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Abstract
Two ways for producing a transport barrier through strong shear of the E×B poloidal flow
have been investigated using GYSELA gyrokinetic simulations in a flux-driven regime.
The first one uses an external poloidal momentum (i.e. vorticity) source that locally
polarizes the plasma, and the second one enforces a locally steep density profile that also
stabilizes the Ion Temperature Gradient (ITG) instability modes linearly. Both cases
show a very low local turbulent heat diffusivity coefficient χturbT and a slight increase in
core pressure when a threshold of ωE×B ≈ γlin (respectively the E × B shear rate and
average linear growth rate of ITG) is reached, validating previous numerical results. This
pressure increase and χturbT quench are the signs of a transport barrier formation. This
behaviour is the result of a reduced turbulence intensity which strongly correlates with the
shearing of turbulent structures as evidenced by a reduction of the auto-correlation length
of potential fluctuations as well as an intensity reduction of the kθ spectrum. Moreover, a
small shift towards smaller poloidal wavenumber is observed in the vorticity source region
which could be linked to a tilt of the turbulent structures in the poloidal direction.

1 Introduction
Transport is an important topic in magnetic confinement fusion devices because of its
impact on the reactor efficiency. On top of neoclassical transport [1] (i.e. outward radial
transport), the dominant loss channel is the turbulent one [2][3][4]. This transport is
mainly due to micro-instabilities [5][6] leading to large values of heat conductivity and ra-
dial heat fluxes. Ion Temperature Gradient (ITG) [7][8], Trapped Electron Modes (TEM)
[9][10], Parallel Velocity Gradient (PVG) [11] and transverse Kelvin-Helmholtz modes [12]
are exemples of such instabilities.

However, overall transport can be reduced (i.e. increasing confinement time) by trig-
gering a plasma transition to an improved confinement state. Such a transition involves
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the creation of a transport barrier which can be localized in the plasma core (ITB for
Internal Transport Barrier) or at the edge (ETB for Edge Transport Barrier, H-mode
[13][14][15]). Many tokamaks are able to trigger ITBs (e.g. EAST [16], KSTAR [17], JET
[18], DIII-D [19] and JT-60U [20]) or ETBs (e.g. DIII-D [21][22], JFT-2M [23], Alcator
C-mod [24], JET [25], ASDEX [13] and ASDEX Upgrade [26][27], COMPASS [28] and
MAST [29]) when a certain power threshold is exceeded. Recently, HL-2A experiments
[30] showed both kind of transport barriers (i.e. DTB for Dual Transport Barrier) happen-
ing simultaneously during high-βp scenarios. While ITBs and ETBs happen in distinct
environments, they share many important properties such as a radially localized steep
pressure gradient and a strong radial electric field. As a result a strong poloidal E × B
shear flow is generated. Part of this shearing (i.e. zonal flows [31][32][33]) is generated by
turbulence and leads to a self-regulated state through a prey-predator mechanism [34].

The effects of shear flow on a turbulent plasma have been studied [35][36][37] using
different theoretical explanations for the underlying mechanisms leading to a transport
quench. The main hypothesis which will be explored here is that large scale turbulent
structures are suppressed and teared by E × B poloidal shearing. The radial correlation
length and correlation time are greatly reduced by shear flow that reduces the transport
as a result. Another hypothesis proposes a turbulence intensity reduction due to this
same shear flow. An empiric criterion gives an estimate of the needed ωE×B, the E × B
shear rate, which should be within the same order as γmaxlin , the maximum linear growth
rate of the instability [5], to suppress turbulence.

We propose here to extend a previous study of A. Strugarek [38][39] using an updated
version of GYSELA, a full-f 5D gyrokinetic code, using a vorticity source to produce a
sheared poloidal momentum profile. In section 2, we give a brief description of the model
used in GYSELA and the construction of the vorticity source term used. Simulation
conditions and parameters are given in section 3. Section 4 is dedicated to the onset of a
transport barrier using the vorticity source. A slight increase of pressure in the core region
as well as a diffusivity reduction in the source region are observed. Turbulent structures
are torn appart by the shear flow as attested by the reduction in auto correlation length.
A reduction in turbulence intensity is also observed once the shear rate exceeds a certain
threshold. Section 5 focuses on a transport barrier triggered by a fixed steep density
gradient profile which stabilizes linearly the ITG modes at the steep gradient position.
The correlation length and turbulent diffusivity are also greatly reduced at the steep
gradient location. A conclusion is provided in section 6.

2 Model and source term
GYSELA [40] is a 5D full-f gyrokinetic [41] electrostatic code coupling the Vlasov equation
and the quasi-electroneutrality equation. The electron density response is taken adiabatic
so that, up to compressional effects, the time-averaged particle transport across circular
magnetic surfaces vanishes. The following set of equations are solved for deuterium ions:
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Here, F̄ is the ion gyrocentre distribution function, φ the electrostatic potential, xGC
and vG‖ the gyro-center position and parallel velocity, Zi and mi the charge number and
particle mass of the main ion species (deuterium here), B0 the magnetic field amplitude
and ωc,i = ZieB0/mi the ion cyclotron pulsation. Here, dv is defined by dv = Jvdµdv‖
with Jv = 2πB?

‖/mi, the velocity space Jacobian, which is defined through b = B/ ‖B‖
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J is the gyro-average operator, C
(
F̄
)
is the collision operator which conserves energy

and particles [42], and Λ = eZiJ [φ]+µB is the gyrocenter energy with µ = miv
2
⊥/2B the

magnetic moment. S represents the source terms, including for example the heat source
and/or the poloidal momentum (equivalent to a vorticity) source. The average over a
flux-surface is defined by 〈. . .〉FS =
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flux-surface jacobian. The kinetic source of poloidal momentum, also referred as a vorticity
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with SΩ
0 the source amplitude, Sr (r) the radial profile and Ts the source temperature.

The former two are GYSELA input parameters while the latter is fixed at Ts/T0 = 1
where T0 a reference temperature. This source is built such that no heat nor particles
are injected in the system. A marginal quantity of parallel momentum is injected along
with the poloidal momentum as well as a pressure anisotropy which will be discussed in
section 3. The mathematical construction of the heat and vorticity sources are detailed
in [43] and [44].

The vorticity conservation equation is given by

∂tW + ∂rK = S0∇2
⊥Sr (7)

with W = −
〈
∇ ·
(neq,sms

B2 ∇⊥φ
)〉

FS
= e

〈∫
dvJ

[
F̄
]〉
FS

the fluid vorticity , K =

e
〈∫

dv?J
[
(dtxG · ∇r) F̄

]〉
FS

the fluid vorticity flux and S0∇2
⊥Sr the fluid vorticity source.

Figure 1 (orange dashed line) represents the normalized fluid vorticity source profile as
a function of the normalized radius. One can note the main central lobe at r/a = 0.75
which is later referred as the source location. This equation (7) is obtained by tak-
ing the gyro average of the Vlasov equation (1) and integrating over the velocity space.
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Figure 1: Normalized radial profiles of the buffer diffusion (blue line), fluid energy source
(dotted green line) and fluid vorticity source (dashed orange line).

A flux-surface average is then performed to obtain a 1D (i.e. radial) equation for vorticity.

It is difficult to impose a sheared radial electric field Er in a full-f code; trying to
inject such a field directly in the quasi-neutrality equation proved to be uneffective [45]
due to immediate screening effect of the plasma. Two different approaches can then be
considered to generate an E × B flow shear in a flux-driven gyrokinetic simulation with
adiabatic electrons:

1. Use the poloidal momentum source (also referred to as vorticity source hereafter)
previously described. The idea is to add a term in the right-hand-side of the Vlasov
equation (1) to polarize the plasma. It adds a small term equivalent to a polarization
density, effectively biasing locally the plasma and creating a local Er field. Ion
cyclotron frequency range can be used to inject poloidal momentum in a plasma [46],
like IBW (Ion Berstein Waves) [47] or MCFD (Mode Conversion Flow Drive) [48]
for example. The poloidal momentum source used in this study can be viewed as the
resulting effect of such experimental methods on the sole mean radial electric field.
This source aims at emulating the effects of such heating systems and demonstrating
the effect of a strong E ×B shear flow on a turbulent plasma.

2. Locally enforce a sheared radial electric field via the radial force balance by "im-
posing" a large pressure gradient:

Er = − 1

eini

∂P⊥
∂r

+ vθBϕ − vϕBθ (8)

Notice that, when the pressure is anisotropic, the perpendicular pressure P⊥1 enters
the radial force balance instead of the total pressure Ptot. Details on its derivation

1More precisely, there should be an additional term to ∂rP⊥, namely (P‖ − P⊥)κκκ, with κκκ = [∇∇∇⊥B −
b×(∇∇∇×B)]/B the magnetic curvature (see for instance [49], eq.6.42]). This contribution is usually small
and has been neglected here.
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are given in appendix E of [43]. Since radial particle transport is negligible with
adiabatic electrons, we expect the imposed density gradient to remain unchanged
and a sheared Er to be generated to balance out the pressure gradient throughout
the simulation. This case is referred as the steep gradient case hereafter. We expect
the steep density gradient to be the dominant stabilizing mechanism of turbulence
since density gradient is long known to stabilize the ITG instabilities [7].

3 Parameters and saturation level

3.1 Simulation parameters

Three simulations with similar parameters are studied; the vorticity and reference cases
are two branches of the same initial simulation where in the former the source is activated
from tωc,0 = 126400 while the source remains off in the latter. The third one is the so-called
steep-gradient case. All of them use a normalized gyro radius ρ? = ρ0/a ≡ 1/200 with ρ0

the hydrogen Larmor radius at mid-radius and a the minor radius. Due to the increasing
cost of simulations with smaller ρ? values, we chose one comparable to the COMPASS
tokamak. The domain goes from r/a = 0 to r/a = 1 with the last 10% of the radial domain
subject to a buffer diffusion region to damp out fluctuations at the edge and avoid possible
numerical oscillations. Dirichlet boundary conditions are used at the outer radial position
r/a = 1 such that φ (r/a = 1) = 0. There, a buffer region located at r/a > 0.9 and
characterized by additional diffusion and Krook terms forces the distribution function to
relax towards an axisymmetric centered Maxwellian. There is no inner boundary condition
since the simulated domain encompasses the magnetic axis r/a = 0. Note however that,
because of symmetry reasons, the axisymmetric (m,n) = (0, 0) component of the radial
electric field is necessarily vanishing at r/a = 0. The buffer radial profile is shown on
figure 1 (solid blue line). The safety factor radial profile writes

q (r) = 1.5 + 2.3 exp [2.5 ln (r/a)] . (9)

The resulting magnetic shear s = r
q
dq
dr

stabilizes the transverse Kelvin-Helmholtz insta-
bility that could be driven by the imposed strong E×B shear [50][51]. However we do not
expect the magnetic shear to play a major role in creating the transport barrier since it is
monotonic unlike in ITBs scenarios. The isotropic heat source used in those simulations,
localized in the interval r/a = 0 to r/a ≈ 0.4 (See figure 1, dotted green line), evolves
in time: for the vorticity and reference cases, the amplitude of the heat source is fixed
at a "high" value until turbulence intensity saturates. The heat source amplitude is then
lowered so that the pressure profile stays roughly constant (i.e., its evolution becomes
very slow in time). For the steep gradient case, the source amplitude is fixed at the same
"high" value throughout the whole duration of the simulation. The Deuterieum ions are
in the banana regime with a collisionality such that ν?D+ < 1. Parameters are summarized
in table 1.

3.2 Initial conditions

The initial temperature and density profiles are chosen such that ITG instabilities arise,
meaning the ratio η ≡ T−1∂rT

n−1∂rn
= κT/κn = 3 is constant on most of the domain except in
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the steep gradient case that peaks at κn ≈ 28 at r/a = 0.75 (see section 5) leading to
η ≈ 0.13 locally. The vorticity and reference cases density profile (figure 2a, dashed blue
line) is close to a L-mode profile whereas the steep gradient one (figure 2a, dotted orange
line) is similar (i.e. in general shape and not in radial position) to what can be observed in
H-mode discharges with a steep density gradient at the edge (See [28] for example). Their
respective η profiles are shown on figure 2b; the vorticity and reference cases are identical
to the steep gradient case except at r/a = 0.75, where the steep gradient is located.
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Figure 2: Radial profiles of the flux surface averaged guiding-center density (a) and eta
profile κT0/κn0 (b) at tωc,0 = 0 for the vorticity case (similar to the reference case, blue
dotted line) and for the steep gradient case (orange dashed line).

3.3 Saturation level

We denote each mode as (m,n), wherem and n are the poloidal and toroidal Fourier mode
numbers respectively. Figure 3 shows the time evolution of the (0, 0) and (0, 1) as well as
some resonant n+m/q (r) = 0 modes of the electrostatic potential, with q (r) the safety
factor profile, at r/a = 0.5 in the reference simulation. All three simulations exhibit very
similar behaviours until saturation since the parameters are almost identical (except near
the density gradient at r/a = 0.75). The oscillating phase of the (0, 0) and (0, 1) modes
from tωc,0 = 0 to tωc,0 ≈ 3 · 104 corresponds to the relaxation of the low frequency GAMs
[52] (Geodesic Acoustic Modes). These oscillations are negligeable after the main plasma
instability starts its linear growth, namely ITG. This linear growth phase starts at around
tωc,0 ≈ 3 · 104 until turbulence saturation is reached at approximately tωc,0 ≈ 6 · 104. For
each simulation, the global mean linear growth rate γlin ≈ 5 · 10−4ωc,0 is computed by
fitting the linear part on

〈φ〉RMS =

√∑
m,n 6=0

|φm,n|2. (10)

Values for the different simulations are reported on table 1.
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Parameters Reference Vorticity Steep gradient
Collision rate ν?D+ (r/a = 0.5) = 0.1
Charge / atomic numbers Zi = 1, Ai = 2
Time step ∆tωc,0 = 16
Nr ×Nθ ×Nϕ ×Nv‖ ×Nµ 511× 512× 64× 127× 31

Normalized gyroradius ρ? = ρc,0/a = 1/200
Inverse aspect ratio 1/ε = R0/a = 4.4
Maximum density gradient κn = R0/Ln = 2.2 κn ≈ 28
Maximum temperature gradient κT = R/LT = 6.6
Amplitude of vorticity source SΩ

0 = 0* SΩ
0 = 0.08* SΩ

0 = 0
Average ITG linear growth rate γlin/ωc,0 ≈ 5 · 10−4

Table 1: Simulation parameters used in this study. *The poloidal momentum source is
activated from tωc,0 = 126400 for the vorticity case and disabled in the reference case.
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Figure 3: |φm,n| at r = 0.5 plotted against time (up to tvorωc,0 = 126400, the vorticity
activation time). The solid black line represents 〈φ〉RMS (equation 10) and is used to
compute the average linear growth rate of ITG instability. This plot is also representative
of the steep gradient case since we look at the mode evolution at r/a = 0.5, away from
the steep gradient region at r/a = 0.75.
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4 Poloidal momentum (vorticity) source

4.1 Onset of a transport barrier

The source described in equation (6) is used to produce a sheared poloidal momentum
profile to the system once turbulence intensity saturates. Although already using about
4 million CPU hours, the simulation has not reached steady state yet, which would have
required several confinement times. However, the adiabatic evolution of the flux-surface
averaged profiles and the fast response of turbulence is enough to reach critical conclu-
sions regarding the impact of an external source of ExB shearing on turbulent transport.
Figure 4a shows the E×B poloidal flow at the same simulation time for both the reference
(green dotted line) and vorticity (blue dashed line) cases. The vorticity source effectively
produces the desired E × B flow shear compared to the reference case with a significant
amplitude difference at r/a = 0.7 and r/a = 0.8. As stated in [53], it is empirically found
in numerical simulations that the ωE×B shearing rate should be within the same order of
magnitude as γMAX

lin , the maximum linear growth rate of the relevant instability (i.e. ITG
in this case) for turbulence stabilization. This simple rule of thumb is useful to have an
idea of the amount of shear we should impose on the plasma a priori. Here we choose
to normalize the shearing rate to γlin 6 γMAX

lin the average linear growth rate computed
with 〈φ〉RMS (equation 10) which is more representative of the actual "growth rate of
ITG" instability. The chosen source amplitude should establish a shear flow around one
order of magnitude higher than γlin (i.e. ωE×B ≈ 10γ̄lin) to fullfil the previously discussed
stabilizing conditions, consistently with previous studies [38].
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Figure 4: E × B velocity (a) and pressure (b) radial profiles of the vorticity (dashed
blue line) and reference (dotted green line) cases at tωc,0 = 377920. The red vertical line
represents the vorticity source position if activated.

Figure 4b shows the radial pressure profiles of the reference (dotted green line) and
vorticity (dashed blue line) cases at the same simulation time. Three main features
appear when the source is turned on: a "plateau" appears at r/a = [0.6, 0.7] and the
core pressure slightly increases compared to the reference case. Also, a steepening of the
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pressure gradient is observed on the inner side of the plateau (r/a = 0.6) and on the outer
side of the source (r/a = 0.8). One must note that in the plateau region, the ∂tP term
is not negligible in the heat flux balance. This means the radial pressure profile is still
evolving and may be transient. The vorticity source used here does not inject energy in
the system, and the core heat source is the same as the reference case which means that
the increase seen on the radial profile should result from the presence of some transport
barrier.

As attested by [38], it should be noted that the vorticity source activation leads to
a pressure (and therefore temperature) anisotropy that tends to destabilize the plasma
and any transport barrier that could be generated by the vorticity source through quasi-
periodic relaxations. This reduces locally the ITG linear threshold [54] and triggers ITG
modes excitation. In previous study, this ITG modes excitation by temperature anisotropy
led to periodic transport barrier crashes and consequently anisotropy collapses. However,
those crashes are not observed here while a much higher temperature anistropy than pre-
vious studies is observed. A scan in collisionality at lower resolution (not shown) shows
that both temperature anisotropy and shear rate saturate at a value that is independent
of ν?. The saturation value only depends on the vorticity source amplitude. Conversely, in
the absence of collisions, there is no sign of saturation in the time interval that is consid-
ered, so that both temperature anisotropy and shearing rate increase to very large values.
However, we did not observe the relaxation events reported by [39] possibly because of a
too short simulation. The main hypothesis for the absence of relaxations is then linked
to the recently upgraded collision operator used in this study [42]. Previously, only the
parallel direction v‖ was taken into account for the collisions as presented in [55], whereas
the latest version takes into account the perpendicular direction µ. The derivatives in µ
are then acting as an isotropizing mechanism counterbalancing the anisotropizing effect
of the source, hence no relaxation mechanisms are observed in our simulations.

To quantify the effect of velocity shearing on turbulent heat transport of the main
species and confinement, we choose to diagnose first the evolution of the effective heat
diffusivity coefficient χT as a function of time in different radial regions. For this purpose,
heat transport is assumed to be mainly diffusive, with the heat flux expressed as Q =
−nχT∇T . The radial fluxes of energy then writes:

Qneo =

〈∫
E
(
vrD + vrEn=0

)
F̄sdv

〉
FS

, (11)

Qturb =

〈∫
E
(
vrEn 6=0

)
F̄sdv

〉
FS

, (12)

where E = µB + 1
2
v2
G‖, v

r
D = v̄D · ∇r, vrEn=0

= 〈v̄E×B · ∇r〉ϕ and vrEn 6=0
= v̄E×B ·

∇r − vrEn=0
. Qneo is the neoclassical heat flux, which is the sum of the curvature and

gradient drift contributions as well as the toroidally axisymmetric E×B drift contribution.
The turbulent heat flux Qturb consists of the non toroidally axisymmetric E × B drift
contribution.

The total radial heat flux is then the sum of the turbulent and neoclassical contribu-
tions:

Qtot = Qturb +Qneo. (13)
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Figure 5: Total radial heat flux Qtot (equation 13) as a function of radius and time for the
reference (a) and vorticity (b) cases. The vertical dashed red line represents the vorticity
source position while the horizontal dotted red line is the vorticity activation time.

Figure 5 represents the total radial heat flux (equation 13) as a function of radius and
time normalized to the average gyro-Bohm heat flux 〈QGB〉r,θ,ϕ = 〈−ne,0χGB∇Te,0〉r,θ,ϕ
with χGB = ρ?χB = ρ? Te,0

qiB
, the gyro-Bohm diffusivity [56] and Te,0 (r) and ne,0 (r) the

initial electron temperature and density profiles. After the vorticity source is activated
(i.e. 15000ω−1

c,i as shown on figure 5b), a clear reduction in total heat flux is observed
compared to the reference (figure 5a) case. The core region (r/a = [0.25, 0.45]) shows
lower levels of heat flux than the reference case, which explains the higher core pressure,
whereas a region of Qtot ≈ 0 arises on the inner side of the source (r/a ∈ [0.6, 0.7]) hence
the plateau in the pressure profile. One can note higher heat flux levels on the outer side
of the source (r/a ∈ [0.75, 0.85]) due to both the previously discussed excitation of ITG
modes driven by the source-induced pressure anisotropy and the increased temperature
gradient. This leads to the steepening of the pressure profile observed previously. To
complete those observations, a radial average is performed on equation 13 to get such:

〈Qtot〉∆r =
〈
Qturb

〉
∆r

+ 〈Qneo〉∆r . (14)

Assuming diffusive heat fluxes, one can define the different heat diffusivity components
as follows:
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χneoT = − 〈Q
neo〉∆r

〈n∇T 〉∆r
, (15)

χturbT = −
〈
Qturb

〉
∆r

〈n∇T 〉∆r
, (16)

χtotT = χturbT + χneoT . (17)

The heat diffusivity coefficients are normalized to the local 〈χGB〉∆r,θ,ϕ gyro-Bohm
diffusivity coefficients. For this analysis, we select two radial regions:

• ∆r = [0.7, 0.8], the region where the flow shear is injected.

• ∆r = [0.15, 0.6], the region where the turbulence amplitude is found maximum.

Figures 6a and 6b show the time evolution of the turbulent spatial-averaged diffusivity
coefficients in the core (figure 6a) and source (figure 6b) regions respectively. The tur-
bulent diffusivity χturbT / 〈χGB〉∆r,θ,ϕ quickly drops by a factor of about 10 in the vorticity
source region (figure 6b, dashed blue line) when the poloidal momentum source is acti-
vated, compared to the reference simulation (figure 6b, dotted green line). In the source
region, the turbulent diffusivity is the dominant factor until the vorticity source is acti-
vated. Then, the neoclassical diffusivity χneoT becomes the dominant contribution and stays
constant in both the source and core regions at approximately χneoT / 〈χGB〉∆r,θ,ϕ ≈ 0.5 for
both cases. Interestingly, the turbulent diffusivity in the core is affected by the activation
of the source (figure 6a, dashed blue line) even if it is not as impactful as near the source
itself. An overall decaying trend seems to take place especially after the source activation.
This decrease in diffusivity at the source position explains the observed pressure increase
in the core as less energy is lost to the edge; this attests that a transport barrier has
developed at the source location.

One can estimate the shear rate threshold above which turbulence is suppressed by
checking the evolution of the turbulent diffusivity χturbT relative to the shear rate ωE×B
(figure 7). This threshold, defined as the shear rate for which χturbT / 〈χGB〉θ,ϕ,∆r is inferior
or equal to half of its average value before the source actiavtion, is 〈ωE×B〉thresholdθ,ϕ,∆r ≈ γlin,
consistently with the rule of thumb discussed previously.

The observed reduction in
〈
Qturb

〉
∆r

(see equation 14) can be explained through non-
linear arguments. Let us consider a simple expression for the radial turbulent heat flux
with Qturb =

〈
PurE×B

〉
FS

with P = (n+ δn) (T + δT ) and δurE×B ≈ 1
B0r

∂θδφ, the δ
referring to fluctuating quantities and δurE×B the perturbed E × B drift velocity. Up to
the second order, this leads to:

Qturb ≈ 1

B0r

〈n〉FS 〈δT∂θδφ〉FS︸ ︷︷ ︸
conduction

+ 〈T 〉FS 〈δn∂θδφ〉FS︸ ︷︷ ︸
convection

 . (18)

The convection term is negligeable in our simulations where electrons are adiabatic,
hence we won’t consider this term hereafter. One can write for a given fluctuating quantity
the following expression:
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Figure 6: Time evolution of the turbulent heat diffusivity in the r/a = [0.15, 0.6] (a) and
r/a = [0.7, 0.8] (b) regions for the vorticity (blue dashed line) and reference (dotted green
line). The red vertical line represents the vorticity activation time for the vorticity case.
The neoclassical diffusivity being almost constant in time, it is not presented here.
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Figure 7: Turbulent heat diffusivity χturbT plotted against the shear rate ωE×B in the
source region r/a = [0.7, 0.8] for tωc,0 = [110400, 243200]. The red dot represents the
vorticity activation time for the vorticity case tvorωc,0 = 126400. The arrows indicate
the time evolution. The dotted horizontal line represents half of the maximum value of
χturbT / 〈χGB〉∆r,θ,ϕ, the threshold for turbulence suppression.
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δA =
∑
m,n

Ãm,n (r) exp [i (mθ + nϕ− ωt+ ΩA)] . (19)

where Ãm,n (r) is the amplitude profile (real), m and n the poloidal and toroidal
wavenumber respectively and ΩA the phase of the quantity considered. When applied to
equation 18, on can write

Qturb ≈ 〈n〉FS
B0

∑
m,n

kθφ̃m,nT̃m,n sin (Ωφ − ΩT ) (20)

with kθ = m/r the poloidal wavenumber. Ultimately, we consider fluctuations with
similar amplitudes such as φ̃m,n ∼ ñm,n ∼ T̃m,n, leading to:

Qturb ≈ 〈n〉FS
B0

∑
m,n

kθφ̃
2
m,n sin (Ωφ − ΩT ) . (21)

Equation (21) implies thatQturb is proportionnal to φ̃2
m,n, kθ and to the phase difference

between the potential and the temperature. If the analysis presented here holds, both
turbulence intensity and radial turbulent heat flux must be in phase. To verify this
hypothesis, the following definition of electrostatic potential fluctuations is used:

δφ (r, θ, ϕ = 0, t) = φ (r, θ, ϕ = 0, t)− 〈φ (r, θ, ϕ)〉ϕ , (22)

〈φ (r, θ, ϕ)〉ϕ represents the toroidally axisymmetric modes of the potential and are
substracted specifically to remove the contribution coming from :

• The mean potential, or the so-called φ0,0 Fourier mode, which is related to zonal
flows [57].

• The convection cells [57], which are toroidally axisymmetric but exhibit poloidal
asymetries. They are associated with the φm 6=0,0 Fourier components.

The focus here is on a single poloidal plane (r, θ, ϕ = 0) representative of the whole
simulation box. Information of interest being the local turbulence intensity and later
the radial and poloidal geometric structures, this will provide sufficient information on
those variables as discussed in [58] and [59]. The local radial turbulence intensity is then
computed by averaging the square of equation (22) over θ and ∆r:

Iturb =
〈
[δφ (r, θ, ϕ = 0, t)]2

〉
θ,∆r

. (23)

Iturb is normalized to Imaxturb , the maximum value reported before the source activation
which is the same for both the reference and vorticity cases. Figures 8 and 9 represent the
time evolution of the turbulent heat flux and turbulence intensity in the source (figure 8)
and core (figure 9) regions respectively. As expected, Iturb and

〈
Qturb

〉
∆r

are in phase in
both regions, implying the previous relationship found between Qturb and Iturb ↔ φ̃2 holds
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Figure 8: Time evolution of the turbulence heat flux (a) and turbulent intensity (b) in
the r/a = [0.7, 0.8] region for the vorticity (blue dashed line) and reference (dotted green
line). The red vertical line represents the vorticity activation time for the vorticity case.
(a) and (b) signals are in phase.
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Figure 9: This figure shows the time evolution of the turbulent heat flux (a) and turbu-
lence intensity (b) in the r/a = [0.15, 0.6] region for the vorticity (blue dashed line) and
reference (dotted green line) cases. The red vertical line represents the vorticity activation
time for the vorticity case. (a) and (b) signals are in phase.
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in the case of adiabatic electrons. When the vorticity source is activated, the turbulence
intensity largely decreases in the source region by a factor 3 while heat flux decreases by
a factor 10. Note that there is still a small turbulence level present locally. Moreover, the
turbulence intensity also decreases in the core (figure 9) when the vorticity source is on.
The reduction in turbulent heat flux is then directly linked to the reduction of turbulence
intensity.

Another way to verify the validity of the relation described in equation (21) is to plot〈
Qturb
tot

〉
∆r

as a function of Iturb in the core (figure 10a) and source regions (figure 10b). A
linear fit Qturb/ 〈QGB〉r,θ,ϕ = aIturb/I

max
turb is then applied to the data to check the validity

of equation (21). In the source region, both the turbulence intensity and turbulent heat
flux in the vorticity case are at very low levels compared to the reference case. However,
the fit for the reference case is more robust (R2 = 0.57) with a slope of arefsource ∼ 11.2
while it’s only avorsource ∼ 4.8 in the vorticity case (R2 = 0.09). Not withstanding the small
value of the R2 value in the vorticity case, it is appearant that the plasma behaviour is
different than in the reference case. This indicates large variations in kθ and/or phase
differences. In the core region, both the reference and vorticity cases show similar slopes
of avorcore ≈ arefcore ∼ 12.5 with a convincing determination coefficient R2 > 0.8. This means
the turbulence has similar features but with a lower amplitude when the vorticity is on
and verifies equation (21).
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Figure 10: Heat flux as a function of turbulence intensity for the vorticity (blue cross)
and reference (orange dots) cases in the core (a) and source (b) regions.
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4.2 Involved mechanisms: auto-correlation length and perpen-
dicular wavenumber

As already discussed in the introduction, one of the main hypothesis is that an E×B flow
shear is able to tear the turbulent structures locally to reduce their mean size and therefore
stabilize the plasma. We propose two different approaches to verify this prediction in our
simulations:

1. Compute and compare the local auto-correlation radial length of the perturbed
electrostatic potential for both the reference and vorticity cases. The aim is to
check any change in typical radial structure size.

2. Compute the poloidal wavenumber spectrum of the perturbed electrostatic potential
to monitor what poloidal scales are specifically affected by this turbulence intensity
quench.

4.2.1 Auto-correlation radial length

The aim in this paragraph is to quantify effect on the "mean" size of turbulent structures
of the E × B shear flow. For this purpose, we calculate the fluctuations as written in
equation (22) and then compute a correlation length Probability Density Function (PDF),
following reference [58]:

Cδφ,δφ (r, θ, ϕ = 0, t, δr) =
δφ (r + δr, θ, ϕ = 0, t) δφ (r, θ, ϕ = 0, t)

[δφ (r, θ, ϕ = 0, t)]2
(24)

This autocorrelation function is computed for each θ angle and radial location r on a
radial window [r − δrmax, r + δrmax]. Here we adjust the radial extent to δrmax = 20ρc,0,
which is found to be sufficient to capture most of the turbulent radial structures. Thus
we obtain a PDF for each time step, θ angle and radius r/a ∈ [0.1, 0.9]. The Half Width
at Half Maximum (HWHM) of this PDF is taken along δr to obtain a time dependent
poloidal map of the radial correlation length:

Cδφ,δφ

(
r, θ, ϕ = 0, t, LδφAC

)
= 0.5. (25)

Finally, the flux-surface average of the poloidal map obtained is computed before doing
a time average over the last 48000tωc,0 of both the simulation an reference cases.

〈LAC〉FS (r) =
〈
LδφAC (r, θ, t)

〉
FS
, (26)

with the overline representing the time average.

Figure 11a shows the flux-surface and time averaged auto-correlation length as a fuc-
tion of the normalized radius while figure 11b shows the radial profile of the shear rate
ωE×B at the last simulation time. The reference case (figure 11a, dotted green line) rep-
resents the correlation length without the vorticity source. LAC stays close to 3.5ρc,i with
a small E × B shear rate (figure 11b, dotted green line), but if the source is turned on
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Figure 11: Flux surface and time average of the correlation length normalized to the local
ion gyro-radius (a) and E ×B shearing rate (b) as a function of radius for the reference
(green dotted line) and vorticity (blue dashed line) cases. The red vertical line indicates
the source location for the vorticity case.

(figure 11a, dashed blue line), the radial correlation decreases where the flow shear rate
is maximum (figure 11b, dashed blue line), at r/a = 0.75. This is consistent with the
turbulent structure shearing hypothesis: the E × B shear flow reduces locally the radial
extension of the turbulent structures. This ultimately leads to a spatial decorrelation of
those structures and a quench in turbulence intensity as previously observed. Conversely,
the correlation length increases in the range r/a ∈ [0.2; 0.4] and decreases near r/a = 0.5
where shearing is not strong. Hence, the decrease of χT and of the turbulence intensity
in those regions cannot be attributed to the auto-correlation length.

4.2.2 Poloidal wavenumber spectra

To complete this analysis, we compute the kθ spectrum of the perturbed electrostatic
potential to monitor the intensity evolution of the different poloidal structure scales at
different radii. The kθ spectrum is computed through

|δφkθ |
2 (r, kθ) = |δφ (r, kθ, ϕ = 0, t)|2. (27)

For each time step, a 1D FFT is performed along the poloidal axis before averaging
it over the last 48000tωc,0 to get a cleaner signal. This is comparable to

∣∣δφ3D
kθ

∣∣2 (r, kθ) =∑
kϕ
|δφ (r, kθ, kϕ)|2 because the dominant modes are the resonant ones.

Figure 12a shows the core region (i.e. r/a = 0.43) poloidal wavenumber spectra for the
reference case (dotted green line) and vorticity case (dashed blue line). The vorticity case
spectrum keeps the same features as the reference one with a slightly lower amplitude.
Figure 12b shows the poloidal wavenumber spectrum for the source region (i.e. r/a =
0.75). A clear difference can be seen between the reference (dotted green line) and vorticity
case (dashed blue line). The smallest poloidal scales (kθρc,i > 0.1) undergo a much
more important decrease in intensity than the bigger scales (kθρc,i < 0.1). This shows
a reorganisation of the turbulent structures at that location with a mean scale shifting
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from kθρc,i ≈ 0.28 to kθρc,i ≈ 0.16, meaning the poloidal structures got bigger but also
less intense. One explanation for this local shift is that turbulent structures may get
tilted along the poloidal direction due to shearing as shown in figure 1 of [53]. As a
result turbulent structures are radially smaller and poloidally bigger with an overall lower
intensity.
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Figure 12: Poloidal wavenumber spectra using a 1D FFT averaged over the last 100
time steps for the reference (green dotted line) and vorticity (blue dashed line) cases for
r/a = 0.43 (a) and r/a = 0.75 (b).

5 Steep gradient case
Another way to generate a localized E × B poloidal shear flow is to produce a radially
strong pressure gradient (figure 13a) as shown with the radial density profile on figure
2a. Since the temperature profile is allowed to evolve (flux-driven condition) but not the
ion density profile (adiabatic electrons), we can enforce an initial density profile with a
steep gradient at the desired location, the pressure gradient intensity defining the poloidal
shear flow amplitude. The main interest of this approach is to determine how the heat
transport coefficients behave when an H-mode pressure profile is enforced from the start.
A simulation with such gradient and characteristics detailed in table 1 shows that this
method creates indeed the desired radial profile of poloidal E × B shear flow as shown
in figure 13b. Notice that, in this case, the velocity profile is different from the vorticity-
induced one (figure 4b, dashed blue line) with a single lobe instead of two at r/a = 0.75.
Outside of the steep gradient region, the E × B velocity profile is similar to what is ob-
served in the reference case.

Figure 14 shows the time evolution of the total heat diffusivity (figure 14a), the tur-
bulent heat flux (figure 14b) and the turbulent intensity (figure 14c) in the steep gradient
region. The turbulent diffusivity is vanishing in that region and only marginally con-
tributes to the total diffusivity now dominated by the neoclassical coefficient, roughly
constant at χneoT / 〈χGB〉∆r,θ,ϕ ≈ 0.5. The radial turbulent heat flux (figure 14b) shows
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Figure 13: Radial profile of the total pressure (a) and E × B poloidal velocity (b) at
the simulation end for the steep gradient case. The red vertical line indicates the steep
gradient position.
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Figure 14: Diffusivity, turbulent heat flux and turbulence intensity time evolution aver-
aged in the r/a = [0.7, 0.8] region for the steep gradient case. (a) Time evolution of the
total (dashed orange line) and turbulent (solid black line) heat diffusivity coefficient. (b)
Turbulent heat flux as a function of time. (c) Turbulence intensity plotted against time.
(b) and (c) signals are in phase.

19



5 10 15 20
Time(ω−1

c, i ) 1e4

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

χ T
/⟨χ

G
B
⟩ Δ

r,
θ,
φ

⟨Δ⟩

χtotT

χturbT

0 5 10 15 20
Time(ω−1

c, i ) 1e4

0

2

4

Q
tu
rb
/⟨Q

G
B
⟩ r,

θ,
φ

⟨b⟩

0 5 10 15 20
Time(ω−1

c, i ) 1e4

0

1

2

3

4

I tu
rb
/Im

ax
tu
rb

1e−1

⟨c⟩

Figure 15: This figure is similar to figure 14 except that the radial average is in the
r/a = [0.15, 0.6] region for the steep gradient case. (a) Time evolution of the total
(dashed orange line) and turbulent (solid black line) heat diffusivity coefficient. (b)
Turbulent heat flux as a function of time. (c) Turbulence intensity plotted against time.
(b) and (c) signals are in phase.
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the same trend as the turbulence intensity (figure 14c) and drops to very low levels even
smaller than the level observed in the vorticity case (8a).

In the core, the diffusivity is dominated by tubulence and does not show the decaying
trend (figure 15a). Figure 15b shows the time evolution of the radial turbulent heat flux
which again correlates strongly with the turbulence intensity in the same region (figure
15c). This approach seems effective to reduce the heat turbulent transport coefficient and
turbulence intensity both near the steep gradient and in the core.

The origin of the barrier is however more ambiguous than in the vorticity case. Two
main factors need to be taken into account here. The first one is the linear stabilization
of ITG by the density gradient. The criteria to enable ITG to grow linearly in a tokamak
geometry is given in [60]. With our parameters, we get κcritT = 22.4, which is higher than
the prescribed value of κT = 6.6. Therefore, the linear stabilization of ITG modes by
the density gradient is primarly responsible for the transport barrier creation and the low
turbulent heat flux observed in the region r/a = [0.7, 0.8].

Moreover, one cannot neglect the impact of the E × B shear flow generated by the
pressure gradient. As shown on figure 11b and 16b, the shearing levels generated by the
source and the steep gradient present different shapes (i.e. two vs one lobe) but are within
the same order of magnitude of ∼ 8γ̄lin, the average linear growth rate of ITG modes at
r/a = 0.5. The E ×B flow shear is likely to prevent ITG turbulence to propagate across
this region by tearing appart convective cells that could develop e.g. through turbulence
spreading. This results in an even more "effective" transport barrier with two different
stabilizing mechanisms taking place simultaneously.
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Figure 16: Flux surface and time average of the correlation length (a) and E×B shearing
rate (b) as a function of radius for the steep gradient case. The red vertical line indicates
the steep gradient location.

Figure 16a confirms the previous analysis by showing that the auto-correlation radial
length of the perturbed potential is significantly lower near the steep gradient position at
r/a = 0.75. This shows that almost no turbulence structures are present here while the
rest of the plasma manifests a similar behaviour as evidenced in the reference case (figure
11b, dotted green line).
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6 Discussion and conclusion
We have analyzed here, by means of flux driven gyrokinetic simulations of ITG turbulence,
two different ways to reduce turbulence and make the plasma bifurcate to what can be
described as an improved confinement mode with the development of a transport barrier.

The first way is based on a method proposed by A. Strugarek [38] [39] that uses a
vorticity source to locally polarize the plasma and generate a strong E × B shear flow
comparable to what is observed experimentally for such plasmas. This method leads to
the effective reduction of the turbulent heat diffusivity χturbT in the source region when the
shear rate ωE×B reaches a threshold of ωE×B ≈ γlin, meaning no fluctuation persists in
the vicinity of the strongly sheared region. A minor reduction in χturbT is observed as well
in the core region compared to a reference case, showing that the edge-localized source
has an impact on the core. This reduction in turbulent transport can be explained by the
turbulence intensity quench observed when vorticity is turned on. Moreover, a shearing
of the larger turbulent structures into smaller ones is observed as attested by the change
of correlation length in the strong flow shear region. The kθ spectrum analysis shows
the impact of the source with lower turbulence intensity, shifting the maximum of the
spectrum to the lower wavenumbers. This effect is due to the structures being tilted in
the poloidal direction. This reduction in heat transport led to slightly higher pressure in
the core than the reference scenario without the vorticity source.

The second way consists in enforcing a H-mode-like density profile to generate through
the radial force balance a localized strong E×B shear flow. This alternative method man-
aged to stabilize the plasma locally by linearly stabilizing ITG modes through the steep
gradient profile enforced. In addition to this linear stabilization effect, the E × B flow
shear generated by the steep pressure gradient also helps stabilizing the plasma by tearing
apart any turbulent structures that could grow in the steep gradient region. The edge
reduction in heat transport leads to higher core temperatures, meaning the created trans-
port barrier is efficient enough to increase energy confinement.

Accounting for kinetic electrons would allow particle transport in the simulation pre-
sented here in both the vorticity and steep gradient cases. The latter case would therefore
be difficult to study as we expect the enforced steep density gradient to collapse rapidly
and it is not expected to generate and maintain a transport barrier. In addition, TEMs
would arise in the system and combine with ITGs and probably lead to higher turbu-
lence level since steep density gradients are destabilizing for TEMs [61]. We still expect
the vorticity source to be relevant in the presence of kinetic electrons and we expect a
transport barrier could still arise in those conditions, even with TEMs.

However, one may expect a different threshold in the magnitude of the vorticity source
to trigger a transport barrier. Indeed, the saturation of TEM turbulence exhibits a dif-
ferent sensitivity to Zonal Flows as compared to ITG. In particular, their contribution to
TEM saturation has been found to depend on local plasma parameters, most critically the
temperature ratio Te/Ti and η = Ln/LTe, the ratio of density over temperature gradient
lengths [62][63][64][65].

The next step with this study is to inject impurities, like helium and tungsten, and
observe the effect of those barriers on the impurity heat and particle transport with similar
parameters in GYSELA.
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