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Abstract: Melanoma cells are highly invasive and metastatic tumor cells and commonly express
molecular alterations that contribute to multidrug resistance (e.g., BRAFV600E mutation). Conven-
tional treatment is not effective in a long term, requiring an exhaustive search for new alternatives.
Recently, carotenoids from microalgae have been investigated as adjuvant in antimelanoma therapy
due to their safety and acceptable clinical tolerability. Many of them are currently used as food supple-
ments. In this review, we have compiled several studies that show microalgal carotenoids inhibit cell
proliferation, cell migration and invasion, as well as induced cell cycle arrest and apoptosis in various
melanoma cell lines. MAPK and NF-kB pathway, MMP and apoptotic factors are frequently affected
after exposure to microalgal carotenoids. Fucoxanthin, astaxanthin and zeaxanthin are the main
carotenoids investigated, in both in vitro and in vivo experimental models. Preclinical data indicate
these compounds exhibit direct antimelanoma effect but are also capable of restoring melanoma cells
sensitivity to conventional chemotherapy (e.g., vemurafenib and dacarbazine).

Keywords: marine carotenoids; marine pigments; melanoma; pigments; skin cancer

1. Introduction

Marine organisms represent an exceptional source of bioactive compounds, which
a large part correspond to allelopathic molecules with cytotoxicity and/or antiprolifera-
tive activity against cancer cells. Since pioneering work in marine pharmacology in the
1950s–1970s, thousands of molecules with novel chemical structures and mechanisms of
action have been discovered in marine organisms [1]. The potential for discovery of novel
molecules in the coming decades remains significant, particularly for the development of
anticancer drugs [2].

A considerable number of studies in marine pharmacology focus on algae compounds.
Algae are eukaryotic organisms lacking a stem, root, leaves or flower, able to perform
oxygenic photosynthesis and typically living in an aquatic (marine or freshwater) environ-
ment [3]. The health applications of micro- and macroalgae are very numerous and concern
various fields: food, nutrition/health, prevention and treatment of diet-related diseases
(malnutrition, obesity, diabetes, cancers, caries), prevention and treatment of age-related
diseases (neurodegeneration, AMD, cardiac problems, tissue engineering), production
of innovative drugs (anti-venoms, anticoagulants, antithrombotics, anticancer, antivirals,
cytokines, hormones, vaccines, etc.). It is estimated that there are about 1500 species of
green macroalgae, 1800 of brown macroalgae and 6500 of red macroalgae. Microalgae,
on the other hand, are estimated to comprise 30,000 to 1,000,000 green, red, and brown
species (depending on the source) grouped into 12 distinct phyla [4]. This definition of
algae excludes cyanobacteria (prokaryotes), which are also the focus of much work to
identify molecules of pharmaceutical interest.

Although they have been less studied for pharmaceutical applications, microalgae
present an exceptional potential because of the possibility to produce them in large quanti-
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ties under standardized conditions, and their metabolic plasticity allowing the biosynthesis
and biorefining of a wide range of molecules, including polyphenols, pigments, fatty
acids/triglycerides ceramides, oxylipins, heterocycles, vitamins and minerals [5]. Recent
studies have pointed to microalgae as a source of new anticancer compounds, especially
carotenoids. Fucoxanthin, astaxanthin, and zeaxanthin are some examples of microalgae
carotenoids capable not only of inhibiting tumor cell proliferation, but also of preventing
cell migration and invasion, and inducing apoptosis and cell cycle arrest in different cancer
cell lines [6–9]. When combined with conventional anticancer drugs, these carotenoids
act as chemosensitizers, preventing multidrug resistance mechanisms and restoring the
sensitivity of tumor cells to chemotherapy [9,10]. In this review, we focus on describing
the potential of marine carotenoids specifically on cutaneous melanoma. Below, we have
gathered data on melanoma, its pathogenicity and recent treatments, as well as the use
of carotenoids purified from microalgae as antimelanoma agents or in association with
conventional chemotherapy.

2. Melanoma and Multidrug Resistance

Since 2005, the World Health Organization (WHO) has identified cutaneous melanoma
as a major priority public health problem. Although it accounts for less than 2% of all
skin cancers, it is the most aggressive form responsible for 90% of skin cancer deaths [11].
Approximately 232,000 new cases (1.7% of all malignancies) and 55,500 deaths (0.7% of
total cancer mortality) occur worldwide each year, bringing the global average incidence to
10 cases per 100,000 population. In Europe, more than 20,000 people die from melanoma
each year, and melanoma is the most common tumor in young adults aged 25–35 years [12].

In addition to phenotypic factors (e.g., skin, hair and eye color), exposure to ultraviolet
radiation, the presence of nevi, and family history are the major risk factors associated
with the development of melanoma [13]. Its aggressive nature is mainly due to genomic
alterations and their post-transcriptional consequences. Overall, melanoma cells express
proliferative signaling pathways that are often activated even in the absence of growth
factors (e.g., the RAS/RAF/MEK pathway) [14], very readily develop escape mechanisms
to apoptosis, stimulate neo-angiogenesis, induce the expression of immunosuppressive
factors, and inhibit key immune checkpoints [15].

2.1. Molecular Mechanisms Involved in Melanoma Progression

Melanoma is one of the most genetically and clinically heterogeneous cancers due to
the complex molecular mechanisms involved in its progression. However, deregulation of
cell cycle control, alterations in the RAS/RAF/MEK and AKT/PI3K pathways, and escape
from the immune response are notable features of all metastatic melanomas.

2.1.1. Cell Cycle Deregulation

Cell cycle dysregulation in melanoma cells is responsible for uncontrolled cell prolifer-
ation. The CDKN2A (Cyclin-Dependent Kinase Inhibitor 2A) gene mutation, present in
25–50% of familial melanoma cases, has been associated with an elevated risk of melanoma.
This gene encodes two distinct proteins, p16/INK4A and p14/ARF, which act as tumor
suppressors through the negative regulation of pathways involving Rb1 (retinoblastoma
protein 1) and p53, respectively [16]. In its unphosphorylated form, Rb1 scavenges the
transcription factor E2F in the cytoplasm, thereby blocking the expression of genes essen-
tial for cell cycle progression from G1 to S phase. Phosphorylation of Rb1 leads to the
release of E2F and the expression of genes responsible for cell cycle progression. This
phosphorylation is mediated by a catalytic complex composed of cyclin D1 and CDK4 or
CDK6, whose activity depends on p16/INK4A levels. The cyclin D1-CDK4/6 complex is
inhibited in the presence of p16/INK4A, which reduces Rb1 phosphorylation and induces
cell cycle arrest in G1/S phase (Figure 1). In melanoma cells, genetic mutations affecting
the CDKN2A locus cause suppression of p16/INK4A, resulting in uncontrolled cell cycle
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progression. Mutations in the CDK4 gene can also occur, leading to its overexpression and
thus constitutive activation of the cyclin D1-CDK4 complex [17,18].
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Figure 1. Major signaling pathways involved in cell cycle regulation and their respective alterations in
melanoma cells. CDKN2A gene is often mutated in melanoma cells, resulting in decreased expression
of cell cycle regulatory proteins (p14 and p16). These proteins can also be mutated, as well as cyclins
and CDKs, leading to cell cycle progression.

Inhibition of the p53 protein also plays a major role in the development of melanoma.
p53 activity is controlled by the Mouse Double Minute 2 homolog (MDM2), which is itself
regulated by p14/ARF. By binding to p14/ARF, MDM2 is inhibited and therefore p53
protein is active. p53 controls the expression of several genes responsible for cell cycle
arrest, senescence, DNA repair and cell death. Mutations in the CDKN2A locus result in
the deletion of p14/ARF, inducing the restoration of MDM2 activity and consequently the
inactivation of p53 (Figure 1). The cell can therefore continue its progression through the
cell cycle, without any checkpoint in case of genetic defect [16,19].

2.1.2. Alterations in RAS/RAF/MEK Pathway

Deregulation of the Mitogen-Activated Protein Kinase (MAPK) pathway, also known
as the RAS/RAF/MEK pathway, is observed in many cancers, particularly in melanoma [20]
(Figure 2). In healthy melanocytes, activation of this pathway begins with the interaction
between extracellular growth factors and transmembrane tyrosine kinases receptor (TKRs).
This interaction leads to the activation of RAS, a G protein with three isoforms (HRAS,
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KRAS and NRAS) responsible for triggering a cascade of reactions that lead to cell prolifer-
ation and survival. When stimulated, RAS forms a complex with one of the RAF isoforms
(ARAF, BRAF or CRAF). The formation of this complex leads to the activation of RAF,
which in turn phosphorylates and activates the MEK protein (MEK1 and MEK2 isoforms).
This latter activates the MAPK isoforms (ERK1 and ERK2), which stimulate the expression
of proteins that promote cell proliferation (cyclins, CDKs, etc.) and protect the cell from
apoptosis by regulating the expression of pro- and anti-apoptotic proteins from the Bcl-2
family [21,22].
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Figure 2. RAS/RAF/MEK signaling pathway in melanocytes, controlling cell cycle, cell proliferation
and survival under normal conditions. In melanoma cells, mutations in RAS, BRAF, CDKN2A, p16,
p14, p53 and PTEN cause constitutive activation of this pathway, resulting in excessive prolifera-
tive signaling.
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Overactivation of the RAS-RAF-MEK pathway is observed in about 90% of melanomas
and the predominant mutation affects the BRAF gene in 50–70% of cases. 80% of BRAF
mutations lead to the replacement of a valine by a glutamate unit at position 600 of the
protein (BRAF V600E or BRAFV600E). This mutation makes the protein constitutively
active, which generates proliferative stimulation even in the absence of growth factors [14].
NRAS, HRAS and KRAS isoforms are mutated in 15–20%, 2% and 2% of melanomas,
respectively. The most common NRAS mutation (>80% of cases) consists of a replacement
of a glutamine by leucine and arginine units at position 61 (NRASQ61L/R) [16,21]. Similar
to BRAF, mutation of RAS leads to constitutive activation of its GTPase activity.

2.1.3. Alterations in PI3K/AKT Pathway

Constitutive activation of RAS triggers not only overactivation of the RAF/MEK/ERK
pathway, but also of the PI3K/AKT pathway, both contributing to the maintenance of prolif-
erative signals. PI3K (phosphatidylinositol-3 kinase) is a member of the lipid kinase group,
and its main function is the conversion of phosphatidylinositol-4,5-bisphosphate (PIP2) to
phosphatidylinositol-3,4,5-triphosphate (PIP3). This latter activates the phosphoinositide-3-
dependent protein kinase (PDK1), which is responsible for the phosphorylation of AKT
(p-AKT) and, consequently, its activation [23]. Active p-AKT can phosphorylate several
target proteins, including GSK3β, which is inhibited when phosphorylated. Due to this
inhibition, free β-catenin can accumulate in the cell cytoplasm and move to the nucleus,
where it can induce overexpression of important oncogenes, such as c-MYC and cyclin D1
(Figure 3). p-AKT thus prevents tumor cells from entering apoptosis and promotes cancer
progression [24].

In melanocytes, PI3K/AKT pathway is controlled by PTEN (Phosphatase and Tensin
homolog), an inhibitor of this pathway able to catalyze the dephosphorylation reaction
of PIP3 to PIP2. Therefore, PTEN activity results in reduced levels of p-AKT, inhibiting
proliferative cellular events induced by PI3K/AKT pathway [20]. However, the gene
encoding PTEN is often altered in melanoma cells. This is the case in 7.3% of primary
melanoma cells, 15.2% of metastatic melanoma cells and 27.6% of melanoma cell lines [25].
This mutation significantly reduces PTEN expression, allowing constitutive activation of
the PI3K/AKT pathway.

2.2. Antimelanoma Therapy

Several options are available for the treatment of melanoma. The choice of the best
therapeutic strategies depends mainly on two factors: disease stage and the patient’s
clinical conditions (e.g., tolerance to treatment, liver, kidney or heart function, etc.) [26].

2.2.1. Surgery

Surgery is the preferred treatment for non-metastatic stages of melanoma (I and II).
Chemotherapy and/or radiotherapy may be combined with surgery to limit the risk of
recurrence. Surgery consists of resection of the tumor area and possibly elective lym-
phadenectomy of regional lymph nodes to ensure that all cancer cells are removed [27]. A
better understanding of tumor progression has led to refinements in the surgical procedure
to ensure complete removal of tumor while limiting the size of the scar. This procedure
generally removes all tumor cells, which explains the very low morbidity of melanoma in
its early stages [28].

2.2.2. Radiotherapy

Radiotherapy is based on irradiation of the tumor with high energy rays (rays γ,
protons, hadrons). It is rarely used as first-line treatment for primary melanoma but may
be indicated if the lesion cannot be surgically removed or when surgical margins are not
perfectly established, leading to a high risk of metastasis or local recurrence. Radiation
therapy can also be used as an adjuvant to surgical resection to ensure the complete elimi-
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nation of cancer. However, it has many deleterious side effects for patients (e.g., burning,
nausea, fatigue, hair and weight loss, neutropenia, etc.) [29,30].

Mar. Drugs 2022, 20, x  6 of 27 
 

 

 

Figure 3. PI3K/AKT signaling pathway and its effects on β-catenin release and, consequently, cell 

proliferation. In melanoma cells, the main regulatory factor of this pathway (PTEN) can be mutated, 

promoting excessive cell proliferation. 

2.2. Antimelanoma Therapy 

Several options are available for the treatment of melanoma. The choice of the best 

therapeutic strategies depends mainly on two factors: disease stage and the patient’s clin-

ical conditions (e.g., tolerance to treatment, liver, kidney or heart function, etc.) [26]. 

2.2.1. Surgery 

Surgery is the preferred treatment for non-metastatic stages of melanoma (I and II). 

Chemotherapy and/or radiotherapy may be combined with surgery to limit the risk of 

Figure 3. PI3K/AKT signaling pathway and its effects on β-catenin release and, consequently, cell
proliferation. In melanoma cells, the main regulatory factor of this pathway (PTEN) can be mutated,
promoting excessive cell proliferation.



Mar. Drugs 2022, 20, 618 7 of 26

2.2.3. Conventional Chemotherapy

Chemotherapy for melanoma is based on the oral or intravenous administration of
cytotoxic drugs, used in the more advanced stages (III and IV), when it has already acquired
invasive and metastatic potential. The most used chemotherapeutic agents include DNA
alkylating agents (e.g., dacarbazine, temozolomide, carmustine, cisplatin, carboplatin, etc.)
and antimitotic compounds acting on microtubule polymerization, such as vinca alkaloids
(vincristine and vinblastine) and paclitaxel [26].

Dacarbazine (DTIC) is one of the most widely used molecules to treat melanoma. It
is a DNA alkylating agent that gives response rates of 10–20% after four to six months of
treatment. However, clinical studies show that only 2% of patients receiving DTIC are still
alive six years after treatment, and the combination with other drugs does not significantly
improve survival rate [31].

Temozolomide, a prodrug that undergoes rapid conversion at physiological pH to
monomethyl triazenoimidazole carboxamide (MTIC), a DNA alkylating agent with a
structure close to DTIC, is indicated for brain metastases of melanoma but its efficacy is not
significantly better than that of dacarbazine [32]. Similarly, vinca alkaloids and paclitaxel,
respectively, polymerization inhibitors and microtubule stabilizers, yield response rates
between 5 and 20% in the treatment of metastatic melanoma [33].

Combination of these cytotoxic agents increases the response rate to 20 to 30% but
does not improve. In view of these low therapeutic efficiencies, combinations of cytotoxic
agents with cytokines in so-called “bio-chemotherapy” protocols have been considered.
In particular, the use of interferon alpha (IFN-α) and interleukin 2 (IL-2) associated with
cytotoxic drugs has been evaluated for the treatment of metastatic melanoma [28,34].

2.2.4. Bio-Chemotherapy

Combined treatment with dacarbazine and IL-2 and IFN-α has been considered since
1990s. There are several protocols associating both approaches with different doses [35].
IL-2 is a natural cytokine, secreted by T4 lymphocytes (LT4), whose role is to stimulate
the proliferation and maturation of T lymphocytes and NK cells. Interferons (IFN) are
secreted by monocytes and lymphocytes, especially T4 Th1, and act as a complement to
IL-2 by increasing the phagocytic activity of macrophages and the cytotoxic activity of
T8 and NK lymphocytes. Combination of these two cytokines induces strong immune
response against tumor cells [36]. Bio-chemotherapy gives a higher response rate than
chemotherapy alone (between 40 and 50% response in phase II clinical trials), but several
studies conclude that it does not provide a significant increase in survival rate in metastatic
melanoma. This treatment also has two major drawbacks: its high cost, which reduces its
democratization, and its high toxicity, which limits its use to treat patients with preserved
cardiac, pulmonary and renal functions [30].

Until 2010, alternatives for the treatment of metastatic melanoma were mainly limited
to the use of dacarbazine, high-dose IL-2 and bio-chemotherapy, despite its toxicity. Overall,
metastatic melanoma was difficult to treat, and 5-year survival rates were very limited.
Starting in 2010, two promising treatment routes were developed: a new immunotherapy
modality, based on the use of immunological checkpoint inhibitors, and targeted ther-
apy [35]. At the same time, several research works have shown that the CAR-T strategy
can be very effective in destroying metastatic melanoma cells [37].

2.2.5. Immunotherapy by Blocking Inhibitory Lymphocyte Receptors

A major advance in tumor treatment, awarded the 2018 Nobel Prize in Medicine to
James Allison and Tasuku Honjo, was proposed in the 2000s [38–40]. This involves the use
of inhibitory antibodies capable of specifically blocking two receptors that inhibit the anti-
tumor immune response of T lymphocytes: PD-1 (Programmed cell death 1) and CTLA-4
(Cytotoxic T-Lymphocyte-Associated protein 4). PD-1 is a receptor expressed on T cells
surface capable of suppressing the immune response when activated (Figure 4). Melanoma
cells express PD-1 ligand (PD-L1) which induces T cell tolerance to tumor antigens and
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lack of cytotoxic response. Inhibition of the PD-1/PD-L1 interaction by antibodies or small
molecules restores a balance in favor of a stimulatory co-activation signal that triggers T8
cytotoxicity on tumor cells. Monoclonal antibodies inhibiting the PD-1 receptor include
pembrolizumab and nivolumab [41,42]. These drugs inhibit the PD-1/PD-L1 interaction
and thus restore T8 antitumor cytotoxicity (Figure 4) [43].
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for the treatment of metastatic melanoma.

Other human monoclonal antibodies (e.g., ipilimumab) have been developed to target
CTLA-4 receptors, also expressed on T cells surface [44]. During the antigenic presentation
process, upon interaction between the dendritic cell MHC class II and T4 cell TCR, a
second membrane interaction between the dendritic cell factor B7 and the lymphocyte
CD28 receptor is essential for T4 activation. This lymphocyte co-activation signal can
be blocked by a specific inhibitory receptor, CTLA-4 (Cytotoxic T-lymphocyte-associated
protein 4). Due to its higher affinity for B7, CTLA-4 anchors to this factor, preventing it
from interacting with the lymphocyte CD28 receptor. Thus, a negative stimulus is triggered,
resulting in T4 lymphocyte anergy and tolerance to the tumor antigen [45].

By binding to CTLA-4, ipilimumab blocks the CTLA-4/B7 interaction and releases
B7 to reactivate the lymphocyte via CD28 (Figure 5). The consequence of this stimulation
is greater T-cell activity against cancer cells, but at the expense of an increased risk of
immune events in other tissues. Recently, CTLA-4 and PD-1 inhibitors have become the
main antibodies used in the treatment of metastatic melanoma (stages III and IV), whether
or not combined with even more recently developed targeted therapy drugs [46].
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2.2.6. Targeted Therapy

One of the major advances in cancer treatment in past years has been the mapping of
genetic mutations in tumors. This approach not only allows the identification of relevant
pharmacological targets for each type of cancer, but also the achievement of a treatment
adapted to patient’s genetic profile and to tumor progression stage. Key chemothera-
peutic agents targeted for melanoma include inhibitors of the RAS-RAF-MEK pathway,
particularly inhibitors of mutated BRAF (BRAFV600E) and MEK proteins [47].

Two BRAF inhibitors (BRAFi) targeting the BRAFV600E mutation were approved in
Europe and United States for the treatment of patients with advanced melanoma (stages
III and IV): vemurafenib and dabrafenib [48,49]. A third molecule, encorafenib, is ex-
pected to be the next BRAFi to receive marketing approval [50]. These drugs are orally
bioavailable small molecules that inhibit BRAF kinase. They have been shown to be more
effective in the treatment of metastatic melanoma than conventional chemotherapy and
bio-chemotherapy [47,51].

In addition to BRAF inhibitors, non-ATP dependent allosteric inhibitors of MEK1 and
MEK2 kinases (MEKi) have been developed and introduced for the targeted treatment of
metastatic melanoma. The main representatives of this therapeutic class are cobimetinib
(MEK1 inhibitor), trametinib and binimetinib (MEK1 and MEK2 inhibitors). These drugs
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show better therapeutic efficacy than dacarbazine treatment in patients with BRAF, NRAS
or both mutations [52–54].

MEKi and BRAFi have revolutionized melanoma targeted therapy, providing a so-
lution to a therapeutic impasse. However, treatment with these drugs is often associated
in the short term with acquired resistance mechanisms. About 50% of patients develop
tumor progression after six months of treatment [47,55]. In contrast, preclinical and clinical
studies have shown that combined therapy (BRAFi + MEKi) can limit resistance events and
improve treatment efficacy [56].

Targeted therapy could also include inhibitors of key proteins involved in PI3K/AKT
pathway, such as AKT inhibitors (e.g., MK2206), PI3K inhibitors (e.g., PI-103, BKM120,
GSK2636771, INCB050465, and IPI-549), mTOR inhibitors (e.g., everolimus and tem-
sirolimus), and c-KIT inhibitors, a receptor for the stem cell factor (SCF). VEGF receptor
inhibitors (e.g., bevacizumab) have also been described as a possible alternative to control
tumor progression by inhibiting the angiogenesis process (Figure 6). Due to their recent
discovery, these chemotherapeutic agents are still in clinical development [26].
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Despite the progress made with targeted therapy, these drugs still have a high toxicity
due to the administration of high doses that limit their selectivity on tumor cells. Typical
adverse effects are observed, including cutaneous, gastrointestinal, ocular, cardiac and
musculoskeletal dysfunctions. Other side effects are specifically associated with certain
molecules; for example, dabrafenib causes fever and vemurafenib induces photosensitiv-
ity in patients. Less common adverse effects may also be noted, such as anemia, facial
paresis (encorafenib), neutropenia (dabrafenib), rash, and liver cytochrome induction (ve-
murafenib) [57]. Beyond its toxicity, the tumor response to targeted therapy is not sustained
in a long term due to drug resistance mechanisms, which requires the use of escalating
doses during treatment [58].

2.3. Mechanisms of Multidrug Resistance

A considerable number of patients show significant tumor progression within 12 months
of starting treatment [59]. Chemoresistance mechanisms may pre-exist in tumor cells (par-
ticularly in melanoma, melanocytes themselves are cells with high resistance to chemicals
due to their skin protection function) or emerge during treatment (acquired chemoresis-
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tance). Numerous alterations in signaling pathways explain acquired chemoresistance in
melanoma [60], especially affecting RAS-RAF-MEK (MAPK) and PI3K/AKT pathways [61].

Absence of alterations in the RAS/RAF/MEK pathway is crucial for BRAFi clinical
efficacy. Reactivation of this pathway in melanoma cells is therefore one of the main phe-
nomena inducing acquired chemoresistance to BRAFi. Somatic mutations in the NRAS
gene that affect residues G12, G13 or Q61 keep the protein in an active GTP-bound state,
resulting in constitutive activation of the pathway. NRAS mutations are detected in ap-
proximately 20% of treated melanomas, particularly those treated with BRAFi [62–64].
Resistance to BRAFi can also be mediated by amplification (∼=18%) or atypical splicing
(∼=14%) of BRAFV600E [64]. Alternative splicing results in the expression of truncated
BRAFV600E proteins which do not contain the N-terminal RAS binding domain but preserve
the kinase domain. The shortened BRAFV600E proteins form homodimers that are resistant
to BRAFi [65] (Figure 7).
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Figure 7. Aberrations in the MAPK (RAS-RAF-ERK) signaling pathway leading to chemoresistance.
BRAFV600E is inhibited by BRAFi, causing inactivation of the MAPK pathway. Amplification or
alternative splicing of BRAFV600E (BRAFmut) reactivates MAPK pathway in BRAFi-resistant tumors.
In addition, the MAPK pathway can be reactivated by mutations affecting NF1, NRAS or MEK
proteins in BRAFi-resistant tumors.

Gain-of-function mutations have also been observed in genes that code for MEK1 and
MEK2, making tumor cells resistant to MEKi. The major mutations associated with chemore-
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sistance are MEK1K57N, MEK1Q56P, MEK1V60E, MEK1C121S, MEK1G128V, MEK1E203K,
MEK2V35M, MEK2L46F, MEK2C125S and MEK2N126D [62,66]. The incidence of these
mutations in tumors with acquired resistance ranges from 7–16% [62,64].

Mutations involving MAPK checkpoints have also been reported in chemoresistant
melanoma. These include neurofibromin-1 (NF1), a protein that negatively regulates
RAS activity by promoting the hydrolysis of GTP to GDP. In addition to loss-of-function
mutations, NF1 activity can be decreased due to excessive proteasomal degradation [67].
Inactivation of NF1 increases HRAS, KRAS, and CRAF activities in mutated melanoma
cells (BRAFV600E), restoring ERK activation even in the presence of BRAFi [68] (Figure 7).

As in the RAS/RAF/MEK pathway, alterations in key proteins from PI3K/AKT path-
way may occur in a treatment-dependent manner, leading to acquired resistance. Mutations
in PI3K proteins (PI3KR2, PI3KCA and PI3KCG) have been identified in melanomas that
have progressed after treatment with BRAFi. PI3K mutations increase AKT phosphoryla-
tion and decrease sensitivity to vemurafenib in vitro, suggesting these mutations may lead
to BRAFi resistance in refractory tumors. Furthermore, this resistance phenomenon can
be explained by activating mutations in AKT1 (AKT1Q79K) and AKT3 (AKT3E17K) [64],
as well as by deletion of the major regulatory protein of this pathway (PTEN) during
treatment [69] (Figure 8).
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Given their impact on survival rates of patients with metastatic melanoma, multidrug
resistance mechanisms have been exhaustibly investigated [58]. Any molecule capable of
reversing chemoresistance or sensitizing tumor cells to chemotherapy or radiotherapy may
indeed be of major interest for clinical oncology. Several research groups are dedicated
to the study of new cytotoxic or cytostatic carotenoids with innovative modes of action.
The objective is both to improve the antitumor response with the lowest possible dose of
conventional drugs, limiting their toxic effects in non-tumor tissues and delay resistance
mechanisms, and to consider alternatives to all-chemotherapy treatment, for example the



Mar. Drugs 2022, 20, 618 13 of 26

development of nutritional interventions as adjuvant in antimelanoma therapy [70]. In this
context, a renewed interest in microalgae carotenoids is perceptible, due to their structural
chemodiversity suggesting the possibility of discovering original modes of action and of
identifying molecules with little or no toxicity for chemosensitization, radiosensitization
and/or reversion of multidrug resistance in metastatic melanoma.

3. Carotenoids from Marine Microalgae

Carotenoids are liposoluble pigments synthesized by terrestrial plants, micro and
macroalgae, fungi, yeasts, bacteria and archaea. They are also found in animals, particu-
larly crustaceans, fishes, birds, and mammals, where they are derived from the diet. In their
producing or consuming organisms, carotenoids ensure numerous biological functions,
such as photoreception (e.g., β-carotene, violaxanthin, zeaxanthin), membrane mechan-
ical stabilization (thylakoids) (e.g., β-carotene), photoprotection and protection against
oxidation (e.g., violaxanthin), as phytohormone and allelochemical (e.g., abscisic acid and
5-deoxystrigol), as well as visual, olfactory or gustatory chemoattractant (e.g., β-carotene,
β-damascone, β-ionone), pro-vitamin A (e.g., β-carotene, β-carotene 5,6-epoxide) and
transcription and cell differentiation factors (retinoic acid) [71].

To date (August 2022), 1204 natural carotenoids have been identified from 722 pro-
ducing organisms. The Japanese Carotenoid Database (http://carotenoiddb.jp/ (accessed
on 26 September 2022)) is the most comprehensive and detailed database to find updated
information regarding structural diversity, biological functions, producing organisms, and
classification of carotenoids. There are C30 (composed of 30 carbon atoms), C40, C45 and C50
carotenoids, distributed in all 3 kingdoms of life (eukaryotes, prokaryotes and archa ea).

Carotenoids whose chemical structure is composed only of carbon and hydrogen
atoms are generally designated as carotenes and lycopenes while oxygenated carotenoids
are grouped under the term xanthophylls. In fact, there is a high structural diversity of
carotenoids, based on the possibilities of cyclization of terminal carbons, substitution pat-
tern and chemical modification (hydroxylation, epoxidation, carboxylation, carbonylation,
glycosylation, unsaturation, alkoxylation, isoprenic polymerization, lactonization, sulfa-
tion, cycloaddition, etc.) and isomerization (cis/trans isomerization) (Figure 9). Although
they predominantly occur in trans configuration, carotenoids can be naturally obtained or
converted to their cis configuration when exposed to heat, light, and acid media [72].

Although many carotenoids are described in plants, algae have been particularly
employed in the development of carotenoid-enriched products as food supplements, cos-
metics or even medicines. In this relatively recent scenario, microalgae have assumed
an important role due to their easy cultivation, ability to adapt culture conditions on a
large scale, possibility of production all year round, besides being considered a renewable
source of carotenoids. Although the chemodiversity of microalgae is very high [73,74],
it appears to be lower than that of macroalgae and especially terrestrial plants, which
synthesize a wide variety of allelopathic molecules to resist predation. Some molecules
with a completely original chemical structure are however found exclusively in microalgae,
which underlines their potential for the discovery of original chemical motifs, which may
present completely innovative pharmacological modes of action. In particular, carotenoids
chemodiversity is very important and this family of molecules is the subject of much
research in cancerology [75]. Indeed, they may be of major interest for the prevention,
diagnosis, and treatment of cancers due to their numerous biological activities (antioxidant,
photoprotective, antitumor, antimetastatic, antiangiogenic, photosensitizing, chemo- and
radiosensitizing potential) [73,74,76,77].

These liposoluble pigments, whether carotenes or xanthophylls, are present in all
species of microalgae and play an important role in photosynthesis. Depending on the
biosynthetic pathways present in each microalgal species, different chemical substitution
patterns can be obtained, resulting in a large diversity of carotenoids. As in plants, carotenes
are precursor molecules of xanthophylls. The metabolism of carotenoids starts from phy-
toene. A series of enzymes are involved in desaturation of phytoene to produce lycopene.

http://carotenoiddb.jp/
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Lycopene is converted into cyclic and then oxygenated carotenoids, with various functional
groups (ketones, epoxides, hydroxyls, etc.). Figure 10 shows some examples of xanthophyll
biosynthetic pathways in microalgae. Cyclases, epoxidases or de-epoxidases, ketolases,
synthases and hydroxylases are among the main families of enzymes directly involved in
xanthophyll biosynthesis. However, for some carotenoids the biosynthetic pathways are
still unknown or not completely elucidated. This is the case for fucoxanthin, one of the
most studied carotenoids in health [3], found in diatoms and brown algae. In addition, this
was also the case for peridinine found in dinoflagellate, for alloxanthin which occurred in
cryptophyceae, and for the couple diatoxanthin/diadinoxanthin common to diatoms and
some dinoflagellates.
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Figure 10. Structural diversity and major biosynthetic pathways of carotenoids found in microalgae. 1a, b, c: LCYB/CrtL-b, CruA and CruP (lycopene β-cyclase); 2a,
b c: CrtR, CHYB/CrtZ, CYP97A (carotene β-hydroxylase); 3a, b: BKT/CrtW, CrtO (carotene β-ketolase); 4: ZEP (zeaxanthin epoxidase); 5: VDE (violaxanthin
de-epoxidase); 6: NSY (neoxanthin synthase); ?: metabolic pathway unknown or not completely elucidated. Adapted from [3].
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Certain unsaturation patterns are often found in microalgal carotenoids, such as acety-
lene (C≡C) and allene (C=C=C) systems observed in the hydrocarbon chain of alloxanthin
and fucoxanthin, respectively. The acetylenic system, for example, is extremely rare in
natural products. Acetylenic carotenoids are found exclusively in algae, with high abun-
dance in microalgae [78]. Due to their structural originality, these molecules can exhibit
pharmacological activities with a wide range of modes of action, especially in oncology.

4. Antimelanoma Potential of Carotenoids from Microalgae

Concerning melanoma, some carotenoids have shown significant cytotoxic, antiprolif-
erative, pro-apoptotic and anticancer effects in in vitro and/or in vivo models. The leading
carotenoids purified from microalgae and evaluated in murine and/or human melanoma
models include: astaxanthin [79], fucoxanthin [7,10], canthaxanthin [80], zeaxanthin [9], β-
carotene [81], crocoxanthin, alloxanthin [82], diatoxanthin, dinoxanthin and peridinin [83]
(Figure 11). These molecules inhibit cell growth and drive melanoma cells to apoptosis by
activating caspase pathway and inhibiting anti-apoptotic proteins from the Bcl-2 family.
In addition, they can modulate pro-inflammatory signaling pathways involved in cell
proliferation, such as the NF-κB pathway [9].
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Some marine carotenoids induce cell cycle arrest through inhibition of CDKs (e.g., CDK4)
and cyclins (e.g., cyclin D1 and cyclin D2), as well as inhibition of RB (p-RB) protein
phosphorylation and increased expression of regulatory proteins p15 and p27 [7]. They
also increase intracellular oxidative stress and cause suppression of metalloproteinases
(e.g., MMP-1, MMP-2, and MMP-9), inhibiting metastatic cell migration [79]. Table 1 sum-
marizes the main effects of carotenoids extracted from marine microalgae on melanoma
cells. Most of the studies were performed in A2058 cells. A2058 are highly invasive and
metastatic human melanoma cells, expressing the BRAFV600E oncogenic mutation [84].
They are tumorigenic at 100% frequency in nude mice (supplier’s information) and resis-
tant to conventional chemotherapy, especially alkylating agents such as dacarbazine. For
this reason, this cell line is widely used not only to evaluate the antimelanoma potential of
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new compounds, but also to study their chemosensitizing potential when combined with
conventional cytotoxic agents, such as BRAFi, MEKi and alkylating drugs. Considering
their good clinical tolerability and acceptable safety profile, carotenoids have been increas-
ingly envisaged in adjuvant therapy for the treatment of tumors. Although preliminary,
studies focusing on melanoma are encouraging.

Table 1. Main effects of microalgal carotenoids on melanoma cells. In order to better visualize
the intervention possibilities of the marine microalgal carotenoids mentioned below, please check
Figures 1–3.

Carotenoid Model Cell Line Dose (Route, Duration)
or Concentration (IC50)

Main Effects and Molecular
Targets Involved Reference

Alloxanthin In vitro A2058 1–100 µM (IC50 = 29 µM)

Antiproliferative, inhibition of
cell migration, pro-apoptotic

activity (↑ caspase 3),
chemosensitizing effect

(combined treatment with
vemurafenib)

[82]

Astaxanthin

In vitro and
in vivo A375, A2058

In vitro: 5–125 µg/mL
(IC50 NR)

In vivo: 25 mg/kg (i.p.
daily, for 28 days)

Antiproliferative, inhibition of
cell migration (↓MMP-1, ↓

MMP-2, ↓MMP-9), ↓
oxidative stress, cell cycle

arrest (G1 phase),
pro-apoptotic activity (↑

caspases 3 and 7)

[79]

In vitro
and in vivo B16F10 In vivo: 10 mg (p.o. daily,

for 35 days)

Antiproliferative activity,
pro-apoptotic effect (↑

caspases 3 and 9, ↓ Bcl-2), ↓
cyclins D1 and E, ↓MEK, ↑

p21, ↑ ATM, ↓ ERK, ↓ NF-kB,
↓MMP-1, ↓MMP-9,

anti-metastatic activity

[85]

Canthaxanthin In vitro SK-MEL-2 1–10 µM (IC50 NR) Antiproliferative and
pro-apoptotic effect

[80]

Crocoxanthin In vitro A2058 1–100 µM (IC50 = 50 µM) Antiproliferative and
pro-apoptotic activity (↑

caspase 3)

[82]

Diatoxanthin In vitro A2058 100 µg/mL (IC50 NR) Antiproliferative effect [83]

Dinoxanthin In vitro A2058 100 µg/mL (IC50 NR) Antiproliferative effect [83]

Fucoxanthin

In vitro and
in vivo B16F10

In vitro: 12–200 µM
(IC50 = NR)

In vivo: 300 µg/100 µL
(i.p. once every 5 days,

for 20 days)

Antiproliferative, cell cycle
arrest (G1/G0 phase), ↓ p-RB,
↓ cyclins D1 and D2, ↓ CDK4,
↑ p15, ↑ p27, pro-apoptotic

activity (↑ caspases 3 and 9, ↓
BcL-xL, ↓ c-IAP-1, ↓ c-IAP-2, ↓

XIAP)

[7]

In vitro A2058 1–100 µM (IC50 = 14.67)

Antiproliferative activity,
chemosensitizing effect

(combined treatment with
vemurafenib and

dacarbazine)

[10]
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Table 1. Cont.

Carotenoid Model Cell Line Dose (Route, Duration)
or Concentration (IC50)

Main Effects and Molecular
Targets Involved Reference

Peridinin In vitro A2058 100 µg/mL (IC50 NR) Antiproliferative effect [83]

Zeaxanthin

In vitro A2058 5–60 µM (IC50 = 40 µM)

Antiproliferative,
pro-apoptotic effect (↑ caspase
3, ↑ Bim, ↑ Bid), ↓ NF-kB, cell
cycle arrest, chemosensitizing

effect (combined treatment
with vemurafenib)

[9]

In vivo C918 114 µg and 570 µg (i.o.,
once)

Antitumor effect on human
uveal melanoma model [86]

In vitro C918, SP6.5
10–300 µM (IC50 = 28.7

and 40.8 µM,
respectively)

Antiproliferative and
pro-apoptotic effect (↓ BcL-xL,
↓ Bcl-2, ↑ Bak, ↑ Bax, ↑

caspases 3 and 9, ↑ cytosol
cytochrome c), ↑

mitochondrial permeability

[87]

β-carotene In vitro B16F10 1–10 µg/mL (IC50 NR) Antiproliferative,
pro-apoptotic effect (↑ caspase

3, ↓ Bcl-2), ↑ p53, ↓ NO, ↓
iNOS, ↓ TNF-α

[81]

NO: nitric oxide. iNOS: inducible NO synthase. IAP: inhibitor of apoptosis protein. XIAP: X-linked inhibitor of
apoptosis protein. MMP: matrix metalloproteinases. ATM: ataxia-telangiectasia mutated kinase. NF-kB: nuclear
factor κ-light-chain-enhancer of activated B cells. ↑ indicates upregulation or increased activity. ↓ indicates
downregulation or decreased activity. i.p. indicates intraperitoneal injection. p.o. indicates oral administration. i.o.
indicates intraocular injection. NR: not reported.

In general, carotenoids do not have a cytotoxic effect as potent as drugs used for the
treatment of metastatic melanoma. However, when combined with chemotherapy, they are
able to sensitize tumor cells and then reducing therapeutic doses of cytotoxic drugs [9]. One
of the hypotheses put forward to explain their chemosensitizing effect is the integration
of carotenoids into the cytoplasmic membranes of cancer cells, particularly at the lipid
rafts, which can disrupt membrane fluidity, activate pro-apoptotic signaling pathways,
and modulate the membrane transport of cytotoxic agents [6]. Next, we describe in detail
investigations concerning key microalgal carotenoids with antimelanoma potential and
possible molecular targets involved.

4.1. Fucoxanthin

Fucoxanthin is a xanthophyll abundantly occurring in brown seaweeds and con-
tributes over 10% of the estimated total production of carotenoids in nature. Several
pharmacological activities have been demonstrated for fucoxanthin, including antioxidant,
anti-obesity, antidiabetic, anti-inflammatory and anticancer effects [88–91], which explains
its use as a dietary supplement. Fucoxanthin induces apoptosis in a wide diversity of cancer
cells and prevents in vivo tumor initiation, growth, angiogenesis and metastasis [90,92].
When combined with conventional anticancer drugs, fucoxanthin improves cytotoxicity
against leukemia, colon, liver, breast and cervical tumor cells [93–96].

Previous studies have reported antimelanoma potential of fucoxanthin. Kim et al. [7]
assessed its cytotoxic activity on B16F10 cells. Fucoxanthin-treated cells exhibited sig-
nificant apoptotic body and nuclear condensation. After 24 h of exposure, fucoxanthin
exhibited cell cycle arrest in G0/G1 phase, followed by a significative reduction of cells
in S and G2/M phases. This effect was related to an important decreasing in the p-Rb
level and an increasing in the p15INK4B and p27Kip1 levels. Fucoxanthin treatment also pro-
moted a concentration-dependent reduction in cyclins D1 and D2 and CDK4 levels. These
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checkpoint proteins play a critical role in regulation of the cell cycle and, consequently, in
melanoma cells survival as shown in Figures 1 and 2.

Fucoxanthin induced pro-apoptotic effect in melanoma cells by upregulating the ex-
pression of key apoptotic proteins such as caspases 3 and 9. Additionally, anti-apoptotic
markers (BcL-xL, c-IAP-1, c-IAP-2 and XIAP) were found downregulated after fucoxan-
thin exposure, confirming its apoptosis-mediated cytotoxic activity [7]. The same study
also investigated its antimelanoma potential in B16F10 cells-injected mice. Fucoxanthin-
treated animals presented significant melanoma tumor mass reduction, confirming its
antitumor effect.

A recent study using A2058 cells, expressing the BRAF oncogenic mutation (BRAFV600E),
showed that fucoxanthin from the haptophyte Tisochrysis lutea is able to restore melanoma
cells sensitivity to BRAFi (vemurafenib) and alkylating (dacarbazine) agents. Index combi-
nation (IC) values indicated fucoxanthin exhibits chemosensitizing activity by an addictive
(at lower doses) or synergistic (at higher doses) behavior [10]. These outcomes suggest
fucoxanthin is a promisor antimelanoma marine carotenoid with an encouraging potential
to be use as adjuvant in melanoma treatment.

Concerning its safety profile, single-dose (1000 and 2000 mg/kg) and repeated-dose
(500 and 1000 mg/kg, for 30 days) toxicity studies in mice demonstrate that fucoxanthin
does not exhibit oral toxicity [97]. No death or histological abnormalities were observed in
preclinical assays. In fact, fucoxanthin is widely used as a food supplement and its use as a
pharmaceutical ingredient has become increasingly common, especially for the treatment
of diabetes and obesity conditions [98].

However, we must consider that, in contrast with the extensive reports for other tumor
cell types, the evidence for the use of fucoxanthin in the treatment of melanoma is still
very preliminary. In addition, low stability and poor oral bioavailability are some limiting
factors for the use of fucoxanthin, either as a main or adjunct treatment. Pharmacokinetic
investigations point to a rapid metabolization of fucoxanthin after oral administration
in mice, resulting in fucoxanthinol and amarouciaxanthin A available after one hour in
the blood plasma. Tmax of both metabolites was recorded at 4h after administration and
Cmax for fucoxanthinol was twice as high as amarouciaxanthin A. Fucoxanthin and both
metabolites are predominantly accumulated in the liver, followed by lung, kidney, heart
and spleen [99].

Stability studies also indicate that the pharmaceutical development of fucoxanthin-
based products can be extremely challenging. Different studies have been conducted to
evaluate the stability of fucoxanthin in its free form or in formulations such as emulsions,
encapsulations and fucoxanthin-coated nanoparticles. Exposure to light, heavy metals,
oxygen, high temperatures, enzymatic reactions, and long-term storage are among the
main factors affecting the stability of fucoxanthin. Fucoxanthin is also sensitive to pH
variation, and can be degraded under stomach and intestinal conditions, also leading to the
formation of fucoxanthinol. In recent years, the use of emulsifiers and complexation with
natural or modified polymers (e.g., cyclodextrins) has proven to be a promising strategy to
preserve the stability of fucoxanthin in formulations [100–102].

Given the challenges in terms of pharmacokinetic properties, pharmaceutical develop-
ment, and the preliminary nature of studies involving the use of fucoxanthin in melanoma,
there is insufficient evidence to warrant the expected anti-melanoma effects in humans
after oral administration. For this reason, we recommend further testing using in vitro and
in vivo models, expanding to other cell lines before conducting clinical trials.

4.2. Astaxanthin

Astaxanthin is a xanthophyll carotenoid commonly found in plants, algae, and seafood
such as fishes, shrimp and crab. Although it is mostly produced by macroalgae, microalgae
(e.g., Haematococcus pluvialis and Chlorella zofingiensis) are also considered a great source of
astaxanthin and have been recently used to provide high amounts to the development of
dietary supplements [103]. In fact, due to its well-established safety and clinical tolerability,
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astaxanthin has been recognized by the United States Food and Drug Administration (FDA)
and European Commission as a safe food color additive for food applications. Their uses
are mostly based on its antioxidant activity and capacity to protect skin against UV-induced
damage. Previous studies have also shown astaxanthin protects against inflammation,
improves cell-cell communication and lipid metabolism [104].

Concerning its antimelanoma potential, astaxanthin was evaluated in two different cell
lines: A375 and A2058 [79]. Preliminary data showed that astaxanthin has better cytotoxic
effect against A2058 compared to A375 cells. After 24 h of treatment, astaxanthin reduced
cell migration in both cell lines in a concentration-dependent manner. This finding was
explained by an astaxanthin-induced decreasing on matrix metalloproteinase (MMP)-1,
-2 and 9- expression, suggesting this microalgal carotenoid could prevent invasion and
metastasis process. Astaxanthin induced sub-G1 cell cycle arrest and increased caspase-3
and -7 activity, showing an expected pro-apoptotic activity. All in vitro outcomes were
confirmed in in vivo xenograft model. Treatments with astaxanthin (25 mg/kg daily, for
28 days) reduced tumor size by 76 and 82% compared to vehicle-treated group.

In a recent study, an oil-in-water (O/W) nanoemulsion loaded with astaxanthin was
developed and tested in C57BL/6 mice bearing B16F10 melanoma tumor [85]. After oral
treatment, astaxanthin nanoemulsion effectively triggered the apoptosis pathway, including
enhancements of caspases-3 and -9 activity, ataxia-telangiectasia mutated kinase (ATM),
and p21WAF1/CIP1 (p21). Bcl-2 expression was reduced as well as cyclins D1 and E,
indicating astaxanthin controls important checkpoints of cell cycle. Astaxanthin was also
able to inhibit MEK and ERK expression, commonly overexpressed in melanoma cells
as shown in Figure 2. A significant anti-metastatic effect was observed in astaxanthin
nanoemulsion-treated animals, accompanied by MMP-1 and -9 downregulation.

Although it has low oral toxicity and is widely used as a food supplement, astaxanthin
is also considered a carotenoid with low oral bioavailability. The membrane permeability
of free astaxanthin seems to be significantly affected by its low aqueous solubility and
crystalline structure formation at body temperature. In general, naturally obtained or
chemically synthesized astaxanthin esters provide an alternative to the use of astaxanthin
in humans [105]. They are often more orally bioavailable than astaxanthin in lipid-based
formulations and have better thermal stability [106]. Some astaxanthin ester derivatives
(e.g., astaxanthin mono and diesters) obtained from green algae (e.g., Haematococcus pluvi-
alis) even show improved antitumor effect against UV–7,12-dimethylbenz(a)anthracene
(DMBA)-induced skin cancer model in rat [107].

4.3. Zeaxanthin

Zeaxanthin is an abundant carotenoid found in various dietary sources, including
microalgae. A first report described the isolation of zeaxanthin from the glaucocystophyte
Cyanophora paradoxa as one of the pigments responsible for its antiproliferative activity
against the highly invasive human melanoma cell line A2058 [108]. A more recent study
has evaluated possible mechanisms of action involved in its antimelanoma activity using
this same cell line [9]. Zeaxanthin, this time purified from the rhodophyte Porphyridium
purpureum, induced apoptosis-mediated cytotoxicity. Zeaxanthin-treated cells showed
chromatin condensation, nuclear blebbing, sub-G1 phase cell cycle arrest, DNA internu-
cleosomal fragmentation and activation of caspase-3. Western blot analysis revealed that
zeaxanthin induced upregulation of the pro-apoptotic factors Bim and Bid and inhibition
of NF-kB pathway. When combined with vemurafenib, zeaxanthin increased melanoma
cells sensitivity, indicating its potential as dietary adjuvant in melanoma treatment.

Zeaxanthin also induced apoptosis in two human uveal melanoma cell lines (SP6.5 and
C918) without impairing the cell viability of non-cancer uveal melanocytes [87]. Zeaxanthin-
induced apoptosis was associated to downregulation of anti-apoptotic factors (Bcl-2 and
Bcl-xL) and upregulation of pro-apoptotic markers (Bak and Bax). Zeaxanthin also evoked
the release of mitochondrial cytochrome c and, consequently, caspase-9 and -3 activation.
Its antimelanoma potential was validated in vivo in a nude mouse model, which tumor
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size was reduced by 56% in eyes treated with low dosages of zeaxanthin and 92% in eyes
treatment with high doses after comparison with vehicle-treated animals [86].

4.4. Other Carotenoids

A bioprospecting investigation led to the purification of antimelanoma pigments
from a non-toxic dinophyte, Heterocapsa triquetra, including carotenoids such as diatox-
anthin, dinoxanthin and peridinin. After microwave-assisted extraction process, these
carotenoids were tested on A2058 cells and exhibited low to moderate antiproliferative
activity (25.6–34.5% of growth inhibition) [83]. Another preliminary investigation described
the antimelanoma potential of canthaxanthin in SK-MEL-2 melanoma cells. After 48 h
of exposure, cantaxanthin induced apoptosis in a concentration-dependent manner. A
recent study reported the antiproliferative effect of alloxanthin and crocoxanthin on A2058
cells. These xanthophylls were extracted and purified from Rhodomonas salina and then
its antimelanoma potential was assessed. Both carotenoids inhibited cell growth and
migration, induced apoptosis and sub-G1 cells accumulation after 72 h of treatment. Allox-
anthin potentiated the cytotoxic activity of vemurafenib (BRAFi) and restored melanoma
cells sensitivity to dacarbazine (alkylating agent), contributing to a reduced resistance in
A2058 cells.

5. Conclusions

Microalgal carotenoids have a remarkable structural diversity, which confers them a
wide range of biological activities with diverse mechanisms of action. These compounds
usually have well-established safety profiles and acceptable clinical tolerability. Many
of them are used as food supplements. Concerning their antimelanoma potential, the
xanthophylls purified from marine microalgae assume a leading role. They inhibit cell
proliferation, migration and invasion, as well as induced cell cycle arrest and apopto-
sis. MAPK, NF-kB, MMP and apoptotic factors (caspases and Bcl-2 protein family) are
frequently affected by microalgal carotenoids treatment. Fucoxanthin, astaxanthin and
zeaxanthin seem to be the most investigated carotenoids in melanoma management. The
antimelanoma potential of these three has been validated in in vivo experimental models.
They not only exhibit direct antimelanoma effect but are also capable of restoring melanoma
cells sensitivity to conventional chemotherapy (e.g., vemurafenib and dacarbazine). Al-
though all preclinical data presented in this review are still preliminary, they have shown
that it was possible to purify an important source of carotenoids from microalgae with
interest to be used as adjuvant in melanoma therapy.
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