties of the halimane compound HAL, PLEC
and MRC isolated from the Plectranthus ornatus plant.

The MTT assay results confirm the cytotoxic potency of HAL and PLEC in treated
MCF7 and FaDu cancer cells in the tested range concentrations. IC50 for HAL was
13.61 µg/mL and for PLEC 17.49 µg/mL in MCF7 cells. In turn, for HAL this was
15.12 µg/mL and for PLEC 32.66 µg/mL in FaDu cells, respectively. Weaker cytotoxic
effect was demonstrated for labdane diterpenes (forskolin-like 1:1 mixture of 1,6-di-O-
acetylforskolin and 1,6-di-O-acetyl-9-deoxyforskolin) MRC compound in the concentration
range tested. A previous study reported no cytotoxicity up to 25 µg/mL on normal PBMC-
derived macrophages [46]. Our findings are the first to confirm that these compounds have
cytotoxic effects against MCF7 and FaDu cancer cell lines. Cretton et al. demonstrated
that the abietane diterpene Coleon O also exhibited significant activity towards human
multiple myeloma cancer stem cells and RPMI 8226 cells, with IC50 values of 9.2 and 8.4 µM,
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respectively [38]. In addition, our study showed no toxic effect in an in vivo test on brine
shrimp after 24 h of incubation.

The study also investigated the potential apoptotic mechanism of action. Apoptosis
is a very tightly controlled process that regulates the development and homeostasis of
organisms. Specific symptoms of this process are a reduction in cell volume, thickening
of cytoplasmic organelles, condensation and fragmentation of nuclear chromatin and
activation of the cysteine protease caspase family [47,48]. A characteristic feature, among
others, is that the extrinsic death receptor pathway involves the activation of caspase-
8, which then cleaves caspase-3, leading to apoptosis [49,50]. On the other hand, the
intrinsic, mitochondrial pathway is regulated by Bcl-2 family proteins, including the anti-
and proapoptotic factors (Bcl-2 and Bax) and involves the release of cytochrome c (Cytc)
from the mitochondria, followed by the arrangement of a complex containing procaspase-9,
cytochrome c and protease activation factor (Apaf)-1. The released Cytc then activates
caspase-9, which later induces caspase-3 activation, leading to apoptosis [51–54]. Our
results demonstrate that HAL, PLEC can induce apoptosis via mitochondrial accumulation
of ROS, which may induce mitochondrial damage by altering mitochondrial membrane
potential, changing the number of mitochondrial copies and increasing mitochondrial
DNA damage in the ND1 and ND5 gene regions. Our findings indicate increased ROS
production in MCF7 and FaDu cells after treatment with HAL and PLEC but no such result
was observed for MRC. ROS accumulation is known to be associated with mitochondrial
damage, which induces apoptosis. The destructive function of ROS release (RIRR) may
have a physiological role that involves the elimination of unwanted cells. Adaptive release
of sufficient ROS in the vicinity of mitochondria may lead to activation of local pools
of enzymes involved in protective signaling pathways [55,56]. An increase in ROS can
cause damage to the mitochondria, which has also been confirmed in our studies. The
multivariate analysis showed a decrease in the mitochondrial membrane potential, a change
in the number of mitochondrial copies and an increase in mitochondrial damage in the ND1
and ND5 regions of the genes in both tested MCF7 and FaDu cancer cell lines. However,
no changes in nuclear damage were observed in the regions of the HPRT1 and TP53 genes.
Mei et al. demonstrated that reduced mtDNA copy number can elevate ROS levels in
cancer cells and increases the sensitivity of these cells to chemotherapeutic drugs used
and the rate of apoptosis [57]. In contrast, Sun et al. noted that increased mitochondrial
DNA copy number, caused by forced expression of mitochondrial transcription factor
A, significantly accelerates cell proliferation and has an inhibitory effect on apoptosis of
microsatellite-stable colon cancer cells [58]. Indeed, abietane diterpene treatment has been
found to reduce mitochondrial copy numbers in MCF7 cancer cells, which is in line with
our current results after treatment with halimane and labdane diterpenes [17]. The next
step in confirming apoptosis by the mitochondrial pathway is the presence of changes in
the expression of pro and antiapoptotic genes. It has been reported that Bcl-2 and Bax
play an important role in causing apoptosis through the mitochondrial pathway. The Bcl-2
protein is an antiapoptotic molecule and its increased expression delays the disruption of
organelles in apoptotic cells. In addition, activation of the caspase cascade may induce
apoptosis [59,60]. We showed a change in the expression level of genes directly related
to the apoptotic pathway, such as Bax, Bcl-2, TP53, Cas-3, Cas-8, Cas-9, Apaf-1 and MCL-1,
which confirms our hypothesis that HAL and PLEC induce apoptosis via the mitochondrial
pathway in MCF7 and FaDu cancer cells. In addition, we showed an increase in caspase-
3/7 activity for the same compounds. This is the first such report on the effect of these
compounds on the induction of apoptosis in MCF7 and FaDu cancer cells.

The MRC compound did not show significant changes in the expression levels of the
genes tested, which may indicate its low biological activity in this study area. It is difficult
for us, at this stage of the study, to determine what the poor activity of MRC is due to. We
suspect that it may be due to the mixture of the two compounds in its formulation, or to the
chemical structure or different sensitivity of the individual lines resulting from their origin.
Therefore, further research is important to find out other properties of this compound.
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Moreover, Annexin-V FITC analysis confirmed that treatment with the tested com-
pounds induced apoptosis in both the MCF7 and FaDu cells. Annexin-V FITC detects
apoptosis by targeting for binding to negatively charged phosphatidylserine (PS) at the
outer plasma membrane [61]. Hence, staining with annexin V/PI showed that HAL and
PLEC in IC50 concentration increase the rate of apoptosis in the MCF7 and FaDu cells;
however, this was not observed for MRC. This is the first confirmation that halimane and
labdane diterpenes influence apoptosis induction in MCF7 and FaDu cancer cells. Our
previous study revealed that abietane diterpenes such as: Diroy, Parv, Deroy and Roy
isolated from Plectranthus madagascariensis and Plectranthus ecklonii induced apoptosis in
human leukemia cell line by mitochondrial pathway [17]. In turn, the same compounds
were able to exhibit anticancer effects in a glioma cell line by inducing apoptosis [15].
Our studies confirm that different groups of diterpenes can induce apoptosis through
different signaling pathways which is extremely important in the context of their further
in vivo studies.

4. Materials and Methods
4.1. Plant Material

Plectranthus ornatus Codd. seeds were provided by the Herbarium at the Lisbon
Botanical Garden, Portugal and were cultivated at the Faculty of Pharmacy Hortum at
the Lisbon University. Whole plants were collected in May 1998 and voucher specimens
were deposited in the Herbarium of the Botanical Center of the “Instituto de Investigacão
Científica Tropical,” Lisboa, Portugal (ref. C. Marques S/N_ LISC).

4.2. Extraction and Isolation of Compounds

PLEC was isolated as previously described by Rijo et al. (2002) [23] and MRC was
isolated as previously described, also by Rijo et al. (2005) [19]. The halimane diterpene,
HAL, was isolated from the P. ornatus extract using procedures similar to that described by
Rijo et al. (2007) [62] in the CBIOS laboratory of Natural Bioactives (Bio.Natural@CBIOS,
Universidade Lusófona, Lisboa, Portugal). Briefly, P. ornatus (1261 kg) was air-dried and
sprayed. An Ultrasound-assisted extraction was performed with acetone three times
(13 L total volume) for half an hour at room temperature. The solvent was then filtered
and evaporated at 40–50 ◦C on a rotary evaporator and a dry extract of 89.30 g was
obtained, constituting an extraction yield of 7.082% (w/w). The crude extracts were stored
in DMSO at 20 mg/mL. The halimane compound was purified by exposing the extract to a
combination of sequential liquid and dry column flash chromatography (six total), using a
silica-based stationary phase and a mixture of eluents of increasing polarity (n-Hexane:Ethyl
acetate) as a mobile phase, attaining 5.3 mg of pure compound. The structural elucidation
of the metabolites was carried out basing on physicochemical data, including melting point,
specific rotation, spectroscopic data (UV, IR, 1D- and 2D- 1H and 13C NMR), mass spectra
and elemental analysis, to be compared with data already reported in literature. NMR
spectra were recorded on a Bruker Fourier 300 spectrometer, with 1H-NMR and 13C-NMR
spectra being recorded at 300 and 75 MHz, respectively. The compounds will be further
denoted by their reference name, indicated in Table 1.
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Table 1. Diterpenes isolated from the Plectranthus ornatus Codd. and their reference name.

Plant Material Isolated Compounds Structure Reference Name

Plectranthus ornatus

(11R*,13E)-11-acetoxyhalima-5,13-
dien-15-oic acid
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4.3. Tissue Culture Models

The MCF7 (human breast; mammary gland; adenocarcinoma; HTB-22™) and FaDu
(human pharynx squamous cell carcinoma; HTB-43™) cell lines were obtained from the
American Type Culture Collection (ATCC; Manassas, VA, USA). The two cell models were
cultured in a humidified 5% CO2 atmosphere at 37 ◦C (New Brunswick Galaxy®® 170R CO2
Incubator). Monolayer cells were grown in Eagle’s Minimum Essential Medium (EMEM;
Sigma-Aldrich) supplemented with 10% fetal bovine serum (Biowest), recommended
by a manufacturer. To the cell culture medium was added penicillin (100 U/mL) and
streptomycin (100 µg/mL). Then, at 80–85% confluence, the cells were detached and
resuspended using TrypLE™ Express Enzyme without phenol red (Gibco™).

4.4. Cytotoxicity Assay

The cytotoxicity of MCF7 and FaDu cells was detected by MTT method, consistent
with our previous research [17]. In each culture model, the cells were treated with increasing
concentrations of HAL, PLEC and MRC (0.39–100 µg/mL). After 24 h of incubation, cell
growth was measured. The IC50 concentration for HAL and PLEC was used for further
studies, while the highest tested concentration was used for MRC. All experiments were
carried out in triplicate and performed as at least three independent experiments.

4.5. Measurement of ROS Production

Di-chloro-dihydro-fluorescein diacetate assay was used to measure ROS production
in MCF7 and FaDu cells after treatment with HAL, PLEC and MRC for 12, 24 and 48 h.
The DCFH-DA crosses the cell membrane and enzymatically hydrolyzed by intracellular
eterases to non-fluorescent di-chloro-dihydro-fluorescin (DCFH), which is then oxidized to
highly fluorescent dichloro-fluorescin (DCF) in the presence of intracellular ROS. Cells were
seeded in 96-well black plates at a density of 1×105 cells/well in 50 µL culture medium
and allowed to adhere overnight in a CO2 incubator at 37 ◦C. The next day, the cells were
incubated for 45 min at 37 ◦C in presence of 5 µM of DCFH-DA, washed in HBSS and then
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treated with indicated concentrations of HAL, PLEC and MRC for 12, 24 and 48 h. The
readings were taken at 485/20 nm excitation and 528/20 nm emission.

4.6. Mitochondrial Superoxide Generation

The production of superoxide by mitochondria was determined using the MitoSOX™
Red reagent. Cells were seeded into black 96-well tissue culture plates with transparent
bottom (Greiner) at a density of 1 × 105 cells/well in 100 µL culture medium (without
phenol red and FBS) and cultured overnight in a CO2 incubator at 37 ◦C. The next day, MCF-
7 and FaDu cells were treated with HAL, PLEC and MRC and incubated for another 24 h
under the same conditions. Then after 24 h of incubation, 5 µM MitoSOX Red was added
to the cells and incubated further for 30 min at 37 ◦C in 5% CO2 atmosphere (protected
from light). Thereafter, the cells were centrifuged (300 g for 5 min at 22 ◦C) and washed
with the HBSS and the fluorescence emission at 590/35 nm under 485/20 nm excitation
was measured using a Bio-Tek Synergy HT Microplate Reader. Each sample was run
in triplicate.

4.7. Examination of MMP

Mitochondrial Membrane Potential was examined by JC-1 fluorescent probe (5′,6,6′-
tetrachloro-1,1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide). JC-1 is a fluorescent car-
bocyanine dye which accumulates in the mitochondrial membrane in two forms: monomers
or dimers, depending on mitochondrial membrane potential. JC-1 monomers show maxi-
mum fluorescence excitation and emission at 485 and 538 nm wavelengths, respectively.
On the other hand, negative potential of the inner mitochondrial membrane facilitates
the formation of dye aggregates, which results in the shift of JC-1 monomer fluorescence
(green) towards red light, i.e., excitation at 530 nm and emission at 590 nm wavelengths,
respectively. The cells were seeded into black 96-well microplate wells having transparent
bottoms (Greiner) at a density of 1×105 cells/well in 50 µL culture medium and kept
overnight before treatments for attachment. The next day, cells were treated with indicated
concentration of PLEC, HAL and MRC for 24 h. Finally, the cells were pre-incubated with
5 µM JC-1 in the HBSS in a CO2 incubator at 37 ◦C for 30 min. Prior to measurements,
the cells were centrifuged (300 g for 10 min at 22 ◦C) then washed twice with the HBSS.
Fluorescence was measured in Bio-Tek Synergy HT Microplate Reader (Bio-Tek Instru-
ments, Winooski, VT, USA) and results are shown as a ratio of fluorescence, measured at
530 nm/590 nm to that measured at 485 nm/538 nm (aggregates to monomer fluorescence).
All compounds were tested in triplicate.

4.8. DNA Extraction from Cell Culture

The total genomic DNA, including nuclear and mitochondrial, was isolated using the
QIAamp DNA Mini Kit according to the manufacturer’s recommendations from treated
cell suspensions (2 × 106 cells) collected by centrifugation. The concentration and purity of
the isolated DNA was assessed spectrophotometrically.

4.9. Determination of mtDNA Copy Number

Quantitative Real-Time PCR (qRT-PCR) was used to examine the relative amounts of
mitochondrial DNA (mtDNA) and nuclear DNA (nDNA), as we described earlier [17,63–65].
Primers sequences, qRT-PCR conditions are provided in the Supplementary Materials.

4.10. Measurements of Mitochondrial and Nuclear DNA Damage

Semi-long run quantitative Real-Time-PCR (SLR-qRT-PCR) was used to estimate
mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) damage, according to the protocol
described in our previous publications [17,63–65]. We have included the primer sequences,
SLR-qRT-PCR conditions in the Supplementary Materials.
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4.11. Measurement of Bax, Bcl-2, Cas-3, Cas-8, Cas-9, Apf-1, MCL-1 and TP53 Gene Expression

For RNA analysis, cells treated for 24 h with PLEC, HAL and MRC were lysed using
the ISOLATE II RNA Mini Kit (BIOLINE Ltd.) and next RNA was isolated according to
the manufacturer’s instructions. Complementary DNA (cDNA) was generated using the
High Capacity cDNA Reverse Transcription Kit (ThermoFisher) and ReverseTranscription-
quantitative PCR (RT-qPCR) analysis was performed using the following commercially
available TaqMan®® gene expression assays: Bax (Hs00180269_m1), Bcl-2 (Hs00608023_m1),
Cas-3(Hs00234387_m1), Cas-8 (Hs01018151_m1), Cas-9 (Hs00962278_m1), Apf-1 (Hs00559
441_m1), MCL-1 (Hs01050896_m1), TP53 (Hs00153349_m1) and 18S rRNA (reference gene;
Hs99999901_s1). RT-qPCR was performed using TaqMan™ Gene Expression Master Mix
(Thermo Fisher Scientific) and Agilent Technologies Stratagene Mx300SP working on MxPro
software. The RT-qPCR conditions were as follows: 10 min of polymerase activation at
95 ◦C, followed by 40 cycles of 30 s denaturation at 95 ◦C and 60 s annealing/extension at
60 ◦C. Each sample was run in triplicate. The basal expression level was calculated using
the Ct method [66].

4.12. Flow Cytometry

Apoptosis was evaluated by flow cytometry with FITC Annexin V Apoptosis Detection
Kit I (BD Pharmingen) after treatment with HAL, PLEC and MRC. The cells were washed
twice in PBS and then suspended in 100 µL 1 × Binding Buffer at a cell density of 105. A
5 µL FITC Annexin V and 5 µL of propidium iodide (PI) was added to each 100 µL cell
suspension, which was then incubated at room temperature (25 ◦C) for 15 min in the dark.
Then after incubation, 400 µL of the 1× Binding Buffer was added to cell suspension and
next samples were analyzed by flow cytometry on a LSRII (Becton Dickinson, San Jose, CA,
USA) flow cytometer; in total, 5 × 104 cells were analyzed per sample in three independent
experiments. Apoptotic index (AI) was calculated as the mean percentage of apoptotic cells
(early and late apoptotic cells).

4.13. Caspase-3/7 Activity

To determine if HAL, PLEC and MRC promote cell death in MCF-7 and FaDu cell
lines we analyzed caspase3/7 activation. After incubation of cell lines with HAL, PLEC
and MRC we assessed caspase-3/7 activity by fluorescence microplate reader using the
commercial CellEvent™ Caspase-3/7 Green Detection Reagent (Invitrogen™) that is based
on the emission of fluorescence upon cleavage of the fluorescently labeled DEVD peptide.
We followed the procedure as we described earlier [67,68]. Briefly, MCF-7 and FaDu cells
were seeded in 96-well microplate with transparent bottoms at 1×105 cells/well in 50 µL
culture medium and incubated at 37 ◦C, 5% CO2 to allow the attachment of cells. After
overnight incubation, cells were washed with 1× PBS to remove nonadherent cells, treated
with HAL, PLEC and MRC and next incubated for another 24 h under the same conditions.
After that time CellEvent Caspase-3/7 Green Detection Reagent was added to the wells at a
final concentration of 5µM. The caspase activity was determined after 30 min of incubation
by measuring the fluorescence intensity of cells, at 502 nm excitation wavelength and an
emission wavelength of 530 nm, using a Bio-Tek Synergy HT Microplate Reader. Each
sample was run in triplicate.

4.14. In vivo Assessment of General Toxicity

The overall toxicity of the samples was assessed using the Artemia salina lethality
bioassay, as previously described [69,70]. Briefly, samples of each compound (HAL, PLEC
or MRC) were prepared at a concentration of 100 µg/mL (lowest tested concentration
at which a biological effect was observed), with dilutions made in salt medium. Larvae
incubated for 24 h at 25 ◦C were added to each well containing salt medium. After 24 h,
the number of dead larvae in each well was recorded and the mortality rate (%) was
determined. The study was conducted in triplicate.
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4.15. Statistical Analyses

All statistical analyses of differences between compounds (HAL, PLEC, MRC) were
performed in Prism v. 5.00 for Windows (GraphPadSoftware, Inc., San Diego, CA, USA) us-
ing ordinary one-way ANOVA followed with Dunnett’s multiple comparison test. Results
were expressed as means with SD. The experiments were performed in triplicate, n ≥ 3.

5. Conclusions

HAL and PLEC demonstrated a cytotoxic effect against MCF7 and FaDu cancer cell
lines. In contrast, MRC isolated from Plectranthus ornatus indicated weaker biological poten-
tial or a different mechanism of action. This data also demonstrated that both compounds
triggered the mitochondrion-mediated apoptosis pathway through the production of ROS
leading to a change in the expression pro and anti-apoptotic genes (Bax, Bcl-2, TP53, Cas-3,
Casp-8, Casp-9, Apaf-1 and MCL-1) followed by a decrease in MMP and mitochondrial
copy number, an increase in mitochondrial damage in the ND1 and ND5 gene regions
or an increase caspase-3/7 activity. No toxic effect in a simple in vivo test for individual
compounds was observed. This result indicates that these compounds may be interesting
candidates as potential chemotherapeutic agents; however, further studies are needed to
determine the exact mechanism of action and to evaluate their antitumor activity in in vivo.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ijms231911653/s1.
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