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CONDITIONING (SUB)CRITICAL LÉVY TREES BY THEIR
MAXIMAL DEGREE: DECOMPOSITION AND LOCAL LIMIT

ROMAIN ABRAHAM1, JEAN-FRANÇOIS DELMAS2, AND MICHEL NASSIF3

Abstract. We study the maximal degree of (sub)critical Lévy trees which arise as the
scaling limits of Bienaymé-Galton-Watson trees. We determine the genealogical structure
of large nodes and establish a Poissonian decomposition of the tree along those nodes.
Furthermore, we make sense of the distribution of the Lévy tree conditioned to have a
fixed maximal degree. In the case where the Lévy measure is diffuse, we show that the
maximal degree is realized by a unique node whose height is exponentially distributed and
we also prove that the conditioned Lévy tree can be obtained by grafting a Lévy forest on
an independent size-biased Lévy tree with a degree constraint at a uniformly chosen leaf.
Finally, we show that the Lévy tree conditioned on having large maximal degree converges
locally to an immortal tree (which is the continuous analogue of the Kesten tree) in the
critical case and to a condensation tree in the subcritical case. Our results are formulated
in terms of the exploration process which allows to drop the Grey condition.

1. Introduction and main results

Lévy trees are randommetric spaces that encode the genealogical structure of continuous-
state branching processes (CB processes for short). As such, they arise as the scaling limits
of Bienaymé-Galton-Watson trees. Lévy trees were introduced by Le Gall and Le Jan [28]
and Duquesne and Le Gall [12] in order to generalize Aldous’ Brownian tree [7]. They also
appear as scaling limits of various models of trees and graphs, see e.g. Haas and Miermont
[18], and are naturally related to fragmentation processes, see Miermont [29,30], Haas and
Miermont [17], Abraham and Delmas [1].

In the present paper, we study the maximal degree of a general Lévy tree. More precisely,
we first establish a Poissonian decomposition of the Lévy tree along large nodes. Then,
we make sense of the distribution of the Lévy tree conditioned to have a fixed maximal
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2 CONDITIONING LÉVY TREES BY THEIR MAXIMAL DEGREE

degree. In the case where the Lévy measure is diffuse, we show that the maximal degree
is realized by a unique node, and we describe how to reconstruct the tree by grafting a
Lévy forest on an independent size-biased Lévy tree (with a restriction on the maximal
degree) at a uniform leaf. Finally, we investigate the asymptotic behavior of the Lévy tree
conditioned to have large maximal degree.

These questions arise naturally in the study of random trees and have been thoroughly
investigated in the case of Bienaymé-Galton-Watson trees. The first results in this di-
rection were obtained by Jonsson and Stefánsson [25] who showed that a condensation
phenomenon appears for a certain class of subcritical Bienaymé-Galton-Watson trees con-
ditioned to have a large size, in the sense that with high probability there exists a unique
node with degree proportional to the size. Furthermore, the tree converges locally to a
condensation tree consisting of a finite spine with random geometric length onto which
independent and identically distributed Bienaymé-Galton-Watson trees are grafted. This
was later generalized by Janson [24], with further results by Kortchemski [26], Abraham
and Delmas [4], Stufler [31]. On the other hand, He [19] shows that Bienaymé-Galton-
Watson trees conditioned on having large maximal degree converge locally to Kesten’s
tree (which consists of an infinite spine onto which independent and identically distributed
Bienaymé-Galton-Watson trees are grafted) in the critical case and to a condensation tree
in the subcritical case.

In the continuum setting, Bertoin [9] determined the distribution of the maximal degree
of a stable Lévy tree (his result is formulated in terms of Lévy processes). Using the for-
malism of CB processes, He and Li [22] treated the case of a general branching mechanism
(in fact their result is more general as they considered CB processes with immigration). In
[21], they also studied the local limit of a CB process conditioned to have large maximal
degree (i.e. large maximal jump). In the critical case, they showed that it converges locally
to a CB process with immigration. Later , He [20] extended the local convergence result
to the whole genealogy: more precisely, he showed that a critical Lévy tree conditioned
on having large maximal degree converges locally to an immortal tree (which is the con-
tinuous counterpart of Kesten’s tree, consisting of an infinite spine onto which trees are
grafted according to a Poisson point process). We improve these results by considering the
density version of the conditioning instead of the tail version: more explicitly, we study
the asymptotic behavior of critical Lévy trees conditioned to have maximal degree equal to
(and not larger than) a given value. Density versions are finer than their tail counterparts
and are usually more difficult to prove.

The existing litterature in the subcritical case is less developped. He and Li [21] showed
that a subcritical CB process conditioned to have large maximal degree converges locally
to a CB process with immigration which is killed (i.e. sent to infinity) at an independent
exponential time, thus underlining a condensation phenomenon. We improve this result
in several directions. Again we consider the density version of the conditioning instead of
the tail version. We also extend the convergence result to the whole genealogical structure
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instead of the population size at a given time: this gives more information and, as an
example, allows us to see that only one large node emerges. Finally, we are also able to
describe precisely what happens above the condensation node.

For the sake of clarity, we shall formulate our results in terms of Lévy trees in the
introduction. This requires an additional assumption on the branching mechanism, namely
the Grey condition (see below), in order to have a nice topology on the set of trees. Indeed,
this condition ensures that the Lévy tree is a compact real tree. However, it is superfluous
and will be dropped in the rest of the paper where we will deal with the exploration
process instead. Let us mention that a forthcoming work by Duquesne and Winkel [14]
should allow us to use the formalism of real trees even for a general branching mechanism
not necessarily satisfying the Grey condition.

Before stating our main results, we need to recall some definitions and to set notations.

1.1. Real trees. We recall the formalism of real trees, see [16]. A quadruple (T, d, ∅, µ)
is called a real tree if (T, d) is a metric space equipped with a distinguished vertex ∅ ∈ T
called the root and a nonnegative finite measure µ on T and if the following two properties
hold for every x, y ∈ T :

(i) (Unique geodesics). There exists a unique isometric map fx,y : [0, d(x, y)] → T such
that fx,y(0) = x and fx,y(d(x, y)) = y.

(ii) (Loop-free). If ϕ is a continuous injective map from [0, 1] into T such that ϕ(0) = x
and ϕ(1) = y, then we have ϕ([0, 1]) = fx,y ([0, d(x, y)]).

For every vertex x ∈ T , we define its height by H(x) = d(∅, x). The height of the tree is
defined by h(T ) = supx∈T H(x). Note that if (T, d) is compact, then h(T ) <∞.

We will denote by T the set of (isometry classes of) compact real trees. Let us mention
that it can be equipped with the Gromov-Hausdorff-Prokhorov distance which makes it a
Polish space, see e.g. [6].

We will also need the set T∗ of (isometry classes of) compact real trees that are marked,
i.e. equipped with a distinguished vertex in addition to the root ∅. Again, T∗ can be
made into a Polish space when equipped with a marked variant of the Gromov-Hausdorff-
Prokhorov distance.

1.2. Local convergence of real trees. We will make use of the notion of local con-
vergence for locally compact real trees which we now recall. For every h > 0, define the
restriction mapping on the set of (isometry classes of) real trees by:

rh(T, d, ∅, µ) = (T h, d|Th×Th , ∅, µ|Th) where T h = {x ∈ T : H(x) ≤ h}.
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In other words, rh(T ) is the real tree obtained from T by removing all nodes whose height
is larger than h, equipped with the same metric and measure restricted to T h. Recall that
the Hopf-Rinow theorem implies that if T is a locally compact real tree, the closed ball
rh(T ) is compact. We say that a sequence Tn of locally compact trees converges locally
to a locally compact tree T if for every h > 0, the sequence rh(Tn) converges for the
Gromov-Hausdorff-Prokhorov distance to rh(T ).

1.3. Grafting procedure. Given a real tree T ∈ T and a finite or countable family
((xi, Ti), i ∈ I) of elements of T × T, we denote by

T ~i∈I (xi, Ti)

the real tree obtained by grafting Ti on T at the node xi. For a precise definition, we refer
the reader to [3, Section 2.4].

1.4. Lévy trees. Let ψ be a branching mechanism given by:

ψ(λ) = αλ+ βλ2 +
∫

(0,∞)

(
e−λr − 1 + λr

)
π(dr), (1.1)

where α, β ≥ 0 and π is a σ-finite measure on (0,∞) such that
∫

(0,∞)(r ∧ r2) π(dr) < ∞.
The branching mechanism ψ is said to be critical (resp. subcritical) if α = 0 (resp. α > 0).
In what follows, we assume that π 6= 0 as otherwise all branching points of the Lévy tree
will be binary. Whenever we are dealing with Lévy trees, we always assume that the Grey
condition holds: ∫ ∞ dλ

ψ(λ) <∞, (1.2)

which is equivalent to the compactness of the Lévy tree. In the rest of the paper, this
condition will be relaxed to:

β > 0 or
∫

(0,1)
r π(dr) =∞. (1.3)

We will consider a Lévy tree T under its excursion measure which is denoted by Nψ.
Here we briefly recall some results on Lévy trees but we refer the reader to Duquesne and Le
Gall [12,13] for a complete presentation on the subject. One can define a σ-finite measure
Nψ on the space T, called the excursion measure of the Lévy tree, with the following
properties.

(i) Mass measure. For Nψ-almost every T , the mass measure µ is supported on the
set of leaves Lf(T ) := {x ∈ T : T \{x} is connected}. Furthermore, the total mass
σ := µ(T ) satisfies:

Nψ
[
1− e−λσ

]
= ψ−1(λ). (1.4)



CONDITIONING LÉVY TREES BY THEIR MAXIMAL DEGREE 5

(ii) Local times. For Nψ-almost every T , there exists a process (La, a ≥ 0) with
values in the space of finite measures on T which is càdlàg for the weak topology
and such that

µ(dx) =
∫ ∞

0
daLa(dx). (1.5)

For every a ≥ 0, the measure La is supported on T (a) := {x ∈ T : H(x) = a} the
set of nodes at height a. Furthermore, the real-valued process (Laσ := 〈La, 1〉, a ≥ 0)
is a ψ-CB process under its canonical measure.

(iii) Branching property. For every a ≥ 0, let (T i, i ∈ Ia) be the subtrees of T
originating from level a. Then, under Nψ and conditionally on ra(T ) := {x ∈
T : H(x) ≤ a}, the measure ∑i∈Ia δT i is a Poisson point measure with intensity
Laσ Nψ.

(iv) Branching points. For Nψ-almost every T , the branching points of T are either
binary or of infinite degree. The set of binary branching points is empty if β = 0
and is a countable dense subset of T if β > 0. The set

Br∞(T ) := {x ∈ T : T \ {x} has infinitely many connected components}

of infinite branching points is nonempty with Nψ-positive measure if and only if
π 6= 0. If 〈π, 1〉 = ∞, the set Br∞(T ) is countable and dense in T for Nψ-almost
every T . Furthermore, the set {H(x), x ∈ Br∞(T )} coincides with the set of
discontinuity times of the mapping a 7→ La. For every such discontinuity time a,
there is a unique xa ∈ Br∞(T ) ∩ T (a) and ∆a > 0 such that

La = La− + ∆aδxa .

For convenience, we define ∆a for every a ≥ 0 by setting ∆a = 0 if La = La−. In
particular, we have Laσ = La−σ + ∆a, that is ∆a is exactly the size of the jump of
the associated CB process at time a. We will call ∆a the degree (or the mass) of
the node xa. This is an abuse of language since a node xa ∈ Br∞(T ) has infinite
degree by definition.

1.5. Main results. We denote by ∆ the maximal degree of the Lévy tree T under Nψ:

∆ = sup
a≥0

∆a. (1.6)

The first result of this paper gives the joint distribution of the maximal degree ∆ and the
total mass σ under Nψ. The distribution of the maximal degree was already obtained by
Bertoin [9, Lemma 1] in the stable Lévy case then by He and Li [22] in the general case.

For the sake of notational simplicity, if ν is a measure on R we will write ν(a, b)
(resp. ν[a, b)) instead of ν((a, b)) (resp. ν([a, b))). We will also write ν(a) for ν({a}).
Denote by π̄ : R+ → (0,∞] the tail of the Lévy measure π:

π̄(δ) = π(δ,∞), ∀δ ≥ 0, (1.7)
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and define the Laplace exponent ψδ for every δ > 0 by:

ψδ(λ) =
(
α +

∫
(δ,∞)

r π(dr)
)
λ+ βλ2 +

∫
(0,δ]

(
e−λr − 1 + λr

)
π(dr)

= ψ(λ) +
∫

(δ,∞)

(
1− e−λr

)
π(dr). (1.8)

Observe that, in terms of the associated Lévy process, this corresponds to removing all
jumps with size larger than δ. If the Lévy measure π is finite, we also define:

ψ0(λ) =
(
α +

∫
(0,∞)

r π(dr)
)
λ+ βλ2. (1.9)

Proposition 1.1. For every δ > 0 and λ ≥ 0, we have:

Nψ
[
1− e−λσ1{∆≤δ}

]
= ψ−1

δ (π̄(δ) + λ). (1.10)

Furthermore, if the Lévy measure π is finite, we have:

Nψ
[
1− e−λσ1{∆=0}

]
= ψ−1

0 (〈π, 1〉+ λ). (1.11)

The proof is given in Section 3.

Remark 1.2. Let us make a connection with He and Li [21]. Recall that under Nψ the
process (Laσ, a ≥ 0) is distributed as a ψ-CB process under its canonical measure and that
the maximal degree ∆ of the Lévy tree corresponds to the maximal jump of the associated
CB process. In particular, taking λ = 0 in (1.10) gives the distribution of the maximal
jump of a ψ-CB process, which was already obtained by He and Li, see [21, Corollary 4.2].
In fact, their result is much more general (see [21, Theorem 4.1]) since they consider a CB
process with immigration and in this context, they compute the distribution of the local
maximal jump which in terms of the Lévy tree corresponds to the maximal degree up to a
fixed level h. However, they do not give the joint distribution of ∆ and σ, which in terms
of the CB process corresponds to the total mass:

σ =
∫ ∞

0
Laσ da.

Next, we give a decomposition of the Lévy tree along the large nodes. More precisely, we
identify the distribution of the pruned Lévy tree obtained by removing all nodes with degree
larger than δ (and the subtrees above them). This is again a Lévy tree with branching
mechanism ψδ under its excursion measure. Furthermore, one can recover the Lévy tree
from the pruned one by grafting Lévy forests at uniformly chosen leaves in a Poissonian
manner. Before stating the result, we first need to introduce some notations. For every
r > 0, denote by Pψr the distribution of the random real tree T = {∅} ~i∈I Ti obtained
by gluing together at their root the atoms (Ti, i ∈ I) of a T-valued Poisson point measure
with intensity rNψ[dT ]. This should be interpreted as the distribution of a Lévy forest
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with initial degree r > 0. Furthermore, for every δ > 0 such that π̄(δ) > 0, set:

Qψ
δ (dT ) = 1

π̄(δ)

∫
(δ,∞)

π(dr)Pψr (dT )

which is the distribution of a Lévy forest with random initial degree with distribution π
conditioned on being larger than δ.

Theorem 1.3. Let δ ≥ 0 such that π̄(δ) <∞. Under Nψδ and conditionally on (T , ∅, d, µ),
let ((xi, Ti), i ∈ I) be the atoms of a Poisson point measure on T × T with intensity
π̄(δ)µ(dx)Qψ

δ (dT̃ ). Then, under Nψδ , the random tree T ~i∈I (xi, Ti) has distribution
Nψ.

Figure 1. Decomposition of the Lévy tree T along the nodes with degree
larger than δ (left) and the associated discrete forest (right). In blue: the
pruned subtree T δ, in red: the first-generation nodes with degree larger than
δ.

See Theorem 4.1 for a more precise statement. In particular, the pruned Lévy tree
T δ which is obtained from T by removing all nodes with degree larger than δ is again
a Lévy tree with branching mechanism ψδ. Thanks to this decomposition, we prove in
Proposition 4.6 that the discrete forest formed by nodes with degree larger than δ is a
Bienaymé-Galton-Watson forest and we specify its initial distribution and its offspring
distribution, see Figure 1.

Remark 1.4. Theorem 1.3 is a special case of the main result in [5]. In that paper, the
authors study a pruning procedure on the Lévy tree defined as follows: they add some
marks on the skeleton of the tree according to a Poisson point measure with intensity α1Λ
(where Λ is the length measure on T which is the equivalent of the Lebesgue measure) and
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add some other marks on the infinite branching points xa with probability p(∆a) where p
is a nonnegative measurable function satisfying:∫

(0,∞)
rp(r) π(dr) <∞.

Then they show that the subtree T α1,p containing the root obtained from T by removing
all the marks is again a Lévy tree and identify its branching mechanism. Furthermore,
they determine the distribution of the subtrees above the marks conditionally on T α1,p.
It is obvious that the tree T δ coincides with T α1,p where α1 = 0 and p = 1(δ,∞). Since
p satisfies the integrability assumption above (as

∫
(1,∞) r π(dr) < ∞), their result applies

and gives the joint distribution of the pruned tree T δ and the subtrees originating from
the nodes with degree larger than δ. However, the proof is much simpler in our particular
setting.

One of our main results is the next theorem giving a decomposition of the Lévy tree at
its largest nodes. Under Nψ, denote by Mδ the random variable defined by:

Mδ = eg(δ)σ − 1
g(δ) , where g(δ) = π(δ)e−δNψ [∆>δ].

This should be interpreted as Mδ = σ if g(δ) = 0 (i.e. if δ is not an atom of π).

Theorem 1.5. There exists a regular conditional probability Nψ[·|∆ = δ] for δ > 0 such
that π[δ,∞) > 0, which is given by, for every measurable and bounded F : T→ R:

Nψ[F (T )|∆ = δ] = 1
Nψ[Mδ1{∆<δ}]

∞∑
k=0

g(δ)k
(k + 1)!

×Nψ

[∫ k+1∏
i=1

µ(dxi)Pψδ (dTi|∆ ≤ δ)F (T ~k+1
i=1 (xi, Ti))1{∆<δ}

]
, (1.12)

where Nψ[Mδ1{∆<δ}] < ∞. In particular, if δ > 0 is not an atom of the Lévy measure π,
we have:

Nψ[F (T )|∆ = δ] = 1
Nψ[σ1{∆<δ}]

Nψ
[∫

µ(dx)Pψδ (dT̃ |∆ ≤ δ)F (T ~ (x, T̃ ))1{∆<δ}
]
.

(1.13)
Furthermore, if 〈π, 1〉 =∞, then Nψ-a.e. ∆ > 0, and if 〈π, 1〉 <∞, then we have:

Nψ[F (T )1{∆=0}] = Nψ0 [F (T )e−〈π,1〉σ]. (1.14)

The proof is given in Section 5. Some comments are in order.
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(i) Recall that the distribution of ∆ is given in Proposition 1.1. Together with the
distribution of T conditionally on ∆ = δ, we can recover the unconditional distri-
bution of the Lévy tree via the disintegration formula:

Nψ[F (T )] = Nψ[F (T )1{∆=0}] +
∫

(0,∞)
Nψ[∆ ∈ dδ] Nψ[F (T )|∆ = δ],

where the first term on the right-hand side vanishes if π is infinite.
(ii) Assume that δ > 0 is not an atom of π. Then, conditionally on ∆ = δ, the

Lévy tree can be constructed as follows: take T̃ with distribution Nψ[σ1{∆≤δ}]−1

Nψ[σ1{∆≤δ} dT ], choose a leaf uniformly at random in T̃ (i.e. according to its
normalized mass measure σ̃−1µ̃) and on this leaf graft an independent Lévy forest
with initial degree δ conditioned to have maximal degree ∆ ≤ δ. In fact, since δ is
not an atom, this random forest will have no other nodes with degree δ besides the
root. This entails that, conditionally on ∆ = δ, there is a unique node realizing
the maximum degree.

(iii) The situation is different when δ > 0 is an atom of π. In that case, conditionally on
∆ = δ, the number of first-generation nodes realizing the maximal degree has a Pois-
son distribution. More precisely, conditionally on ∆ = δ, the Lévy tree can be con-
structed as follows: take T̃ with distribution Nψ[Mδ1{∆<δ}]−1 Nψ[Mδ1{∆<δ} dT ],
and, conditionally on T̃ , graft a Poisson point measure with intensity g(δ) µ̃(dx)
Pψδ (dT |∆ ≤ δ) conditioned on containing at least one point.

As a consequence, we show in Proposition 5.11 that if the Lévy measure π is diffuse,
then Nψ-a.e. there is a unique node X∆ with degree ∆. Denote by H∆ = H(X∆) its height.
Then we give a decomposition of the Lévy tree conditioned on ∆ = δ and H∆ = h, see
Theorem 6.3.

Finally, we turn to the behavior of a Lévy tree conditioned to have a large maximal
degree. Other conditionings have been considered in the past. Duquesne [11] (this is
also related to Williams’ decomposition, see [2]) proved that a (sub)critical Lévy tree
conditioned on having a large height converges locally to the immortal tree (which consists
of an infinite spine onto which trees are grafted according to a Poisson point process).
Later, He [20] proved the same convergence for a critical Lévy tree conditioned on having
a large maximal degree ∆ > δ or a large width. In fact, his result is more general as it
allows to condition by any measurable function of the tree satisfying a natural monotonicity
property.

Here we treat both the critical and the subcritical cases and we consider the density
version ∆ = δ. Similarly to the discrete case, two drastically different types of limiting
behavior appear. In the subcritical case, there is a condensation phenomenon where a node
with infinite degree emerges at a finite exponentially distributed height. Denote by X∆
the lowest node with degree ∆ and let F+

∆ be the forest above X∆, seen as a point measure
on R+ × T. To be more precise, the forest F+

∆ = ∑
i∈I δ(`i,Ti) is obtained by decomposing
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the path of the exploration process (or the height process) into excursions away from 0,
with each excursion arriving at local time `i and coding a tree Ti. Finally, let T −∆ be the
pruned Lévy tree, that is the Lévy tree T after removing X∆ and F+

∆ . We refer the reader
to Theorem 7.5 and Theorem 8.2 for a precise statement.

Theorem 1.6. Assume that ψ is subcritical and that the Lévy measure π is unbounded.
Let F : T∗ → R be continuous and bounded, Φ: R+ × T→ R+ be continuous with bounded
support and let Aδ be equal to any one of the following events: {∆ = δ}, {∆ > δ}, {T has
exactly one node with degree larger than δ} or {T has exactly one first-generation node
with degree larger than δ}. We have:

lim
δ→∞

Nψ
[
F (T −∆ , X∆)e−〈F

+
∆ ,Φ〉

∣∣∣Aδ] = αNψ
[∫
T
F (T , x)µ(dx)

]
× exp

{
−
∫ ∞

0
d`Nψ

[
1− e−Φ(`,T )

]}
. (1.15)

In particular, conditionally on Aδ, the height H(X∆) of X∆ converges to an exponential
distribution with mean 1/α.

The last result should be interpreted as local convergence in distribution to a “conden-
sation tree” described as follows: start with a size-biased Lévy tree T̃ with distribution
αNψ[σdT ], choose a leaf uniformly at random in T̃ and on this leaf graft an independent
Lévy forest with infinite degree (i.e. a Poisson point measure on R+ × T with intensity
d`Nψ[dT ]). However, the limiting object is a (random) real tree which is not locally
compact and the way to circumvent this difficulty is by considering the subtree above the
condensation node as a point measure instead.

In the critical case, it should be no surprise that the density version ∆ = δ gives rise
to the same limiting behavior as the tail version ∆ > δ, namely local convergence to the
immortal tree. Intuitively, this means that the condensation node goes to infinity and thus
becomes invisible to local convergence. Before stating the result, let us define the immortal
tree. Let ∑i∈I δ(si,Ti) be a Poisson point measure on R+ × T with intensity

ds
(

2βNψ[dT ] +
∫ ∞

0
r π(dr)Pψr (dT )

)
.

The immortal Lévy tree T ψ∞ with branching mechanism ψ is the real tree obtained by
grafting the point measure ∑i∈I δ(si,Ti) on an infinite branch. More formally, set:

T ψ∞ = R+ ~i∈I (si, Ti), (1.16)

where R+ is considered as a real tree rooted at 0 and equipped with the Euclidean distance
and the zero measure. In particular, thanks to [13, Theorem 4.5], we have the following
identity which is simply a restatement of Lemma 3.2 in [11] in terms of trees:

E
[
F (rh(T ψ∞))

]
= e−αh Nψ

[
Lhσ F (rh(T ))

]
, ∀h > 0. (1.17)



CONDITIONING LÉVY TREES BY THEIR MAXIMAL DEGREE 11

Theorem 1.7. Assume that ψ is critical and that π is unbounded. Either let Aδ = {∆ = δ}
and assume that the additional assumption

lim
δ→∞

π(δ)
Nψ[σ1{∆<δ}]π̄(δ)

∫
[δ,∞) r π(dr) = 0 (1.18)

holds, or let Aδ be equal to any of the following events: {∆ > δ}, {T has exactly one node
with degree larger than δ} or {T has exactly one first-generation node with degree larger
than δ}. Then, conditionally on Aδ, the Lévy tree T converges in distribution locally to
the immortal Lévy tree T ψ∞, i.e. we have:

lim
δ→∞

Nψ [F (rh(T ))|Aδ] = E
[
F (rh(T ψ∞))

]
. (1.19)

We refer to Theorem 7.8 and Theorem 8.4 for a precise statement. The assumption
(1.18) is a technical condition which guarantees a fast decay for the size of the atoms of
π. Observe that we have limδ→∞Nψ[σ1{∆<δ}] = Nψ[σ] which is infinite since ψ is critical.
Also notice that (1.18) is automatically satisfied if the Lévy measure π is diffuse.

It is worth noting that in the critical case, conditioning by the different events Aδ
yields the same limiting behavior even though in general they are not equivalent in Nψ-
measure. In the stable (critical) case ψ(λ) = λγ with γ ∈ (1, 2), these quantities can be
computed explicitly, see Proposition 9.2. In that case, we also show in Proposition 9.4
that, conditionally on ∆ > δ, the distribution of the Bienaymé-Galton-Watson forest of
nodes with degree larger than δ is independent of δ.

The rest of the paper is organized as follows. In Section 2, we set notation and we
introduce the main object we will be dealing with, namely the exploration process. We
compute the distribution of the maximal degree in Section 3, then we give a Poissonian
decomposition of the exploration process along the large nodes and study their structure
in Section 4. In Section 5 (resp. Section 6), we make sense of the exploration process
conditioned to have a fixed maximal degree (resp. a fixed maximal degree at a given height).
Sections 7 and 8 deal with the local convergence of the exploration process conditioned to
have large maximal degree. Finally, Section 9 is devoted to the study of the stable case
ψ(λ) = λγ.

2. The exploration process and the Lévy tree

In this section, we will recall the construction of the exploration process introduced in
[28] and later developped in [12].

2.1. Notation. If E is a Polish space, let B+(E) be the set of real-valued and nonnegative
measurable functions defined on E endowed with its Borel σ-field. For any measure ν on E
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and any function f ∈ B+(E), we write 〈ν, f〉 =
∫
E f(x) ν(dx). We also denote by supp(ν)

the closed support of the measure ν in E.

We denote by Mf (E) the set of finite measures on E endowed with the topology of
weak convergence. For every ν ∈Mf (R+), we set:

H(ν) = sup supp(ν), (2.1)
with the convention that H(0) = 0. Moreover, we let

∆(ν) = sup{ν(x) : x ≥ 0} (2.2)
be the largest atomic mass of ν. We say that ν is diffuse if it has no atoms and set ∆(ν) = 0
by convention.

Denote by
D = D(R+,Mf (R+)) (2.3)

the set ofMf (R+)-valued càdlàg functions equipped with the Skorokhod J1-topology. For
a function µ = (µt, t ≥ 0) ∈ D, let

∆(µ) = sup
t≥0

∆(µt) (2.4)

be the largest atom of the entire path of µ.

2.2. The underlying Lévy process and the height process. We consider a (sub)critical
branching mechanism of the form

ψ(λ) = αλ+ βλ2 +
∫

(0,∞)
(e−λr − 1 + λr)π(dr), ∀λ ≥ 0, (2.5)

where α, β ≥ 0 and π 6= 0 is a σ-finite measure on (0,∞) satisfying
∫

(0,∞)(r∧r2)π(dr) <∞.
We consider a spectrally positive Lévy process X = (Xt, t ≥ 0) with Laplace exponent ψ
starting from 0. Namely, we have:

E
[
e−λXt

]
= etψ(λ), ∀t, λ ≥ 0.

We assume that X is of infinite variation a.s. which is equivalent to the following condition:

β > 0 or
∫

(0,1)
r π(dr) =∞. (2.6)

Duquesne and Le Gall [12] proved that there exists a process H = (Ht, t ≥ 0) called the
ψ-height process such that for every t ≥ 0, we have the following convergence in probability:

Ht = lim inf
ε→0

1
ε

∫ t

0
1{Ist<Xs<Ist+ε} ds, (2.7)

where, for every 0 ≤ s ≤ t, Ist = infs≤r≤tXr is the past infimum. They also proved a Ray-
Knight theorem for H which shows that the ψ-height process H describes the genealogy
of the ψ-CB process, see [12, Theorem 1.4.1].
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2.3. The exploration process. Although the height process is not Markov in general, it
is a simple function of a measure-valued Markov process, the so-called exploration process
that we now introduce. The exploration process ρ = (ρt, t ≥ 0) is the Mf (R+)-valued
process defined as follows:

ρt(dr) = β1[0,Ht](r) dr +
∑

0<s≤t,
Xs−<Ist

(Ist −Xs−)δHs(dr). (2.8)

In particular, the total mass of ρt is 〈ρt, 1〉 = Xt − It.

We will sometimes refer to t ≥ 0 as a node in reference to the corresponding real tree
when it is well defined (see Section 2.9). For s, t ≥ 0, we say that s is an ancestor of t and
we write s 4 t if s ≤ t and Hs = infs≤r≤tHr. The set

{s ≥ 0: s 4 t} (2.9)
is called the ancestral line of t. We say that t ≥ 0 is a first-generation node with property
A ⊂ Mf (R+) if ρt ∈ A and ρs /∈ A for every (strict) ancestor s of t. For example, we
will say that t is a first-generation node with mass larger than δ > 0 if ∆(ρt) > δ and
∆(ρs) ≤ δ for every s 4 t with s 6= t. Given 0 ≤ t1 ≤ · · · ≤ tn, there exists a unique s ≥ 0
such that r 4 ti for every 1 ≤ i ≤ n if and only if r 4 s. We write s = t1 ∧ · · · ∧ tn and
call it the most recent common ancestor (MRCA for short) of t1, . . . , tn.

One can recover the heigth process from the exploration process as follows. Denote by
∆Xt = Xt −Xt− the jump of the process X at time t.

Proposition 2.1. Almost surely for every t > 0, we have:

(i) H(ρt) = Ht,
(ii) ρt = 0 if and only if Ht = 0,
(iii) if ρt 6= 0, then supp(ρt) = [0, Ht],
(iv) ρt = ρt− + ∆XtδHt.

In the definition of the exploration process, since X starts from 0, we have ρ0 = 0. In
order to state the Markov property of ρ, we have to define the process ρ starting from any
initial measure ν ∈ Mf (R+). To that end, for every a ∈ [0, 〈ν, 1〉], we define the erased
measure kaν by:

kaν[0, r] = ν[0, r] ∧ (〈ν, 1〉 − a), ∀r ≥ 0.
If a > 〈ν, 1〉, we set kaν = 0. In words, the measure kaν is obtained from ν by erasing a
mass a backward starting from H(ν). For µ ∈ Mf (R+) with bounded support, we define
the concatenation [µ, ν] ∈Mf (R+) of the measures µ, ν by:

〈[µ, ν], f〉 = 〈µ, f〉+ 〈ν, f(H(µ) + ·)〉, ∀f ∈ B+(R+).
Finally, we set ρν0 = ν and

ρνt = [k−Itν, ρt], ∀t > 0.
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We say that ρν = (ρνt , t ≥ 0) is the exploration process started at ν and we write Pν for
its distribution.
Proposition 2.2. For any ν ∈ Mf (R+), the process ρν = (ρνt , t ≥ 0) is a càdlàg strong
Markov process inMf (R+).

2.4. The excursion measure of the exploration process. Let us introduce the ex-
cursion measure Nψ. Denote by I = (It, t ≥ 0) the infimum process of X:

It = inf
0≤s≤t

Xs. (2.10)

Standard results (see e.g. [8]) entail that X − I is a strong Markov process with values in
R+ and that the point 0 is regular. Furthermore, −I is a local time at 0 for X − I. We
denote by Nψ the associated excursion measure of the process X − I away from 0. It is
not difficult to see from (2.7) that Ht (and thus also ρt) only depends on the excursion of
X − I above 0 which straddles time t. It follows that the excursion measure of ρ away
from 0 is the “distribution” of ρ under Nψ. We still denote it by Nψ and we let

σ = inf{t > 0: ρt = 0} (2.11)
be the lifetime of ρ under Nψ (this coincides with the lifetime of X − I under Nψ). In
particular, the following holds for every λ > 0:

Nψ
[
1− e−λσ

]
= ψ−1(λ) and Nψ

[
σe−λσ

]
= 1
ψ′ ◦ ψ−1(λ) , (2.12)

where ψ−1 is the inverse function of ψ. By letting λ→ 0 we obtain:

Nψ[σ] = 1
α
, (2.13)

with the convention that 1/0 =∞. Let us recall Bismut’s decomposition for the exploration
process. Let Ja be the random element inMf (R+) defined by Ja(dr) = 1[0,a](r) dUr, where
U is a subordinator with Laplace exponent

ϕ(λ) = ψ(λ)
λ
− α = βλ+

∫ ∞
0

(
1− e−λr

)
π̄(r) dr, (2.14)

where the tail π̄ of the Lévy measure π is defined in (1.7).
Proposition 2.3. For every F ∈ B+(Mf (R+)), we have:

Nψ
[∫ σ

0
F (ρt) dt

]
=
∫ ∞

0
da e−αa E [F (Ja)] . (2.15)

2.5. Local times of the height process. Although the height process H is not Markov
in general, one can show that its local time process exists under P or Nψ. More precisely,
for every a > 0, there exists a continuous nondecreasing process (Las , s ≥ 0) which can be
characterized via the approximation:

lim
ε→0

Nψ

[
1{supH>h} sup

0≤s≤t

∣∣∣∣1ε
∫ s

0
1{a−ε<Hr≤a} dr − Las

∣∣∣∣
]

= 0, ∀t, h ≥ 0.
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Moreover, Nψ-a.e. the support of the measure La(ds) := dsLas is contained in {s ≥ 0: Hs =
a} and we have the occupation time formula

∫∞
0 daLa(ds) = 1[0,σ](s) ds. Furthermore, the

process (Laσ, a ≥ 0) is a ψ-CB process under its canonical measure.

Let us recall the excursion decomposition of the exploration process above level h > 0.
Set τhs = inf{t > 0:

∫ t
0 1{Hr≤h} dr > s} and define the truncated exploration process by:

rh(ρ) = (ρτhs , s ≥ 0). (2.16)

Denote by Eh the σ-field generated by the process rh(ρ). Let (αi, βi), i ∈ Ih denote the
excursion intervals of H above level h. For every i ∈ I, we define the measure-valued
process ρi by:

〈ρis, f〉 =
∫

(a,∞)
f(r − a) ραi+s(dr) if 0 < s < βi − αi

and ρis = 0 if s = 0 or s ≥ βi − αi. Finally, let `i = Lhαi be the local time at level h at the
beginning of the excursion ρi.

Proposition 2.4. Under Nψ, conditionally on Eh, the random measure ∑i∈I δ(`i,ρi) is a
Poisson point measure with intensity 1[0,Lhσ ](`) d`Nψ[dρ].

2.6. The dual process. We shall need theMf (R+)-valued process η = (ηt, t ≥ 0) defined
by:

ηt(dr) = β1[0,Ht](r) dr +
∑

0<s≤t,
Xs−<Ist

(Xs − Ist )δHs(dr). (2.17)

The process η is the dual process of ρ under Nψ thanks to the following time-reversal
property.

Proposition 2.5. The processes ((ρt, ηt), t ≥ 0) and ((η(σ−s)−, ρ(σ−s)−), t ≥ 0) have the
same distribution under Nψ.

2.7. Grafting procedure. We now explain how to insert a finite collection of measured-
valued processes into a measure-valued process. Let µ = (µ(t), 0 ≤ t < σ) be aMf (R+)-
valued function with lifetime σ ∈ (0,∞] such that µ(t) has bounded support for every
t ∈ [0, σ) and let ∑N

i=1 δ(si,µi) be a finite point measure on R+ × D where the si are
arranged in increasing order and each µi has a finite lifetime σi. Set s0 = Σ0 = 0 and

Σi =
i∑

k=1
σk, ∀i ≥ 1.

Define a measure-valued process µ̃ by:

µ̃(t) =

µ(t− Σi) if si−1 + Σi−1 ≤ t < (si ∧ σ) + Σi−1,

[µ(si), µi(t− si − Σi−1)] if si + Σi−1 ≤ t < si + Σi and si < σ.
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Observe that the (si, µi) such that si ≥ σ do not play a role in this construction and that
µ̃ has lifetime

σ +
∑

i : si<σ
σk.

We denote this grafting procedure by:
µ~Ni=1 (si, µi) = µ̃. (2.18)

In words, this is the process obtained from µ by inserting the measure-valued process µi
into µ at time si < σ.

2.8. A Poissonian decomposition of the exploration process. Let ν ∈ Mf (R+).
We write Pψ,∗ν for the distribution of the exploration process ρ starting at ν and killed
when it first reaches 0. Let us introduce two probability measures on D that will play
a major role in the rest of the paper. For every r > 0, we will write Pψr for Pψ,∗rδ0 . This
should be interpreted as the distribution of the exploration processes with initial mass r.
Furthermore, for every δ > 0 such that π̄(δ) > 0, set:

Qψ
δ (dρ) = 1

π̄(δ)

∫
(δ,∞)

π(dr)Pψr (dρ), (2.19)

which is the distribution of the exploration process starting from a random initial mass
with distribution π conditioned on being larger than δ.

We decompose the path of ρ under Pψ,∗ν according to excursions of the total mass of ρ
above its minimum. Let (αi, βi), i ∈ I denote the excursion intervals of the process X − I
away from 0 under Pψ,∗ν . Define the measure-valued process ρi by ρ(αi+s)∧βi = [k−Iαiν, ρ

i
s].

Lemma 2.6. The random measure ∑i∈I δ(−Iαi ,ρi) is under Pψ,∗ν a Poisson point measure
with intensity 1[0,〈ν,1〉)(u) duNψ[dρ]. In particular, under Pψr , it is a Poisson point measure
with intensity 1[0,r](u) duNψ[dρ].

Using this decomposition, we can give another useful interpretation of the measure Pψr .
Let ρ be the exploration process starting from 0 and let (L0

s, s ≥ 0) be its local time
process at 0. Then the process (ρ̃(r)

t , t ≥ 0) defined by:

ρ̃
(r)
t = (r − L0

t )+δ0 + ρt1{L0
t≤r} (2.20)

has distribution Pψr .

In the next lemma, we identify the distribution of the exploration process above level
H(ν) starting from ν. For a measure ν ∈ Mf (R+) and a positive real a > 0, define θa(ν)
as the measure ν shifted by a. More formally, define a measure θa(ν) on R+ by setting:

〈θa(ν), f〉 =
∫

[a,∞)
f(x− a) ν(dx),

for every f ∈ B+(R+) if a ≤ H(ν) and θa(ν) = 0 if a > H(ν).
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Lemma 2.7. Let ν ∈ Mf (R+) such that ν(H(ν)) > 0. Under Pψ,∗ν , the process ρ̃ =
(θH(ν)(ρt), t ≥ 0) stopped at the first time it hits 0 has distribution Pψν(H(ν)).

Proof. We shall use the Poisson decomposition of Lemma 2.6. Using its notations, we
have ρ(t+αi)∧βi = [k−Iαiν, ρ

i
t] where

∑
i∈I δ(−Iαi ,ρi) is a Poisson point measure with intensity

1[0,〈ν,1〉)(u) duNψ[dρ]. Thus, the exploration process above level H(ν) stopped at the first
time it hits 0 satisfies:

θH(ν)(ρ(t+αi)∧βi) = (ν(H(ν)) + Iαi)δ0 + ρit

if −Iαi ≤ µ(H(ν)) and it is zero if −Iαi > ν(H(ν)). Applying Lemma 2.6 again, it is
easy to see that this is also the Poisson decomposition of ρ under Pψν(H(ν)). This proves the
desired result. �

2.9. The Lévy tree. Recall that the Grey condition∫ ∞ dλ
ψ(λ) <∞ (2.21)

is equivalent to the almost sure extinction of the ψ-CB process in finite time. If it holds,
then the height process H admits a continuous version and one can use the coding of real
trees by continuous excursions (see e.g. [16]) in order to define the Lévy tree T as the tree
coded by the height process H under its excursion measure Nψ. Then the Grey condition
implies that T is a compact real tree. In the rest of the paper we forego this assumption,
but we still interpret the results in terms of trees as they are easier to understand.

3. Distribution of the maximal degree

Under Nψ, denote by ∆ = ∆(ρ) the largest atomic mass of the exploration process.
Thanks to [13, Theorem 4.6], if 〈π, 1〉 < ∞ then the set of discontinuity times of ρ is
Nψ-a.e. finite (and possibly empty). On the other hand, if 〈π, 1〉 =∞ then it is countable
and dense in [0, σ]. In particular, in that case we have that Nψ-a.e. ∆ > 0. The main
result of this section is the following proposition giving the joint distribution of the lifetime
σ and the maximal degree ∆ under Nψ. Recall from (1.7) and (1.8) the definitions of π̄
and ψδ, and define:

ψδ−(λ) = lim
ε↑0

ψδ−ε(λ) =
(
α +

∫
[δ,∞)

r π(dr)
)
λ+ βλ2 +

∫
(0,δ)

(
e−λr − 1 + λr

)
π(dr). (3.1)

Proposition 3.1. For every δ > 0 and λ ≥ 0, we have:

Nψ
[
1− e−λσ1{∆≤δ}

]
= ψ−1

δ (π̄(δ) + λ), (3.2)

Nψ
[
1− e−λσ1{∆<δ}

]
= ψ−1

δ−(π[δ,∞) + λ). (3.3)
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In particular, we have:

Nψ[∆ > δ] = ψ−1
δ (π̄(δ)), (3.4)

Nψ[∆ ≥ δ] = ψ−1
δ−(π[δ,∞)). (3.5)

Furthermore, if 〈π, 1〉 <∞, then we have:

Nψ
[
1− e−λσ1{∆=0}

]
= ψ−1

0 (〈π, 1〉+ λ). (3.6)

Proof. We only prove (3.2), the proof of (3.3) being similar. Fix δ > 0 and let λ, µ ≥ 0.
Let

A = {ν ∈Mf (R+) : ν has an atom with mass > δ}.
We shall compute

v(λ, µ) = Nψ
[
1− e−λσ−µ

∫ σ
0 dt1{ρt∈A}

]
. (3.7)

We have:

v(λ, µ) = Nψ
[∫ σ

0
dt (λ+ µ1{ρt∈A})e−λ(σ−t)−µ

∫ σ
t

ds1{ρs∈A}
]

= Nψ
[∫ σ

0
dt (λ+ µ1{ρt∈A})Eψ,∗ρt

[
e−λσ−µ

∫ σ
0 ds1{ρs∈A}

]]
,

where we applied the Markov property for the last equality. We shall use Lemma 2.6 to
compute the last expectation.

For a measure ν ∈Mf (R+), denote by H ′(ν) the first atom of ν with mass larger than
δ:

H ′(ν) = inf{x ≥ 0: ν(x) > δ},
with the convention that inf ∅ = +∞.

Suppose that ν ∈ A. Recall from Section 2.8 the excursion decomposition of the
exploration process above the minimum of its total mass under Pψ,∗ν . Notice that if
−Iαi < ν ([H ′(ν), H(ν)]) − δ, then ρ(αi+s)∧βi ∈ A for every s ≥ 0. On the other hand,
if −Iαi > ν ([H ′(ν), H(ν)])− δ, then ρ(αi+s)∧βi ∈ A if and only if ρis ∈ A. It follows that

Eψ,∗ν
[
e−λσ−µ

∫ σ
0 ds1{ρs∈A}

]
= Eψ,∗ν

[
exp

{
−
∑
i∈I

(
λσi + µ

∫ βi−αi

0
ds1{ραi+s∈A}

)}]

= exp
{
−
∫ 〈ν,1〉

0
duNψ

[
1− e−(λ+µ1{u<ν[H′(ν),H(ν)]−δ})σ−µ1{u>ν[H′(ν),H(ν)]−δ}

∫ σ
0 ds1{ρs∈A}

]}
= exp

{
− (ν[H ′(ν), H(ν)]− δ)ψ−1(λ+ µ)− (ν[0, H ′(ν)) + δ) v(λ, µ)

}
.
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Now suppose that ν /∈ A. Then Pψ,∗ν -a.s. we have the equality {ρ(αi+s)∧βi ∈ A} = {ρis ∈
A}. It follows that

Eψ,∗ν
[
e−λσ−µ

∫ σ
0 ds1{ρs∈A}

]
= exp {−〈ν, 1〉v(λ, µ)} .

We deduce that v(λ, µ) is equal to

(λ+ µ) Nψ
[∫ σ

0
dt1{ρt∈A} exp

{
− (ρt[H ′t, Ht]− δ)ψ−1(λ+ µ)− (ρt[0, H ′t) + δ) v(λ, µ)

}]
+ λNψ

[∫ σ

0
dt1{ρt /∈A} exp {−〈ρt, 1〉v(λ, µ)}

]
, (3.8)

where H ′t = H ′(ρt).

Thanks to Proposition 2.3, for every θ, ω ≥ 0 we have:

Nψ
[∫ σ

0
dt1{ρt∈A} exp {−θρt[0, H ′t)− ωρt[H ′t, Ht]}

]
=
∫ ∞

0
da e−αaf(a, θ, ω), (3.9)

where we set
f(a, θ, ω) := E

[
1{Ja∈A}e−θJa[0,H′(Ja))−ωJa[H′(Ja),H(Ja)]

]
.

Recall that Ja(dr) = 1[0,a](r) dUr where U is a subordinator with Laplace exponent ϕ
defined in (2.14). Denote by T be the time of the first jump of U exceeding δ:

T := inf {r > 0: ∆Ur > δ} (3.10)
Then it is clear that H(Ja) = a, H ′(Ja) = T and {Ja ∈ A} = {T ≤ a}. Thus, we get:

f(a, θ, ω) = E
[
1{T≤a}e−θUT−−ω∆UT−ω(Ua−UT )

]
= E

[
1{T≤a}e−θUT−−ω∆UT−ϕ(ω)(a−T )

]
,

where we used the strong Markov property at time T for the last equality.

Set
sδ =

∫ ∞
δ

π̄(r) dr and ϕδ(λ) = βλ+
∫ δ

0
(1− e−λr)π̄(r) dr. (3.11)

Using basic results on Poisson point processes, we have that T is exponentially distributed
with mean 1/sδ, ∆UT has distribution s−1

δ 1[δ,∞)(x)π̄(x) dx and is independent of T , and
the process (Ur, 0 ≤ r < T ) is distributed as (Vr, 0 ≤ r < T ), where V is a subordinator
with Laplace exponent ϕδ, independent of (T,∆UT ). Therefore, it follows that

f(a, θ, ω) =
∫ a

0
dt e−sδt−ϕδ(θ)t−ϕ(ω)(a−t)

∫ ∞
δ

dx π̄(x)e−ωx.

We deduce from (3.9) that

Nψ
[∫ σ

0
dt1{ρt∈A} exp {−θρt([0, H ′t))− ωρt([H ′t, Ht])}

]
= 1

(α + ϕ(ω))(sδ + α + ϕδ(θ))

∫ ∞
δ

dx π̄(x)e−ωx. (3.12)
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Similar arguments yield

Nψ
[∫ σ

0
dt1{ρt /∈A} exp {−θ〈ρt, 1〉}

]
=
∫ ∞

0
da e−αa E

[
1{Ja /∈A}e−θ〈Ja,1〉

]
=
∫ ∞

0
da e−αa E

[
1{T>a}e−θUa

]
= 1
sδ + α + ϕδ(θ)

· (3.13)

It follows from (3.8), (3.12) and (3.13) that

v(λ, µ) = (λ+ µ)eδ(ψ−1(λ+µ)−v(λ,µ))

(α + ϕ ◦ ψ−1(λ+ µ))(sδ + α + ϕδ ◦ v(λ, µ))

∫ ∞
δ

dx π̄(x)e−ψ−1(λ+µ)x

+ λ

sδ + α + ϕδ ◦ v(λ, µ) · (3.14)

From (3.7), it is clear by monotone convergence that v(λ, µ) ↑ v(λ) as µ ↑ ∞, where

v(λ) := Nψ
[
1− e−λσ1{∆≤δ}

]
.

Furthermore, thanks to a Tauberian theorem, we have as µ→∞:∫ ∞
δ

e−ψ−1(λ+µ)xπ̄(x) dx ∼ π̄(δ)e−δψ−1(λ+µ)

ψ−1(λ+ µ) · (3.15)

Thus, letting µ→∞ in (3.14) and using that ψ−1(x) (α + ϕ ◦ ψ−1(x)) = x for every x > 0,
we get:

v(λ) = π̄(δ)e−δv(λ) + λ

sδ + α + ϕδ ◦ v(λ) · (3.16)

Notice that for every x > 0, we have:

sδ + α + ϕδ(x) = α + ϕ(x) +
∫ ∞
δ

e−xrπ̄(r) dr

= 1
x

(
ψ(x) +

∫
(δ,∞)

(
1− e−xr

)
π(dr)− π̄(δ)

(
1− e−xδ

))

= 1
x

(
ψδ(x)− π̄(δ)

(
1− e−xδ

))
,

where we used (2.14) and Fubini’s theorem for the second equality and the definition of ψδ
for the last. Thus (3.16) becomes

ψδ ◦ v(λ) = π̄(δ) + λ.

This yields (3.2). Then (3.6) follows by letting δ → 0. �

As a consequence, the following corollary states that the distribution of ∆ under Nψ on
(0,∞) and the Lévy measure π have the same support and the same atoms.
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Corollary 3.2. The measures Nψ[∆ ∈ ·]|(0,∞) and π have the same support. Furthermore,
for every δ > 0, Nψ[∆ = δ] > 0 if and only if δ is an atom of the Lévy measure π.

Proof. This is clear from (3.4) and (3.5). �

Remark 3.3. More precisely, if δ > 0 is an atom of π, we have:
Nψ[∆ = δ] = ψ−1

δ−(π[δ,∞))− ψ−1
δ (π̄(δ)). (3.17)

Furthermore, if 〈π, 1〉 <∞, then we have:
Nψ[∆ > 0] = ψ−1

0 (〈π, 1〉) > 0. (3.18)

4. Degree decomposition of the Lévy tree

In this section, we give a decomposition of the Lévy tree along the large nodes. More
precisely, we identify the distribution of the pruned Lévy tree obtained by removing large
nodes. Furthermore, we show that the initial Lévy tree can be recovered in distribution
from the pruned one by grafting Lévy forests in a Poissonian manner. We apply this
decomposition to describe the structure of the discrete tree formed by large nodes.

4.1. A Poissonian decomposition of the Lévy tree. The main result of this section
is the following Poissonian decomposition along the nodes with mass larger than δ. Recall
from (2.18) the definition of the grafting procedure ~.

Theorem 4.1. The following holds:

(i) Let δ ≥ 0 such that π̄(δ) < ∞. Under Nψδ , let ((si, ρi), i ∈ I) be the atoms of
a Poisson point measure with intensity π̄(δ) dsQψ

δ (dρ̃), independent of ρ. Then,
under Nψδ , the process ρ~i∈I (si, ρi) has distribution Nψ.

(ii) Let δ > 0. Under Nψδ–, let ((si, ρi), i ∈ I) be the atoms of a Poisson point measure
with intensity

ds
∫

[δ,∞)
π(dr)Pψr (dρ̃).

Then, under Nψδ–, the process ρ~i∈I (si, ρi) has distribution Nψ.

Remark 4.2. As mentioned in the introduction, the above theorem is a special case of
the main result in [5] where the number of marks is finite. This greatly simplifies the proof
which is why we choose include it. Observe however that the decomposition in [5] is proved
under P and that an additional argument is needed to show that it still holds under the
excursion measures, see the end of the proof below.

Proof. We only prove the first part, the second one being similar. Notice that the statement
is trivial if π̄(δ) = 0 since in that case we have ψδ = ψ and the intensity of the Poisson
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point measure is 0. Thus we may assume that π̄(δ) ∈ (0,∞). We shall start by proving
the identity under P using a coupling argument. Let Xδ = (Xδ

t , t ≥ 0) be a Lévy process
with Laplace exponent ψδ and let e = (et, t ≥ 0) be an independent Poisson point process
on R+ with intensity 1{r>δ} π(dr). Define the process X = (Xt, t ≥ 0) by:

Xt = Xδ
t +

∑
s≤t

es, ∀t ≥ 0.

Then the process X is also a Lévy process with Laplace transform ψδ(λ) +
∫

(δ,∞)(e−λr −
1) π(dr) = ψ(λ). In words, the process Xδ is obtained from X by removing jumps of size
larger than δ.

Denote by ρ (resp. ρδ) the exploration process associated with X (resp. Xδ). Let Tδ :=
inf{t > 0: ∆(ρt) > δ} be the first time ρ contains an atom with mass larger than δ.
It is clear from the definition that the process ρ jumps exactly when X does, so that
Tδ = inf{t > 0: ∆Xt > δ}. Therefore, we have that Xt = Xδ

t for t < Tδ, which implies
that ρt = ρδt for t < Tδ.

Now, from the construction of X, we get that Tδ = inf{t > 0: et > δ}, that is Tδ is
the first time that the Poisson point process e enters in (δ,∞). Therefore the random
time Tδ is exponentially distributed with mean 1/π̄(δ) and the jump ∆XTδ = eTδ has
distribution 1{r>δ} π(dr)/π̄(δ) and is independent of Tδ. Furthermore, the pair (Tδ,∆XTδ)
is independent of Xδ.

Recall from (2.9) the definition of the ancestral line of t ∈ [0, σ]. Let ∆t = sups4t ∆Xs =
sups4t ∆(ρs) be the maximal degree of the ancestral line of t. For every t ≥ 0, let

A(t) :=
∫ t

0
1{∆s≤δ} ds (4.1)

be the Lebesgue measure of the set of individuals prior to t whose lineage does not contain
any node with mass larger than δ. Let Ct := inf{s ≥ 0: As > t} be the right-continuous
inverse of A and define the pruned exploration process ρ̃ = (ρ̃t = ρCt , t ≥ 0). In other
words, we remove from the tree all the individuals above a node with mass larger than δ
and the pruned exploration process ρ̃ codes the remaining tree.

Next, let us consider excursions of ρ above nodes of mass larger than δ. Let T (1)
δ = Tδ

be the first time ρ contains an atom with mass larger than δ and L
(1)
δ = Lδ = inf{t >

Tδ : Ht < HTδ} be the first time that atom is erased. Define recursively the stopping times
T

(k)
δ = inf{t > L

(k−1)
δ : ∆(ρt) > δ} the k-th time ρ contains a (first-generation) node with

mass larger than δ and L(k)
δ = inf{t > T

(k)
δ : Ht < H

T
(k)
δ

} the first time that node is erased.
Finally, let ρ(k) be the path of the exploration process above level H

T
(k)
δ

between times T (k)
δ
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and L(k)
δ , defined by:

ρ
(k)
t = θH

T
(k)
δ

(ρ
t+T (k)

δ

), ∀0 ≤ t ≤ L
(k)
δ − T

(k)
δ .

Notice that by construction, we have:
ρ = ρ̃~∞k=1 (A(T (k)

δ ), ρ(k)).

Using the strong Markov property under P at time Tδ and Lemma 2.7, we get that,
conditionally on ∆(ρTδ) (which is equal to ∆XTδ), the process ρ(1) has distribution Pψ∆XTδ .

But the random time Tδ is exponentially distributed with mean 1/π̄(δ), the jump ∆XTδ

has distribution 1(δ,∞)(r)π(dr)/π̄(δ) and they are independent. We deduce that ρ(1) is
independent of Tδ and has distribution Qψ

δ . Furthermore, (Tδ,∆XTδ) is generated by
the Poisson point process e while ρ̃ is generated by Xδ. These being independent, we
deduce that ρ̃ is independent of (Tδ,∆XTδ), and thus of (A(T (1)

δ ) = Tδ, ρ
(1)). Iterating this

argument and using the strong Markov property, we get that the random measure
∞∑
k=1

δ(A(T (k)
δ

),ρ(k))

is a Poisson point measure with intensity π̄(δ) dsQψ
δ (dρ) and is independent of ρ̃.

It remains to show that ρ̃ is distributed as ρδ. Recall that ρ̃t = ρCt . From this, it is clear
that the two processes are equal to ρ before time Tδ. Furthermore, at time Tδ we have
ρ̃Tδ = ρTδ− = ρLδ = ρδTδ . Now applying the strong Markov property to ρ at Lδ gives that,
conditionally on ρ̃Tδ , the process (ρt+Lδ , t ≥ 0) has distribution Pρ̃Tδ . As a consequence,
conditionally on ρ̃Tδ , the process (ρ̃t = ρt+Lδ−Tδ , A(T (1)

δ ) ≤ t < A(T (2)
δ )) is distributed

as (ρδt , S1 ≤ t < S2), where 0 ≤ S1 ≤ S2 ≤ . . . are the ordered atoms of a Poisson
point process on R+ with intensity π̄(δ) ds, independent of ρδ. Iterating this argument, we
deduce that ρ̃ and ρδ have the same distribution. This proves the Poisson decomposition
under P. Therefore, the same decomposition holds under the excursion measures up to
a normalizing constant: there exists a constant c > 0 such that, under Nψδ , the process
ρ~i∈I (si, ρi) has distribution cNψ, where the random measure ∑i∈I δ(si,ρi) is under Nψδ a
Poisson point measure with intensity π̄(δ) dsQψ

δ (dρ̃). Let ζ = Card{i ∈ I : si < σ}. Then,
under Nψδ and conditionally on ρ, the random variable ζ has Poisson distribution with
parameter π̄(δ)σ. It follows that

Nψδ [ζ ≥ 1] = Nψδ
[
Nψδ [ζ ≥ 1|ρ]

]
= Nψδ

[
1− e−π̄(δ)σ

]
= ψ−1

δ (π̄(δ)) = Nψ[∆ > δ],
where in the last equality we used Proposition 3.1. This gives c = 1 and the result readily
follows. �

The following corollary is an immediate consequence of the Poissonian decomposition
from Theorem 4.1.
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Corollary 4.3. Let δ > 0 and let F ∈ B+(D). We have:

Nψ
[
F (ρ)1{∆≤δ}

]
= Nψδ

[
F (ρ)e−π̄(δ)σ

]
, (4.2)

Nψ
[
F (ρ)1{∆<δ}

]
= Nψδ−

[
F (ρ)e−π[δ,∞)σ

]
(4.3)

Furthermore, if 〈π, 1〉 <∞, then we have:

Nψ
[
F (ρ)1{∆=0}

]
= Nψ0

[
F (ρ)e−〈π,1〉σ

]
. (4.4)

The Poissonian decomposition of Theorem 4.1 also holds for forests.

Proposition 4.4. Let δ > 0 such that π̄(δ) < ∞ and let r > 0. Under Pψδr (resp. Qψδ
δ ),

let ((si, ρi), i ∈ I) be the atoms of a Poisson point measure with intensity π̄(δ) dsQψ
δ (dρ̃).

Then, under Pψδr (resp. Qψδ
δ ), the process ρ~i∈I (si, ρi) has distribution Pψr (resp. Qψ

δ ).

4.2. Structure of nodes with mass larger than δ. Here, we give a description of the
structure of nodes with mass larger than δ under Nψ. Let us start by determining the
distribution of the height of MRCA (see Section 2.3 for the definition) of the set of nodes
with mass larger than δ.
Proposition 4.5. Under Nψ, conditionally on ∆ > δ, the height of the MRCA of the set
of nodes with mass larger than δ is exponentially distributed with mean 1/ψ′δ(Nψ[∆ > δ]).

Notice that, as δ →∞, ψ′δ(Nψ[∆ > δ]) converges to α which is positive in the subcritical
case and 0 in the critical case (this implies that the height of the MRCA goes to infinity).

Proof. Under Nψδ , denote by τ1 ≤ τ2 ≤ . . . the jump times of a standard Poisson process
with intensity π̄(δ). Denote byM = sup{i ≥ 1: τi ≤ σ} the number of marks which arrive
during the lifetime σ and set:

J =

inf{Hs : τ1 ≤ s ≤ τM} if M ≥ 1,
∞ if M = 0.

It is clear from Theorem 4.1 that, under Nψ, the height of the MRCA of the set of nodes
with mass larger than δ is distributed as J under Nψδ , with the convention that this height
is equal to ∞ if there are no such nodes. Thus, we need to determine the distribution of
J under Nψδ and conditionally on M ≥ 1.

Notice that, on the event {M ≥ 2}, J agrees with the random variable K defined in
[12, p.96]. Proposition 3.2.3 therein gives:

Nψδ
[
f(J)1{M≥2}

∣∣∣M ≥ 1
]

=
(
ψ′δ(Nψ[∆ > δ])− π̄(δ)

Nψ[∆ > δ]

)∫ ∞
0

f(a)e−aψ′δ(Nψ [∆>δ]) da,

(4.5)
where we used that ψδ(Nψ[∆ > δ]) = π̄(δ) by (3.4).
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Next, notice that under Nψδ , conditionally on ρ, M has Poisson distribution with pa-
rameter π̄(δ)σ. Furthermore, conditionally on ρ and on M = 1, τ1 is uniformly distributed
on [0, σ]. Thus, by conditioning on ρ, we get:

Nψδ
[
f(J)1{M=1}

]
= π̄(δ) Nψδ

[∫ σ

0
f(Ht)e−π̄(δ)σ dt

]
= π̄(δ) Nψδ

[∫ σ

0
f(Ht)e−π̄(δ)te−π̄(δ)(σ−t) dt

]
= π̄(δ) Nψδ

[∫ σ

0
f(Ht)e−π̄(δ)t Eψδ,∗ρt

[
e−π̄(δ)σ

]
dt
]
,

where we used the Markov property of the exploration process under Nψδ for the last
equality. Thanks to Lemma 2.6, for every ν ∈Mf (R+) we have:

Eψδ,∗ν

[
e−π̄(δ)σ

]
= e−ψ

−1
δ

(π̄(δ))〈ν,1〉 = e−Nψ [∆>δ]〈ν,1〉,

where we used (3.4) for the last equality.

Therefore, we get:

Nψδ
[
f(J)1{M=1}

]
= π̄(δ) Nψδ

[∫ σ

0
f(Ht)e−π̄(δ)te−〈ρt,1〉Nψ [∆>δ] dt

]
= π̄(δ) Nψδ

[∫ σ

0
f(Ht)e−π̄(δ)(σ−t)e−〈ηt,1〉Nψ [∆>δ] dt

]
= π̄(δ) Nψδ

[∫ σ

0
f(Ht)e−〈ρt+ηt,1〉N

ψ [∆>δ] dt
]
,

where we used the time-reversal property of the exploration process for the second equality
and the Markov property for the last. By [12, Proposition 3.1.3], we deduce that

Nψδ
[
f(J)1{M=1}

]
= π̄(δ)

∫ ∞
0

f(a)e−ψ′δ(Nψ [∆>δ])a da.

Thanks to Theorem 4.1, it is clear that Nψδ [M ≥ 1] = Nψ[∆ > δ]. It follows that

Nψδ
[
f(J)1{M=1}

∣∣∣M ≥ 1
]

= π̄(δ)
Nψ[∆ > δ]

∫ ∞
0

f(a)e−ψ′δ(Nψ [∆>δ])a da.

In conjunction with (4.5), this yields:

Nψδ [f(J)|M ≥ 1] = ψ′δ(Nψ[∆ > δ])
∫ ∞

0
f(a)e−ψ′δ(Nψ [∆>δ])a da.

This shows that, under Nψδ and conditionally on M ≥ 1, J is exponentially distributed
with mean 1/ψ′δ(Nψ[∆ > δ]) and the proof is now complete. �

Let τδ be the (random) discrete forest spanned by nodes with mass larger than δ. More
explicitly, τδ starts with Zδ

0 individuals, where Zδ
0 is the number of first-generation nodes

of ρ with mass larger than δ (that is nodes of ρ with mass larger than δ having no ancestors
with mass larger than δ). Then, each node v of τδ gets ξδv children, where ξδv is the number
of first-generation descendants with mass larger than δ of the corresponding node in ρ.
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Finally, denote by W δ the total population of τδ or equivalently the total number of nodes
of ρ with mass larger than δ. We shall identify the distribution of τδ. Given two N-valued
random variables Z0 and ξ, we call a (Z0, ξ)-Bienaymé-Galton-Watson forest a collection
of Z0 independent Bienaymé-Galton-Watson trees with offspring distribution (the law of)
ξ.

Under Nψδ (resp. under Qψδ
δ ), let ∑i∈I δ(si,ρi) be a Poisson point measure with intensity

π̄(δ) dsQψ
δ (dρ̃) independent of ρ and let

ζ = Card{i ∈ I : si < σ} (4.6)

be the number of points arriving during the lifetime σ. Basic properties of Poisson point
measures imply that, under Nψδ (resp. under Qψδ

δ ) and conditionally on ρ, the random
variable ζ has Poisson distribution with parameter π̄(δ)σ.

Proposition 4.6. Let δ > 0 such that π̄(δ) > 0. Under Nψ, the random forest τδ is a
(Zδ

0 , ξ
δ)-Bienaymé-Galton-Watson forest, where Zδ

0 is distributed as ζ under Nψδ and ξδ is
distributed as ζ under Qψδ

δ . Their Laplace transforms are given by, for every λ > 0:

Nψ
[
1− e−λZδ0

]
= ψ−1

δ

(
(1− e−λ)π̄(δ)

)
, (4.7)

Nψ
[
e−λξδ

]
= 1
π̄(δ)

∫
(δ,∞)

e−rψ
−1
δ ((1−e−λ)π̄(δ)) π(dr). (4.8)

Proof. That τδ is under Nψ a Bienaymé-Galton-Watson forest with the mentioned distri-
bution is an immediate consequence of the Poissonian decompositions given in Thereom
4.1 and Proposition 4.4. Let us compute the Laplace transforms.

Recall that, under Nψδ and conditionally on ρ, ζ has Poisson distribution with parameter
π̄(δ)σ. Using this, we have:

Nψ
[
1− e−λZδ0

]
= Nψδ

[
1− e−λζ

]
= Nψδ

[
1− e−(1−e−λ)π̄(δ)σ

]
= ψ−1

δ

(
(1− e−λ)π̄(δ)

)
.

(4.9)
This proves (4.7). Similarly, since under Qψδ

δ and conditionally on ρ, ζ has Poisson distri-
bution with parameter π̄(δ)σ, a similar computation yields:

Nψ
[
e−λξδ

]
= Qψδ

δ (e−λζ) = Qψδ
δ

(
e−(1−e−λ)π̄(δ)σ

)
= 1
π̄(δ)

∫
(δ,∞)

π(dr)Pψδr
(
e−(1−e−λ)π̄(δ)σ

)
.

But, using the Poisson decomposition of Lemma 2.6, we get that:

Pψδr (e−xσ) = exp
{
−rNψδ

[
1− e−xσ

]}
= e−rψ

−1
δ

(x), ∀x ≥ 0, (4.10)

and (4.8) readily follows. �

We end this section with the following result on the criticality of the random forest τδ.
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Proposition 4.7. Let δ > 0 such that π̄(δ) > 0. The mean of ξδ is given by:

Nψ[ξδ] =
∫

(δ,∞) r π(dr)
α +

∫
(δ,∞) r π(dr) · (4.11)

In particular, under Nψ, the Bienaymé-Galton-Watson forest τδ is critical (resp. subcriti-
cal) if ψ is critical (resp. subcritical).

Proof. Thanks to Proposition 4.6, we have:

Nψ[ξδ] = Qψδ
δ (ζ) = π̄(δ)Qψδ

δ (σ) =
∫

(δ,∞)
π(dr)Pψδr (σ).

But the Poissonian decomposition of Pψδr gives:

Pψδr (σ) = rNψδ [σ] = r

α +
∫

(δ,∞) z π(dz) ,

where we used (2.13) for the second equality. This yields (4.11). �

5. Conditioning on ∆ = δ

The goal of this section is to make sense of the conditional measure Nψ[·|∆ = δ]. For
every δ > 0, we set:

w(δ) = Nψ[σ1{∆<δ}] and w+(δ) = Nψ[σ1{∆≤δ}]. (5.1)
Notice that if δ > 0 is not an atom of the Lévy measure π, then we have w(δ) = w+(δ) by
Lemma 3.2. Furthermore, thanks to Corollary 4.3, (2.12) and (3.5), we have:

w(δ) = Nψδ−
[
σe−π[δ,∞)σ

]
= 1
ψ′δ− ◦ ψ−1

δ−(π[δ,∞))
= 1
ψ′δ−(Nψ[∆ ≥ δ]) · (5.2)

Similarly, we have:

w+(δ) = Nψδ
[
σe−π̄(δ)σ

]
= 1
ψ′δ ◦ ψ−1

δ (π̄(δ))
= 1
ψ′δ(Nψ[∆ > δ]) · (5.3)

For δ > 0, denote by Pψ
δ the probability measure on the space R+ ×D defined by:∫

R+×D
F dPψ

δ = 1
w(δ) Nψ

[∫ σ

0
F (s, ρ) ds1{∆<δ}

]
, (5.4)

for every F ∈ B+(R+ ×D). Similarly, we set:∫
R+×D

F dPψ
δ+ = 1

w+(δ) Nψ
[∫ σ

0
F (s, ρ) ds1{∆≤δ}

]
. (5.5)

Observe that Pψ
δ+ = limε→0+ Pψ

δ+ε in the sense of weak convergence of measures.
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For every δ, ε > 0, let
Eδ,ε = {δ − ε < ∆ < δ + ε, Zδ−ε

0 = 1} (5.6)
be the event that the maximal degree is between δ − ε and δ + ε and there is a unique
first-generation node with mass larger than δ − ε. The next lemma states that, under
the assumption that δ is not an atom of the Lévy measure π, the two events Eδ,ε and
{δ − ε < ∆ < δ + ε} are equivalent in Nψ-measure as ε → 0. Recall that π is a measure
on (0,∞) and as such, its support supp(π) does not contain 0.

Lemma 5.1. Assume that δ ∈ supp(π) is not an atom of the Lévy measure π and that
π̄(δ) > 0. We have Nψ[δ − ε < ∆ < δ + ε] ∼ Nψ[Eδ,ε] as ε→ 0.

Proof. We start by observing that, thanks to the Poissonian decomposition of Pψr given in
Lemma 2.6, we have:

Pψr (∆ < δ) =

0 if r ≤ δ,

e−rNψ [∆≥δ] if r > δ.
(5.7)

Similarly, we have:

Pψr (∆ ≤ δ) =

0 if r < δ,

e−rNψ [∆>δ] if r ≥ δ.
(5.8)

We deduce that

Qψ
δ–ε(∆ < δ + ε) = 1

π̄(δ − ε)

∫
(δ−ε,δ+ε)

π(dr)Pψr (∆ < δ + ε)

= 1
π̄(δ − ε)

∫
(δ−ε,δ+ε)

e−rNψ [∆≥δ+ε] π(dr). (5.9)

Since π(δ) = 0 and π̄(δ) > 0, this implies that

lim
ε→0

Qψ
δ–ε(∆ < δ + ε) = 0. (5.10)

Under Nψδ–ε and conditionally on ρ, let ζ be a Poisson random variable with parameter
π̄(δ− ε)σ and let ((si, ρi), i ≥ 1) be independent with distribution σ−11[0,σ](s) dsQψ

δ–ε(dρ̃),
independent of ζ. Thanks to Theorem 4.1, we have:

Nψ[Eδ,ε] = Nψδ–ε [ζ = 1, ∆(ρ1) < δ + ε]
= Nψδ–ε [π̄(δ − ε)σe−π̄(δ−ε)σ]Qψ

δ–ε(∆ < δ + ε)
= π̄(δ − ε)w+(δ − ε)Qψ

δ–ε(∆ < δ + ε), (5.11)
where we used (5.3) for the last equality. Similarly, we have:

Nψ[δ − ε < ∆ < δ + ε] = Nψδ–ε [ζ ≥ 1; ∀i ≤ ζ, ∆(ρi) < δ + ε]
= Nψδ–ε [ζ ≥ 1;Qψ

δ–ε(∆ < δ + ε)ζ ]
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= Nψδ–ε

[
e−π̄(δ−ε)σ

(
eπ̄(δ−ε)σQψ

δ–ε(∆<δ+ε) − 1
)]
.

Therefore, using the inequality ex − 1 − x ≤ x2ex/2 and the fact that the function
x 7→ xe−x is bounded on R+ by some constant C > 0, we deduce that

0 ≤ Nψ[δ − ε < ∆ < δ + ε]−Nψ[Eδ,ε]

≤ 1
2 π̄(δ − ε)2 Nψδ–ε

[
σ2e−π̄(δ−ε)σQψ

δ–ε(∆≥δ+ε)
]
Qψ
δ–ε(∆ < δ + ε)2

≤ C

2 π̄(δ − ε) Nψδ–ε [σ]Q
ψ
δ–ε(∆ < δ + ε)2

Qψ
δ–ε(∆ ≥ δ + ε)

= Cπ̄(δ − ε)
2(α +

∫
(δ−ε,∞) r π(dr))

Qψ
δ–ε(∆ < δ + ε)2

Qψ
δ–ε(∆ ≥ δ + ε)

≤ Cδ
Qψ
δ–ε(∆ < δ + ε)2

Qψ
δ–ε(∆ ≥ δ + ε)

for ε > 0 small enough and some constant Cδ which is independent of ε, where we used
(2.13) for the equality.

Furthermore, it is clear from (5.3) that

π̄(δ − ε)w+(δ − ε) = π̄(δ − ε) Nψ[σ1{∆≤δ−ε}] ≥ π̄(δ/2) Nψ[σ1{∆≤δ/2}],

for ε > 0 small enough. In particular, it follows from (5.11) that there exists a constant
C ′δ > 0 such that

0 ≤ Nψ[δ − ε < ∆ < δ + ε]−Nψ[Eδ,ε]
Nψ[Eδ,ε]

≤ C ′δ
Qψ
δ–ε(∆ < δ + ε)

Qψ
δ–ε(∆ ≥ δ + ε)

,

where the right-hand side goes to 0 as ε→ 0 thanks to (5.10). This concludes the proof. �

As a consequence, since Eδ,ε ⊂ {δ − ε < ∆ < δ + ε}, conditioning on either event is
equivalent as ε→ 0. We choose to work with the former as computations will be simpler.
We shall next give a description of the exploration process conditioned on Eδ,ε.

Let
Tδ = inf{t > 0: ∆(ρt) > δ} (5.12)

be the first time that the exploration process contains an atom with mass larger than δ
and let

Lδ = inf{t > Tδ : H(ρt) < H(ρTδ)} (5.13)
be the first time that node is erased. We split the path of the exploration process into two
parts: ρδ,− is the pruned exploration process (that is the exploration process minus the
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first node with mass larger than δ):

ρδ,−t =

ρt if t < Tδ,

ρt−Tδ+Lδ if t ≥ Tδ,
(5.14)

and ρδ,+ is the path of the exploration process above the unique first-generation node with
mass larger than δ:

ρδ,+t = θHTδ (ρ(t+Tδ)∧Lδ), ∀t ≥ 0. (5.15)

Notice that ρδ,+0 is a multiple of the Dirac measure at 0.

Lemma 5.2. Let F,G ∈ B+(R+×D). For every δ, ε > 0 such that π̄(δ− ε) > 0, we have:

Nψ
[
F (Tδ−ε, ρδ−ε,−)G(ρδ−ε,+)

∣∣∣Eδ,ε] =
∫
R+×D

F dPψ
(δ–ε)+×Qψ

δ–ε(G(ρ)|∆ < δ + ε). (5.16)

Proof. By Theorem 4.1, we have

Nψ
[
F (Tδ−ε, ρδ−ε,−)G(ρδ−ε,+)1Eδ,ε

]
= Nψδ–ε

[
F (U, ρ)G(ρδ−ε)1{ζ=1,∆(ρδ−ε)<δ+ε}

]
,

where, under Nψδ–ε , conditionally on ρ, U is uniformly distributed on [0, σ], ζ is a Pois-
son random variable with parameter π̄(δ − ε)σ, ρδ−ε has distribution Qψ

δ–ε and they are
independent. We deduce that

Nψ
[
F (Tδ−ε, ρδ−ε,−)G(ρδ−ε,+)1Eδ,ε

]
= Nψδ–ε

[
π̄(δ − ε)e−π̄(δ−ε)σ

∫ σ

0
F (s, ρ) ds

]
Qψ
δ–ε(G(ρ)1{∆<δ+ε}).

Together with Corollary 4.3, (5.4) and (5.11), this yields the desired result. �

We now turn to the study of the asymptotic behavior of the measures appearing in
the right-hand side of (5.16). Recall that the total variation distance of two probability
measures P,Q on some measurable space (E, E) is given by:

dTV(P,Q) = sup{|P (A)−Q(A)| : A ∈ E}.

Lemma 5.3. Assume that δ > 0 is not an atom of the Lévy measure π. Then, the mapping
r 7→ Pψ

r+ is continuous at δ in total variation distance and Pψ
δ+ = Pψ

δ .

Proof. Thanks to Corollary 3.2, we have Nψ[∆ = δ] = 0. Then the result readily follows
from the definition of the measure Pψ

r+. �

Recall that the spaceMf (R+) is equipped with the topology of weak convergence which
makes it a Polish space, see [10, Section 8.3]. It can be metrized by the so-called bounded
Lipschitz distance defined for every µ, ν ∈ Mf (R+) by dBL(µ, ν) = sup |〈µ, f〉 − 〈ν, f〉|,
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where the supremum is taken over all Lipschitz-continuous and bounded functions f : R+ →
R such that

sup
x≥0
|f(x)|+ sup

x 6=y

|f(x)− f(y)|
|x− y|

≤ 1.

Recall that D is the space of càdlàg Mf (R+)-valued functions defined on R+, equipped
with the Skorokhod J1-topology and let dS be the Skorokhod distance associated with the
distance dBL onMf (R+). Denote by D0 the subset of D consisting of excursions:

D0 :=
{
µ ∈ D : σ(µ) <∞, µt 6= 0, ∀0 < t < σ(µ) and µσ(µ)− = 0 if σ(µ) > 0

}
, (5.17)

where σ(µ) = inf{t > 0: µ(t+ ·) ≡ 0} is the lifetime of µ. Notice that if µ ∈ D0 such that
σ(µ) = 0 then necessarily µ ≡ 0. Observe that the mapping µ 7→ σ(µ) is measurable with
respect to the Skorokhod topology since σ(µ) = inf{t ∈ Q ∩ (0,∞) : µt = 0} and µ 7→ µt
is measurable. We equip D0 with the following distance:

d0(µ, ν) = dS(µ, ν) + |σ(µ)− σ(ν)|.

Lemma 5.4. Let ν ∈ D and s > 0. The mapping µ 7→ ν ~ (s, µ) is continuous from
(D0, d0) to (D, dS).

Proof. Denote by Λ the set of all continuous functions λ : R+ → R+ that are (strictly)
increasing, with λ(0) = 0 and limt→∞ λ(t) =∞. Let µn be a sequence in D0 converging to
µ with respect to the distance d0. By definition of the Skorokhod topology (see e.g. Jacod
and Shiryaev [23, Chapter VI]), this means that there exists a sequence λn ∈ Λ of time
changes such that

lim
n→∞

|σn − σ| = 0, lim
n→∞

sup
t∈R+

|λn(t)− t| = 0 and lim
n→∞

sup
t≤N

dBL (µn ◦ λn(t), µ(t)) = 0,

for every N ≥ 1, where we set σn = σ(µn) and σ = σ(µ).

Let κn = ν ~ (s, µn) and κ = ν ~ (s, µ). Our goal is to show that κn converges to κ
with respect to the Skorokhod topology. To this end, let εn > 0 be a sequence converging
to 0 such that εn > λn(σ) − σn and let λ̃n ∈ Λ be a time change such that λ̃n(t) = t
if t ≤ s, λ̃n(s + t) = s + λn(t) if t ≤ σ, λ̃n(s + σ + t) = s + σn + t if t ≥ εn and
λ̃n([s+ σ, s+ σ + εn]) = [s+ λn(σ), s+ σn + εn]. Notice that if t ∈ [s+ σ, s+ σ + εn], we
have: ∣∣∣λ̃n(t)− t

∣∣∣ ≤ |λn(σ)− σ − εn|+ |σn + εn − σ| ≤ |λn(σ)− σ|+ |σn − σ|+ 2εn.

It follows that
sup
t∈R+

∣∣∣λ̃n(t)− t
∣∣∣ ≤ sup

s≤t≤s+σ

∣∣∣λ̃n(t)− t
∣∣∣+ sup

s+σ≤t≤s+σ+εn

∣∣∣λ̃n(t)− t
∣∣∣+ sup

t≥s+σ+εn

∣∣∣λ̃n(t)− t
∣∣∣

≤ sup
t≤σ
|λn(t)− t|+ |λn(σ)− σ|+ 2 |σn − σ|+ 2εn,

where the right-hand side goes to 0 as n→∞.
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In order to show that κn converges to κ in D, it is enough to check that

lim
n→∞

sup
t≤N

dBL
(
κn ◦ λ̃n(t), κ(t)

)
= 0, ∀N ≥ 1.

If t ≤ s, we have κn ◦ λ̃n(t) = κ(t) = ν(t). If t ≤ σ and λn(t) ≤ σn, we have:
κn ◦ λ̃n(s+ t) = κn(s+ λn(t)) = [ν(s), µn ◦ λn(t)] and κ(s+ t) = [ν(s), µ(t)].

It follows that
dBL

(
κn ◦ λ̃n(s+ t), κ(s+ t)

)
≤ dBL(µn ◦ λn(t), µ(t)).

On the other hand, if t ≤ σ and λn(t) > σn, we have:
κn ◦ λ̃n(s+ t) = ν(s+ λn(t)− σn) and κ(s+ t) = [ν(s), µ(t)].

In that case, we get:

dBL
(
κn ◦ λ̃n(s+ t), κ(s+ t)

)
≤ dBL (ν(s+ λn(t)− σn), ν(s)) + dBL (ν(s), [ν(s), µ(t)])
≤ dBL (ν(s+ λn(t)− σn), ν(s)) + 〈µ(t), 1〉.

If t ∈ [s + σ, s + σ + εn], then κn ◦ λ̃n(t) is of the form ν(u) with u ∈ [s, s + εn] or
[ν(s), µn(u)] with u ∈ [λn(σ), σn]. We deduce that

dBL
(
κn ◦ λ̃n(t), κ(t)

)
≤ sup

s≤u≤s+εn
dBL (ν(u), ν(t− σ)) + sup

λn(σ)≤u≤σn
dBL ([ν(s), µn(u)], ν(t− σ))

≤ 3 sup
s≤u≤s+εn

dBL (ν(u), ν(s)) + sup
λn(σ)≤u≤σn

〈µn(u), 1〉.

Finally, if t ≥ εn, then we have κn ◦ λ̃n(s+ σ + t) = κ(s+ σ + t) = ν(t). We deduce that

sup
t≤N

dBL
(
κn ◦ λ̃n(t), κ(t)

)
≤ sup

t≤N
dBL (µn ◦ λn(t), µ(t)) + sup

s≤u≤s+(λn(σ)−σn)+

dBL (ν(u), ν(s))

+ 3 sup
s≤u≤s+εn

dBL (ν(u), ν(s)) + sup
u≤σ, λn(u)>σn

〈µ(u), 1〉+ sup
σ≤u≤N

〈µn ◦ λn(u), 1〉.

(5.18)

Observe that
sup

u≤σ, λn(u)>σn
〈µ(u), 1〉 = sup

λ−1
n (σn)<u≤σ

〈µ(u), 1〉 → 0,

since λ−1
n (σn) → σ and since µ is left-continuous at σ and µ(σ) = 0. Furthermore, using

that µ(u) = 0 for u ≥ σ, we have:
sup

σ≤u≤N
〈µn ◦ λn(u), 1〉 ≤ sup

σ≤u≤N
dBL(µn ◦ λn(u), µ(u))→ 0.

Since ν is right-continuous at s, we deduce that the right-hand side of (5.18) converges to
0, which concludes the proof. �
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Lemma 5.5. For every δ ∈ supp(π), the measure Qψ
δ–ε(·|∆ < δ + ε) converges weakly to

Pψδ (·|∆ ≤ δ) as ε→ 0 on the space (D0, d0).

Remark 5.6. Notice that if δ = inf supp(π) is positive, then the measure π is necessarily
finite and we have:

Pψδ (∆ ≤ δ) ≥ Pψδ (∆ = 0) = e−δNψ [∆>0] > 0.
This implies that the conditional measure Pψδ (dρ|∆ ≤ δ) is well defined.

Proof. It is enough to show that for every Lipschitz-continuous and bounded function
F : D0 → R, the following convergence holds:

lim
ε→0

Qψ
δ–ε (F (ρ)|∆ < δ + ε) = Pψδ (F (ρ)|∆ ≤ δ) .

Fix such a function F . From the definition of Qψ
δ–ε, we have:

Qψ
δ–ε

(
F (ρ)1{∆<δ+ε}

)
= 1
π̄(δ − ε)

∫
(δ−ε,δ+ε)

π(dr)Pψr
(
F (ρ)1{∆<δ+ε}

)
.

In conjunction with (5.9), this gives:

Qψ
δ–ε (F (ρ)|∆ < δ + ε)

= 1∫
(δ−ε,δ+ε) e−rNψ [∆≥δ+ε] π(dr)

∫
(δ−ε,δ+ε)

π(dr)Pψr
(
F (ρ)1{∆<δ+ε}

)
.

Now it is not difficult to show that, as ε→ 0, we have:∫
(δ−ε,δ+ε)

e−rNψ [∆≥δ+ε] π(dr) ∼ π(δ − ε, δ + ε)e−δNψ [∆>δ].

Thus, as ε→ 0, we have:

Qψ
δ (F (ρ)|∆ < δ + ε) ∼ eδNψ [∆>δ]

π(δ − ε, δ + ε)

∫
(δ−ε,δ+ε)

π(dr)Pψr
(
F (ρ)1{∆<δ+ε}

)
.

Thanks to (5.8), we have Pψδ (∆ ≤ δ) = e−δNψ [∆>δ]. Thus, in order to prove the result, it is
enough to show that

lim
ε→0

1
π(δ − ε, δ + ε)

∫
(δ−ε,δ+ε)

π(dr)Pψr
(
F (ρ)1{∆<δ+ε}

)
= Pψδ

(
F (ρ)1{∆≤δ}

)
. (5.19)

Write:
1

π(δ − ε, δ + ε)

∫
(δ−ε,δ+ε)

π(dr)Pψr
(
F (ρ)1{∆<δ+ε}

)
− Pψδ

(
F (ρ)1{∆≤δ}

)
= 1
π(δ − ε, δ + ε)

∫
(δ−ε,δ+ε)

π(dr)
[
Pψr
(
F (ρ)1{∆<δ+ε}

)
− Pψδ

(
F (ρ)1{∆<δ+ε}

)]
+ Pψδ

(
F (ρ)1{δ<∆<δ+ε}

)
.
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By dominated convergence, it is clear that the second term on the right-hand side converges
to 0.

For the first term, one can couple the measures Pψr and Pψδ in the following way. Let ρ be
the exploration process with branching mechanism ψ starting from 0 and let (L0

t , t ≥ 0)
be its local time process at 0. Then the process ρ̃(r) defined in (2.20) has distribution Pψr
while ρ̃(δ) has distribution Pψδ . It follows that∣∣∣Pψr (F (ρ)1{∆<δ+ε}

)
− Pψδ

(
F (ρ)1{∆<δ+ε}

)∣∣∣
=

∣∣∣∣∣∣E
F (ρ̃(r))1{

sup
L0
t
≤r ∆(ρt)<δ+ε

} − F (ρ̃(δ))1{
sup

L0
t
≤δ ∆(ρt)<δ+ε

}∣∣∣∣∣∣
≤ C P

 sup
δ<L0

t≤r
∆(ρt) ≥ δ + ε

+ C E
[
1 ∧ d0(ρ̃(r), ρ̃(δ))

]
. (5.20)

Using the Poissonian decomposition from Lemma 2.6, we have for r ∈ (δ, δ + ε):

P

 sup
δ<L0

t≤r
∆(ρt) ≥ δ + ε

 ≤ P

 sup
δ<L0

t<δ+ε
∆(ρt) ≥ δ


= P

(
sup

δ<−Iαi<δ+ε
∆(ρi) ≥ δ

)

= 1− e−εNψ [∆≥δ]. (5.21)

Next, by definition of d0 we have that d0(ρ̃(r), ρ̃(δ)) = |σ(ρ̃(r))− σ(ρ̃(δ))|+ dS(ρ̃(r), ρ̃(δ)). We
introduce the right-continuous inverse S of the local time process at 0 given by:

Sr = inf{t > 0: L0
t > r}, ∀r > 0.

It is well known that the process S is a subordinator. Then the process ρ̃(r) has lifetime
Sr. Furthermore, we have:

dS(ρ̃(r), ρ̃(δ)) ≤ sup
t≥0

dBL(ρ̃(r)
t , ρ̃

(δ)
t ).

For L0
t ≤ δ, the processes ρ̃(r) and ρ̃(δ) differ only by their masses at 0 so that dBL(ρ̃(r)

t , ρ̃
(δ)
t ) ≤

r − δ ≤ ε. On the other hand, for L0
t > δ, we have ρ̃(δ) = 0 so that

dBL(ρ̃(r)
t , ρ̃

(δ)
t ) = 〈ρ̃(r)

t , 1〉 = (r − L0
t ) + 〈ρt, 1〉 ≤ ε+ 〈ρt, 1〉,

where we recall from Section 2.3 that 〈ρt, 1〉 = Xt − It, where X is the underlying Lévy
process and I is its running infimum. It follows that

d0(ρ̃(r), ρ̃(δ)) ≤ Sδ+ε − Sδ + ε+ sup
δ<L0

t<δ+ε
(Xt − It), (5.22)

where the right-hand side converges to 0 a.s. as ε→ 0.
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Combining (5.20)–(5.22), we deduce that∣∣∣Pψr (F (ρ)1{∆<δ+ε}
)
− Pψδ

(
F (ρ)1{∆<δ+ε}

)∣∣∣ ≤ C1(ε),

for every r ∈ (δ, δ+ε), where C1(ε) does not depend on r and goes to 0 as ε→ 0. Similarly,
for every r ∈ (δ − ε, δ), we have:∣∣∣Pψr (F (ρ)1{∆<δ+ε}

)
− Pψδ

(
F (ρ)1{∆<δ+ε}

)∣∣∣ ≤ C2(ε).
Finally, we deduce that

1
π(δ − ε, δ + ε)

∫
(δ−ε,δ+ε)

π(dr)
∣∣∣Pψr (F (ρ)1{∆<δ+ε}

)
− Pψδ

(
F (ρ)1{∆<δ+ε}

)∣∣∣ ≤ C1(ε) + C2(ε).

Letting ε→ 0 proves (5.19) and the proof is complete. �

We are now in a position to prove the main result of this section which gives a description
of the Lévy tree conditioned on having maximal degree δ. For every atom δ > 0 of π, we
set:

g(δ) = π(δ)Pψδ (∆ ≤ δ) = π(δ)e−δNψ [∆>δ], (5.23)
where the last equality is due to (5.8). Under Nψ, denote by Mδ the random variable
defined by:

Mδ = eg(δ)σ − 1
g(δ) ·

This should be interpreted as Mδ = σ if δ is not an atom of π.

For every atom δ > 0 of the Lévy measure π, we define a probability measure Pψ,a
δ

on the space D as follows. Take ρ̃ with distribution Nψ[Mδ1{∆<δ}]−1 Nψ[Mδ1{∆<δ} dρ],
and, conditionally on ρ̃, let ((si, ρi), i ∈ I) be the atoms of a Poisson point measure with
intensity g(δ)1[0,σ](s) dsPψδ (dρ̂|∆ ≤ δ) conditioned on containing at least one point. Then
Pψ,a
δ is defined as the distribution of the process ρ̃~i∈I (si, ρi).

Theorem 5.7. There exists a regular conditional probability Nψ[·|∆ = δ] for δ > 0 such
that π[δ,∞) > 0, which is given by, for every F ∈ B+(D):

Nψ[F (ρ)|∆ = δ] = 1
Nψ[Mδ1{∆<δ}]

∞∑
k=0

g(δ)k
(k + 1)!

×Nψ

[∫ k+1∏
i=1

1[0,σ](si) dsi Pψδ (dρi|∆ ≤ δ)F (ρ~k+1
i=1 (si, ρi))1{∆<δ}

]
. (5.24)

In particular, if δ > 0 is not an atom of the Lévy measure π, we have:

Nψ[F (ρ)|∆ = δ] =
∫
R+×D

Pψ
δ (ds, dρ̃)

∫
D
Pψδ (dρ̂|∆ ≤ δ)F (ρ̃~ (s, ρ̂)). (5.25)

If δ > 0 is an atom of π, we have:

Nψ[F (ρ)|∆ = δ] =
∫
D

Pψ,a
δ (dρ̃)F (ρ̃). (5.26)
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Remark 5.8. Let Eδ be the event that the maximal degree is δ and there is a unique
first-generation node with mass δ. We have:

Nψ [F (ρ)|Eδ] =
∫
R+×D

Pψ
δ (ds, dρ̃)

∫
D
Pψδ (dρ̂|∆ ≤ δ)F (ρ̃~ (s, ρ̂)). (5.27)

When δ is an atom of π, this can be proved by taking k = 0 in (5.24). Indeed, we have:

Nψ [F (ρ)1Eδ |∆ = δ] = 1
Nψ[Mδ1{∆<δ}]

Nψ
[∫

1[0,σ](s) dsPψδ (dρ̂|∆ ≤ δ)F (ρ~ (s, ρ̂))
]
,

and the result follows by conditionning. When δ is not an atom of π, this follows from
Theorem 5.7 together with the fact that, conditionally on ∆ = δ, there is a unique node
with mass δ (see Corollary 5.9 below). In other words, conditioning the exploration process
by Eδ when δ is an atom of π yields the same distribution as conditioning by ∆ = δ when
δ is not an atom of π.

Proof. Assume that δ ∈ supp(π) is an atom of π. Then the event {∆ = δ} has positive
Nψ-measure (see Corollary 3.2) and it follows from Theorem 4.1 that ρ conditioned on
∆ = δ has distribution Pψ,a

δ .

Assume then that δ ∈ supp(π) is not an atom of π and let F : D → R be continuous
and bounded. Applying Lemma 5.1 and using the fact Eδ,ε ⊂ {δ − ε < ∆ < δ + ε}, we
have as ε→ 0:

Nψ[F (ρ)|δ − ε < ∆ < δ + ε] ∼ Nψ[F (ρ)|Eδ,ε].
But, thanks to Lemma 5.2, we have:

Nψ[F (ρ)|Eδ,ε] = Nψ[F (ρδ−ε,− ~ (Tδ−ε, ρδ−ε,+)|Eδ,ε]

=
∫
R+×D

Pψ
(δ–ε)+(ds, dρ̃)

∫
D
Qψ
δ–ε(dρ̂|∆ < δ + ε)F (ρ̃~ (s, ρ̂)). (5.28)

Recall from Lemma 5.4 that for every fixed (ν, s) ∈ D × (0,∞), the mapping µ 7→
ν ~ (s, µ) is continuous from D0 to D. Together with Lemma 5.3 and Lemma 5.5, this
gives:

lim
ε→0

Nψ [F (ρ)|δ − ε < ∆ < δ + ε] =
∫
R+×D

Pψ
δ (ds, dρ̃)

∫
D
Pψδ (dρ̂|∆ ≤ δ)F (ρ̃~ (s, ρ̂)).

A standard result on measure differentiation, see e.g. [15, Theorem 1.30], yields the desired
result. �

Corollary 5.9. Assume that δ > 0 is not an atom of the Lévy measure π. Then, under
Nψ and conditionally on ∆ = δ, there is a unique node with mass δ.

Proof. Notice that Pψ
δ -a.s. ∆(ρ) < δ by definition. Thus, thanks to Theorem 5.7, it is

enough to show that Pψδ (·|∆ ≤ δ)-a.s. there is a unique node with mass δ. We shall use
the Poissonian decomposition from Lemma 2.6. Let ∑i∈I δ(`i,ρi) be a point measure with
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distribution Pψδ , that is a Poisson point measure with intensity 1[0,δ](`) d`Nψ[dρ]. Then it
suffices to check that, conditionally on supi∈I ∆(ρi) ≤ δ, it holds that supi∈I ∆(ρi) < δ.

Since Nψ[∆ > δ/2] < ∞, only finitely many ρi are such that ∆(ρi) > δ/2. We deduce
that

P
(

sup
i∈I

∆(ρi) < δ

)
= P

(
sup
i∈I

∆(ρi) ≤ δ, ∆(ρi) 6= δ for all i ∈ I
)
.

Thanks to Corollary 3.2, we have Nψ[∆ = δ] = 0, which implies that ∆(ρi) 6= δ for all
i ∈ I almost surely. Therefore we get:

P
(

sup
i∈I

∆(ρi) < δ

)
= P

(
sup
i∈I

∆(ρi) ≤ δ

)
.

This proves the result. �

As an application of Theorem 5.7, we can compute the joint distribution of the degree
∆ of the exploration process when the Lévy measure π is diffuse and the height H∆ of
the (unique) node with mass ∆. We start by determining the distribution of H(ρs) under
Pψ
δ (ds, dρ). Recall from (5.1) the definition of w.

Lemma 5.10. Under Pψ
δ (ds, dρ) (resp. Pψ

δ+(ds, dρ)), the random variable H(ρs) is expo-
nentially distributed with mean w(δ) (resp. w+(δ)).

Proof. We only prove the result under Pψ
δ , the other being similar. By definition, we have:∫

R+×D
1{H(ρs)>h} Pψ

δ (ds, dρ) = 1
w(δ) Nψ

[∫ σ

0
1{Hs>h} ds1{∆<δ}

]
= 1
w(δ) Nψδ−

[
e−π[δ,∞)σ

∫ σ

0
1{Hs>h}

]
,

where we used Corollary 4.3 for the last equality.

Thanks to Bismut’s decomposition, see e.g. [3, Theorem 2.1], we have for every λ > 0:

Nψδ−

[
e−λσ

∫ σ

0
1{Hs>h} ds

]
=
∫ ∞
h

dt exp
{
−t
[
ψ′δ−(0) + 2βNψδ− [1− e−λσ] +

∫
(0,δ)

r π(dr)Pψδ−r (1− e−λσ)
]}

=
∫ ∞
h

dt exp
{
−t
[
ψ′δ−(0) + 2βψ−1

δ−(λ) +
∫

(0,δ)
r(1− e−rψ

−1
δ−(λ)) π(dr)

]}

=
∫ ∞
h

dt e−tψ′δ−◦ψ
−1
δ−(λ)

= 1
ψ′δ− ◦ ψ−1

δ−(λ)
e−hψ′δ−◦ψ

−1
δ−(λ). (5.29)
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Applying this to λ = π[δ,∞) and using (5.2), it follows that∫
R+×D

1{H(ρs)>h} Pψ
δ (ds, dρ) = e−h/w(δ).

This proves the result. �

Let
T∆ = inf{t ≥ 0: ∆(ρt) = ∆} (5.30)

be the first time that ρ contains an atom with mass ∆ and let H∆ = H(ρT∆) be the value
of the height process at that time. We shall determine the joint distribution of (∆, H∆)
assuming that the Lévy measure π is diffuse.

Proposition 5.11. Assume that the Lévy measure π is diffuse. Then, Nψ-a.e. there is a
unique node with mass ∆. Furthermore, for every δ, h > 0, we have:

Nψ[∆ > δ,H∆ > h] =
∫

(δ,∞)
e−h/w(r) Nψ[∆ ∈ dr]. (5.31)

In other words, under Nψ and conditionally on ∆ = δ, H∆ is exponentially distributed
with mean w(δ).

Question 5.12. If δ is an atom of π, what is the distribution of the height of the MRCA
of the nodes with mass exactly δ under Nψ, conditionally on ∆ = δ?

Proof. The first part follows from Corollary 5.9. Then, using Theorem 5.7, we have:

Nψ[∆ > δ,H∆ > h] =
∫

(δ,∞)
Nψ[H∆ > h|∆ = r] Nψ[∆ ∈ dr].

Now under Nψ[·|∆ = r], H∆ is distributed as Hs = H(ρs) under Pψ
r (ds, dρ). Lemma 5.10

allows to conclude. �

6. Conditioning on ∆ = δ and H∆ = h

In this section, we assume that the Lévy measure π is diffuse. Recall then from Propo-
sition 5.11 that there is a unique node with mass ∆ and H∆ is its height. The goal of this
section is to make sense of the conditional measure Nψ[·|∆ = δ,H∆ = h]. Let

Fδ,ε = {δ − ε < ∆ < δ + ε, Zδ−ε
0 = 1, h− ε < H(ρTδ−ε) < h+ ε} (6.1)

be the event that the maximal degree is between δ − ε and δ + ε, there is a unique first-
generation node with mass larger than δ − ε and its height is between h − ε and h + ε.
Recall from (5.1) the definition of w.
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Lemma 6.1. Assume that the Lévy measure π is diffuse. For every δ ∈ supp(π) such that
π̄(δ) > 0 and h > 0, we have as ε→ 0:

Nψ[δ − ε < ∆ < δ + ε, h− ε < H∆ < h+ ε] ∼ Nψ[Fδ,ε]
∼ 2εQψ

δ–ε(∆ < δ + ε)π̄(δ)e−h/w(δ). (6.2)

Proof. By Proposition 5.11, we have:

Nψ[δ− ε < ∆ < δ+ ε, h− ε < H∆ < h+ ε] =
∫

(δ−ε,δ+ε)
Nψ[∆ ∈ dr]w(r)−1

∫ h+ε

h−ε
e−t/w(r) dt.

A straightforward application of the dominated convergence theorem gives:

Nψ[δ − ε < ∆ < δ + ε, h− ε < H∆ < h+ ε] ∼ 2ε
∫

(δ−ε,δ+ε)
Nψ[∆ ∈ dr]w(r)−1e−h/w(r).

Since π is diffuse, observe that Nψ[σ1{∆=r}] = 0 for every r > 0 thanks to Corollary 3.2.
This implies that w is continuous and we deduce that

Nψ[δ − ε < ∆ < δ + ε, h− ε < H∆ < h+ ε] ∼ 2εNψ[δ − ε < ∆ < δ + ε]w(δ)−1e−h/w(δ).

But Lemma 5.1 gives:
Nψ[δ − ε < ∆ < δ + ε] ∼ Nψ[Eδ,ε].

Moreover, thanks to (5.11) and the continuity of w, we have:
Nψ[Eδ,ε] = π̄(δ − ε)w(δ − ε)Qψ

δ–ε(∆ < δ + ε) ∼ π̄(δ)w(δ)Qψ
δ–ε(∆ < δ + ε).

We deduce that
Nψ[δ − ε < ∆ < δ + ε, h− ε < H∆ < h+ ε] ∼ 2εQψ

δ–ε(∆ < δ + ε)π̄(δ)e−h/w(δ).

On the other hand, thanks to Theorem 4.1, we have:

Nψ[Fδ,ε] = Nψδ–ε

[
π̄(δ − ε)e−π̄(δ−ε)σ

∫ σ

0
1{h−ε<Hs<h+ε} ds

]
Qψ
δ–ε(∆ < δ + ε). (6.3)

Using Bismut’s decomposition as in (5.29) , we get:

Nψδ–ε

[
e−π̄(δ−ε)σ

∫ σ

0
1{h−ε<Hs<h+ε} ds

]
=
∫ h+ε

h−ε
e−t/w(δ−ε) dt ∼ 2εe−h/w(δ), (6.4)

where again we used the continuity of w. It follows that
Nψ[Fδ,ε] ∼ 2εQψ

δ–ε(∆ < δ + ε)π̄(δ)e−h/w(δ).

�

For every δ, h > 0, denote by Pψ
δ,h the probability measure on the space R+×D defined

by: ∫
R+×D

F dPψ
δ,h = 1

Nψ[Lhσ 1{∆<δ}]
Nψ

[∫ σ

0
F (s, ρ)Lh(ds) 1{∆<δ}

]
, (6.5)



40 CONDITIONING LÉVY TREES BY THEIR MAXIMAL DEGREE

for every F ∈ B+(R+ ×D). Since we are assuming that the Lévy measure π is diffuse, we
may replace the event {∆ < δ} by {∆ ≤ δ} thanks to Corollary 3.2. Thus, using Corollary
4.3, [13, Theorem 4.5] and (5.3), we have:

Nψ[Lhσ 1{∆<δ}] = Nψδ
[
Lhσ e−π̄(δ)σ

]
= e−hψ′δ(Nψ [∆>δ]) = e−h/w(δ). (6.6)

In particular, the following identity relating the measures Pψ
δ and Pψ

δ,h holds:
1

w(δ)

∫ ∞
0

dh e−h/w(δ) Pψ
δ,h(ds, dρ) = Pψ

δ (ds, dρ),

where we used that 1[0,σ](s) ds =
∫ a
0 daLa(ds), see Section 2.5. The next lemma gives an

approximation of the measure Pψ
δ,h.

Lemma 6.2. Let F : R+×D → R be measurable and bounded. We have for every δ, h > 0:

lim
ε→0

1
2ε Nψ

[∫ σ

0
F (s, ρ)1{h−ε<Hs<h+ε} ds1{∆≤δ−ε}

]
= Nψ

[∫ σ

0
F (s, ρ)Lh(ds) 1{∆<δ}

]
.

(6.7)

Proof. Recall from Section 2.5 that the measure La is supported on the set {s ∈ [0, σ] : Hs =
a}. Thus, we have:

1
2ε

∫ σ

0
F (s, ρ)1{h−ε<Hs<h+ε} ds = 1

2ε

∫ h+ε

h−ε
da
∫ σ

0
F (s, ρ)La(ds). (6.8)

Furthermore, h is a jump time for the local time process a 7→ La if and only if it is a jump
time for the total mass process a 7→ Laσ. But, under Nψ, the process (Laσ, a ≥ 0) is a
ψ-CB process. In particular, it has no fixed jump times. As a result, Nψ-a.e. the mapping
a 7→ La is continuous at h. We deduce that the following convergence holds Nψ-a.e.:

lim
ε→0

1
2ε

∫ σ

0
F (s, ρ)1{h−ε<Hs<h+ε} ds1{∆≤δ−ε} =

∫ σ

0
F (s, ρ)Lh(ds) 1{∆<δ}.

Next, using (6.8), we have:
1
2ε

∣∣∣∣∫ σ

0
F (s, ρ)1{h−ε<Hs<h+ε} ds

∣∣∣∣1{∆≤δ−ε} ≤ ‖F‖∞2ε

∫ h+ε

h−ε
Laσ da,

where the last term converges Nψ-a.e. to ‖F‖∞ Lhσ thanks to the continuity of a 7→ Laσ at
h. Furthermore, by [13, Eq. (12)] we have the convergence:

lim
ε→0

1
2ε Nψ

[∫ h+ε

h−ε
Laσ da

]
= Nψ[Lhσ].

Thus, the generalized dominated convergence theorem yields (6.7). �

The main result of this section is the following description of the exploration process
conditioned on having maximal degree δ at height h.
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Theorem 6.3. Assume that the Lévy measure π is diffuse. There exists a conditional
probability measure Nψ[·|∆ = δ,H∆ = h] for δ ∈ supp(π). Furthermore, for every F ∈
B+(D), we have:

Nψ[F (ρ)|∆ = δ,H∆ = h] =
∫
R+×D

Pψ
δ,h(ds, dρ̃)

∫
D
Pψδ (dρ̂|∆ ≤ δ)F (ρ̃~ (s, ρ̂)). (6.9)

Assuming the Grey condition, this can be interpreted as follows in terms of trees. Under
Nψ, conditionally on ∆ = δ, H∆ is exponentially distributed with mean w(δ). Moreover,
conditionally on ∆ = δ and H∆ = h, the Lévy tree can be constructed as follows: start
with T̃ with distribution Nψ[Lhσ 1{∆<δ}]−1 Nψδ [Lhσ 1{∆<δ} dT ], choose a leaf uniformly at
random in T̃ at height h (i.e. according to the probability measure Lh(dx)/Lhσ) and on
this leaf graft an independent Lévy forest with initial mass δ conditioned to have degree
≤ δ. Notice that this result generalizes Theorem 5.7 when the Lévy measure π is diffuse.
In particular, one can recover the latter simply by integrating with respect to h.

Proof. Let δ ∈ supp(π) and h > 0. Thanks to Lemma 6.1, we have as ε→ 0:

Nψ [F (ρ)|δ − ε < ∆ < δ + ε, h− ε < H∆ < h+ ε] ∼ Nψ [F (ρ)|Fδ,ε] . (6.10)

Recall from (5.14) and (5.15) the definitions of ρδ−ε,− and ρδ−ε,+. Using the Poissonian
decomposition from Theorem 4.1 and Corollary 4.3, we have:

Nψ
[
F (ρ)1Fδ,ε

]
= Nψ

[
F
(
ρδ−ε,− ~ (Tδ−ε, ρδ−ε,+)

)
1Fδ,ε

]
= π̄(δ − ε) Nψ

[∫
1[0,σ](s) dsQψ

δ–ε(1{∆<δ+ε} dρ̂)F (ρ~ (s, ρ̂))1{h−ε<Hs<h+ε,∆≤δ−ε}

]
.

By conditioning, it follows from (6.3) that

Nψ [F (ρ)|Fδ,ε] = 1
Nψ

[∫ σ
0 1{h−ε<Hs<h+ε} ds1{∆≤δ−ε}

]
×Nψ

[∫
1[0,σ](s) dsQψ

δ–ε(dρ̂|∆ < δ + ε)F (ρ~ (s, ρ̂))1{h−ε<Hs<h+ε,∆≤δ−ε}

]
. (6.11)

Therefore, using Lemma 6.2, Lemma 5.4 and Lemma 5.5, we deduce that

lim
ε→0

Nψ [F (ρ)|δ − ε < ∆ < δ + ε, h− ε < H∆ < h+ ε]

=
∫
R+×D

F dPψ
δ,h×Pψδ (G(ρ)|∆ ≤ δ), (6.12)

and the result readily follows by using [15, Theorem 1.30]. �
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7. Local limit of the Lévy tree conditioned on large maximal degree

In this section, we shall investigate the behavior of the exploration process conditionally
on ∆ = δ as δ → ∞. We start with the subcritical case. Then recall from (2.13) that
Nψ[σ] = α−1 <∞. We define a probability measure Pψ

∞ on the space R+ ×D by setting:∫
R+×D

F dPψ
∞ = αNψ

[∫ σ

0
F (s, ρ) ds

]
, (7.1)

for every F ∈ B+(R+ ×D).

Lemma 7.1. Assume that ψ is subcritical. The probability measure Pψ
δ converges to Pψ

∞
in total variation distance on the space R+ ×D as δ →∞.

Proof. Let F : R+ ×D be measurable and bounded. We have:∣∣∣∣Nψ
[∫ σ

0
F (s, ρ) ds1{∆<δ}

]
−Nψ

[∫ σ

0
F (s, ρ) ds

]∣∣∣∣ ≤ ‖F‖∞Nψ[σ1{∆≥δ}].

Since ψ is subcritical, we have Nψ[σ] < ∞ and the right-hand side converges to 0 as
δ →∞. This proves the result. �

For every measure-valued process µ = (µt, t ≥ 0) ∈ D, we define the measure-valued
process R0(µ) obtained from µ by removing any atoms at 0:

R0(µ)t = µt − µt(0)δ0. (7.2)

Denote by Pψ the distribution of the exploration process ρ with branching mechanism ψ
starting from 0.

Lemma 7.2. Assume that ψ is subcritical and that π is unbounded. Under Pψδ (·|∆ ≤ δ),
the process R0(ρ) converges in distribution to Pψ in the space (D, dS) as δ →∞.

Proof. Recall from (5.8) that Pψδ (∆ ≤ δ) = e−δNψ [∆>δ]. Since ψ is subcritical, by [21,
Proposition 3.8], we have as δ →∞:

Nψ[∆ > δ] ∼ π̄(δ)
α
· (7.3)

But δπ̄(δ) ≤
∫
(δ,∞) r π(dr) and the last term goes to 0 as δ → ∞. It follows that

limδ→∞ δNψ[∆ > δ] = 0 and
lim
δ→∞

Pψδ (∆ ≤ δ) = 1. (7.4)

Thus, it suffices to show that for every continuous and bounded function F : D → R, the
following convergence holds:

lim
δ→∞

Pψδ (F ◦R0(ρ)) = Pψ(F (ρ)). (7.5)
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Let ρ be the exploration process with branching mechanism ψ starting from 0, that is
ρ has distribution Pψ. Then, the process ρ̃(δ) defined in (2.20) has distribution Pψδ . Notice
that we have R0(ρ̃(δ))t = ρt1{L0

t≤r}, which implies that

dS(R0(ρ̃(δ)), ρ) ≤ sup
t≥0

dBL(R0(ρ̃(δ))t, ρt) = sup
L0
t>δ

〈ρt, 1〉.

Recall that 〈ρt, 1〉 = Xt−It. Since the Lévy measure π satisfies the integrability assumption∫
(0,∞)(r∧ r2)π(dr) <∞, the process X does not drift to∞; see e.g. [8, Chapter VII]. This
implies that the following convergence holds a.s.:

lim
δ→∞

sup
L0
t>δ

(Xt − It) = 0.

Therefore, the process R0(ρ̃(δ)) converges a.s. to ρ for the Skorokhod topology. This proves
(7.5) and the proof is complete. �

Remark 7.3. It should be clear from (2.20) that the mass ρ̃(δ)
0 (0) of the atom at 0 goes

to ∞ as δ →∞. This corresponds to the condensation phenomenon: a node with infinite
mass appears at the limit. By introducing the operator R0, we remove this mass which
allows us to study the limiting behavior above the condensation node.

Similarly to what was done in Section 5 (see (5.14) and (5.15)), we split the path of the
exploration process into two parts around the first node with mass ∆: ρ∆,− is the pruned
exploration process (that is the exploration process minus the first node with mass ∆) and
ρ∆,+ is the path of the exploration process above the first node with mass ∆. Notice that
ρ∆,+

0 is equal to ∆ times the Dirac measure at 0. Let
Eδ = {∆ = δ, ∆(ρ∆,−) < δ} (7.6)

be the event that the maximal degree is equal to δ and there is a unique first-generation
node with mass δ. Recall from (5.23) the definition of g.
Lemma 7.4. Assume that ψ is subcritical and that the set of atoms of the Lévy measure
π is unbounded. The following holds as δ →∞ along the set of atoms of π:

Nψ[∆ = δ] ∼ Nψ[Eδ] ∼
g(δ)
α
· (7.7)

Proof. Under Nψδ– and conditionally on ρ, let ∑N
i=1 δ(si,ρi) be a Poisson point measure with

intensity ds
∫

[δ,∞) π(dr)Pψr (dρ̃). Thanks to Theorem 4.1, we have:

Nψ[Eδ] = Nψδ– [N = 1,∆(ρ1) ≤ δ] .
But, under Nψδ– and conditionally on ρ, N has Poisson distribution with parameter
π[δ,∞)σ, ρ1 has distribution π[δ,∞)−1 ∫

[δ,∞) π(dr)Pψr (dρ̃) and they are independent. It
follows that

Nψ[Eδ] = Nψδ–

[
σe−π[δ,∞)σ

∫
[δ,∞)

π(dr)Pψr (∆ ≤ δ)
]
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= Nψδ–
[
σe−π[δ,∞)σπ(δ)e−δNψ [∆>δ]

]
= g(δ)w(δ), (7.8)

where we used (5.8) for the second equality and (5.2) for the last.

Recall from (5.1) the definition of w. Since ψ is subcritical, it follows from (2.13) that
limδ→∞w(δ) = α−1. This proves that

Nψ[Eδ] ∼
g(δ)
α
·

A similar computation yields:
Nψ[∆ = δ] = Nψδ– [N ≥ 1,∆(ρi) ≤ δ, ∀1 ≤ i ≤ N ]

= Nψδ–
[
e−π[δ,∞)σ

(
eg(δ)σ − 1

)]
= Nψ

[(
eg(δ)σ − 1

)
1{∆<δ}

]
, (7.9)

where we used Corollary 4.3 for the last equality.

Observe that since π(1,∞) <∞, π(δ) (and thus also g(δ)) converges to 0 as δ →∞. It
is clear that

lim
δ→∞

eg(δ)σ − 1
g(δ) 1{∆<δ} = σ.

Furthermore, since ψ is subcritical, there exists λ0 > 0 such that Nψ
[
σeλ0σ

]
<∞. Thus,

using Taylor’s inequality, we have for δ > 0 large enough:
eg(δ)σ − 1

g(δ) 1{∆<δ} ≤ σeg(δ)σ ≤ σeλ0σ,

Thanks to the dominated convergence theorem, we deduce that

lim
δ→∞

Nψ[∆ = δ]
g(δ) = lim

δ→∞

1
g(δ) Nψ

[(
eg(δ)σ − 1

)
1{∆<δ}

]
= Nψ[σ] = α−1.

This finishes the proof. �

The first main result of this section concerns the limit of the subcritical Lévy tree
conditioned on having a large maximal degree. Then there is a condensation phenomenon:
the limit consists of a size-biased Lévy tree onto which one grafts – at a uniformly chosen
leaf – an independent Lévy forest with infinite mass. In particular, the height of the
condensation node is exponentially distributed. Recall from (5.30) that T∆ is the first time
that the exploration process contains an atom with mass ∆. Recall also that ρ∆,− denotes
the path of the exploration process after removing the first node with mass ∆ while ρ∆,+

denotes the path of the exploration process above that node. Finally, recall that Pψ is the
distribution of the exploration process with branching mechanism ψ starting from 0.
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Theorem 7.5. Assume that ψ is subcritical and that π is unbounded. Let F : R+×D → R
and G : D → R be continuous and bounded. We have:

lim
δ→∞

Nψ
[
F (T∆, ρ

∆,−)G ◦R0(ρ∆,+)|∆ = δ
]

= αNψ
[∫ σ

0
F (s, ρ) ds

]
Pψ(G(ρ)). (7.10)

Proof. When δ → ∞ along the set of non-atoms {δ > 0: π(δ) = 0}, the convergence is a
direct consequence of Theorem 5.7, Lemma 7.1 and Lemma 7.2.

Now assume that δ > 0 is an atom of π. Thanks to Lemma 7.4 and since the inclusion
Eδ ⊂ {∆ = δ} holds, it is enough to show that the result holds when conditionning by Eδ.
But, thanks to Remark 5.8, we have:

Nψ
[
F (T∆, ρ

∆,−)G ◦R0(ρ∆,+)
∣∣∣Eδ] =

∫
R+×D

F (s, ρ̃) Pψ
δ (ds, dρ̃)Pψδ (G ◦R0(ρ)|∆ ≤ δ).

The result readily follows from Lemma 7.1 and Lemma 7.2. �

Next, we consider the critical case. Recall from (5.1) the definition of w. The next
lemma is a key ingredient in the proof of the local convergence of the critical Lévy tree.

Lemma 7.6. Assume that ψ is critical and that the Lévy measure π is unbounded. For
every h > 0, we have

lim
δ→∞

1
w(δ) Nψ

[
σF (rh(ρ))1{∆<δ}

]
= Nψ

[
Lhσ F (rh(ρ))

]
. (7.11)

Proof. We shall use the decomposition of the exploration process above level h, see Section
2.5. Let (ρi, i ∈ Ih) be the excursions of the exploration process above level h. For every
i ∈ Ih, let σi (resp. ∆i) be the lifetime (resp. the maximal degree) of ρi. Similarly, denote
by σh (resp. ∆h) the lifetime (resp. the maximal degree) of rh(ρ). Thanks to Proposition
2.4, we have:

Nψ
[
σF (rh(ρ))1{∆<δ}

]
= Nψ

σh +
∑
i∈Ih

σi

F (rh(ρ)); ∆h < δ, ∆i < δ, ∀i ∈ Ih


= Nψ

F (rh(ρ))1{∆h<δ}Nψ

σh +
∑
i∈Ih

σi; ∆i < δ, ∀i ∈ Ih

∣∣∣∣∣∣Eh
 .

Thanks to the Mecke formula for Poisson random measures, see e.g. [27, Chapter 4,
Theorem 4.1], we get:

Nψ

σh +
∑
i∈Ih

σi; ∆i < δ, ∀i ∈ Ih

∣∣∣∣∣∣Eh
 =

(
σh + Lhσ Nψ[σ1{∆<δ}]

)
e−Lhσ Nψ [∆≥δ].
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We deduce that
1

w(δ) Nψ
[
σF (rh(ρ))1{∆<δ}

]
= Nψ

[
F (rh(ρ))1{∆h<δ}

(
Lhσ + w(δ)−1σh

)
e−Lhσ Nψ [∆≥δ]

]
.

(7.12)
Notice that w(δ) → ∞ as δ → ∞ since ψ is critical. Furthermore, it is clear that σh =∫ h

0 L
a
σ da. Now letting δ →∞ in (6.6) gives that Nψ[Laσ] = 1. It follows that Nψ[σh] = h <

∞. Thus, the dominated convergence theorem applies and we obtain the desired result by
letting δ →∞ in (7.12). �

Recall from Theorem 5.7 that when the Lévy measure π has an atom δ > 0, the ex-
ploration process conditioned on ∆ = δ has a random number of first-generation nodes
with mass δ. The next lemma gives a sufficient condition for there to be exactly one with
high probability as δ → ∞. Recall from (5.1) the definition of w. Recall also from (7.6)
that Eδ denotes the event that the maximal degree is equal to δ and there is a unique
first-generation node with mass δ.

Lemma 7.7. Assume that ψ is critical and that the Lévy measure π is unbounded. Fur-
thermore, assume that

lim
δ→∞

π(δ)
w(δ)π̄(δ)

∫
[δ,∞) r π(dr) = 0. (7.13)

We have as δ →∞ along the set of atoms of π:
Nψ[∆ = δ] ∼ Nψ[Eδ] = g(δ)w(δ). (7.14)

Proof. Recall from (7.8) and (7.9) that

Nψ[Eδ] = g(δ)w(δ) and Nψ[∆ = δ] = Nψ
[(

eg(δ)σ − 1
)

1{∆<δ}
]
.

Using Taylor’s inequality, we deduce that

1 ≤ Nψ[∆ = δ]
Nψ[Eδ]

≤ w1(δ)
w(δ) , (7.15)

where we set w1(δ) = Nψ
[
σeg(δ)σ1{∆<δ}

]
.

Using (5.2) and the inequality e−x ≥ 1− x for every x ≥ 0, we have:

w(δ) = Nψδ–
[
σe−π[δ,∞)σ

]
≥ Nψδ–

[
σ(1− π(δ)σ)e−π̄(δ)σ

]
.

But thanks to Corollary 4.3, observe that
w1(δ) = Nψδ–

[
σe(g(δ)−π[δ,∞))σ

]
≤ Nψδ–

[
σe−π̄(δ)σ

]
,

where we used that g(δ) ≤ π(δ) for the inequality. Furthermore, using that the function
x 7→ xe−x is bounded on R+ by some constant M > 0, we have:

Nψδ–
[
σ2e−π̄(δ)σ

]
≤ M

π̄(δ) Nψδ– [σ] = M

π̄(δ)
∫

[δ,∞) r π(dr) ·
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We deduce that
w(δ) ≥ w1(δ)− Mπ(δ)

π̄(δ)
∫

[δ,∞) r π(dr) ·

It follows from (7.15) that

1 ≤ Nψ[∆ = δ]
Nψ[Eδ]

≤ 1 + Mπ(δ)
w(δ)π̄(δ)

∫
[δ,∞) r π(dr) ,

and the result readily follows by using (7.13). �

In the critical case, the Lévy tree conditioned on having a large maximal degree converges
locally to the immortal Lévy tree. Intuitively, the condensation node goes to infinity and
thus becomes invisible to local convergence.

Theorem 7.8. Assume that ψ is critical and that π is unbounded. Furthermore, assume
that (7.13) holds. Let F : D → R be continuous and bounded. For every h > 0, we have:

lim
δ→∞

Nψ [F (rh(ρ))|∆ = δ] = Nψ
[
Lhσ F (rh(ρ))

]
. (7.16)

Proof. First assume that δ > 0 is not an atom of π. Thanks to Theorem 5.7, conditionally
on ∆ = δ, ρ is distributed as ρ̃~ (s, ρ̂), where (s, ρ̃) has distribution Pψ

δ , ρ̂ has distribution
Pψδ (·|∆ ≤ δ) and they are independent.

Next, assume that δ > 0 is an atom of π. Recall that Eδ denotes the event that ∆ = δ
and there is a unique first-generation node with mass δ. Thanks to Lemma 7.7, since
Eδ ⊂ {∆ = δ}, the two conditionings are equivalent and it is enough to show that the
result holds when conditioning on Eδ. But Remark 5.8 gives that, conditionally on Eδ, ρ
is again distributed as ρ̃~ (s, ρ̂).

Thus, in all cases, it is enough to show that

lim
δ→∞

∫
R+×D

Pψ
δ (ds, dρ̃)

∫
D
Pψδ (dρ̂|∆ ≤ δ)F (rh(ρ̃~ (s, ρ̂))) = Nψ

[
Lhσ F (rh(ρ))

]
.

Now, Lemma 5.10 gives that the height H(ρ̃s) at which ρ̂ is grafted is exponentially dis-
tributed with mean w(δ). Since ψ is critical, it holds that limδ→∞w(δ) = ∞. Thus, we
deduce that H(ρ̃s) > h with high probability as δ →∞ under Pψ

δ (ds, dρ̃), i.e. we have:

lim
δ→∞

∫
R+×D

Pψ
δ (ds, dρ̃)1{H(ρ̃s)≤h} = 0.

Furthermore, on the event {H(ρ̃s) > h}, it holds that rh(ρ̃~ (s, ρ̂)) = rh(ρ̃), and the proof
reduces to showing the following convergence:

lim
δ→∞

∫
R+×D

Pψ
δ (ds, dρ̃)F (rh(ρ̃)) = Nψ

[
Lhσ F (rh(ρ))

]
. (7.17)
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Recalling from (5.4) the definition of Pψ
δ , Lemma 7.6 yields (7.17) and the proof is complete.

�

We end this section with the following result dealing with the asymptotic behavior of
the exploration process conditioned on having a large maximal degree at a fixed height h.
Notice that this conditioning does not allow the condensation node to escape to infinity
(even in the critical case as opposed to the conditioning of large maximal degree) and
forces condensation to occur at a finite height. The limit consists of a Lévy tree biased by
the population size at level h onto which one grafts – at a leaf chosen uniformly at random
at height h – an independent Lévy forest with infinite mass.

Theorem 7.9. Assume that ψ is (sub)critical and that π is unbounded and diffuse. Let
F : R+ ×D → R and G : D → R be continuous and bounded. We have:

lim
δ→∞

Nψ
[
F (T∆, ρ

∆,−)G(ρ∆,+)|∆ = δ,H∆ = h
]

= eαh Nψ
[∫ σ

0
F (s, ρ)Lh(ds)

]
Pψ(G(ρ)).

(7.18)

Proof. Letting δ →∞ in (6.6), we have that limδ→∞Nψ[Lhσ 1{∆<δ}] = e−αh. Furthermore,
the dominated convergence theorem yields:

lim
δ→∞

Nψ
[∫ σ

0
F (s, ρ)Lh(ds) 1{∆<δ}

]
= Nψ

[∫ σ

0
F (s, ρ)Lh(ds)

]
.

This proves that the following convergence holds:

lim
δ→∞

∫
R+×D

F dPψ
δ,h = eαh Nψ

[∫ σ

0
F (s, ρ)Lh(ds)

]
.

The result is then a direct consequence of Theorem 6.3 and Lemma 7.2. �

8. Other conditionings of large maximal degree

In this section, we look at other conditionings of large maximal degree. Recall from
Section 4.2 that Zδ

0 denotes the number of first-generation nodes with mass larger than δ
whileW δ denotes the total number of nodes with mass larger than δ. Specifically, we study
the conditionings ∆ > δ (which is equal to Zδ

0 ≥ 1 or W δ ≥ 1), Zδ
0 = 1 and W δ = 1. We

shall see that, in the subcritical and critical cases, all three give rise to the same asymptotic
behavior as conditioning by ∆ = δ.

Notice that {W δ = 1} (resp. {Zδ
0 = 1}) is the event that ρ contains exactly one node

(resp. one first-generation node) with mass larger than δ. To begin, we compute the
measure of these two events. In the subcritical case, they are equivalent in Nψ-measure
to {∆ > δ}. However, this is no longer the case for critical branching mechanisms, see
Proposition 9.2 for the (critical) stable case.
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Proposition 8.1. We have:

Nψ[Zδ
0 = 1] = π̄(δ)

ψ′δ(Nψ[∆ > δ]) , (8.1)

Nψ[W δ = 1] = 1
ψ′δ(Nψ[∆ > δ])

∫
(δ,∞)

e−rNψ [∆>δ] π(dr). (8.2)

In particular, assuming that ψ is subcritical and that π is unbounded, we have as δ →∞:

Nψ[Zδ
0 = 1] ∼ Nψ[W δ = 1] ∼ Nψ [∆ > δ] ∼ π̄(δ)

α
· (8.3)

Since we have the inclusions {W δ = 1} ⊂ {Zδ
0 = 1} ⊂ {∆ > δ}, Proposition 8.1 entails

that, in the subcritical case, the three conditionings are equivalent as δ →∞. In particular,
conditionally on ∆ > δ, there is exactly one node with mass larger than δ with probability
tending to 1 as δ →∞.

Proof. Notice that {W δ = 1} is the event that ρ contains only one first-generation node
with mass larger than δ and that this node has no descendants with mass larger than δ.
Thus, using the Poissonian decomposition of Theorem 4.1, we get Nψ[Zδ

0 = 1] = Nψδ [ζ = 1]
and

Nψ
[
W δ = 1

]
= Nψδ [ζ = 1]Qψ

δ (∆ ≤ δ). (8.4)

Recall that under Nψδ and conditionally on ρ, ζ has Poisson distribution with parameter
π̄(δ)σ. Thus we have

Nψδ [ζ = 1] = Nψδ
[
π̄(δ)σe−π̄(δ)σ

]
= π̄(δ)
ψ′δ ◦ ψ−1

δ (π̄(δ))
= π̄(δ)
ψ′δ(Nψ[∆ > δ]) , (8.5)

where we used (3.4) for the last equality. This proves (8.1).

Moreover, using the Poissonian decomposition of Proposition 4.4 together with the fact
that, under Qψδ

δ and conditionally on ρ, ξ has Poisson distribution with parameter π̄(δ)σ,
we get:

Qψ
δ (∆ ≤ δ) = Qψδ

δ (ξ = 0) = Qψδ
δ (e−π̄(δ)σ) = 1

π̄(δ)

∫
(δ,∞)

π(dr)Pψδr (e−π̄(δ)σ).

Thus, it follows from (4.10) and (3.4) that

Qψ
δ (∆ ≤ δ) = 1

π̄(δ)

∫
(δ,∞)

e−rψ
−1
δ

(π̄(δ)) π(dr) = 1
π̄(δ)

∫
(δ,∞)

e−rNψ [∆>δ] π(dr). (8.6)

Finally, combining (8.4), (8.5) and (8.6), we deduce (8.2).

Now assume that ψ is subcritical and that π is unbounded. Recall from (7.3) that

Nψ[∆ > δ] ∼ π̄(δ)
α
·
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On the other hand, differentiating (1.8), we get:

ψ′δ(Nψ[∆ > δ]) = ψ′(Nψ[∆ > δ]) +
∫

(δ,∞)
re−rNψ [∆>δ] π(dr).

Since
∫

(1,∞) r π(dr) <∞, the dominated convergence theorem shows that the last integral
converges to 0 as δ →∞. It follows that

lim
δ→∞

ψ′δ(Nψ[∆ > δ]) = ψ′(0) = α. (8.7)

In particular, we get that Nψ[Zδ
0 = 1] ∼ α−1π̄(δ).

Furthermore, we have:

0 ≤ 1− 1
π̄(δ)

∫
(δ,∞)

e−rNψ [∆>δ] π(dr) = 1
π̄(δ)

∫
(δ,∞)

(
1− e−rNψ [∆>δ]

)
π(dr)

≤ Nψ[∆ > δ]
π̄(δ)

∫
(δ,∞)

r π(dr).

The dominated convergence theorem gives limδ→∞
∫

(δ,∞) r π(dr) = 0. Since limδ→∞Nψ[∆ >

δ]/π̄(δ) = α−1, we deduce that

lim
δ→∞

1
π̄(δ)

∫
(δ,∞)

e−rNψ [∆>δ] π(dr) = 1.

Together with (8.2) and (8.7), this yields Nψ[W δ = 1] ∼ α−1π̄(δ). This concludes the
proof. �

In the subcritical case, the three conditionings ∆ > δ, Zδ
0 = 1 andW δ = 1 are equivalent

as δ →∞ and thus they yield the same asymptotic behavior: a condensation phenomenon
occurs at the limit just like in Theorem 7.5 where we condition by ∆ = δ. Recall from
(5.30) that T∆ is the first time that the exploration process contains an atom with mass
∆. Recall also from Section 7 that ρ∆,− denotes the path of the exploration process after
removing the first node with ∆ while ρ∆,+ denotes the path of the exploration process
above that node.

Theorem 8.2. Assume that ψ is subcritical and that π is unbounded. Let F : R+×D → R
and G : D → R be continuous and bounded and let Aδ be equal to {∆ > δ}, {Zδ

0 = 1} or
{W δ = 1}. We have:

lim
δ→∞

Nψ
[
F (T∆, ρ

∆,−)G ◦R0(ρ∆,+)
∣∣∣Aδ] = αNψ

[∫ σ

0
F (s, ρ) ds

]
Pψ(G(ρ)). (8.8)

Proof. As the three events are equivalent it is enough to show the result for Aδ = {∆ > δ}.
Disintegrating with respect to ∆, we have:

Nψ
[
F (T∆, ρ

∆,−)G ◦ (ρ∆,+)
∣∣∣∆ > δ

]
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= 1
Nψ[∆ > δ]

∫
(δ,∞)

Nψ[∆ ∈ dr] Nψ
[
F (T∆, ρ

∆,−)G ◦R0(ρ∆,+)
∣∣∣∆ = r

]
.

The conclusion follows from Theorem 7.5. �

Recall from (5.12) that Tδ is the first time ρ contains a node with mass larger than δ.
Also recall from (5.14) and (5.15) that ρδ,− denotes the path of the exploration process
after removing the first node with mass larger than δ while ρδ,+ denotes the path of
the exploration process above that node. We shall determine the joint distribution of
(Tδ, ρδ,−, ρδ,+) conditionally on Zδ

0 = 1 and W δ = 1. Recall from (5.1) the definition of w+.

Lemma 8.3. Assume that ψ is (sub)critical and let F ∈ B+(R+ × D) and G ∈ B+(D).
We have:

Nψ
[
F (Tδ, ρδ,−)G(ρδ,+)

∣∣∣Zδ
0 = 1

]
= 1
w+(δ) Nψ

[∫ σ

0
F (s, ρ) ds1{∆≤δ}

]
Qψ
δ (G(ρ)), (8.9)

Nψ
[
F (Tδ, ρδ,−)G(ρδ,+)

∣∣∣W δ = 1
]

= 1
w+(δ) Nψ

[∫ σ

0
F (s, ρ) ds1{∆≤δ}

]
Qψ
δ (G(ρ)|∆ ≤ δ).

(8.10)

Proof. We only prove the first identity, the second one being similar. Theorem 4.1 gives:
Nψ

[
F (Tδ, ρδ,−)G(ρδ,+)1{Zδ0=1}

]
= Nψδ

[
F (U, ρ)G(F δ)1{ζ=1}

]
,

where under Nψδ and conditionally on ρ, ρδ has distribution Qψ
δ , U is uniformly distributed

on [0, σ], ζ has Poisson distribution with parameter π̄(δ)σ and they are independent.
Therefore, conditioning on ρ in the last term, we get:

Nψ
[
F (Tδ, ρδ,−)G(ρδ,+)1{Zδ0=1}

]
= π̄(δ) Nψδ

[
e−π̄(δ)σ

∫ σ

0
F (s, ρ) ds

]
Qψ
δ (G(ρ))

= π̄(δ) Nψ
[∫ σ

0
F (s, ρ) ds1{∆≤δ}

]
Qψ
δ (G(ρ)),

where we used Corollary 4.3 for the last equality. This in conjunction with (8.1) and (5.3)
yields the desired result. �

In the critical case, the three conditionings ∆ > δ, Zδ
0 = 1 andW δ = 1 are not equivalent

but they still yield the same asymptotic behavior: local convergence to the immortal Lévy
tree just like in Theorem 7.8 where we condition by ∆ = δ.

Theorem 8.4. Assume that ψ is critical and that π is unbounded. Let F : D → R be
continuous and bounded and let Aδ be equal to {∆ > δ}, {Zδ

0 = 1} or {W δ = 1}.We have

lim
δ→∞

Nψ [F (rh(ρ))|Aδ] = Nψ
[
Lhσ F (rh(ρ))

]
. (8.11)

Proof. Since the conditioning by ∆ > δ was already treated in [20], we only consider the
other two. The proof uses similar arguments to that of Theorem 7.8 and we only give a
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sketch. By Lemma 8.3, under Nψ and conditionally on Zδ
0 = 1, ρ is distributed as ρ̃~(s, ρ̂),

where (s, ρ̃) has distribution

E [F (s, ρ̃)] = 1
w+(δ) Nψ

[∫ σ

0
F (s, ρ) ds1{∆≤δ}

]
,

ρ̂ has distribution Qψ
δ and they are independent. But Lemma 5.10 gives that the height

H(ρ̃s) is exponentially distributed with mean w+(δ). Since ψ is critical, this last quantity
goes to ∞ as δ → ∞. In particular, it holds that H(ρ̃s) > h with high probability as
δ →∞. Furthermore, on the event {H(ρ̃s) > h}, we have that

rh(ρ̃~ (s, ρ̂)) = rh(ρ̃). (8.12)

As a consequence, in order to show the result, it is enough to prove that

lim
δ→∞

1
w+(δ) Nψ

[
σF (rh(ρ))1{∆≤δ}

]
= Nψ

[
Lhσ F (rh(ρ))

]
.

This last convergence holds by adapting the proof of Lemma 7.6. Finally, when condition-
ing on W δ = 1, the only change is that ρ̂ has distribution Qψ

δ (·|∆ ≤ δ) but this does not
contribute to the limit because of (8.12). This completes the proof. �

9. Stable case

We consider the stable case ψ(λ) = λγ with γ ∈ (1, 2). Notice that the branching
mechanism is critical with α = β = 0 and the Lévy measure π is given by:

π(dr) = aγr
−1−γ dr, where aγ = γ(γ − 1)

Γ(2− γ) ·

Then we have:
π̄(δ) = π(δ,∞) = aγ

γ
δ−γ. (9.1)

Furthermore, the Grey condition (2.21) is satisfied and we can speak of the Lévy tree T ,
see Section 2.9.

We recall the scaling property of the stable tree. For every γ ∈ (1, 2), define the mapping
Rγ : T× (0,∞)→ T by:

Rγ((T, ∅, d, µ), a) = (T, ∅, ad, aγ/(γ−1)µ), ∀T ∈ T. (9.2)

In words, the real tree Rγ((T, ∅, d, µ), a) is obtained from (T, ∅, d, µ) by multiplying the
metric by a and the measure by aγ/(γ−1). The choice of the exponent is justified by the
following identity: for every a > 0,

Rγ(T , a) under Nψ (d)= T under a1/(γ−1) Nψ . (9.3)
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Using this, one can define a regular conditional probability measure Nψ[·|σ = a] such that
Nψ[·|σ = a]-a.s. σ = a and

Nψ[dT ] = 1
γΓ(1− 1/γ)

∫ ∞
0

da
a1+1/γ Nψ[dT |σ = a]. (9.4)

Furthermore, under Nψ[·|σ = a], T is distributed as Rγ(T , a1−1/γ) under Nψ[·|σ = 1]. We
shall now establish the scaling property of the degree.

Proposition 9.1. Let ψ(λ) = λγ with γ ∈ (1, 2). Then, under Nψ[·|∆ = δ], the stable tree
T is distributed as Rγ(T , δγ−1) under Nψ[·|∆ = 1].

Proof. Thanks to [13, Theorem 4.7], we can write the degree of the stable tree T as

∆(T ) = sup
x∈T

(
lim
ε→0

((γ − 1)ε)−1/(γ−1)nT (x, ε)
)
,

where nT (x, ε) is the number of subtrees originating from x with height greater than ε.
In particular, it is straightforward to check that ∆(Rγ(T , a)) = a1/(γ−1)∆(T ). Then the
conclusion readily follows from (9.3). �

Denote by Γ(s, y) the upper incomplete gamma function:

Γ(s, y) =
∫ ∞
y

ts−1e−t dt, ∀s ∈ R, y > 0.

Then the Laplace exponent ψδ is given by:

ψδ(λ) = λγ + aγ

∫ ∞
δ

(1− e−λr) dr
r1+γ = λγ(1− aγΓ(−γ, λδ)) + γ−1aγδ

−γ. (9.5)

We will aslo need its derivative:

ψ′δ(λ) = λγ−1(γ + aγΓ(1− γ, λδ)).

Proposition 9.2. In the stable case ψ(λ) = λγ, we have:

Nψ[∆ > δ] = cγδ
−1, (9.6)

Nψ[Zδ
0 = 1] = cγ

γ
ecγδ−1, (9.7)

Nψ[W δ = 1] =
(
cγ −

γcγ+1
γ

aγ
ecγ
)
δ−1, (9.8)

where cγ ∈ (0,∞) is such that Γ(−γ, cγ) = a−1
γ .

Proof. Thanks to (3.4), we have ψδ(Nψ[∆ > δ]) = π̄(δ). Together with (9.5), this implies
that δNψ[∆ > δ] is solution to Γ(−γ, x) = a−1

γ . This proves (9.6).
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To prove the remaining two identities, notice that

ψ′δ(Nψ[∆ > δ]) = ψ′δ(cγδ−1) = cγ−1
γ δ1−γ (γ + aγΓ(1− γ, cγ)) = aγ

cγ
e−cγδ1−γ,

where we used the identity Γ(s+ 1, x) = sΓ(s, x) +xse−x together with the definition of cγ
for the last equality. The result readily follows from Proposition 8.1 by a straightforward
computation. �

Lemma 9.3. For every λ ≥ 0, there exists a constant cγ(λ) ∈ (0,∞) such that

ψ−1
δ

(
(1− e−λ)π̄(δ)

)
= cγ(λ)

δ
· (9.9)

Moreover, cγ(λ) is the unique positive solution to xγ(aγΓ(−γ, x)− 1) = γ−1aγe−λ.

Proof. Fix λ ≥ 0 and let
uλγ(x) = xγ(1− aγΓ(−γ, x)) + γ−1aγe−λ, ∀x ≥ 0.

Using the estimate Γ(−γ, x) ∼ γ−1xγ as x → 0, elementary analysis gives that uλγ has a
unique root which we denote by cγ(λ). Thanks to (9.5), we get:

ψδ(δ−1cγ(λ)) = (1− e−λ)γ−1aγδ
−γ,

and the conclusion readily follows from (9.1). �

In the stable case, we can make explicit the distribution of the Bienaymé-Galton-Watson
forest τδ.

Proposition 9.4. Under Nψ, conditionally on ∆ > δ, the random forest τδ consisting of
nodes with mass larger than δ is a critical (Zδ

0 , ξ
δ)-Bienaymé-Galton-Watson forest, where

Nψ
[
1− e−λZδ0

∣∣∣∆ > δ
]

= cγ(λ)
cγ

and Nψ
[
e−λξδ

∣∣∣∆ > δ
]

= e−λ + γ

aγ
cγ(λ). (9.10)

In particular, conditionally on ∆ > δ, the distribution of τδ is independent of δ.

Proof. Under Nψδ and conditionally on T , let ζ be a Poisson random variable with pa-
rameter π̄(δ)σ. Notice that conditionally on ∆ > δ, Zδ

0 is distributed as ζ under Nψδ

conditionally on ζ ≥ 1. Thus we have:

Nψ
[
1− e−λZδ0

∣∣∣∆ > δ
]

=
Nψδ

[
(1− e−λζ)1{ζ≥1}

]
Nψδ [ζ ≥ 1] =

Nψδ
[
1− e−λζ

]
Nψδ [ζ ≥ 1] · (9.11)

Since Nψδ [ζ ≥ 1] = Nψ[∆ > δ] thanks to Theorem 4.1, it follows from (4.7) that

Nψ
[
1− e−λZδ0

∣∣∣∆ > δ
]

=
ψ−1
δ

(
(1− e−λ)π̄(δ)

)
Nψ[∆ > δ] ·



CONDITIONING LÉVY TREES BY THEIR MAXIMAL DEGREE 55

Combining (9.6) and (9.9), we deduce that

Nψ
[
1− e−λZδ0

∣∣∣∆ > δ
]

= cγ(λ)
cγ
·

Next, thanks to Theorem 4.1, it is easy to see than under Nψ, the random variables ξδ
and 1{∆>δ} = 1{Zδ0≥1} are independent. It follows from (4.8) and Lemma 9.3 that

Nψ
[
e−λξδ

∣∣∣∆ > δ
]

= Nψ
[
e−λξδ

]
= e−λ + γ

aγ
cγ(λ).

�
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Index of notation

Spaces
Mf (E) space of finite measures on E
D space of càdlàg functions from R+ toMf (R+)
D0 space of càdlàg excursions from R+ toMf (R+)

Random variables
ρt exploration process
ηt dual process
Ht height process
σ lifetime of the exploration process
Lh(ds) local time at level h
∆ maximal degree of the exploration process
Tδ first time the exploration process contains a node with mass larger than δ
ρδ,− path of the exploration process after removing the first node with mass

larger than δ
ρδ,+ path of the exploration process above the first node with mass larger than

δ

τδ discrete tree consisting of nodes with mass larger than δ
W δ number of nodes with mass larger δ
Zδ

0 number of first-generation nodes with mass larger than δ
T∆ first time the exploration process contains a node with mass ∆
H∆ height of the first node with mass ∆
ρ∆,− path of the exploration process after removing the first node with mass ∆
ρ∆,+ path of the exploration process above the first node with mass ∆

Measures
Pψ distribution of the exploration process starting from 0
Nψ excursion measure of the exploration process
Pψ,∗ν distribution of the exploration process starting at ν and killed when it first

reaches 0
Pψr distribution of the exploration process with initial degree r
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Qψ
δ distribution of the exploration process with random initial degree, (2.19)

Pψ
δ distribution of a marked exploration process with degree restriction, (5.4)

Pψ
δ,h distribution of a marked (at level h) exploration process with degree restric-

tion, (6.5)
Functions
π̄(δ) tail of the Lévy measure π
w(δ) Nψ[σ1{∆<δ}]
w+(δ) Nψ[σ1{∆≤δ}]
g(δ) π(δ)e−δNψ [∆>δ]
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