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We compute the stable cohomology groups of the mapping class groups of compact orientable surfaces with one boundary with twisted coefficients given by the first homology of the unit tangent bundle of the surface. The stable twisted cohomology is not free as a module over the stable cohomology algebra with constant coefficients. In fact, it is out of the scope of the traditional framework for twisted homological stability, since these twisted coefficients define a covariant functor over the classical category associated to mapping class groups to study homological stability, rather than a contravariant one. For comparison, we also compute the stable cohomology group with coefficients in the first cohomology of the unit tangent bundle of the surface, which fits into the traditional framework.

Introduction

Considering a smooth compact connected orientable surface of genus g ≥ 0 and with one boundary component Σ g,1 , we denote its mapping class group (that is the isotopy classes of its diffeomorphisms restricting to the identity on the boundary) by Γ g,1 . The study of the (co)homology of the groups {Γ g,1 , g ∈ N} has been a very active research topic over the past decades. In particular, the full computations of their cohomology groups with twisted coefficients remain an active research topic; see [GKR19, Section 5.5] and [START_REF] Hain | Johnson homomorphisms[END_REF]Part 4]. In this paper, we compute the stable cohomology groups of the mapping class groups with twisted coefficients defined from the first (co)homology group of the unit tangent bundles of the considered surfaces; see Theorems A and B. This is the first example of stable twisted cohomology for that mapping class groups is not free over the rational stable cohomology of these groups.

Background on stable (twisted) (co)homology.

A key step towards the computations of the (co)homology of the mapping class groups is their homological stability properties. Namely, we consider canonical injections Γ g,1 ֒→ Γ g+1,1 induced by viewing Σ g,1 as a subsurface of Σ g+1,1 extending the diffeomorphisms of Σ g,1 by the identity on the complement Σ 1,1 , and a set of Γ g,1modules {F (g), g ∈ N} with Γ g,1 -equivariant morphisms F (g) → F (g + 1). This data defines morphisms for the homology groups H i (Γ g,1 ; F (g)) → H i (Γ g+1 ; F (g + 1)). for any i ≥ 0. For each i ≥ 0, if this canonical morphism is an isomorphism for N (i, F ) ≤ g with some N (i, F ) ∈ N depending on i and F , then the mapping class groups are said to satisfy homological stability (with (twisted) coefficient in F ). The homological stability property with constant coefficients (i.e. for F (g) = Z for all g ≥ 0) is due to Harer [START_REF] Harer | Stability of the homology of the mapping class groups of orientable surfaces[END_REF]. The range N (i, Z) is improved by Boldsen [START_REF] Boldsen | Improved homological stability for the mapping class group with integral or twisted coefficients[END_REF] and Randal-Williams [START_REF] Randal-Williams | Resolutions of moduli spaces and homological stability[END_REF]. Furthermore, Ivanov [START_REF] Ivanov | On the homology stability for Teichmüller modular groups: closed surfaces and twisted coefficients[END_REF] proves homological stability property with twisted coefficients given Γ g,1 -modules forming a functor F : UM 2 → Ab (where UM 2 is defined in §2.1 and Ab the category of abelian groups) satisfying some polynomiality conditions; we refer to §2 for further details. Finally, Randal-Williams and Wahl [START_REF] Wahl | Homological stability for automorphism groups[END_REF] and Galatius, Kupers and Randal-Williams [GKR19, Section 5.5] extract the general framework for proving homological stability properties (both for constant and twisted coefficients) for general families of groups, subsuming these previous studies and recovering their results.

For a fixed i, the colimit Colim g∈(N,≤) (H i (Γ g,1 ; F (g))) is denoted by H i (Γ ∞,1 ; F ). When the homological stability property is satisfied, the value of the twisted homology group H i (Γ g,1 , F (g)) for g ≥ N (i, d) corresponds to the colimit H i (Γ ∞,1 ; F ) and is called the stable homology of the mapping class groups. All the stable homology results obtained so far in the literature have been carried out using a field as ground ring, generally the rationals Q. We will also mainly use this field although some of our results still hold over Z. In particular, using the rationals allows us to equivalently consider the stable cohomology with twisted coefficients (thanks to the universal coefficient theorem with twisted coefficients, see Lemma 2.6).

By proving Mumford's conjecture [START_REF] Mumford | Towards an enumerative geometry of the moduli space of curves[END_REF], Madsen and Weiss [START_REF] Madsen | The stable moduli space of Riemann surfaces: Mumford's conjecture[END_REF] compute the rational stable homology (i.e. for F (g) = Q for all g ≥ 0) of the mapping class groups. Namely, they use the standard cohomology classes defined by Mumford [START_REF] Mumford | Towards an enumerative geometry of the moduli space of curves[END_REF], Morita [Mor84;[START_REF] Morita | Characteristic classes of surface bundles[END_REF] and Miller [START_REF] Miller | The homology of the mapping class group[END_REF] 

{e i ∈ H 2i (Γ ∞,1 ; Q); i ≥ 1}, called the classical Mumford-Morita-Miller classes, to describe the algebra H * (Γ ∞,1 ; Q) as follows: H * (Γ ∞,1 ; Q) ∼ = Q[{e i , i ≥ 1}]. (0.1)
Denoting the free Q-vector space ∞ i=1 Qe i by E and by Sym Q (E) its symmetric algebra, Madsen-Weiss theorem (0.1) may be reframed as that there is an isomorphism

H * (Γ ∞,1 ; Q) ∼ = Sym Q (E).
Furthermore, considering the twisted coefficient given by the first homology of the surface Σ g,1 denoted by H(g), the stable twisted H * (Γ ∞,1 ; H) was first computed by Harer [Har91, Section 7]. Also, considering the closed oriented surfaces Σ g analogues (obtained from Σ g,1 by capping the boundary component with a disc), Looijenga [START_REF] Looijenga | Stable cohomology of the mapping class group with symplectic coefficients and of the universal Abel-Jacobi map[END_REF] computed the stable cohomology of the associated mapping class groups {Γ g , g ∈ N} with coefficients in any irreducible representation of the rational symplectic group. Looijenga did not use the stability result of [START_REF] Ivanov | On the homology stability for Teichmüller modular groups: closed surfaces and twisted coefficients[END_REF] but only that of [START_REF] Harer | Stability of the homology of the mapping class groups of orientable surfaces[END_REF]. Independently from these previous works, the first author [START_REF] Kawazumi | A generalization of the Morita-Mumford classes to extended mapping class groups for surfaces[END_REF] introduced a series of twisted cohomology classes on the mapping class group Γ g,1 , called the twisted Mumford-Morita-Miller classes {m i,j ; i ≥ 0, j ≥ 1}. Based on Looijenga's idea [START_REF] Looijenga | Stable cohomology of the mapping class group with symplectic coefficients and of the universal Abel-Jacobi map[END_REF], one can prove that some algebraic combinations of the twisted Mumford-Morita-Miller classes define a free basis of the stable cohomology group of with coefficients in the tensor products of H(g); see [START_REF] Kawazumi | On the stable cohomology algebra of extended mapping class groups for surfaces[END_REF]. These computations may also be done via other methods; see Randal-Williams [Ran18, Appendix B] and [Sou20, Section 2.3.1].

The unit tangent bundle homology representations. The representation theory of the mapping class groups of surface is wild and remains an active research topic; see Margalit's expository paper [START_REF] Margalit | Problems, questions, and conjectures about mapping class groups[END_REF]. In particular, there are few known representations of the mapping class groups Γ g,1 apart from the first homology of the surface H(g). However, other representations which appear naturally are those given by homology and cohomology of the unit tangent bundle of the surface Σ g,1 . We denote by H(g) the first integral homology group H 1 (U T Σ g,1 ; Z). Its dual representation is denoted by H∨ (g), while we denote its corresponding rational homology by HQ (g). These representations have been first studied by Trapp [Tra92, Theorem 2.2] and we refer the reader to §1.2 for further details.

In particular, the representation H(g) is a non-trivial extension of H(g) by Z; see (1.3). This extension corresponds to the twisted Mumford-Morita-Miller class m 1,1 in the stable cohomology algebra of each cohomology class H * (Γ ∞,1 ; H). It is the image of the cohomology class introduced Earle [START_REF] Earle | Families of Riemann surfaces and Jacobi varieties[END_REF] which generates H 1 (Γ g,1 ; H(g)) for g ≥ 2. We refer the reader to §1.2 and §2.2.1 for further details.

Results.

In the present paper, we consider the cohomology of the mapping class groups with twisted coefficients given by HQ (g) and H∨ Q (g). We consider cohomology rather than homology because of the key usefulness of the cup product structure. The pathway to make these computations is based on the short exact sequences (1.3) and (1.3) defining these modules, on the determination of the cohomology long exact sequence connecting homomorphisms (see Lemmas 3.2 and 3.5) and the Contraction formula (2.3) between stable twisted cohomology classes. We denote by Qθ the trivial Sym Q (E)-module generated by the integral stable 0th-cohomology θ ∈ H 0 (Γ ∞,1 ; H) defined by the fiber of the unit tangent bundle.

First, the computation for the dual representations H∨ Q (g) is the least difficult. Indeed, these define a covariant functor H∨ Q : UM 2 → Ab and therefore we already know from [Sou20, Theorem C] that the stable cohomology algebra H * (Γ ∞,1 ; H∨ Q ) is free over Sym Q (E). We prove: Theorem A [Theorem 3.3] The stable cohomology algebra H * (Γ ∞,1 ; H∨ Q ) is isomorphic to the free Sym Q (E)-module with basis {m i,1 , i ≥ 2}. In particular, it is concentrated in odd degrees.

On the contrary, the representations HQ (g) induce a contravariant functor HQ : UM 2 → Ab. As far as the authors know, any qualitative general result and computations for such coefficients have not been realised yet.

Theorem B [Theorem 3.9] The stable cohomology algebra H * (Γ ∞,1 ; HQ ) is isomorphic to direct sum Qθ M, where M is the Sym Q (E)-module generated by the classes M i,j := e i m j,1 -e j m i,1 for i, j ≥ 1 and with relations

e i M j,k + e j M k,i + e k M i,j ∼ 0 for all i, j, k ≥ 1.
In particular, the stable twisted cohomology H * (Γ ∞,1 ; HQ ) is not free as Sym Q (E)-module; see also Theorem 3.8.

Perspectives.

The key steps of the results of Theorems A and B are proved with integral coefficients. Namely, the contraction formula and the connecting homomorphisms still hold for integral coefficients. Therefore, we might in principle be able to do the computations with Z as ground ring. However, although the stable twisted cohomology module H * (H) is free over H * (Z) (see [Kaw08, Theorem 1.B]), the stable cohomology H * (Z) is still poorly known.

On another note, a natural extension of the results of Theorems A and B consists in considering the exterior powers of the representations HQ (g) and H∨ Q (g) respectively. This is the aim of the forthcoming work [KS]. In particular, the stable twisted cohomology algebras H * (Γ ∞,1 ; Λ d H∨ Q ) (for all d ≥ 2) and H * (Γ ∞,1 ; Λ d HQ ) (for 2 ≤ d ≤ 5) are thoroughly studied.

Outline. The paper is organised as follows. In §1, we make recollections on the representation theory of mapping class groups and on the classical and twisted Mumford-Morita-Miller cohomology classes. In §2, we recall the framework and properties for twisted homological stability of mapping class groups. In §3, we make the full computations of the mapping class groups stable twisted cohomology with coefficients in the first homology and cohomology of the unit tangent bundle.

Conventions and notations.

For a ring R, we denote by R-Mod the category of left R-modules.

For R = Z, the category of Z-modules is also denoted by Ab. For a map f , we generically (when everything is clear from the context) denote by f * the induced map in homology and by f * the induced map in cohomology. For G a group, R a commutative ring and

V a R[G]-module, we denote by V ∨ the dual R[G]-module Hom R (V, R).
For K a field and V a K-vector space, we denote by Sym K (V ) the symmetric algebra on V over K.

Considering a G-module M , if there is no risk of confusion, we generally denote the twisted cohomology groups H * (G; M ) by H * (M ) for sake of simplicity. We denote the cup product •, but also often abuse the notation denoting it by an empty space for simplicity when there is no risk of confusion. The first integral homology group H 1 (Σ g,1 ; Z) is generally denoted by H(g) all along the paper, and we denote by H Q (g) the first rational homology group H 1 (Σ g,1 , Q).
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Representations and cohomological structures

In this section, we review some representations of the mapping class groups, in particular the unit tangent bundle homology representations (see §1.2) for which we make the connection with the Earle class (see §1.1).

Let us first consider the first integral homology group of the surface Σ g,1 , denoted by H(g). Since the Poincaré-Lefschetz duality is the cap product with the fundamental class, there is a Γ g,1 -module isomorphism between H 1 (Σ g,1 ; Z) and H(g). By the universal coefficient theorem for cohomology of spaces (see [Wei94, Example 3.6.7]), we know that H 1 (Σ g,1 ; Z) is isomorphic to H ∨ (g) as Γ g,1modules. A fortiori, we have a Γ g,1 -module isomorphism H ∨ (g) ∼ = H(g).

Let us now move on to the unit tangent bundle homology representations. We first need to recall the notion of framings of the unit tangent bundle. We denote by T Σ g,1 the tangent bundle of the surface Σ g,1 and fix a Riemannnian metric • on it. By definition, the unit tangent bundle U T Σ g,1 is the set of elements of T Σ g,1 whose length is 1 with respect to • . It can be regarded as the quotient of the complement of the zero section in T Σ g,1 by the action of the positive real numbers R + by scalar multiplication. So, for any diffeomorphism ϕ of Σ g,1 , its differential dϕ acts on the unit tangent bundle U T Σ g,1 . The canonical projection of the unit tangent bundle U T Σ g,1 onto the surface defines the locally trivial fibration

S 1 ι ֒→ U T Σ g,1 ̟ → Σ g,1 .
Definition 1.1 A framing of U T Σ g,1 is an orientation-preserving isomorphism of vector bundles U T Σ g,1 ∼ = Σ g,1 ×S 1 , which can be regarded as a continuous map ξ : U T Σ g,1 → S 1 whose restriction to each fiber is an orientation-preserving homeomorphism. Since Σ g,1 has non-empty boundary, there exist framings of U T Σ g,1 .

For α : S 1 → Σ g,1 an immersed loop, its rotation number rot ξ (α) ∈ Z with respect to the framing ξ is the mapping degree of the composite of

• α/ • α : S 1 → U T Σ g,1 and ξ : U T Σ g,1 → S 1 .
The set F(Σ g,1 ) of homotopy classes (without fixing the boundary) of framings of U T Σ g,1 is an affine set modeled in the cohomology group H 1 (Σ g,1 ; Z). More precisely, the difference of two framings ξ and ξ ′ is given by a cohomology class u ∈ H

1 (Σ g,1 ; Z) if and only if rot ξ ′ (α) -rot ξ (α) = u([α]) ∈ Z, where [α] ∈ H 1 (Σ g,1 ; Z)
is the homology class of the immersed loop α. The mapping class group Γ g,1 acts on the set F(Σ g,1 ) by

ϕ • ξ = ξ • dϕ -1 : U T Σ g,1 dϕ -1 -→ U T Σ g,1 ξ -→ S 1
for ϕ ∈ Γ g,1 and ξ ∈ F(Σ g,1 ). For an immersed loop α on Σ g,1 , we have rot ϕ•ξ (α) = rot ξ (ϕ -1 • α).

Earle class

We recall here some classical facts about the first cohomology of mapping class groups with twisted coefficients in H(g). For any g ≥ 1, we recall that gluing a disc with a marked point Σ 1 0,1 on the boundary component of Σ g,1 induces the following short exact sequence:

1 -→ Z -→ Γ g,1 Cap -→ Γ 1 g -→ 1, (1.1)
where Γ 1 g denotes the mapping class group of the punctured surface Σ 1 g . This is called the forgetful exact sequence or the capping short exact sequence; we refer the reader to [FM12, §4.2.5] for more details. In particular, considering the Lyndon-Hochschild-Serre spectral sequence associated to the short exact sequence (1.1), the fact that H(g) Γ 1 g = 0 implies that the forgetful homomorphism Cap provides an isomorphism

H 1 (Γ 1 g ; H(g)) ∼ = H 1 (Γ g,1 ; H(g)).
We denote by e ∈ H 2 (Γ 1 g ; Z) the Euler class of the short exact sequence (1.1) seen as a central extension.

Furthermore, we make the following computation for the twisted first cohomology of the mapping class group of the torus with one boundary. This fact is probably known to the experts (see [START_REF] Callegaro | The cohomology of the braid group B3 and of SL2(Z) with coefficients in a geometric representation[END_REF] for instance), but we give a short proof for the convenience of the reader.

Lemma 1.2 The cohomology group

H 1 (Γ 1,1 ; H(1)) is trivial.
Proof. It is a classical fact that the mapping class group Γ 1,1 is isomorphic to the braid group on three strands B 3 , and that the standard generators σ 1 and σ 2 of B 3 act on

H 1 (Σ 1,1 ; Z) ∼ = Z 2 through the isomorphism by σ 1 → 1 1 0 1 and σ 2 → 1 0 -1 1 respectively; see for instance [Mil71, Theorem 10.5]. Let f be a cocycle of B 3 with values in H 1 (Σ 1,1 ; Z) ∼ = Z 2 . It is determined by the values f (σ 1 ) = a 1 b 1 and f (σ 2 ) = a 2 b 2 . We deduce from the braid relation σ 1 σ 2 σ 1 = σ 2 σ 1 σ 2 that b 1 = a 2 and b 1 = -a 2 . Hence we have a 2 = b 1 = 0, and thus f = d 1 -b 2 a 1 is a coboundary.
Now, we assume that g ≥ 2. Morita [Mor89a, Proposition 6.4] proves that H 1 (Γ 1 g ; H(g)) ∼ = Z, and that the map induced by the push map π 1 (Σ g , p 0 ) → Γ 1 g maps its generators to ±(2 -2g)1 H(g) in H 1 (Σ g ; H(g)). Before this result, Earle [START_REF] Earle | Families of Riemann surfaces and Jacobi varieties[END_REF] constructed the generator by using theta constants, and so we call it the Earle class. The push map π 1 (U T Σ g , p 0 ) → Γ 1 g maps the generators of the latter group to ±(2 -2g) times the projection homomorphism H 1 (U T Σ g,1 ; Z) → H(g). Following Mikio Furuta [START_REF] Morita | Casson invariant, signature defect of framed manifolds and the secondary characteristic classes of surface bundles[END_REF], one of the generators is constructed in the following explicit way. We fix a framing ξ of U T Σ g,1 . The map k ξ (g) : Γ g,1 → H 1 (Σ g,1 ; Z) defined by

k ξ (g, ϕ) = ϕ • ξ -ξ ∈ H 1 (Σ g,1 ; Z) (1.2)
is a 1-cocycle of Γ g,1 . Kuno [START_REF] Kuno | A combinatorial formula for Earle's twisted 1-cocycle on the mapping class group Mg[END_REF] gives a combinatorial formula for the cocycle k ξ . Under the Poincaré-Lefschetz duality, we have:

Theorem 1.3 ([Mor97, §4]) For each g ≥ 2, the cohomology class k(g) := [k ξ (g)]
does not depend on the choice of ξ and generates the infinite cyclic group H 1 (Γ g,1 ; H(g)).

Proof. By the computation of [START_REF] Morita | Families of Jacobian manifolds and characteristic classes of surface bundles[END_REF], it suffices to compute the value of k ξ (g) at a push map. Such a computation was carried out in the original proof of [START_REF] Morita | Casson invariant, signature defect of framed manifolds and the secondary characteristic classes of surface bundles[END_REF]. However, for sake of completeness, we give another explicit computation. Let T C ∈ Γ g,1 be the right-handed Dehn twist along an oriented simple closed curve C of Σ g,1 . Then, it follows from some elementary considerations that rot ξ (T

C (α)) -rot ξ (α) = ([α] • [C])rot ξ (C),
where 

k ξ (g, T C ) = ξ • dT -1 C -ξ = -(rot ξ•dT -1 C C)[C] = -(rot ξ (C))[C] ∈ H 1 (Σ g,1 ; Z).
Assume that the curve C passes near the boundary of Σ g,1 . Then, fattening the union of the boundary and the curve C, we obtain a pair of pants embedded in Σ g,1 whose 3 boundary components are given as follows: one is parallel to the boundary of Σ g,1 , and the other two simple closed curves C -1 1 and C 2 are parallel to C except near the boundary. Then the push map along C is equal to T -1 C1 T C2 ∈ Γ g,1 . By the above formula, we obtain k ξ (g, T -1

C1 T C2 ) = •(-rot ξ (C 2 ) + rot ξ (C 1 ))[C].
From the Poincaré-Hopf theorem, -rot ξ (C 1 ) + rot ξ (C 2 ) + rot ξ (∂Σ g,1 ) is equal to -1, the Euler characteristic of the pair of pants, and rot ξ (∂Σ g,1 ) = χ(Σ g,1 ) = 1 -2g. Hence we have

k ξ (g, T -1 C1 T C2 ) = •(2 -2g)[C]
, which ends the proof.

Notation 1.4 By Smale's theorem [Sma59, Theorem B], we have H 1 (Γ 0,1 , H 1 (Σ 0,1 ; Z)) = 0 and we know from Lemma 1.2 that H 1 (Γ 1,1 , H 1 (Σ 1,1 ; Z)) is also trivial. We thus assign k(0) : Γ 0,1 → H 1 (Σ 0,1 ; Z) and k(1) : Γ 1,1 → H 1 (Σ 1,1 ; Z) to be the trivial cohomology classes.

The unit tangent bundle homology representations

We consider the first integral homology group H(g). The dual H∨ (g) is isomorphic to the first integral cohomology group H 1 (U T Σ g,1 ; Z) by the universal coefficient theorem for cohomology of spaces (see [Wei94, Example 3.6.7]). Then the Serre spectral sequence of the locally trivial fibration S 1 ι ֒→ U T Σ g,1 ̟ → Σ g,1 provides the following Γ g,1 -equivariant short exact sequences:

0 / / Z ι * / / H(g) ̟ * / / H(g) / / 0, (1.3) 0 / / H(g) ̟ *
/ / H∨ (g)

ι * / / Z / / 0. (1.4)
We also have the analogue short exact sequences to (1.3) and (1.4) with the rational homologies H Q (g), HQ (g) and H∨ Q (g). We denote by ∈ H(g) the homology class of the fiber of the unit tangent bundle.

In addition, Trapp [Tra92, Theorem 2.2] describes more precisely the Γ g,1 -module structure. Namely, for an element ϕ ∈ Γ g,1 , the action of ϕ on H(g) is given by the matrix

id Z k(g)(ϕ) (0) H(ϕ) (1.5)
where H(ϕ) denotes the action of ϕ on H and k(g) is Earle's cohomology class of Notation 1.4.

In particular, the crossed homomorphism k(g) is the extension class of the short exact sequences (1.3) and (1.4). We note that the Γ g,1 -action on Z is trivial representation. Also, although the sequences (1.3) and (1.4) split as abelian groups short exact sequences, they do not as Γ g,1 -modules. Hence, contrary to the homology and cohomology of the surface (where Poincaré-Lefschetz duality applies), the dual H∨ (g) is not isomorphic to H(g) as a Γ g,1 -module.

Homological stability framework and tools

In this section, we review the notions of coefficient systems, polynomiality and homological stability with twisted coefficients with respect to the framework of the present paper. These highlight the interest in the work and mainspring of the results of §3.

Twisted coefficient systems

First of all, we present the suitable categories to encodes compatible representations of the mapping class groups originally introduced in [RW17, §5.6.1]. We consider the groupoid defined by the smooth compact connected orientable surfaces S with one boundary component along with a parametrized interval in the boundary, and the isotopy classes of diffeomorphisms restricting to the identity on a neighbourhood of the parametrized interval for the morphisms. We fix a 2-disc D 2 and a torus with one boundary component that we denote by Σ 1,1 . Let M 2 be the skeleton of that groupoid defined as the full subgroupoid of the monoidal sums on the objects D 2 and Σ 1,1 . The groupoid M 2 has a (strict) braided monoidal ♮ structure induced by gluing on half of the marked interval; see [RW17, §5.6.1] for further details. Let UM 2 be the category, called the Quillen's bracket construction over M 2 , with the same objects as M 2 and UM 2 (Σ g,1 , Σ g ′ ,1 ) is the set Colim M2 [M 2 (-♮Σ g,1 , Σ g ′ ,1 )]. This definition is a particular output of a general construction of [START_REF] Grayson | Higher algebraic K-theory[END_REF]; we refer the reader to [RW17, §1.1] if additional details are required. As we will see in §2.2, this type of category is very useful to deal with homological stability questions.

We may now encode compatible representations of mapping class groups by considering functors with the category UM 2 as source and a module category as target. We distinguish two types of such functors because of their distinct qualitive properties with respect to homological stability detailed in §2.2. A covariant system (resp. contravariant system) over UM 2 is a functor F : UM 2 → Ab (resp. F ∨ : UM op 2 → Ab). We now recursively define the notion of polynomiality for covariant systems as follows:

• the constant functors UM 2 → Ab are the polynomial covariant systems of degree 0;

• for a natural number d ≥ 1, the functor F : UM 2 → Ab is a polynomial covariant system of degree less than or equal to

d if the morphism F ([Σ 1,1 , id Σ1,1♮S ]
) is injective for each surface S of UM 2 , and the induced functor δ(F ) : UM 2 → Ab defined by S → (Coker(F (S) → F (Σ 1,1 ♮S)) is a polynomial covariant system of degree less than or equal to d -1.

A first example of polynomial covariant system is given by the first homology group of the surfaces. Namely, assigning the first integral homology group to each surface define functor

H : (UM 2 , ♮, D 2 ) → (Ab, ⊕, 0), which is strong monoidal in the sense that H(Σ g ′ +g,1 ) ∼ = H(Σ g ′ ,1 )⊕ H(Σ g,1 ) and H(ϕ ′ ♮ϕ) ∼ = H(ϕ ′ ) ⊕ H(ϕ) for all g, g ′ ≥ 1, ϕ ∈ Γ g,1 and ϕ ′ ∈ Γ g ′ ,1
. In particular, H : UM 2 → Ab is a polynomial covariant system of degree one. Furthermore, the first homology groups of the unit tangent bundle of the surfaces along with the natural action of the mapping class groups (see §1.2) define a functor H : M 2 → Ab. We note the following key property of the crossed homomorphisms of Theorem 1.3:

Lemma 2.1 Let g and g ′ be two natural numbers. For all ϕ ∈ Γ g,1 and ϕ ′ ∈ Γ g ′ ,1 , we have

k(g ′ + g, ϕ♮ϕ ′ ) = k(g ′ , ϕ ′ ) + k(g, ϕ).
Proof. Let ξ and ξ ′ be framings on Σ g,1 and Σ g ′ ,1 . Then the cocycles k ξ (g, ϕ) = ϕ • ξ -ξ and

k ξ ′ (ϕ ′ ) = ϕ ′ • ξ ′ -ξ ′ represent k(g)
and k(g ′ ) respectively; see (1.2). Let N and N ′ be neighbourhood s of the parametrized intervals I + Σg,1 and I - Σ g ′ ,1 respectively. Since each of the intervals is contractible, we can choose the framings ξ and ξ ′ such that ξ ′ |I -

Σ g ′ ,1 = ξ |I + Σ g,1
and their union define a framing of N ′ ♮N . Hence we define an appropriate framing ξ ′ ♮ξ on Σ g ′ +g,1 , which thus induces a cocyle. We thus deduce from (1.2) that

k(g ′ + g, ϕ♮ϕ ′ ) = [(ϕ ′ • ξ ′ -ξ ′ )♮(ϕ • ξ -ξ)] = k(g ′ , ϕ ′ ) + k(g, ϕ).
Hence we can lift the functor H(g) to UM 2 :

Proposition 2.2 Assigning the canonical injection id Z ⊕ H([Σ g ′ ,1 , id Σ g ′ +g,1 ]) : Z ⊕ H(g) ֒→ Z ⊕ H(g ′ + g) for the morphism H([Σ g ′ ,1 , id Σ g ′ +g,1 ]) for each g, g ′ ≥ 1, defines a covariant system H : UM 2 → Ab that lifts H : M 2 → Ab
and which is polynomial of degree 1.

Proof. For two natural numbers for g, g ′ ≥ 1, we consider ϕ ∈ Γ g,1 and ϕ ′ ∈ Γ g ′ ,1 . It follows from the action of the mapping class group on H(g) of (1.5), from Lemma 2.1 and from the fact that H is a strong monoidal functor that:

H([Σ g ′ ,1 , id Σ g ′ +g,1 ]) • H(ϕ) =   id Z (0) k(g, ϕ) (0) id Σ g ′ ,1 (0) (0) (0) H(ϕ)   ; H(ϕ ′ ♮ϕ) =   id Z k(g ′ , ϕ ′ ) k(g, ϕ) (0) H(ϕ ′ ) (0) (0) (0) H(ϕ)   . Therefore H([Σ g ′ ,1 , id Σ g ′ +g,1 ])• H(ϕ) = H(ϕ ′ ♮ϕ)• H([Σ g ′ ,1 , id Σ g ′ +g,1 ]
). That the functor H : M 2 → Ab lifts to a functor with UM 2 as source category thus follows from the general criterion [Sou22,

In particular, the stable twisted cohomology algebra

H * (Γ ∞,1 ; F ∨ ∞ ) is a free Sym Q (E)-module.
Remark 2.8 The result of Theorem 2.7 does not depend on any polynomiality condition, and more generally on whether there is homological stability or not: the formula holds in general for the colimit of the homology groups which always exists.

Twisted cohomology classes with coefficients in H Q . We now review the stable twisted cohomology group with coefficients in the homology group of the surface. For the reference [KM96], we will rather quote the preprint version [START_REF] Kawazumi | The primary approximation to the cohomology of the moduli space of curves and cocycles for the Mumford-Morita-Miller classes[END_REF] as it contains more content and details.

We recall the short exact sequence (1.1) and its Euler class e ∈ H 2 (Γ 1 g ; Z). Based on the Harer stability [START_REF] Harer | Stability of the homology of the mapping class groups of orientable surfaces[END_REF], Harer [Har91, Theorem 7.1(b)] proves that in the stable range

H k-1 (Γ 1 g ; H Q ) ∼ = i≥1 H k-2i (Γ 1 g ; Q) and H k-1 (Γ g,1 ; H Q ) ∼ = i≥1 H k-2i (Γ g,1 ; Q).
The first isomorphism says that there is an element in H 2l-1 (Γ 1 g ; H Q ) for each l ≥ 1, such that these elements form a free basis of the free

H * (Γ 1 g ; Q)-module H * (Γ 1 g ; H Q ). The element is written by m l,1 ∈ H 2l-1 (Γ 1 g ; H Q ), l ≥ 1, in the terminology of the first author [Kaw98; KM96]. So we have H * (Γ 1 g ; H Q ) ∼ = l≥1 H * (Γ 1 g ; Q)m l,1
in the stable range. Similarly the pullback of m l,1 , l ≥ 1, on Γ g,1 gives an isomorphism in the stable range:

H * (Γ g,1 ; H Q ) ∼ = l≥1 H * (Γ g,1 ; Q)m l,1 (2.1)
For further details, see also [Kaw08, Theorem 1.B].

In the original definition [START_REF] Kawazumi | A generalization of the Morita-Mumford classes to extended mapping class groups for surfaces[END_REF] the cohomology class m l,1 was constructed on the group Γ g,1 .

Later the following definition of m l,1 on Γ 1 g was introduced in [START_REF] Kawazumi | The primary approximation to the cohomology of the moduli space of curves and cocycles for the stable characteristic classes[END_REF]. Let π ′ : Γ 1 g ։ Γ g be the forgetful map of the puncture. Let Γ 1 g be the pullback Γ 1 g × Γg Γ 1 g . More precisely, there is a defining fiber square

Γ 1 g / / Γ 1 g π ′ Γ 1 g π ′ / / σ T T Γ g ,
where the section σ : Γ 1 g → Γ 1 g is given by σ(φ) = (φ, φ). We deduce that there is an isomorphism Γ

1 g ∼ = π 1 (Σ g ) ⋊ Γ 1
g defined by (φ, ψ) → (ψφ -1 , φ). Under this isomorphism, σ is given by σ(φ) = (1, φ). Similarly to [START_REF] Morita | Families of Jacobian manifolds and characteristic classes of surface bundles[END_REF]§7], this semi-direct product decomposition gives rise to a cocycle ω ∈ Z 1 (Γ 1 g ; H(g)) given by ω((x, φ)) = [x] for all x ∈ π 1 (Σ g ) and φ ∈ Γ 1 g . By an abuse of notation, we also use ω to denote the associated element of H 1 (Γ 1 g ; H(g)). We denote by ē ∈ H 2 (Γ 1 g ; Z) the pullback of the Euler class e ∈ H 2 (Γ 1 g ; Z) by the second projection Γ

1 g → Γ 1 g , (φ, ψ) → ψ. The the class m l,1 is defined by m l,1 := π ! (ē i • ω) ∈ H 2l-1 (Γ 1 g ; H). (2.2)
Contraction formula. Finally, we recall a classical operation on the twisted Mumford-Morita-Miller class induced by the contraction of the twisted coefficients. Let µ : H(g) ⊗ H(g) → Z be the intersection pairing associated to Poincaré-Lefschetz duality. Let M and M ′ be two Γ g,1 -modules. The contraction map is the abelian group morphism id

M ⊗ µ ⊗ id M ′ : M ⊗ H(g) ⊗ H(g) ⊗ M ′ → M ⊗ M ′ .
The induced map for the cohomology groups is generically denoted by (id

M ⊗ µ ⊗ id M ′ ) * .
Proposition 2.9 ([KM01, Theorem 6.2]) For all l, l ′ ≥ 1, we have

µ * (m l,1 m l ′ ,1 ) = -e l+l ′ -1 ∈ H * (Γ g,1 ; Q).
(2.3) Sketch of proof. We consider the short exact sequence

1 -→ π 1 (Σ g,1 , x) ι -→ Γ 1 g,1 π -→ Γ g,1 -→ 1 (2.4)
known as the forgetful exact sequence or the Birman short exact sequence; we refer the reader to [FM12, §4.2.1] for more details. As is proved in [KM01, Theorem 5.3], the Lyndon-Hochschild-Serre spectral sequence for the group extension (2.4) induces a canonical decomposition

H * (Γ 1 g ; M ) ∼ = H * (Γ 1 g ; M ) ⊕ H * -1 (Γ 1 g ; H(g) ⊗ M ) ⊕ H * -2 (Γ 1 g ; M )
for any Γ 1 g -module M . It is multiplicative and described explicitly by using the cohomology classes ω and e. The following formula is then deduced from a direct computation based on the decomposition: for m ∈ H * (Γ 1 g ; M ) and m ′ ∈ H * (Γ 1 g ; M ′ ), we have

(id M ⊗µ⊗id M ′ ) * (π ! (m⊗ē•ω)•π ! (ē•ω⊗m ′ )) = -π ! (m⊗m ′ )+s * (m)π ! (m ′ )+π ! (m)s * (m ′ )-eπ ! (m)π ! (m ′ ).
(2.5) Here s : Γ 1 g → Γ 1 g , φ → (φ, φ), is the diagonal map. In particular, we have µ * (m l,1 m l ′ ,1 ) = -e l+l ′ -1 + e l e l ′ -1 + e l ′ e l-1 -ee l-1 e l ′ -1 . Since the Euler class e vanishes on Γ g,1 , we deduce formula (2.3) Remark 2.10 Analogous formulas to (2.5) are computed in [KR19, Proposition 3.10] for mapping class groups of surfaces and higher even-dimensional manifolds. With the conventions of [KR19, §3], there is no -1 sign.

Exotic situations

On the basis of current knowledge, contrary to the covariant cases, there is no general framework to deal with cohomological stability with twisted coefficients by covariant systems. However, the functor H : UM 2 → Ab defined by the groups {H 1 (U T Σ g,1 ; Z), g ∈ N} define satisfies that property. Indeed, we consider the short exact sequences 0 → Q → H(g) → H(g) → 0 and 0 → Q → H(g + 1) → H(g + 1) → 0 obtained from (1.3). Then, the two induced long exact sequences in cohomology are connected by the images of the images by H, H and the constant functor at Q of the canonical arrow [Σ 1,1 , id Σg+1,1 ], which thus define a ladder of commutative diagrams. We deduce the homological stability with twisted coefficients in H from Example 2.5 with a straightforward induction on the cohomological degree and the use of the five lemma.

Twisted stable cohomology computations

In this section, we compute the stable twisted cohomology given by the first cohomology group of its unit tangent bundle H∨ (g) (see §3.1) and by the first homology group of its unit tangent bundle H(g) (see §3.2); see Theorems 3.3 and 3.9. In both cases, the work relies on the determination of the connecting morphisms of the long exact sequences associated to the short exact sequences(1.4) and (1.3) respectively. We fix the following conventions for notations for all the remainder of the paper.

Convention 3.1 Considering a functor M : UM 2 → Ab, we denote the stable twisted cohomology groups H * (Γ ∞,1 ; M ) by H * (M ). From now on, we implicitly assume that g ≥ 2i + 5 each time we consider a cohomological degree i for H i (Γ g,1 ; M (g)) where M (g) = H(g) or H∨ (g), for the homological stability bound of Theorem 2.4 to be reached. Also, we denote by H odd (M ) and H even (M ) the N-graded submodules of H * (M ) defined by {H 2i+1 (M ), i ∈ N} and {H 2i (M ), i ∈ N} respectively.

First cohomology group system

We start by studying the stable cohomology groups of the mapping class groups Γ g,1 with twisted coefficient given by H∨ (g). Let δ i : H i (Γ g,1 ; Z) → H i+1 (Γ g,1 ; H(g)) be the i th connecting homomorphism of the cohomology long exact sequence associated with the extension (1.4).

Lemma 3.2 The connecting homomorphism of the cohomology long exact sequence associated

(1.4) is equal to m 1,1 • -.
Proof. Let [z] be a cohomology class of H i (Γ g,1 ; Z). We use the normalized cochain complex and generically denote by ∂ its differentials. We recall from §1.2 that ∈ H(g) denotes the homology class of the fiber of the unit tangent bundle, and from Definition 1.1 that ξ denotes the homotopy class of a framing of the tangent bundle U T Σ g,1 . We deduce from the action of Γ g,1 on H∨ (g) (see dual of the matrix (1.5)) that the map s = s ξ : Z ֒→ H∨ (g) defined by u → u + k ξ (g, -) ∨ defines a splitting (as an abelian group morphism) to the surjection H∨ (g) ։ Z, v → v( ). Since z is a cocyle, we have ∂z = 0 and therefore that

-sϕ 0 (z([ϕ 1 | • • • | ϕ i ])) = i j=1 (-1) j s(z([ϕ 0 | • • • | ϕ j ϕ j+1 | • • • | ϕ i ]))+(-1) i+1 s(z([ϕ 0 | • • • | ϕ i-1 ])). (3.1) Since δ i [z] = [∂(s(z))
] by the formal definition of δ i , it follows from (3.1) and from (2.2) on the extension classes that

δ i ([z])([ϕ 0 | • • • | ϕ i ]) = (ϕ 0 sϕ -1 0 -s)ϕ 0 (z([ϕ 1 | • • • | ϕ i ])) = k ξ (g, ϕ 0 )ϕ 0 (z([ϕ 1 | • • • | ϕ i ])) = (m 1,1 • z)([ϕ 0 | • • • | ϕ i ]),
which ends the proof.

We consider the long exact sequence in cohomology applied to the rational version of (1.4) to make further computations. We thus obtain the exact sequence for all natural numbers i ≥ 0:

H 2i ( H∨ Q (g)) / / H 2i (Q) m1,1•- / / H 2i+1 (H Q (g)) / / / / H 2i+1 ( H∨ Q (g)), (3.2) 
since H odd (Q) = 0 by (0.1) and H even (H Q (g)) = 0 by (2.1). Since m 1,1 • e α = e α m 1,1 for all α ≥ 1, we deduce that:

Theorem 3.3 The map m 1,1 • -is injective. Therefore, the Sym Q (E)-module H even ( H∨ Q ) is null and H odd ( H∨ Q ) is isomorphic to Sym Q (E){m a,1 , a ≥ 2}.
Remark 3.4 (Interpretation in terms of functor homology.) The modules H∨ Q (g) define a contravariant twisted coefficient system; see Proposition 2.2. It follows from Lemma 2.6 and Theorem 2.7 that H * ( H∨

Q (g)) ∼ = Sym Q (E) ⊗ Q H * (UM 2 ; HQ (g)).
In particular, this explains why the stable cohomology is a free Sym Q (E)-module. Then the long exact sequence for the homology of categories (see [START_REF] Franjou | Stable K-theory is bifunctor homology (after A. Scorichenko). Rational representations, the Steenrod algebra and functor homology[END_REF]§2] for instance) associated with the short exact sequence (1.4) directly gives that H i (UM 2 ; HQ (g)) ∼ = H i (UM 2 ; H Q (g)) if i ≥ 2. However, we need the above reasoning to compute that H 0 (UM 2 ; HQ (g)) = H 1 (UM 2 ; HQ (g)) = 0.

First homology group system

Constrasting with the situation of §3.1, we now study the stable cohomology groups of the mapping class groups Γ g,1 with twisted coefficient in the first cohomology group of the unit tangent bundle of the surface.

Determination of the connecting homomorphism

Let δ i : H i (Γ g,1 ; H(g)) → H i+1 (Γ g,1 ; Z) be the i th connecting homomorphism of the cohomology long exact sequence associated with the extension (1.3).

Lemma 3.5

The morphism δ i is equal to µ(m 1,1 , -).

Proof. Let [z] be a cohomology class of H i (Γ g,1 ; H(g)). We use the normalized cochain complex and generically denote by ∂ its differentials. We deduce from the action of Γ g,1 on H(g) (see the matrix (1.5)) that the homotopy class of a framing ξ of the tangent bundle U T Σ g,1 induces a map s ′ = s ′ ξ : H(g) ֒→ H(g) defined by h → h + k ξ (g, -), which is a splitting (as an abelian group morphism) to the surjection ̟ * : H(g) ։ H(g). Since z is a cocyle, we have ∂z = 0 and therefore

-s ′ ϕ 0 (z([ϕ 1 | • • • | ϕ i ])) = i j=1 (-1) j s ′ (z([ϕ 0 | • • • | ϕ j ϕ j+1 | • • • | ϕ i ]))+(-1) i+1 s ′ (z([ϕ 0 | • • • | ϕ i-1 ])).
(3.3) Since δ i [z] = [∂(s ′ (z))] by the formal definition of δ i , it follows from (3.3) that

δ i ([z])([ϕ 0 | • • • | ϕ i ]) = (ϕ 0 s ′ -s ′ ϕ 0 )(z([ϕ 1 | • • • | ϕ i ])).
On the other hand, we recall that the extension class of the short exact sequences (1.3) is Earle's cohomology class m 1,1 = k(g) = [k ξ (g, -)]; see (2.2). We thus compute from the definition of the contraction morphism that

µ(m 1,1 , z)([ϕ 0 | • • • | ϕ i ]) = µ(k ξ (g, ϕ 0 )ϕ 0 ⊗ z([ϕ 1 | • • • | ϕ i ])) = (ϕ s ′ -s ′ ϕ 0 )(z([ϕ 1 | • • • | ϕ i ]))
which ends the proof.

Computation of the stable twisted cohomology

To make further computations, we must restrict to considering the rational homology representations. We recall from (0.1) that H odd (Q) = 0, and from (2.1) that thus H even (H Q ) = 0. Then we deduce from the long exact sequence in cohomology applied to (1.3) that H 0 (Q) ∼ = H 0 ( HQ ) ∼ = Qθ and obtain the exact sequence for all natural numbers i ≥ 0: is stable under the action of the algebra Sym Q (E).

H 2i+1 ( HQ ) / / H 2i+1 (H Q ) µ(m1
Computations of Tor-groups. In order to give some qualitative properties of the stable twisted cohomology groups that we study, we may consider these twisted cohomology groups as forming an algebra H * ( HQ ) over the stable cohomology algebra Sym Q (E) as follows.

We may thus compute the homology of that algebra:

  [α] • [C] denotes the (algebraic) intersection number of the homology classes [α] and [C]. We deduce that ξ • dT C -ξ = •(rot ξ (C))[C] and in particular that
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  Moreover, using the injection H odd ( HQ ) ֒→ H odd (H Q ) and the surjection Sym Q (E) ։ Q and noting that there is a compatibility with respect to the grading because H odd (Γ ∞,1 ; Q) = 0, we deduce that: The cohomology groups H * ( HQ ) inherits a Sym Q (E)-module structure from H * (H Q ) and Sym Q (E). Moreover, the decomposition H * ( HQ ) = H even ( HQ ) ⊕ H odd ( HQ ) (3.6)

	/ / 0.	(3.5)
	Lemma 3.7	

,1,-) / / H 2i+2 (Q) / / / / H 2i+2 ( HQ ).

(3.4)

From the contraction formula (2.3), we then compute that µ(m 1,1 , m α,1 ) = -e α for all α ≥ 1, and deduce that:

Proposition 3.6 The map µ(m 1,1 , -) is surjective. Therefore, the Sym Q (E)-module H even ( HQ ) is isomorphic to the trivial Sym Q (E)-module H 0 ( HQ ) ∼ = Qθ and H odd ( HQ ) is isomorphic to the kernel of the graded morphism µ odd (m 1,1 , -)

:= µ(m 1,1 , -) : H odd (H Q ) → Sym Q (E).

Therefore, we have the following exact sequence of Sym Q (E)-modules

H odd ( HQ ) / / H odd (H Q ) µ odd (m1,1,-) / / Sym Q (E) aug / / Q

Lemma 1.2]. Finally, the morphism H([Σ 1,1 , id Σ1+g,1 ]) is by definition an injection for each g ≥ 0, and the induced functor δ( H(g)) : UM 2 → Ab is the constant covariant system at Z. Remark 2.3 By Proposition 2.2, the first cohomology groups of the unit tangent bundle of the surfaces define a contravariant system H∨ : UM op 2 → Ab. However, as far as the authors know, there does not exist any notion of polynomiality for such object.

Twisted homological stability and stable (co)homology

In this section, we review some classical results on homological stability with twisted coefficients for mapping class groups. In particular, these prove that all the twisted coefficient systems we consider in this paper satisfy the homological stability property and thus motivate the computations of §3. Also, we recall some computations and results on the stable homology of mapping class groups with twisted coefficients, which will be used for the work of §3.

Classical framework

Both homological stability and stable twisted homology are already well-studied for covariant systems, and we recollect the corresponding classical results in the following paragraphs.

Stable homology general framework. The following classical result illustrates how polynomial covariant systems turn out to be very useful for (co)homological stability problems.

Theorem 2.4 ([Iva93, Theorem 4.1], [RW17, Theorem 5.26]) Let F : UM 2 → Ab be polynomial covariant system of degree d. Then, for each g, i ≥ 0 such that g ≥ 2i + 2d + 3, the injection

Example 2.5 Since the first homology groups {H 1 (Σ g,1 ; Z), g ∈ N} define a polynomial covariant system of degree one H : UM 2 → Ab, there is an isomorphism H i (Γ g,1 ; H(g)) ∼ = H i (Γ g+1,1 ; H(g + 1)) for g ≥ 2i + 5. Furthermore, the second author proves in [START_REF] Soulié | Some computations of stable twisted homology for mapping class groups[END_REF] a general decomposition for the stable homology of the mapping class groups with twisted coefficients givrn by a covariant system. In order the rephrase this result in terms of cohomology groups, we take this opportunity to recall and prove the following version of the Universal Coefficient theorem (for which it is difficult to find a reference), in order to make the connection between the Γ g,1 -modules H(g) and H∨ (g).

Lemma 2.6

Let G be a group, R be a principal ideal domain, and M a left R [G]-module which is free as a R-module. We denote by M ∨ the dual right R [G]-module Hom R (M, R). Then there is a natural short exact sequence admitting a non-canonical splitting:

Since a submodule of a free module over a principal ideal domain is free, all the terms of the resolution

Hence, the result follows from applying the universal coefficient theorem for chain complexes over a principal ideal domain (see [Wei94, Theorem 3.6.5] for instance) on the right-hand side of the isomorphism.

Then, using Lemma 2.6, we deduce from [Sou20, Theorem C]:

Theorem 2.7 For K a field and any covariant system F : UM 2 → K-Mod, for each g, i ≥ 0 such that g ≥ 2i + 2d + 3, we have a natural isomorphism of K-modules

Theorem 3.8 For any j > 0, we have Tor

In particular, the Sym Q (E)-module H * ( HQ ) is not free. Furthermore, we have Tor

Proof. Using the general decomposition (3.6), the results follow from the respective computations of the left derived functors Tor

-modules H even ( HQ ) and H odd ( HQ ). It straightforwardly follows from the Koszul resolution (see [START_REF] Loday | Grundlehren der Mathematischen Wissenschaften[END_REF]§3.4.6] for instance) that Tor

We note that the projection map Sym Q (E) → Qθ induces isomorphisms Tor

(Q, Qθ). We thus deduce from the long exact sequence for the left derived functor Tor Sym Q (E) , associated with the short exact sequence Im(µ odd (m 1,1 , -)) ֒→ Sym Q (E) ։ Qθ, that for any j ≥ 0 Tor

We recall that

because Im(µ odd (m 1,1 , -)) equals the augmentation ideal of Sym Q (E). Therefore, the long exact sequence for the left derived functor Tor Sym Q (E) associated with the short exact sequence deduced from Proposition 3.6

(Q, Q) for all j ≥ 0, which ends the proof.

In our forthcoming paper [KS], we will compute Tor

In particular, this group is non-trivial for each degree j ≥ 0, except for the case d = 2.

Computation of the stable cohomology. Actually, we may explicitly describe the generators and relations of the module H odd ( HQ ) as follows. We consider Ω n

Sym Q (E)|Q ; see [START_REF] Loday | Grundlehren der Mathematischen Wissenschaften[END_REF]. We consider the Euler vector field

with respect to D is a Sym Q (E)-linear derivation satisfying p D (m i,1 ) = e i for all i ≥ 1. Here we identify each m i,1 with the 1-form de i . Hence we deduce from Proposition 3.6 that

Using this description, we can prove:

Theorem 3.9 The Sym Q (E)-module H odd ( HQ ) is generated by M i,j := e i m j,1 -e j m i,1 for i, j ≥ 1, with relations e i M j,k + e j M k,i + e k M i,j ∼ 0 for all i, j, k ≥ 1.

Proof. The Lie derivative L D with respect to D satisfies

Hence each of Ω n Sym Q (E)|Q for n > 0 and Ker(aug : Sym Q (E) → Q) is the direct sum of eigenspaces of L D with positive eigenvalues. Then the Cartan formula L D = dp D + p D d implies that the following sequence of Sym Q (E)-modules is exact:

Therefore the truncation of that sequence

defines a free resolution of the module H odd ( HQ ). The result thus follows from the definition of the interior product p D .

Remark 3.10 (Interpretation in terms of functor homology.) Contrary to the case of H∨ Q (g) (see Remark 3.4), Lemma 2.6 and Theorem 2.7 do not apply since the modules HQ (g) define a covariant twisted coefficient system.