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Hybrid Cellular Automaton - Parabolic Thick Needle model for equiaxed
dendritic solidification

Romain Fleurisson, Oriane Senninger, Gildas Guillemot∗, Charles-André Gandin

MINES ParisTech, PSL Research University, CEMEF UMR CNRS 7635, CS10207, 06904 Sophia Antipolis, France

Abstract5

A hybrid Cellular Automaton (CA) - Parabolic Thick Needle (PTN) model is developed for the simulation

of an equiaxed dendritic grain. It is implemented by solving conservation equations with the Finite Ele-

ment (FE) method at two scales. At the scale of the microstructure, dendritic branches are approximated

by a network of PTN. The solute field is computed in the liquid using a FE mesh with minimum size

smaller than the diffusion length ahead of the dendrite tips, giving access to a detailed description of each

dendrite tip growth velocity as well as solutal interactions between branches. At the simulation domain

scale, volume averaged heat and solute transfers are solved on a coarser FE mesh. The average volu-

metric fraction of phases is deduced from a field giving the fraction of dendritic microstructure together

with a microsegregation model. Because the PTN themselves grow on CA cells, the dendrite tip growth

velocity is transferred to the vertices of the polygon associated to the CA growth shape. Similarly, the

field giving the fraction of dendritic microstructure is deduced from the fraction of CA cells part of the

mushy zone, which include cells containing PTN network. Advantages of the new multiple scale CAPTN

model include solutal interaction between dendrite branches together with long range transfer of heat

and solute mass, together with the role of latent heat release on equiaxed solidification.

Keywords: Solidification, Dendrite growth law, Multiscale, Finite Element method

Nomenclature

Latin symbols

a Integration parameter m10

d0 Capillary length m

g Volume fraction m3.m-3
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hmin Minimum mesh size m

hmax Maximum mesh size m

k Segregation coefficient wt%.wt%-1
15

lCA Cell size m

liν Length of branch i of polygon in cell ν m

m Liquidus slope K.wt%-1

rcyl Truncation radius m

t Time s20

v Velocity m.s-1

w Composition wt%

ps Factor on solid PTN mesh size -

Cp Volumetric heat capacity J.K-1.m-3

Dl Diffusion coefficient of the liquid phase m2.s-125

F Flux intensity factor -

H Volumetric enthalpy J.m-3

LM Volumetric latent heat J.m-3

T Temperature K

Greek symbols30

δs Boolean field of the solid phase in the PTN mesh -

δls Boolean field of the liquid-solid interface in the PTN mesh -

κ Thermal conductivity W.m-1.K-1

ρ Curvature radius m

σ Selection parameter -35

∆t Time step s

∆T Undercooling K

Γls Gibbs-Thomson coefficient K.m
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Ω Supersaturation -

Superscripts40

s solid phase

l liquid phase

ls liquid-solid interface

m mushy zone

Subscripts45

eut Eutectic

lim Threshold value

tip Related to a dendrite tip parabola

FE Field on the FE mesh

Iv Related to the Ivantsov solution50

M Melting

PTN Field on the PTN mesh

1. Introduction

Solidification processing of metallic alloys involves highly multi-physical phenomena acting over a

broad range of time and space scales. This multiscale complexity makes simulation of solidification chal-55

lenging and leads to the use of specific simplifying hypotheses depending on the scale of the simulated

domain [1].

The Cellular Automaton method (CA) was initially developed for the simulation of the grain structure

generated by primary dendritic solidification in casting [2]. The grain structure is modelled by a set of CA

cells with the same grain index. For cells located at the boundary with the liquid, a growth algorithm60

is applied that makes use of a dendrite tip growth kinetics model [2] and assume development of the

dendrite trunks and branches along the < 100 > crystallographic directions for cubic metals [3, 4, 5].

Within the grain, a mushy zone is present that progressively solidifies upon cooling, characterized by a

distribution of solid and liquid phases and their composition [6]. It has been shown that simulation of

the grain structure with the CA method can easily be applied to components typical of shape casting65

[7, 8, 9]. To reach this objective, two main approximations are considered, offering alternatives to the

detailed description of the dendritic microstructure and its associated mushy zone.
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Because dendritic growth is mainly controlled by solute redistribution between the solid and liquid phases

and chemical diffusion in the liquid phase, a dendrite tip kinetics model requires to know the local com-

position field in the liquid ahead of the solid-liquid interface. This is yet not directly simulated using the70

CA method but approximated by the analytical steady state composition profile around a paraboloidal

solid-liquid interface representing the dendrite tip shape [10]. Together with the marginal stability cri-

terion [11], it provides with a dendrite tip growth law which accounts for the average composition, local

temperature and even fluid flow [12]. One should note that the average composition is not necessarily the

alloy composition when large scale redistribution of solute takes place. This is the case in the presence of75

macrosegregation due to the convective transport of phases [13, 9, 14]. Similarly, the mushy zone created

by the intricate complexity of the dendritic morphology is not directly simulated. Instead, the method of

volume averaging is applied to the conservation equations [15, 16]. This requires introducing a microseg-

regation law to describe the average volume fraction of phases, the simplest description being given by the

classical lever rule and Gulliver-Scheil solidification paths [6] that can be deduced from thermodynamic80

information [17]. Solving the average conservation equation with the Finite Element (FE) method and

coupling with the CA method lead to the so-called CA-FE model. The advantage of this construction is

to reach large scale simulation domains with a direct description of the grain structure and full coupling

with heat, solute and momentum conservations, yet not directly simulating the dendritic microstructure.

The CA method was further developed for the prediction of the dendritic microstructure itself [18, 19,85

20, 21]. In principle this provides an alternative to the phase field (PF) method developed to provide a

quantitative solution to solute redistribution at the solid-liquid interface while relying on a sound descrip-

tion of the interfacial phenomena, including curvature and anisotropic interfacial energy [22]. The phase

field method is yet often limited to small simulation domains, even with the advent of High Performance

Computing (HPC) including the use of multiple Graphics Processing Unit (GPU) [23, 24]. But exten-90

sions of the CA method for direct simulation of the dendritic microstructure reach similar limitations

as the smallest scale to be resolved for quantitative prediction is the dendritic tip radius (typically less

than a micrometer). The claim of the authors is that simplifications are possible with respect to heat

transfers, reducing the heat flow to an imposed temperature field. One can also note that little effort is

available to validate these extensions of the CA method to predict dendritic microstructure by comparing95

them to phase field simulations. Yet the latter numerical developments of PF including HPC and GPU

have led to the possibility to conduct heavy simulations and comparisons with the CA method applied

to columnar dendritic growth, thus quantifying the consequence of the built-in approximations on grain

selection maps [25]. Comparisons were yet still limited to two dimensional (2D) PF simulations with an

imposed temperature field.100

New methodologies have been developed for simulation of dendritic growth, always with the need to

reach larger scale simulations than currently available with PF. They are referred to as mesoscopic mod-
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els [26, 27, 28, 29, 30, 31, 32]. The objective is similar to the extensions of the CA method with the

goal to perform direct growth simulation of the dendritic microstructure. The Dendritic Needle Network

(DNN), the Parabolic Thick Needle (PTN) and the Grain Envelope Model are good examples. These105

models solve the solute diffusion problem over a range of length scales ranging from the dendrite tip

radius to an ensemble of dendritic grains. Hence, they are relevant to compute the dendrite tip velocity,

the interaction of the solute field between dendrites and the grain growth in non-stationary situations.

However, from the best of our knowledge, these models have not been coupled to heat flow and are only

used with an imposed temperature history.110

The objective of the present contribution is to combine the CA and the PTN methods in a new dendritic

grain model while maintaining the coupling with the FE solutions of heat and mass transfers. The 2D

implementation described hereafter lays the foundation of the coupling and evaluates its inputs and out-

puts compared to the CA-FE model. The implementation of the PTN method is explained, followed by

a description of its coupling with the CA method to gain a non-steady-state CAPTN dendrite growth115

model. Application is given for the Al-7wt%Si alloy. The influence of numerical parameters is evaluated

along with its ability to compute dendritic growth for a large range of supersaturation. The full CAPTN-

FE model is then tested and compared to the CA-FE model to demonstrate non stationary dendrite tip

growth due to both the solute diffusion field in the liquid and coupling with heat flow, as well as mushy

zone solidification.120

2. Modeling

2.1. Parabolic Thick Needle (PTN) model

2.1.1. Principle

The PTN method is introduced for the computation of the dendrite tip kinetics as part of the DNN

model introduced by Tourret and Karma [26, 27]. It represents a dendrite tip as a parabola with radius125

ρtip. The parabola is further truncated by a cylinder of radius rcyl as schematized in Fig. 1. To compute

the growth of a dendrite tip, solute diffusion is solved in the liquid phase to obtain the concentration field

wl
PTN :

∂wl
PTN

∂t
−Dl∆wl

PTN = 0 (1)

where Dl is the interdiffusion coefficient in the liquid phase. The concentration field at the solid-liquid

interface is imposed to the equilibrium interface concentration wls associated to the temperature of the130

tip. Tourret and Karma [27] also note that on a time scale much smaller than the diffusion time scale,

the growth of dendritic branches could be considered as quasi-stationary with stable curvature radius ρtip

and a constant growth velocity vtip along the growth direction. To compute the growth velocity vtip and
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the curvature radius of dendrite tips, the PTN model uses two relations. The first one is the solvability

condition [33, 34] giving:135

ρ2tipvtip =
Dld0
σ

(2)

where σ is the dendrite tip selection parameter, which is supposed to only depend on the alloy system and

the growing phase. The d0 parameter is the capillary length. Assuming a linearized phase diagram with

liquidus slope m and segregation coefficient k, this parameter writes d0 = −Γls/m(1− k)wls, where Γls

is the Gibbs-Thomson coefficient defined for the solid-liquid interface. It has to be noted that different

versions of Eq. (2) appear in the literature (with or without a factor of 2 on the right-hand-side). A140

discussion on the choice made here can be found in [25].

The second relation is associated to the integration of the conservation equation at the solid/liquid

interface in the vicinity of the tips. On this time scale, it is assumed that the parabola grows in a

nΓ

ρtip

Γ′ Γ

Σ

a

2 rcyl

nΓ
′

n

vtip

Figure 1: Parabolic dendrite tip of curvature ρtip and growth velocity vtip truncated by a cylinder of radius rcyl. The
yellow area of surface Σ is parametrized by the length a defining a distance behind the tip of the parabola. Blue lines
correspond to iso-values of the concentration field in the liquid phase wl

PTN computed by solving Eq. (1).

stationary state, which permits to approximate the dendrite velocity to its displacement velocity vtip

with no variation of the radius ρtip. In addition, the concentration field is supposed to behave as a145

quasi-stationary state. Assuming that diffusion is negligible in the solid phase and that the solid and the

liquid phases have the same density, the balance of the solute flux at solid-liquid interface of the dendrite
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tip writes:

−Dl

(1− k)wls
∇wl

PTN |ls ·n = vtip · n (3)

The integration of Eq. (3) on the Γ′ contour parametrized by the length a (see Fig. 1) gives [27]:

ρtipv
2
tip =

2 Dl2F2

d0
(4)

where the flux intensity factor F is defined by:150

F =
−1

4
√
a/d0(1− k)wls

∫
Γ′
∇wl

PTN |ls ·ndΓ′ (5)

The solution of Eq. (2) and (4) provides access to both the growth velocity and the curvature radius

of the dendrite tip as long as the flux intensity factor is correctly estimated in the vicinity of the dendrite

tip. Appendix A demonstrates that the analytical solution of the concentration field around a parabolic

tip in steady state growth, known as the Ivantsov solution [10], is a solution of Equations (4) and (5) at

steady state.155

2.1.2. Numerical implementation

The original PTN model has been implemented by Tourret and Karma [26, 27] using the finite

difference method. In the present work, the FE method is used together with an adaptive mesh latter

referred to as ”PTN mesh”. It is therefore possible to have a fine resolution of the concentration field close

to dendrite tips and to limit numerical cost by using a larger mesh size far from the interface. However, a160

very fine mesh on the Γ′ contour is required to compute the flux intensity factor F with a good precision

using Eq. (5). In order to avoid this numerical cost, Eq. (5) is transformed in two integrals [26, 27]

respectively associated to the Γ contour and Σ surface, using the Green-Ostrogradski theorem:

F ≈ −1

4
√
a/d0(1− k)wls

(∫
Γ

∇wl
PTN · ndΓ +

1

Dl

∫∫
Σ

vtip · ∇wl
PTNdΣ

)
(6)

Two boolean fields are defined to indicate which FE nodes are inside the parabola, δs, and in the

liquid but at the interface, δls. Note that a triangular mesh is used that does not conform to the parabola165

interface. Determining if a node is within the parabola is straightforward, leading to the condition δs = 1.

Nodes in the liquid at the vicinity of the interface belong to a triangular element with at least one node

with δs = 1. The equilibrium concentration wls associated to the tip temperature is imposed at the

nodes within the parabola, i.e. for which δs = 1. Equation (1) is then solved on the PTN mesh using

this Dirichlet condition to compute the concentration field wl
PTN . In this model, the minimum mesh size170

hmin is imposed in the vicinity of the solid-liquid interface. Inside the truncated parabola, the mesh size
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is set to pshmin where ps is an integer. For nodes in the liquid, an anisotropic mesh depending on the

local concentration field is created. To construct this mesh, a geometric error estimator [35] is used to

build a metric with eigenvalues Λ computed as:

Λ = min

(
max

(
c

ϵ
|λ| , 1

h2
max

)
,

1

h2
min

)
(7)

were c = 1
2 (

d
d+1 )

2 with d the space dimension, ϵ a maximal interpolation error, λ the eigenvalues of the175

concentration Hessian matrix, and hmax the maximal mesh size prescribed. A remeshing is performed

each time a parabola has grown over more than one element since the last remeshing or each time a new

parabola is created (see section 2.2).

2.2. Cellular Automaton-Parabolic Thick Needle model

The PTN growth law described in previous section 2.1 determines the growth velocity vtip of the180

dendrite tip at each time increment. This growth law is introduced in the CA method to compute the

envelope of a grain in the solidifying domain. The CA methodology is first presented, followed by a

description of the coupling.

2.2.1. Principle of the CA method

The CA method is based on the subdivision of the solidifying domain in a regular grid of square cells185

of size lCA. At cell scale, the dendritic branches are approximated by a polygon whose perpendicular

axes correspond to the < 100 > preferred dendritic growth directions. Fig. 2a presents a CA grid and a

polygon (in red) of vertices Si
ν and length liν with i = {0..3} associated to the central cell labelled ν. The

center of the polygon is not necessarily located at the cell center as explained elsewhere [5]. For each time

step ∆t, branch growth velocity vtip is determined thanks to a growth law (see detailed explanation on190

computation of vtip in section 3.2.2) and polygon axes are increased by vtip ∆t. The dendritic branches

will propagate in the cellular grid by the capture of neighboring cells by the growing polygon. When a

neighboring cell µ is captured (method detailed in section 2.2.2) by the polygon associated to cell ν, a

new polygon is initialized for cell µ with the same orientation as the polygon of capture (in green in Fig.

2b). When all neighbors of a given cell ν contain a growing polygon, the development of the polygon195

associated to cell ν is stopped and the cell is deallocated from the memory. Note that a maximum

length for all < 100 > directions is also prescribed to the polygon, proportional to the cell size lCA, as

propagation of the dendritic branches can only take place to capture the neighboring cells. This capture

algorithm propagating the dendritic branches at velocity vtip and in a unique set of preferred < 100 >

directions defines the growth of the envelope of a single grain.200
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2.2.2. Coupling PTN to the CA method

The principle of the coupling is to compute branch velocities at CA cell scale using the PTN solution.

To do so, a PTN mesh is superimposed to the cellular automaton grid, and a parabola is associated to

each polygon tip on the PTN mesh (see Fig. 2a). The list of polygon velocities {vtip,k} is therefore

(a)

S0
νS1

ν

S2
ν

S3
ν

ν µ

(b)

S0
ν

S1
ν

S2
ν

S3
ν

ν µ

S2
µ

S3
µ

(c)

S0
ν

S1
ν

S2
ν

S3
ν

ν µ

l0µ ≥ 5(ρtip)
0
µ

Created and active

Created but inactive

Not created

Figure 2: Illustration of the coupling between the CA and the PTN method. Initialization of a polygon after the capture
of a cell µ by the polygon of cell ν.

computed on the PTN mesh using concentration gradients deduced from the wl
PTN field in the vicinity205

of parabolic tips according to the description given in section 2.1 (see additional explanations is section

3.2.2).

To perform cell captures, a circumscribed circle is attached to each cell of the CA grid (Fig. 2b). As

the polygon of cell ν enters into the circumscribed circle of a neighboring cell µ by a tip or a side, the

neighboring cell is ”captured” by the polygon (Fig. 2b). The branch of the capturing polygon closer to210

the captured cell center is identified as the capturing branch ’cb’.

Branch lengths liµ and parabolae of the new polygon have then to be initialized. For this, the side of the

capturing polygon, of length Lcapt
ν , which performs the capture is identified by analyzing the position of

the center of the captured cell against the capturing polygon. In Fig. 2, the capturing side is S3
νS

0
ν as
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the center of cell µ is located at south-east of the capturing polygon. The branch ’cb’ of the new polygon215

associated to cell µ is initialized to Lcapt
ν /2 and its parabola is defined with the same curvature radius

and the same velocity as the one of the capturing branch. The length of the opposite branch is rescaled

on the opposite branch of the capturing polygon by a factor Lcapt
ν /2lcbν . As the branch opposite to the

branch of capture is a fictitious branch, the parabola associated to this branch is not created and thus,

this branch is not allowed to grow. This branch will be called in the following the ”internal branch”.220

Lengths of adjacent branches are initialized to the minimum value between the thickness of the parabola

associated to the capturing branch ’cb’ and the truncation radius rcyl. In order to avoid to hinder the

growth of the main branch, these branches are only allowed to grow after the branch ’cb’ has reached a

length higher than five times its curvature radius (Fig 2c). In this case, adjacent branches lengths are

rescaled on the thickness of the branch ’cb’ parabola or to its truncation radius rcyl. Their curvature225

radii are then initialized to the one of branch ’cb’ and their growth velocities are set to zero before being

computed from the local concentration field wl
PTN .

2.3. Coupling the CAPTN approach to the FE model of heat and mass transfers

Until now, the PTN model described in literature has permited to model structures of solidification

for imposed temperature fields. The CA-FE model gives the possibility to couple grain structures with230

energy and solute conservation equations at a larger scale. This coupling can be generalized to the CAPTN

model as a multiscale CAPTN-FE model. In a first part, a recall of the classical CA-FE approach is

given. The specificities of the CAPTN-FE model are detailed in a second part.

2.3.1. Recall on the CA-FE model

The principle of the CA-FE model has been previously described in the literature [36, 8]. Here,235

only a summary of this model is given. The solution of conservation equations is performed at the

macroscopic scale of the solidifying domain. To do so, the volume averaging technique is used [37].

For each Representative Elementary Volume (REV) of volume V , quantities ξ are averaged as ⟨ξ⟩ =(∫
V
ξdV

)
/V . This REV can contain several phases ϕ for which the ξ quantity has an average intrinsic

value ⟨ξ⟩ϕ, i.e. averaged over volume V ϕ of the phase ϕ. Therefore, the average quantity ⟨ξ⟩ can be240

written as:

⟨ξ⟩ = Σϕg
ϕ⟨ξ⟩ϕ (8)

where gϕ is the volume fraction of phase ϕ in the REV. With the above notation, the volume averaging

method is applied to describe energy and solute mass conservation for a two-phase system made of solid

and liquid. In the absence of convection, one can write:
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∂⟨H⟩
∂t

− ⟨κ⟩∆T = 0 (9a)

∂⟨w⟩FE

∂t
−∇.(Dlgl∇⟨wl⟩lFE) = 0 (9b)

where ⟨H⟩ is the average volumetric enthalpy, ⟨κ⟩ is the average thermal conductivity, ⟨w⟩FE is the245

average concentration of the solute species and ⟨wl⟩lFE is the average solute concentration in the liquid

phase. The non-linear equation (9a) is solved using a temperature-based energy solver coupled with

a microsegregation model [38]. Further assuming a constant latent heat of fusion LM , the volumetric

enthalpy in Eq. (9a) can be replaced by:

⟨H⟩ = ⟨Cp⟩T + LM (1− gs) (10)

where ⟨Cp⟩ is the volumetric heat capacity. The fractions of solid and liquid, respectively gs and gl, verify250

gs + gl = 1. Eq. (9b) has two unknowns: ⟨w⟩FE and ⟨wl⟩lFE . To solve this equation, the separation

method of Voller et al. [39] is used, with taking ⟨wl⟩lFE as ⟨wl⟩lFE = ⟨w⟩FE − ⟨w⟩tFE + ⟨wl⟩l t
FE , where

⟨w⟩tFE and ⟨wl⟩l t
FE are values at the beginning of time step.

In the coupled CA-FE model, the fraction of solid is the product of the fraction of mushy zone, gm, by

the internal fraction of solid gsm: gs = gm × gsm. While gsm is classicaly deduced from the temperature255

field and ⟨w⟩FE using a microsegregation model (e.g., the lever rule approximation), gm is determined

onto the set of captured cells. Fraction of mushy zone gmν is estimated on the CA grid for each cell ν

containing a polygon growing using:

gmν =
Aν −Acapt

ν

Amax
ν −Acapt

ν

(11)

where Aν is the area of the polygon at current time t, Acapt
ν is the area of the polygon at the time the

cell has been captured and Amax
ν is the maximal area of the polygon. Acapt

ν is computed as the area of a260

polygon homothetic to the polygon at the numerical time of capture. In classical CA-FE models, Amax
ν

is computed as the area of a polygon corresponding to an extension of the polygon of capture such that

all neighbor cells are captured. These fractions of mushy zone gmν at cell scale, computed on the CA

grid, are reassigned on the FE mesh as the gm field using shape functions of the finite element method

as described in [8].265

2.3.2. CAPTN-FE multiscale model special features

Fig. 3 gives a graphical representation of the CAPTN model and its coupling with the FE solution

of heat and mass transfers. At a given time, the list of dendrite tip velocities {vtip,k} is computed on

the PTN mesh from the FE implementation of the PTN method. These velocities are transferred to
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the CA method which computes the growth of the local grain envelope, thus propagating the mushy270

zone on the cellular automaton grid. The cellular fraction of mushy zone is then transferred to the FE

mesh where Eq. (9a) and (10) are solved to calculate the temperature field, T , the average concentration

⟨w⟩FE and the solid fraction, gs. The FE fields T , gm and ⟨w⟩FE are then transferred back to the

Figure 3: Illustration of the CAPTN-FE coupling for a single grain growing at the center of a disc at given time. Arrows
correspond to transferred fields. PTN: wl

PTN (color), edge of δsPTN (white line), edge of area where gm = 0 (pink line),
edge of area where gm = gmlim (black line). Zoom: PTN mesh at a dendritic tip. CA: state of cells. The white zone in the
center corresponds to deallocated cells. FE: all FE fields are displayed on separate images.

PTN mesh and used as boundary conditions for the PTN model. Indeed, the temperature field is

used in the PTN model to determine the temperature at dendrite tip coordinates, which permits to275

deduce the corresponding equilibrium interface concentration wls. These equilibrium concentrations are

therefore applied as Dirichlet conditions on nodes such that δs = 1 for each parabola. Moreover, when

the nucleation of a new polygon occurs (due to the capture of a liquid cell by one of its growing cell),

dendritic branches can be too small to compute their growth velocity with the PTN method. In this case,

branch velocities are computed with a growth law using Eq. (2) and the expression of the concentration280

field at dendrite tip given by the Ivantsov solution (ξ = 1 in Eq. (A.2)). Dendritic tip velocities are then

noted vIv.
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The evolution of the concentration field in the liquid at macroscopic scale is taken into account in the

PTN model by imposing wl
PTN = ⟨w⟩FE on nodes of the PTN mesh such that gm = 0, i.e. in the liquid

away from the growing grain. As explained in section 2.2.1, when all neighbors of a given cell contain a285

growing polygon, the cell is deallocated from the memory. Parabolae associated to its polygon are thus

no longer active on the PTN mesh and the Dirichlet condition associated to their nodes is removed. As

these deallocated cells have a fraction of mushy zone equal to unity, the Dirichlet condition on the PTN

mesh nodes corresponding to these cells is maintained by imposing δs = 1 for nodes such that gm ≥ gmlim

where gmlim is a constant threshold.290

In this study, only the growth of a primary dendritic phase is modeled. Therefore, the condition

for the solidification path to catch up with the microsegregation model, is that the mushy envelope of

dendritic grains cover the whole domain. This corresponds to having a fraction of mushy zone equal

to one for all cells to the grid. For CAPTN coupling, this necessitates to modify the definition of the

fraction of mushy zone. Indeed, contrary to the CA-FE model presented in 2.3.1, each polygon branch295

has its own growth velocity. Moreover, for polygons created from the capture of a cell, the branch

identified as the internal branch can not grow. Therefore, the methodology to compute Amax
ν entering

Eq. (11) has to be adapted (see Appendix B) compared to the CA-FE model. Moreover, for branches

close of the grain center, the solute enrichment and the decrease of solute gradients prevent branches

from growing. Therefore, a large number of cells can remain in a liquid state as never being captured by300

a growing envelope. In practice, this corresponds to the presence of liquid in between dendrite branches

but prevents from reaching gm = 1 on the whole FE mesh at the end of the solidification process. To

solve this difficulty, a new fraction of mushy zone gm+ν is defined on the CA grid which takes into account

interdendritic cells remaining in liquid state in the calculation of the fraction of mushy zone. For this, at

each time step, the PTN liquid concentration at the coordinates of liquid cells center (called (wl
PTN )ν)305

is observed and compared to the highest composition value on the PTN mesh (wl
PTN )max. Cells such

that (wl
PTN )ν ≥ (wl

PTN )max(1 − ϵlim), where ϵlim is a constant, are set to gm+ν = 1. In addition, cells

containing a growing polygon are also set to gm+ν = 1 as soon as all their liquid neighboring cells are set

to gm+ν = 1.

The extended fraction of mushy zone gm+ν and the fraction of mushy zone gmν determined on the CA310

grid are transferred to the FE mesh. In the CAPTN-FE model, the fraction of mushy zone in Eq. (10)

is replaced by gm+ to determine the temperature evolution and the average concentration field.

3. Application

The multiscale CAPTN-FE model is applied to an Al-Si alloy with nominal composition w0 = 7 wt%Si.

Properties of the alloy are reported in Table 1. The dendrite tip selection parameter σ is chosen to the315
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constant given by the marginal stability theory 1/(4π2) [11]. For simplicity, material properties are

assumed constant hereafter.

Table 1: Properties of the Al-7wt%Si alloy

Parameter Variable Value Unit Ref
Nominal composition w0 7 wt%
Melting temperature TM 933.6 K [40]
Eutectic temperature Teut 850.15 K [40]
Segregation coefficient k 0.13 [40]
Liquidus slope m −6.5 K · wt%−1 [40]
Interdiffusion coefficient in liquid Dl 3× 10−9 m2 · s−1 [40]
Gibbs-Thomson coefficient Γls 1.96× 10−7 K ·m [41]
Selection parameter σ 1/(4π2) [11]
Volumetric latent heat LM 9.5× 108 J ·m−3 [42]
Volumetric heat capacity Cp 3× 106 J ·m−3 ·K−1 [42]
Thermal conductivity κ 70 W ·m−1 ·K−1 [42]

3.1. Evaluation of the PTN implementation

The implementation of the PTN model itself is first evaluated. The growth of a single parabola with

no truncation in a large square domain is considered for various growth conditions. For that purpose, a320

constant temperature T is imposed. It is related to the superstaturation, Ω defined as:

Ω =
wls − w0

wls(1− k)
(12)

with T = TM +mwls. The values of Ω are listed in Table 2. Simulations are tested over the steady state

growth regime corresponding to the solution of Eq. (2) and the Ivantsov solution of the concentration

field given in Eq. (A.2). Curvature radius and growth velocities corresponding to this theoretical solution

are noted ρIv and vIv. The ratio of the domain size over the expected steady state dendrite tip radius325

ρIv is the same for all simulations and large enough to reach steady state. The domain size has also to

be large compared to the difusion length in order to correspond to the infinite domain hypothesis of the

Ivantsov solution. The parabola is initialized with a curvature radius equal to ρIv and its velocity is equal

to zero. The initial concentration field wl
PTN in the liquid phase is taken equal to the Ivantsov solution

(Eq. (A.2)). The time step, ∆t, is adapted for the simulation as given in Table 2. The ratio ρIv/(vIv∆t)330

is the same for all simulations and chosen small enough to reach convergence. For all simulations, the

mesh size in the internal part of parabola is set with ps = 2.

The influence of numerical parameters on simulation results is first analyzed before discussing super-

saturation effects. In these sections, average radius of curvature and growth velocities reached by the

simulations are determined regarding the steady state regime.335
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Table 2: Simulation parameters for single parabola

Parameter Unit Values
Supersaturation Ω 0.02 0.05 0.1 0.2 0.5
Curvature radius ρIv mm 7.3× 10−1 1.1× 10−1 2.4× 10−2 4.8× 10−3 2.9× 10−4

Growth velocity vIv mm · s−1 1.1× 10−6 4.6× 10−5 8.9× 10−4 2.1× 10−2 3.8
Diffusion length lDIv =
Dl/vIv

mm 2.8× 103 6.5× 101 3.4 1.4× 10−1 7.9× 10−4

Domain size mm 4100 620 135 27 1.63
Time step ∆t s 2.4× 104 88 1 8.5× 10−3 2.8× 10−6

hmax mm 58.4 1.5 2 0.3 0.023

3.1.1. Influence of numerical parameters

The influence of the minimum mesh size hmin and of the integration zone defined by parameter a are

analyzed. For this, various simulations are performed for Ω = 0.1 while changing the ratios hmin/ρIv

and a/hmin. Fig. 4 a and b show two PTN meshes corresponding to two different sets of numerical

parameters and Fig. 4 c and d present the ratios ρtip/ρIv and vtip/vIv obtained for various numerical340

parameters. Error bars correspond to the standard deviation due to fluctuation of the results inhered by

finite number of elements used to compute the flux intensity factor (Eq. 6).

It is observed on Fig. 4 that the couple (ρtip, vtip) converges toward the couple (ρIv, vIv) for small

values of hmin and large ratios a/hmin. Not surprisingly, the difference between (ρtip, vtip) and (ρIv, vIv)

increases when the smallest mesh size hmin increases, whatever the value of parameter a, due to the poor345

description of the concentration gradient as hmin increases. Similarly, for a given hmin, the agreement

between (ρtip, vtip) and (ρIv, vIv) increases with parameter a as the precision of the calculation of F
increases with the expansion of the integration zone. Fig. 4a and b show the PTN mesh, the theoretical

parabolae and the integration zone for two values of hmin but the same ratio a/hmin. For hmin/ρIv = 4,

iso-concentration lines are crossing the theoretical parabola, well illustrating the lack of precision on the350

physical phenomenon modeled in this situation. In practice, the smaller the minimum mesh size and the

larger the integration zone parametrized by a, the longer the duration of the simulation and the higher

its computational cost. A compromise has therefore to be found between the PTN model precision and

the computation time.

3.1.2. Influence of supersaturation355

Fig. 5 shows the evolution of ratios vtip/vIv and ρtip/ρIv with the supersaturation Ω for the same

ratio a/hmin = 5 and two ratios hmin/ρIv, equal to 0.1 (red) and 2 (blue). It is observed that the error

on ρtip and vtip drastically increases with supersaturation for hmin/ρIv = 2, whereas these errors remain

small for hmin/ρIv = 0.1. Indeed, low values of Ω are associated to large diffusion length compared to the

curvature radius ρIv (Table 2). Therefore, for low values of Ω and for hmin/ρIv = 0.1 and hmin/ρIv = 2,360

the minimum mesh size is small compared to the diffusion length. Concentration gradients are thus
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Figure 4: (a,b) FE mesh of the PTN model for two sets of numerical parameters. Theoretical parabolae are reported in
green and integration zone in cyan. Iso-concentration lines are highlighted in light red (c,d) Ratios vtip/vIv and ρtip/ρIv
according to a/hmin for various values of hmin/ρIv and for Ω = 0.1.

determined with a sufficient precision close to the dendrite tip, leading to correct estimation of the

growth velocity. However, when Ω increases, the diffusion length decreases much faster than ρIv and so

for large values of Ω, the diffusion length is close to ρIv. Therefore, for hmin/ρIv = 2, the mesh is too

coarse to model concentration gradients close to dendrite tip correctly.365

The minimum mesh size is thus to be adjusted such that the dendrite tip and the concentration field

close to the tip are well described. However, for non steady situations, it is not possible to determine tip

velocity and curvature radius, especially in the transient state. The minimum mesh size, hmin, should
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Figure 5: Ratios (a) vtip/vIv and (b) ρtip/ρIv according to the supersaturation Ω for a/hmin = 5 and (red) hmin/ρIv = 0.1
and (blue) hmin/ρIv = 2

therefore be adapted on tip kinetics during simulations using an adaptative remeshing strategy. This

result is in agreement with previous studies on the DNN model using a finite difference implementation370

[43] which have shown that even if the DNN model has been developed for dendritic growth at low Peclet

number, i.e. such that the curvature radius is much smaller than the diffusion length, the DNN model

converges toward the Ivantsov growth law at steady state, even for large supersaturations as long as the

finite difference grid is fine enough to describe concentration gradients in the vicinity of dendritic tips.

3.2. Application of the CAPTN-FE approach375

The multiscale CAPTN-FE model is compared to the classical CA-FE model with simulating a single

dendritic grain growing at the center of a disc of radius 0.5 mm with < 100 > growth directions along
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the horizontal and vertical axes as illustrated in Fig. 3. It is however outlined that this particular

orientation of the grain in the plan is not a requirement and rotated grains can either be modeled using

the CAPTN-FE model. The initial temperature Tini is uniform and equal to 890 K. The heat is extracted380

at the edge of the domain with a heat transfer coefficient h = 3 W ·m−2 ·K−1 and a constant external

temperature Text = 293 K. The initial seed has branches of length 5 µm and starts to grow for a nucleation

undercooling ∆Tnucl of 5 K. Physical and numerical parameters used in simulations are reported in Table

3.

3.2.1. Presentation of simulations385

The CAPTN-FE simulation uses two different finite element meshes: the PTN mesh and the FE mesh.

The latter is fixed and isotropic with size 0.15 mm. The CA grid has a cell size of lCA = 0.035 mm.

As described in section 3.1.1, the PTN mesh is an adaptive mesh. The maximal mesh size is taken as

hmax = 0.1 mm and the minimum mesh size is taken as hmin = ρmin/10 where ρmin is the smallest radius

of curvature among all parabolae in the simulation at the time of remeshing. Inside parabolae, the mesh390

size is set to 5 hmin (ps = 5). To compute the flux intensity factor F given by Eq. (6) and to determine

the growth velocity of each polygon branches, the integration parameter a is taken as a = 10 hmin.

Parabolae associated to polygon branch are finally truncated by a cylinder of radius rcyl = 0.018 mm

corresponding to half of cell size. To ensure the continuity of the Dirichlet condition on deallocated cells,

the threshold gmlim is taken to 0.7 (see section 2.3.2). For fully liquid cells, the fraction of mushy zone is395

set to gm+ν = 1 if (wl
PTN )ν ≥ (wl

PTN )max × 0.98 (ϵlim = 0.02).

For CA-FE simulations, physical parameters are the same as for the CAPTN-FE simulation. Polygon

branches grow with a velocity vIv corresponding to the temperature and average concentration < wFE >

at the associated cell center.

3.2.2. Simulation results400

CA-FE simulation. Fig 6 presents computed FE fields and the state of CA cells in the CA-FE simulation

at t = 9.6 s. For cells containing a polygon growing (blue cells in Fig. 6), polygon branches grow according

to the solvability condition (Eq. (2)) and the Ivantsov diffusion field (Eq. (A.2) with ξ = 1). Thus, it

accounts for the temperature at the tip (through the equilibrium condition T = TM+mwls that prescribes

the interface composition wls), computed at the cell center by interpolation from the FE mesh solution.405

The local concentration ⟨w⟩FE is also accounted for. Indeed, Eq. (A.2) (with wl(ξ = 1)Iv = wls) is

adapted to account for possible modification of the far field composition in the liquid. This is evaluated

by simply replacing w0 by ⟨w⟩FE in Eq. (A.2), where ⟨w⟩FE is also interpolated from the FE mesh

solution. So in principle, if the average composition ⟨w⟩FE varies while the temperature remains constant,

the velocity also varies. In the present simulation, the average composition given by the solution of Eq.410
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Table 3: Parameters of the CAPTN-FE and the CA-FE simulations
Parameter Value Unit

Physical parameters
Nucleation undercooling ∆Tnucl 5 K
Initial temperature Tini 890 K
External temperature Text 293 K
Heat transfer coefficient h 3 W ·m−2 ·K−1

Domain radius − 0.5 mm
Numerical parameters for the CAPTN-FE and CA-FE models

Time step ∆t 5× 10−3 s
Cell size lCA 0.035 mm
Mesh size (FE) − 0.15 mm

Numerical parameters specific to the CAPTN-FE model
Initial nucleus branch length − 5× 10−3 mm
Maximum mesh size (PTN) hmax 0.1 mm
Minimum mesh size (PTN) hmin (ρtip)min/10 mm
Factor of solid PTN mesh size ps 5 −
Integration parameter a 10 hmin mm
Truncation radius rcyl 0.018 mm
Threshold of coupling FE-PTN gmlim 0.7 −
Supersaturation threshold Ωlim 0.02 −

Figure 6: Snapshot at time t = 9.6 s of the (CA) cell state, with (white) deallocated cells and (FE) volume average
variables for the CA-FE simulation.
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(9b) is not found to vary significantly during the propagation of the grain envelope within the simulation

domain. Similarly, the temperature remains almost uniform in the present configuration as the non

dimensional Biot number is relatively low (typically less than 0.1). As a consequence, the growth velocity

computed everywhere in the captured cells at the boundary with the liquid cells is almost uniform and

the growth algorithm predicts the development of a squared grain envelope that finally intersects with415

the discoidal simulation domain.
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Figure 7: Average temperature (a) , fraction of mushy zone and fraction of solid (b) over time for the CAPTN-FE and
the CA-FE simulations
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Fig 7 presents the computed time evolution of the temperature, fraction of mushy zone and the

fraction of solid averaged over the whole simulation domain. As can be observed in Fig. 7a, the average

temperature starts by decreasing until t = 6 s. As the undercooling at the center of the domain reaches420

5 K (at around t = 3 s), the grain starts to grow. This is illustrated by the time evolution of the length

of primary branches in Fig 8a, showing an increase at around t = 3 s. The solid fraction gs therefore

increases in regions where gm ̸= 0 (see Fig 7b). As explained in section 2.3.1, this increase of gs induces

a release of latent heat and a reheat of the domain from t = 6 s to t = 20 s. This time evolution of the

temperature variation due to energy conservation permits to explain the variation of the velocity of the425

primary branches that increases until t = 6 s and then decreases to reach a local minimum at t = 20 s

(see Fig 8b). Then, as the average temperature decreases, the velocity of primary branches increases

again until they reach their maximum size at t = 29 s. It can be observed in Fig 8a that the maximum

length of primary branches is much bigger than the radius of the domain. This is allowed in the CA-FE

model as polygon branches can grow over a distance larger than lCA in order to capture the neighboring430

cells. In addition, two curves can be observed at the end of CA-FE simulations on Fig 8a and b. They

correspond to an asymmetry on the cellular grid, as the grid contains one extra cell at the top and on

the right of the domain compared to the bottom and left side (see Fig 6). As, for a given cell, the four

polygon branches grow with the same speed, the squared grain envelope follows the elongation of primary

branches and the average fraction of mushy zone reaches gm = 1 at t = 36 s.435

CAPTN-FE simulation. Fig 9 presents computed field by the combined methods: (PTN) wl
PTN , (CA)

gm+ and (FE) gs at time t = 9.6 s as a result of the new hybrid model. The four branch star shape of

the grain envelope is typical of high solute interactions between lateral branches. This is due to the fine

resolution of the composition field wl
PTN made available by the PTN mesh and used for the computation

of the tip velocity provided to the CA cell polygons.440

Strong variations of the concentration gradient exist in front of the dendrite at the tip of the various

parabola, that is now accounted for. The polygon branches within CA cells having different speeds, only

the tip of the four main dendrite branches of the grain are free to grow into the liquid along the central

vertical and horizontal directions. This condition is well transferred upon successive capture of the cells,

thus leading to the displayed star shape.445

Cells with growing polygon (in blue in Fig. 9) are located at the boundary of the mushy zone. The liquid

cells considered in the calculation of gm+ (in green in Fig. 9) correspond to regions with high concentration

wl
PTN where complete mixing of solute between branches is encountered. They are naturally first located

close to the grain center. These CA cells are characterized by almost no local supersaturation. Hence,

no possible propagation of the solid-liquid interface can take place in these interdendritic regions at this450

time, explaining why they belong to the mushy zone. Similarly, while polygons are present and continue
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Figure 8: Length (a) velocity (b) and normalized composition (Eq. (12)) (c)

of the four primary branches of the grain in the CAPTN-FE (red) and CA-FE (blue) simulations

to grow in the CA cells fully surrounded by (blue) polygon and (green) liquid cells (corresponding to

gm+ = 1), their growth rate is very small so they fully belong to the mushy zone (red in Fig. 9). Finally,

white cells are simply deallocated regions, i.e. where associated polygon and parabolae are no longer

available and needed for the calculations.455

It is now worth considering the corresponding fields of the volume average FE method in Fig. 9. As

explained in section 2.3.1, temperature T and solid fraction gs are the results of conversion of the average

enthalpy ⟨H⟩ and solute composition ⟨w⟩FE using the fraction of mushy zone and the microsegregation

model, here simply given by the lever rule approximation. As expected, correlation is found between

regions of low average enthalpy and high solid fraction. The latter naturally correspond to area where460

the mushy zone is developed, verified by the distribution of gm and gm+ . Please note that a region of

low composition forms at the center of the grain, reaching an average silicon content of 4.3 wt%. This is

counterbalanced by liquid regions surrounding the grain envelope that exceed the nominal composition of

the alloy, hence showing conservation of solute mass over the whole simulation domain. With respect to

temperature, and as mentioned in the case of the CA-FE simulation, little variation is computed due to465
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Figure 9: Snapshot at time t = 9.6 s of the (PTN) composition field wl
PTN , (CA) mush fraction gm+ and cell state, with

(white) deallocated cells and (FE) volume average variables.

the configuration case with low Biot number. This is why the average temperature plotted in figure 7 is

well representative of the whole simulation domain. It is yet instructive to notice that locations of highest

temperature indeed correspond to regions where the maximum solidification rate is expected, either due

to the growth of the interface (in the vicinity of the four main tips growing along the center of the main

horizontal and vertical axes) or due to the segregation of silicon at the center of the domain. Indeed, in470

the latter case, solute diffusion away from the central mushy zone is expected to increase the fraction of

solid and hence release enthalpy that heat the system.

Fig. 10 gives the evolution of fields (PTN) wl
PTN , (CA) gm+ and (FE) gs at four different times during

the simulation. As explained in section 2.3.2, the velocity of primary branches is first computed using the

Ivantsov growth law. During this time, the liquid concentration wl
PTN remains at the nominal concentra-475

tion of the alloy. The transition to the PTN growth law takes place at t = 3.05 s. At that time, parabolae

are created by an adaptation of the PTN mesh, by the update of the δs field and the application of the
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Dirichlet condition on nodes such that δs = 1. This sharp concentration variation close to dendrite tips

induces the peak of velocity observed in Fig. 8b at t = 3.05 s. After this peak, the growth of primary

branches is computed according to the PTN method. As the average temperature decreases, the equilib-480

rium interfacial concentration wls increases and the concentration gradient at primary branches increases,

which induces an increase of primary branches velocities. As for the CA-FE simulation, the increase of

the solid fraction induces a release of latent heat and so an increase of the average temperature from

t = 7.5 s to t = 21 s. As primary branches reach the edge of the domain, they get in solute interaction

with the border which makes their velocity drop to zero.485

Figure 8c shows the evolution of primary branches normalized compositions at the solid/liquid interface

given by Eq. (12) for times such that CAPTN-FE primary branches growth velocity is not zero (t < 12 s).

This normalized composition can be related to the temperature of primary branches during growth. It

can be observed that the normalized composition and thus the temperature of primary branches is very

similar between the CA-FE and CAPTN-FE simulations over time. For times between 2 and 3 s, the490

normalized composition is even identical between the two simulations as CAPTN-FE primary branches

growth velocity is computed using the Ivantsov growth law. For times between 3.5 and 12 s, the positions

of the normalized composition curves between the CAPTN-FE and the CA-FE simulation follow the

same trend as average temperature curves in Fig. 7 with higher normalized composition values (lower

average temperature) for the CA-FE simulation between 3.5 and 7 s and higher normalized composition495

values for the CAPTN-FE simulation for higher times. In addition, it is observed that for the CAPTN-FE

simulation, this normalized composition is always lower than 0.25. In section 3.1.2, it has been shown

that the PTN model implemented converges toward the stationary solution with a good precision in this

range of supersaturation if the minimum mesh size is such that hmin/ρIv = 0.1. Therefore, the minimum

mesh size chosen for the PTN mesh in the CAPTN-FE simulation is coherent with the growth kinetics500

simulated.

After this time, the grain keeps growing by the increase of secondary branches (see Fig 10 PTN) and the

expansion of the solute rich liquid zone (see Fig 10 CA) on the whole domain until gm+ = 1 at t = 86 s.

It is thus observed that, compared to the CA-FE model, the propagation of the fraction of mushy zone

is very different in the CAPTN-FE model. In particular, it is found more difficult to reach a fraction of505

mushy zone equal to one in the whole domain in the CAPTN-FE model due to the decrease of dendrite

tip velocities as gradients of concentration in the liquid phase decreases. When the internal part of the

grain described by the CA cells is deallocated, the parabolae are no longer accessible. Consequently,

the Dirichlet condition defined by the parabola of the PTN method is no longer active. It is naturally

replaced by the imposed Dirichlet condition using the average composition field extracted at gmlim = 0.7.510

The corresponding region and its time evolution is made accessible by the black contours in the wl
PTN

field (Fig 10 PTN).
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Figure 10: Evolution of the (PTN) composition field wl
PTN , (CA) mush fraction gm+ and cell state, with (white) deallocated

cells and (FE) volume fraction of solid at four different times. (PTN) The white contour is the border of the Dirichlet
condition using parabolae and the black line is the edge of area where gm = gmlim.

It can be observed in Fig 7 that as soon as the average values of gm (CA-FE) and gm+ (CAPTN-FE)

are equal to one, the average temperature and solid fraction of the two simulations are very similar as they515
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obey to the lever rule relation. Moreover, as the average temperature reaches the eutectic temperature,

the average fraction of solid is close to the one associated to the eutectic temperature, 0.52, for an Al-

7wt%Si alloy. However, one can clearly notice some differences between curves in Fig. 7 with successive

bursts in the average fraction of mushy zone and average temperature of the CAPTN-FE simulation that

are not observed for curves of the CA-FE simulation. These burst are due to the methodology used to520

extend the fraction of mushy zone and in particular to switch liquid cells from ”out of the mushy zone”

(gm+ν = 0, grey cells in Fig. 10) to ”part of the mushy zone” (gm+ν = 1, green cells in Fig. 10) using a

criterion on the concentration at the center of the cell. This methodology is explained in section 2.3.2.

As can be observed in Fig 10, the area of the liquid corresponding to gm+ν = 1 extends progressively

from the center. Therefore, at a given time, several cells are switched from gm+ν = 0 to gm+ν = 1. These525

instantaneous changes induce the bursts observed on the average fraction of mushy zone on Fig 7b and so

induce average temperature fluctuations observed on Fig 7a. An improvement of the CAPTN-FE model

would therefore be to define a progressive evolution of the fraction of mushy zone for these liquid cells.

To help comparisons between the two approaches, CA-FE and CAPTN-FE simulations have been per-

formed using the same time step and equivalent number of processors. In these numerical conditions, the530

duration of the CA-FE simulation was of the order of one hour and the one of the CAPTN-FE simulation

was of the order of a day. The duration of the CA-FE simulation could of course be drastically reduced, in

particular with using a larger time step. The large increase of the simulation time with the CAPTN-FE

approach is due to the adaptive PTN mesh which has to be rebuilt frequently in order to keep track on

parabolae solid/liquid interfaces. This remeshing strategy will however be optimized in future work.535

4. Conclusion

In this article, a new multi-scale dendritic growth model has been presented, which couples the Cellular

Automaton - Finite Element (CA-FE) solidification model to the Parabolic Thick Needle dendritic growth

method. This hybrid model, implemented for now in 2D, permits to model the growth of dendritic

microstructures while accounting for solutal interactions. It is fully coupled with average evolution of540

temperature and solute distribution at the scale of the cast part. For that purpose, the concept of mushy

zone is extended compared to the classical CA-FE model while a microsegregation model is still required.

Advantages with previously developed mesoscopic scale models based on the PTN approach include the

possibility to conserve heat and solute mass and to benefit from previously developed model based on

volume averaging, including the effect of convection at the scale of the cast part.545

Despite these encouraging first results, some numerical improvements are identified which have to be

handled before extending the model to 3D. This includes the computational time. While the description

of the solute distribution in the vicinity of the growing dendritic microstructure clearly brings additional
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physics to the model, mainly a better description of solutal interaction, at the scale of the dendrite arms,

it requires additional computational resources. So improvements need to be considered, mainly in the550

remeshing strategy, so as to be able to simulate the whole domain of experiments [44]. As the goal of the

targeted experiments is to study columnar to equiaxed transition, full coupling is yet required so heat

flow surrounding equiaxed grains and its consequence on the kinetics of the dendritic microstructure are

taken into account.
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Appendices

A. Analytical validation of the PTN model

Let’s consider a single parabola of radius ρtip that models the shape of a dendrite tip close to its tip.

It grows in an infinite domain of liquid at constant temperature T and a uniform composition far from560

the solid/liquid interface. At stationary state, the parabola adopts a constant curvature radius ρtip and

a constant growth velocity vtip along the x axis (see Fig. 11). We define the parabolic coordinates (ξ, η)

as:

Parabolic ρtipξ
2 = x+

√
x2 + y2 ρtipη

2 = −x+
√

x2 + y2

Cartesian x =
ρtip

2

(
ξ2 − η2

)
y = ρtipξη

(A.1)

In these conditions, the concentration field should tend toward the Ivantsov solution [10] with :

ρtip

ξ = 1

ξ =
2 ξ

=
3

η = 1η =
2

η
=
3

x

y

Figure 11: Parabola of curvature radius ρtip with cartesian and parabolic coordinates
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wl(ξ)Iv = w0 + (1− k)wls
√
πPe exp(Pe)erfc(ξ

√
Pe) (A.2)

where565

Pe =
ρtipvtip
2Dl

(A.3)

Therefore, in Eq. (5) defining the flux intensity factor, the integral of the solute concentration gradient

on the Γ′ contour given in Fig. 1 can be replaced by :

∫
Γ′
∇wIv |ls ·ndΓ′ =

∫
Γ′

(
∂wIv

∂ξ

)
ξ=1

dΓ′ (A.4)

The expression of wl
Iv in Eq. (A.2) gives:

(
∂wIv

∂ξ

)
ξ=1

= (1− k)wls
√
πPe exp(Pe)

−2√
π

√
Pe exp(−Pe) (A.5)

Therefore, in Eq. (A.4),
(

∂wIv

∂ξ

)
ξ=1

can be removed from the integral. The definition of the Γ′ contour

in Fig. 1 gives :570 ∫
Γ′
dΓ′ =

√
8a

ρtip
(A.6)

From (A.5) and (A.6) it is obtained that:

∫
Γ′
∇wIv |ls ·ndΓ′ = −2Pe(1− k)wls

√
8a

ρtip
(A.7)

Introducing Eq. (A.3) in Eq. (A.7), one can obtain:

ρtipv
2
tip =

2Dl2

d0

(√
d0

4
√
a

−1

(1− k)wls

∫
Γ′
∇wIv |ls ·ndΓ′

)2

(A.8)

Eq. (A.8) retrieves equations (4) and (5) of the PTN model showing that the Ivantsov solution is the

steady state that one should find with the present PTN model.

B. Calculation of Amax
ν575

This appendix presents the methodology used to compute Amax
ν for the calculation of the fraction of

mushy zone of an automaton cell using Eq. (11). In the classical CA method, the determination of Amax
ν

corresponds to computing an elongation factor kmax such that all center of neighbor cells are enclosed in

the polygon of cell ν. In the CAPTN-FE method, all branches of the same polygon do not have the same
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speed, and if the polygon has been generated by a capture, one of the branches (the internal branch)580

does not grow at all. Therefore, the calculation of Amax
ν should be different. Fig. 12 illustrates this

new method. For each of the eight neighbor cells, the algorithm analyzes if the cell could be captured

by the elongation of a single branch νi of the polygon (except the internal branch) and registers the

elongation factor for the branch νi. If the neighbor cell can be captured by a side of the polygon with

a smaller elongation factor than for a single tip, trough the elongation of two adjacent branches, the585

elongation factor is registered for both branches involved. After the consideration of all neighbor cells,

each branch is therefore associated to several elongation factors. The polygon corresponding to Amax
ν is

the one associated to the maximum of elongation factors for each branch.

For example, on Fig. 12, the branch number 1 is the internal branch and the maximal elongation

of branches 0 and 2 corresponds to the capture of the cell with the green circumscribed circle by the590

extension of side S0
νS

2
ν .
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Figure 12: Initial polygon (blue) associated to the central cell ν. The branch of summit Sν1 is considered as the internal
branch of the polygon. Circumscribed circles of neighbor cells are represented with dotted lines. The grey polygon in dashed
lines has an area Amax

ν . This polygon captures all neighbor cells.
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D.J. Browne, C. Beckermann, et al. Columnar-to-equiaxed transition in solidification processing of alsi7 alloys in

microgravity the cetsol project. In Materials Science Forum, volume 790, pages 12 – 21. Trans Tech Publ, 2014.

32


	Introduction
	Modeling 
	Parabolic Thick Needle (PTN) model 
	Principle
	Numerical implementation

	Cellular Automaton-Parabolic Thick Needle model 
	Principle of the CA method
	Coupling PTN to the CA method 

	Coupling the CAPTN approach to the FE model of heat and mass transfers
	Recall on the CA-FE model 
	CAPTN-FE multiscale model special features 


	Application 
	Evaluation of the PTN implementation 
	Influence of numerical parameters 
	Influence of supersaturation 

	Application of the CAPTN-FE approach 
	Presentation of simulations
	Simulation results 


	Conclusion
	Appendices
	Analytical validation of the PTN model
	Calculation of Amax 

