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Abstract 

Intelligent forest management is the key to mitigating climate warming, fostering a green economy, 

and protecting valuable habitats. Detailed knowledge about forests is a prerequisite for such 
management and is conventionally based on costly plot-scale data, rarely available at resolution of 
relevance for local forest management strategies. Here, we present a deep learning-based framework 
that provides location, crown area and height for each individual tree from aerial images at country 
scale. We quantify and characterize all individual trees in Denmark and show that 26% of the trees grow 
outside forests, which is typically unrecognized in national inventories. Furthermore, we demonstrate 
that only marginal effort is needed to transfer our framework to Finland, despite markedly dissimilar 
landscapes and data sources. Our work lays the foundation for a global database, where every tree has 
its digital twin and is spatially traceable and manageable. 

 

Introduction 

Climate change and rapid losses of forest habitats and biodiversity are the major environmental 

challenges of the 21st century 1,2. Intelligent forest management can mitigate these crises by building 

carbon stocks, providing materials for a green economy, and developing habitats representing the most 

important reservoir for biodiversity in the world 3,4. Consequently, policies addressing climate change 

mitigation and adaptation, sustainable wood production, and biodiversity must rely on timely, detailed, 

and reliable information on the state and development of tree resources and habitats. 

Detailed knowledge of forests at regional and national scales is commonly obtained from inventories 

such as the national forest inventories (NFI). Here, variables such as tree diameter, height, species, 

growth, and mortality are recorded during repeated census on a representative sample of widely 

distributed plots 5–8. Such inventories provide essential information, but are time-consuming, labor-

intensive, and costly. Furthermore, the scarce number of plots is of limited relevance for local forest 

management strategies. Comprehensive information on forest structure is commonly derived from a 

more intensive sampling of inventory plots, sometimes complemented by remote sensing and simple 

machine learning tools 9–11, but only a few countries conduct a detailed sampling on a systematic and 

frequent basis. Current state-of-the-art approaches for the assessments of individual trees are based on 

airborne LiDAR data 12–14 and have the potential to meet the requirements for assessing forest carbon 

stocks and to support management and conservation policies. However, these data are costly, are 

performed on a snapshot basis during irregular campaigns, and the requirements for obtaining and 

processing the data are high.  

Satellite-based monitoring of forests enables low-cost and wall-to-wall assessments that can be rapidly 

repeated at a high temporal frequency and a large scale. Yet these assessments are typically limited to 

the variable “forest cover” 15,16. This variable has a long tradition in forest monitoring, but has little use 

from a management perspective, and the misinterpretation of the results can cause far-reaching 

consequences 17,18. Moreover, forest biomass estimations based on “cover” information and spatially 
aggregated height or volume proxies ignore the diversity of trees, i.e., the fact that trees generally have 

different height and crown sizes, leading to highly uncertain carbon stock estimations 19. Forest cover 

also ignores trees outside forests, which can constitute a considerable woody resource and provide a 

variety of ecosystem services 20,21. Previous studies have shown that the count of trees outside forests 

far exceeds expectations 22, but their systematic assessment remains a challenge 23. Finally, the 

provisioning of ecosystem services, such as forest resources and habitats as well as climate change 
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mitigation and adaptation, is closely related to the distribution and size of individual trees, which are 

difficult to measure by traditional optical satellite systems. 

Recently, Brandt et al. 22 have shown that advances in computer vision and very high resolution (50 

cm) satellite imagery enable the mapping of individual trees and shrubs in the sub-Saharan desert and 

savanna landscapes. Yet, it has been questioned whether the approach designed for mapping single trees 

growing in isolation in dry areas could be transferred to the European forest setting, where closed forests 

prevail. Moreover, Brandt et al. 22 did not embark upon assessing the height of individual trees, which 

is an essential variable for estimating biomass and carbon stocks. Ultra-high-resolution aerial imagery 

is publicly available for many European countries and is frequently updated. Identifying single tree 

crowns from these images is not difficult for the human eye, and deep learning methods have achieved 

great success in solving similar problems, including microscopy cell segmentation 24–26 and scene 

labeling 27,28. Studies in the domain of crowd counting have also demonstrated that dense 

representations of objects could be accurately enumerated via a density estimation approach 29,30. 

Though the feasibility of tree crown segmentation and counting in imagery has never been verified for 

closed forests. Furthermore, inferring height from merely optical images remains an important yet 

understudied problem, especially at the level of individual trees 31,32. 

Here, we present an automatic and scalable airborne tree inventory framework based on state-of-the-art 

convolutional neural networks 33,34, producing detailed individual tree attributes including location, 

crown area, and tree height (Fig. 1). The proposed method allows for an unbiased analysis of trees 

growing in diverse landscapes including dense forests, open fields, and urban areas, and, hence, leads 

to accurate estimates of tree resources at a large scale.  We applied the framework on aerial images 

covering Denmark (2018) at a spatial resolution of 20 cm and generated country-wide maps on the 

number, location, crown size, and height of every single tree, both inside and outside forests. We further 

verified the adaptability of our method by transferring model weights learned from data in Denmark to 

Finland, the most forested country in Europe with over 56% forest cover (2015) 16. The Finnish dataset 

has a different spatial resolution (50 cm) and spectral band composition. We demonstrate that, once a 

model is trained, it can be easily adapted to different years and countries, and height estimation of each 

tree can be obtained without further need for LiDAR data. We expect this framework to revolutionize 

the baseline information from which European forests are managed, becoming an important 

complement to inventories supporting forest management and policy planning.  

 

Results 

The proposed framework involves two separate models addressing three localization and 

characterization tasks of individual trees (Fig. 1). The first model solves the tree counting and crown 

segmentation tasks jointly from multi-band aerial images and, if available, a canopy height map derived 

from LiDAR data. The second model uses LiDAR data as training data and predicts canopy heights 

from multi-band aerial images. The predicted canopy heights are further combined with the crown 

segmentation results by zonal statistics to obtain the height per tree.  
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Fig. 1 | Overview of the framework used to count individual trees and predict their crown area and height. a, Deep 

learning-based framework for individual tree counting, crown segmentation, and height prediction. Spatial locations of 

individual trees are incorporated in the tree density maps and the crown segmentation maps. The canopy height map (CHM) 

derived from LiDAR data provides pixel-wise height information, which, when available for a specific study area, can 

optionally be used as an additional input band for the individual tree counting and crown segmentation tasks. b, Data 

preparation and modeling for tree counting and crown segmentation. The manually delineated individual tree crowns are 

modeled as density maps for the counting task by extracting the polygon centroids. The gaps between adjacent crowns are 

highlighted for the separation of individual tree crowns during the training phase. 
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Fig. 2 | Example products from the proposed framework. a, Wall-to-wall tree count prediction for Denmark. b, Detailed 

examples showing the individual tree counting (second row), crown segmentation (third row), and height prediction (third 

row) from three major types of landscapes (deciduous forest, coniferous forest, and non-forest). c, Large-scale individual tree 

crown segmentation results colored by height predictions. Examples in b and c were sampled from the region indicated by the 

orange box in a. 

 

Multi-task deep learning enables simultaneous tree counting and crown segmentation 

We established a multi-task deep learning-based network for jointly solving the individual tree counting 

(Task 1 in Fig. 1) and crown segmentation tasks (Task 2 in Fig. 1) from 2-dimensional imagery for both 

forest and non-forest trees 16. The network could be retrained with different spectral band compositions 

and with or without a height map, leading to separate models with similar performances (Extended Data 

Fig. 1, Extended Data Table 1, and examples in the last section). Here, we used RGB and near-infrared 

(NIR) aerial images at 20 cm resolution from summer 2018 and a canopy height map projected from 

airborne LiDAR data at 40 cm resolution. The network was primarily adapted from the U-Net 

architecture 33, with two output branches for the counting and crown segmentation tasks (see 

“Methods”). As target references, 19,771 individual tree crowns from different forest and non-forest 

landscapes were manually delineated by visually inspecting the aerial images (Supplementary Fig. 1a). 

We labeled all trees with identifiable shadows, and adjoining crowns were delineated as separate 

individual segments. For model evaluation as described below, we created an independent test dataset 

with 2,679 annotated tree crowns in stratified sampling spots distributed all over Denmark 

(Supplementary Fig. 1b). 
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Forest trees tend to naturally exhibit a clustered spatial pattern. Thus, we proposed two techniques to 

ensure both accurate total counts and crown segmentations at the level of individual trees (Fig. 1b). 

Firstly, for the segmentation branch, the gaps in between neighboring crown boundaries were used 

during training for computing a loss that fostered the separation of adjoining crowns 22. We adjusted 

the penalty weight assigned to the between-crown gaps to optimize both the mapping of crown coverage 

and separability of the crowns. With an increasing gap penalty from low (1) to high (10), individual 

crowns could be separated more clearly (counting error - 9.4%), while the predicted crown area declined 

(error + 10.7%, Extended Data Fig. 2). We found a gap penalty of 5 to adequately balance both the 

individual tree separation and crown area accuracy (Extended Data Fig. 2). Secondly, instead of 

counting the segmented tree crowns, we solved the counting task through a partially independent 

branch, which was not impacted by the crown clustering effects from the segmentation branch. Here, 

counting was conducted by a density estimation approach 29, where each sample point on the density 

map represented a tree at the corresponding position and the integral of the density map was equivalent 

to the total tree count in an image of arbitrary size. The density estimation-based approach improved 

the counting performance by 8.9% as compared to the segmentation-based approach (Extended Data 

Fig. 4). 
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Fig. 3 | Individual tree counting and crown segmentation performance on the test dataset. a, Examples from three 

different forest/landscape types: deciduous forest, coniferous forest, and non-forest areas. Reference shows the target labels, 

including the manual crown delineations (thin blue lines) and the Gaussian-blurred crown centroids (gray dots). Prediction (1) 

shows the counting by density estimation results and Prediction (2) shows the crown segmentation results, both overlaid with 

the manual delineations (thin blue lines). b, Evaluation of the tree counts from Prediction (1), grouped in respective landscapes 

and re-scaled to tree counts per hectare. Here, each scatter point in the plots represents a sampling image of varying size. The 

regression lines are shown in blue and the identity lines are shown in gray. c, Evaluation of the tree crown area predictions 

from Prediction (2) at individual-tree-level accuracy.  
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We evaluated the robustness of the multi-task network for three major types of landscapes 16, including 

high-density deciduous forests (9 images of average size around 0.4 hectares containing 1,279 trees in 

total), high-density coniferous forests (7 images of average size around 0.6 hectares containing 853 

trees in total), and open fields (non-forest) involving trees outside forest in hedgerows and small patches 

(9 images of average size around 3.4 hectares containing 547 trees in total). The model achieved an 

overall low bias and high accuracy, as reflected by the close to unity slope (0.97) for the regression of 

predicted against reference tree numbers and a high coefficient of determination R2 of 0.93 (see Eq. (6) 

in “Methods”). However, we noticed a slight overcount in dense coniferous forests (slope = 1.07), yet 

a marginal undercount in dense deciduous forests (slope = 0.91) and open areas (slope = 0.88) (Fig. 3). 

We also noted that the model underestimated the crown cover by approximately 20% (Fig. 3c) 

regardless of the tree density or types, which was likely due to the choice of the gap penalty for 

improving the separability of individual trees. For large-scale applications, we corrected for this 

underestimation by rescaling the predicted crown area according to the fitting curves (see “Methods”; 
Fig. 3c).  

 

Individual tree height prediction from aerial images 

The height prediction model received multi-band aerial images as inputs and learned the mapping of 

the reference height obtained from the LiDAR data through a similar U-Net architecture as used above. 

To account for the height differences among various landscapes, we constructed a training dataset by 

sampling aerial images from regions dominated by deciduous, coniferous, and non-forest trees with a 

ratio of 18:18:1 16 (Supplementary Fig. 2a). The dataset contained in total 74 images (7.4 k hectares) 

captured in 2018, with the corresponding LiDAR height data collected primarily from 2018 and 

partially from 2019 (due to lack of coniferous instances). The pixel-level height prediction, combined 

with the individual tree crown segmentation, yielded the individual tree height, which we defined as 

the maximum height within each predicted tree crown. 

 

Fig. 4 | Individual tree height prediction from aerial images.  The evaluation was done on regions randomly sampled from 

approximately one-third of Denmark (Supplementary Fig. 2b). a, Height predictions for three different forest/landscape types: 
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deciduous, coniferous, and non-forest. Prediction (1) shows the height prediction per pixel and Prediction (2) shows the height 

prediction per tree obtained by using the maximum value from Prediction (1) within each segmented tree crown. b, A 

comparison between individual tree heights derived from Prediction (1) and from Reference, with the regression lines shown 

in blue and the identity lines shown in gray. c, Absolute errors of the individual tree height prediction, grouped in 5 m height 

intervals, with the predicted and reference height distributions in the background. 

 

We conducted large-scale individual tree height evaluation on randomly sampled aerial images (in total 

3 k hectares containing 479 k predicted tree crowns) captured in 2018 and 2019 (in total 1.8 million 

hectares, approximately one-third of Denmark, Supplementary Fig. 2b), respectively for each 

forest/landscape type (Fig. 4). We noticed a high agreement between the predicted and the reference 

tree heights across all forest/landscape types, with an R2 of 0.79, 0.66, and 0.73 (Fig. 4a, 4b). The model 

achieved a global median absolute error of 1.9 m with only rare extreme errors over 5 m. The errors 

gradually increased from less than 2 m to more than 5 m as the reference tree heights increased from 0-

5 m to above 30 m, showing a tendency to underpredict the height of the taller trees (Fig. 4c). The 

relative error (see “Method”) for all trees in the evaluation dataset was 0.68%, implying no systematic 
errors on large-scale aggregated performances (see also Fig. 4c). When decomposing the errors into 

bias and variance 35, we found the bias increased with tree height, while the variation, which reflected 

the model’s capability to capture height variability, maintained constant across diverse height ranges 

and forest/landscape types (Extended Data Fig. 5c).  

 

Nation-wide implementation in Denmark 

We evaluated the scalability of the framework by generating an individual tree count map and a crown 

segmentation map featured with individual tree heights for Denmark (Fig. 2 and Supplementary Fig. 

3). A total of 289 million trees were detected based on density estimation and a total crown area of 0.47 

million hectares was predicted (Table 1). The results revealed a surprisingly large number of non-forest 
16 trees (76 million), which represents around 30% of the national tree crown coverage and 26% of the 

national tree count. Individual tree heights were obtained by combining the refined crown 

segmentations with the per-pixel height predictions, which were corrected based on the predicted 

against reference height regressions (see “Methods”). Compared with the Danish NFI forest tree count 

from 2018 36, which upscaled field measured plot information to nation-wide forest areas, our 

predictions showed an underestimation of tree counts of 15.2% for the medium and tall tree classes (20 

- 40 m). For small trees (<= 6 m), the underestimation was severe (94.3%, Extended Data Fig. 6), which 

can be explained by the fact that understory in dense forests cannot be seen by aerial or satellite images 
37. Note that NFI data only estimated tree counts for forest areas, and we excluded non-forest trees for 

this comparison. 

Our tree cover maps produced from the detection of individual trees leave little space for uncertainty 

and can be used to evaluate existing products. Here, we compared the tree cover map aggregated from 

our individual tree crown segmentation with two existing state-of-the-art forest cover maps estimated 

from satellite imagery at 30 m (Landsat) 15 and 10 m (Sentinel-2) 16 resolutions, and noticed a much 

higher tree canopy area in dense forests from these existing products (Extended Data Fig. 7a). In 

particular, the 10 m resolution Copernicus tree cover map (2018) 16 showed 32.9% higher values for 

deciduous forests and 50.7% for coniferous forests, and conversely an underestimation of 50.3% for 

non-forest areas (Extended Data Fig. 7b and Extended Data Table 2). 
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Transfer learning enables cross-national applications 

The proposed framework showed high transferability regardless of the input data source, spatial 

resolution, composition of the spectral bands, and differences in major forest/landscape types. The 

models pre-trained with the Danish dataset at 20 cm resolution were easily adapted to 50 cm aerial 

images from Finland by fine-tuning using a small additional training set of the target distribution (Fig. 

5). Specifically, the counting and crown segmentation model established for Denmark was further 

trained with the original data from Denmark and additional data from Finland including up-sampled 

coarser resolution images and 4,773 tree crown delineations (Supplementary Fig. 4a). Likewise, the 

pre-trained height prediction model using data from Denmark was adapted to the Finnish setting by 

fine-tuning with 10.8 k hectares of images and 1 m resolution LiDAR height data collected from three 

locations in Finland (Supplementary Fig. 4b). Notably, when the models trained for Denmark were 

directly applied to Finland, reduced performances were observed, yet the main patterns including the 

general tree crown shapes as well as overall height differences were captured (Extended Data Fig. 8). 

 

Fig. 5 | Transferring the proposed framework from Denmark to Finland. a, Tree count prediction in Finland derived from 

aerial images using the transferred model from Denmark. The evaluation locations for b, c, and d (red dots). b, Large-scale 

individual tree crown segmentation colored by height prediction. c, Detailed examples for individual tree counting, crown 

segmentation, and height prediction. d, A comparison of individual tree heights from predictions and references, with the 

regression line in blue and the identity line in gray. Absolute errors for the evaluation of individual tree height prediction. 
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We evaluated the performance of individual tree height prediction on randomly sampled images (3 k 

hectares containing 833 k predicted tree crowns) from three regions in Finland (21.6 k hectares), where 

images and LiDAR height data were collected during the same period (2019) (Fig. 5). The selected 

regions were dominated by either coniferous forests or non-forest areas 16. The individual tree height 

predictions showed a reasonably high agreement with the reference heights for most trees (R2 = 0.57), 

and the global median absolute error was 1.9 m. The absolute errors increased slightly for smaller (< 5 

m) and taller trees (> 30 m), while only a tiny proportion (<< 1%) yielded errors up to 10 m (Fig. 5d). 

The relative error for all trees in the evaluation dataset was 1.0%, indicating low systematic errors at a 

large scale. 

 

Discussion 

We established a novel end-to-end deep learning-based framework for individual tree mapping and 

height prediction in forest and non-forest areas from high-resolution aerial images and applied it to two 

European countries with dissimilar datasets and landscapes. Our approach enabled the derivation of the 

height information, normally only available from high-cost LiDAR data, from less expensive aerial 

imagery, with an unprecedented accuracy down to the level of single trees 32,38,39. While aerial images 

cannot be considered “low cost”, the availability of sub-meter resolution images from nano-satellites, 

such as Skysat, promises a comparable quality for a reasonable price. We propose such an individual 

tree localization and characterization approach as the means to produce a comprehensive tree database 

that concerns not only forest but also non-forest trees, which are essential yet often neglected by the 

conventional forest inventories 23. Such a database would serve as the new standard for supporting local 

or national forest management. The highly detailed database consisting of tree counts, crown 

delineations and heights would also allow for downstream analyses such as monitoring self-thinning 

phenomena 40 for dense forests (Supplementary Fig. 5) or investigating the impact of global warming 

and drought on tree mortality and resilience. This information will improve the way how forest 

resources are estimated and how their sustainable utilization is optimized. Furthermore, we publish a 

readily available framework pre-trained on data samples from Denmark and Finland, which can be 

easily adapted to other domains by fine-tuning with a little extra data from specific landscapes. This 

will enable countries to make use of their aerial images in order to derive annual wall-to-wall airborne 

tree inventory with a marginal effort.  

The resulting individual tree crown and count maps reflect the vegetation structure more accurately 

than existing conventional forest cover maps, and the products can be intuitively interpreted and 

validated by the human eye. Our method unambiguously determined trees as objects, whilst other well-

known methods estimate the percentage canopy cover from spectral colors at relatively coarse 

resolution (10 - 30 m) 15,16. Notably, canopy cover maps obtained by simply aggregating the individual 

tree crown maps might suffer from an underestimation of the true canopy coverage, since only the 

topmost tree crowns are clearly recognizable from above and we intentionally emphasized the between-

crown gaps. Yet, we argue that existing forest cover maps 15,16 possibly overestimate the canopy 

coverage by not excluding gaps between individual trees, which are not seen in mixed pixels at coarse 

resolution 41,42.  

Results such as presented here could make the upscaling of plot-based information to a national scale 

more accurate. The localization of individual trees is particularly important for the monitoring of tree 

mortality, which would not be based on plot-scale estimations, but on actual counts with wall-to-wall 

coverage. Moreover, carbon stocks could be reported at the level of individual trees in the frame of 

climate agreements. Using local or global allometric equations 43, crown diameter and height can be 
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directly converted to carbon stocks, so the upscaling from inventory plots would remain at the level of 

single trees. Going beyond areal variables and towards single tree assessments also reduces 

uncertainties related to forest area definitions. We found that following existing forest maps and 

definitions, about 26% of the trees in Denmark were missed by the NFI statistics 36, as they were 

growing outside of forests. Note however that short trees growing under the top canopies are 

underestimated and NFI data needs to be used to correct for the undercount bias. 

Uncertainties could arise when transferring the established models to markedly different regions, 

considering the divergences in forest type distributions, traits of trees affected by local climate, image 

acquisition times, viewing angles, and spatial resolutions. Yet, our study revealed the feasibility of pre-

trained models for multi-country scale automatic individual tree localization and characterization, 

which could be further extended to a continental or global scale with the availability of high-quality 

aerial or satellite imagery. A database on individual trees would serve as a digital twin of global forests, 

where each tree could be traced, for example, from the forest to the factory. Such detailed information 

would allow more sophisticated and attentive utilization of the wood material as wood properties are 

influenced by the local growing conditions, leading towards resource efficiency and sustainable 

utilization of forests. Our proposed framework may assist researchers, stakeholders, and policymakers 

in monitoring tree resources in an unprecedented way, ultimately promoting more intelligent and 

digitalized environmental management in support of the green transition. 
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Methods 

Tree counting and crown segmentation 

We used a multi-task deep neural network with two partially connected branches for the tree counting 

and crown segmentation tasks. The crown segmentation branch solved a semantic segmentation 

problem, where each pixel in a given image was classified as either object or background 1. The counting 

branch predicted the tree count by regressing density maps for a given image. The ground truth density 

maps were generated by applying normalized 2-dimensional Gaussian kernels on the manual crown 

delineations 2,3. Following the strategy from Zhang et al. 2, given an image with a total of 𝐶  tree 

delineations, the density map 𝐷 is defined as in Eqs. (1-2):  

 

Here, 𝐺σ,m(p) is a sampled truncated Gaussian kernel evaluated at pixel position 𝐩 = (p1, p2)T in the 

image. The kernel is centered around 𝐦 = (m1,m2)Twith bandwidth parameter 𝜎 and is truncated to 
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height/width 2𝑀 + 1. 𝐷(p) denotes the density map for 𝐶 tree delineations centered at the position 

m1, … , mC evaluated at pixel position p. We used a fixed Gaussian filter with a kernel size of 15 × 15 

(i.e., 𝑀 = 7  in Eq. (1)) and a standard deviation ( 𝜎 ) of 4 (Extended Data Fig. 3). Through the 

normalization term in Eq. (1), we ensured that each Gaussian kernel was normalized to unity. The total 

tree count could then be estimated by summing up the density values across the whole image. 

The network was primarily based on the U-Net architecture 4, a widely used neural network for 

computer vision applications. Following the approach from Oktay et al. 5, we extended the standard U-

Net with self-attention blocks to extract more relevant information from the down-sampling path 

(details of the model can be found in Supplementary Table 1). Batch normalization was applied after 

each convolutional layer to stabilize and to speed up the training process 6. The majority of the model 

weights were shared across the two branches, while only those for producing the final output predictions 

were task specific. For the segmentation branch, the sigmoid activation was used in the final output 

layer to produce probabilities in the range of [0,1], which were then converted into binary labels with a 

threshold of 0.5. For the counting branch, the linear activation was used to maintain the Gaussian kernel 

values. In each epoch of training, random patches of size 256 × 256 pixels from all available training 

images were extracted to generate training and validation data with a batch size of 8. The generated 

image patches were standardized (per instance and per channel) to zero mean and unit standard 

deviation before being fed into the network as inputs. We used the Adam optimizer 7 for training.  

The network was trained in a fully supervised manner with 19,771 manual tree crown delineations from 

sampling plots of varying sizes distributed over Denmark, covering diverse landscapes including dense 

deciduous forests (49% of tree delineations), dense coniferous forests (30% of tree delineations) and 

open fields with hedgerows or scattered trees (21% of tree delineations). We generated two types of 

target outputs from the referential annotations for training the two branches: (1) binary masks with tree 

pixels denoted as ones and background pixels as zeros for the segmentation branch and (2) density maps 

with single trees represented by Gaussian kernels for the counting branch. Another independent 

validation set consisting of 2,016 crown delineations (46% in dense deciduous forests, 38% in dense 

coniferous forests, and 15% in non-forest areas) was used for model selection and hyper-parameter 

tuning (including the Gaussian parameters and the gap penalty weight as described below).  

The network, when randomly initialized, could be retrained from scratch using any composition of input 

bands, resulting in several final models with slightly different performances (Extended Data Fig. 1 and 

Extended Data Table 1). The architecture of the network could also be modified slightly to allow for 

multi-resolution input images (details of the model can be found in Supplementary Table 2). 

Specifically, the bands with the highest spatial resolution would be fed into the topmost input layer, 

while the bands with coarser resolutions would be fed into the network after specific down-sampling 

layers when the spatial resolutions matched. In our experiments, the input data consisted of aerial 

images (RGB + NIR bands) with a spatial resolution of 20 cm and canopy height maps at 40 cm 

resolution derived from LiDAR data. The coarser resolution height maps were fed into the network 

after the first down-sampling layer.  

The model was trained by minimizing a combined loss 𝑙𝑠𝑒𝑔_𝑐𝑜𝑢𝑛𝑡  from the two branches. The 

segmentation loss 𝑙𝑠𝑒𝑔 was based on the Tversky index 8, a generalized version of the dice coefficient 
9, which penalizes false positives and false negatives differently. To account for the segmentation 

failures in separating densely connected or overlaid tree crowns, we highlighted the between-crown 

gaps. Specifically, crown gap maps were generated based on the crown delineations by morphological 

operations, with the gap pixels being assigned a higher weight than other pixels. The pixel-wise weights 

were applied in the loss computation so that the misclassified gap pixels were penalized more heavily 

than others 4,10. Given a training image 𝐼𝑛, let 𝑝0𝑖 ∈ [0,1] denote the predicted probability of pixel 𝑖 ∈
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𝐼𝑛 being an object. Let 𝑔0𝑖 = 1 if 𝑖 is an object and 𝑔0𝑖 = 0 otherwise, and let 𝑝1𝑖 = 1 −  𝑝0𝑖 and 𝑔1𝑖 =
1 − 𝑔0𝑖 . Suppose 𝑤𝑖 indicates the weight for pixel 𝑖, the pixel-wise weighted Tversky loss was then 

defined as shown in Eq. (3) 11:  

 

For the counting branch, the pixel-wise mean squared error (MSE), as defined in Eq. (4), was employed 

as the loss function for evaluating the differences between the predicted density map 𝐷𝑝𝑟𝑒𝑑  and the 

ground truth density map 𝐷𝑔𝑡  : 

 

Here, 𝑀 denotes the number of pixels in the image. The total loss was a weighted summation of the 

segmentation loss and the density estimation loss: 𝑙𝑠𝑒𝑔_𝑐𝑜𝑢𝑛𝑡 = 𝑙𝑠𝑒𝑔 + λ𝑡𝑙𝑐𝑜𝑢𝑛𝑡. The weighting factor 𝜆𝑡 was initially set to 100 and increased steadily during training to ensure that the two losses were re-

scaled to a similar magnitude. The final model was determined as the one achieving the lowest error on 

800 randomly chosen validation patches. 

 

Individual tree height prediction 

Canopy height prediction We formulated the canopy height prediction task as a pixel-wise regression 

problem. Given a set of multi-band aerial images {𝐼1, 𝐼2, … , 𝐼𝑛}  (20 cm resolution) and a set of 

corresponding LiDAR derived canopy height maps {𝐻1, 𝐻2 , … , 𝐻𝑛} (40 cm resolution), a pixel-wise 

mapping from 𝐼 to 𝐻 was established. To balance the differences in different height groups and forest 

type distributions, we randomly sampled 45 aerial images (4.5 k hectares) from regions dominated by 

coniferous forest (collected in summer 2018 and 2019) and deciduous forest 12 (collected in summer 

2018) with an average LiDAR height over 8 m, respectively. Besides, 3 aerial images covering 300 

hectares were randomly sampled from all available non-forest 12 area images taken in summer 2018. 

The whole dataset was split into a training (74 images) and validation (19 images) set with a ratio of 

4:1 using stratified sampling. The training data was used for learning the model parameters and the 

validation data was used for model selection. The input multi-band aerial images were globally 

standardized to zero mean and unit standard deviation based on the training dataset before being fed 

into the network. Data augmentation techniques 13 including random flipping, cropping, Gaussian 

blurring, and brightness adjustment were applied during training. The network shared a similar U-Net 

architecture 4,5 as the counting branch of the multi-task network, with the last activation function being 

a linear transformation (details of the model can be found in Supplementary Table 3). The final 

decoding block was removed due to the coarser resolution of the LiDAR height maps. A weighted mean 

absolute error (wMAE) was used as the loss function, where heights over 10 m were given a higher 

weight 𝑤 of 5 to penalize particularly the underprediction of the taller trees. Denoting the reference and 

the predicted tree height at pixel 𝑖 ∈ 𝐼 as 𝑦𝑖 and 𝑦̂𝑖, the pixel error 𝑙𝐼(𝑖) was formulated as Eq. (5):  

 

After training, we further adjusted the bias parameter from the last layer to minimize the systematic 

errors normally caused by non-optimal neural network learning in practice 14. Specifically, another 
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validation set was generated by sampling 10 aerial images of size 1 km2 for each forest/landscape type 
12 (deciduous forest, coniferous forest, and non-forest). Given the original bias parameter 𝑏 , the 

reference height 𝑦, the predicted height 𝑦̂, and the total number of predictions 𝑍, the optimal bias 

parameter was calculated by 𝑏∗ = 1𝑍 (∑ 𝑦𝑖𝑍𝑖=1 − ∑ 𝑦̂𝑖𝑍𝑖=1 ) + 𝑏 14. We corrected the bias parameter for 

each forest/landscape type, respectively (Extended Data Fig. 5).  

Individual tree height prediction Individual tree heights were obtained by combining the canopy 

heights with the individual tree crown segmentation results through the following steps. Firstly, the 

predicted individual tree crowns were polished by removing tiny segments with an area of less than 2 

pixels (0.08 m2 on site). Secondly, to mitigate the uncertainties induced by slight mismatches between 

the aerial images and LiDAR data 15 (Supplementary Fig. 8), each predicted tree crown was expanded 

by a distance (𝑑 = α√𝑠/π), proportional to its area 𝑠. We set the expanding factor 𝛼 to 0.2 in the 

experiments. Finally, the maximal height within each refined tree crown was determined as the tree 

height. The individual-tree-level height prediction performance was evaluated by comparing the 

referential and the predicted tree height derived from the LiDAR height references and the canopy 

height predictions. Notably, imprecise tree height references (< 0.1%) were removed by filtering out 

tree crowns with a maximal NIR value higher than 80 yet a maximal height lower than 1 m, as a high 

NIR value is normally closely associated with trees and is therefore regarded as an anomaly when the 

height is low. 

 

Transfer learning 

The individual tree counting and crown segmentation model was adapted to Finland by fine-tuning the 

pre-trained weights established on the data from Denmark (using G+B+NIR bands as inputs). The fine-

tuning dataset consisted of the original dataset from Denmark (19,771 tree crown delineations in 84 

plots) and a small dataset from Finland (4,773 tree crown delineations in 19 plots), which was over-

sampled five times to balance the two datasets. The aerial images at 50 cm resolution in Finland were 

up-sampled to 25 cm using bi-linear interpolation to match with the 20 cm images from Denmark. 

The height prediction model was adapted to Finland by fine-tuning with a canopy height dataset from 

Finland. The Finland dataset consisted of 3 aerial images (10.8 k hectares, G+B+NIR bands) at 50 cm 

resolution and the corresponding LiDAR height data at 1 m resolution, both collected in 2019. The 

multi-band aerial images were up-sampled to 25 cm resolution and globally standardized to zero mean 

and unit standard deviation before being fed into the model. The LiDAR height data was up-sampled 

to 50 cm resolution accordingly. The wMAE loss (Eq. (5)) was also used for fine-tuning the model. 

 

Production of large-scale country-wide statistics and maps 

We applied the established tree counting and crown segmentation model as well as the height prediction 

model for the whole of Denmark. The final nation-wide products include: (1) Individual tree crown 

segmentation maps (20 cm resolution), tree count density maps (20 cm resolution), and canopy height 

maps (40 cm resolution, see examples in Supplementary Fig. 3). (2) An individual tree database featured 

by tree crown area, tree count evaluated per crown, tree height, and tree type (deciduous, coniferous, or 

non-forest) determined by Copernicus forest type map (2018) 12. (3) Tree count and crown area maps 

re-sampled to spatial resolutions of 10 m and 1 hectare.   

To avoid error accumulation for large-scale implementations, we corrected for the underestimation of 

the crown area of individual trees potentially induced by the gap penalty enforced to separate densely 
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connected tree crowns. Additionally, we corrected for the underestimation of tree heights, which was 

especially significant for the tall trees. Both corrections were calculated using the validation data. We 

corrected the predicted crown area based on a simple linear regression fitted on the predicted values 

against the reference values, respectively for each forest/landscape type (deciduous, coniferous, and 

non-forest, see Supplementary Fig. 6). We corrected the predicted tree heights based on a second-degree 

polynomial regression between the predictions and the references, respectively for each forest type 

(Supplementary Fig. 7).  

 

Comparison with field data and existing products 

We compared our tree count predictions with the Danish NFI forest tree count estimation re-sampled 

from plot-based field-collected data. The comparison involved merely forest trees (deciduous and 

coniferous), and the tree counts were grouped into 2 m height intervals (Extended Data Fig. 6).    

In addition, we generated tree crown cover (%) maps by aggregating individual crown areas at coarser 

spatial resolutions (10 m and 100 m). Compared with similar existing forest/tree cover products 12,16, 

our crown cover maps showed visually lower values (Extended Data Fig. 7a). We numerically 

compared our refined crown areas with the Copernicus tree cover areas from the same year (2018) 12 

for each forest type and observed lower estimates of our crown areas in forest regions yet higher 

estimates in non-forest regions (Extended Data Fig. 7b). Numerous non-forest trees that were mainly 

found in hedgerows invisible from low-resolution satellite imagery were clearly visible from high-

resolution aerial images. The comparably low estimates of forest cover resulting from our analysis were 

partially due to the differences in the "tree cover" definitions. We defined the individual tree crown as 

the part of crown visible from an aerial view, therefore excluding shadows or between-crown gaps. 

Oppositely, the Copernicus maps used the common "forest/tree cover" definition, which estimated the 

percentage of tree cover at a coarse resolution (≥10 m) (Extended Data Fig. 7c). We evaluated the bias 

caused by the definition differences by plotting crown areas obtained from our manual delineations 

against those from the Copernicus maps. The Copernicus-based crown area was 63% higher than the 

delineation-based crown area, indicating a systematic bias (Extended Data Fig. 7d). 

 

Evaluation metrics 

For evaluating the counting and segmentation performance, we computed the dice coefficient 9 and the 

regression between the predicted values and the reference values. We also computed the coefficient of 

determination defined as in Eq. (6):  𝑅2 = 1 − ∑ (𝑦𝑖−𝑦̂𝑖)2𝑖∑ (𝑦𝑖−𝑦̅)2𝑖                                                                                                                      (6) 

Here, 𝑦 , 𝑦̂ , and 𝑦  denote the reference, prediction, and the mean reference value, respectively.  

Furthermore, we computed the relative error/bias defined by δ = |∑ (𝑦𝑖−𝑦̂𝑖)𝑖 ||∑ 𝑦𝑖𝑖 |  14.                                                   

For evaluating the tree height predictions, we computed the regression lines, the coefficient of 

determination scores, and the relative errors. We also computed the median/mean absolute errors and 

the mean squared errors. The mean squared errors were further decomposed into squared bias (the first 

term) and mean squared variation (the second term) 17, i.e., 𝑙 = (𝑦 − 𝑦̅̂)2 + 1𝑛 ∑ [(𝑦𝑖 − 𝑦)𝑛𝑖=1 −(ŷi − 𝑦̅̂)]2.  
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Uncertainties and limitations 

Individual tree counting and crown segmentation could be subject to several uncertainties and 

limitations, mainly due to the manually delineated tree crown references. Firstly, we excluded small 

trees, shrubs, and bushes with no visible shadow or with a crown area below 0.08 m2. Secondly, labeling 

individual trees was not always obvious, in particular for touching or overlying crowns, heavily 

shadowed crowns induced by non-vertical shooting angles, and the coexistence of single and multi-

branched trees. Thirdly, the individual variation in manual labeling (from two independent data 

labelers) might also aggravate the model performance 18. 

The aerial image-based tree height prediction is particularly challenging since the 2-dimensional 

spectral features are insufficient to fully reflect the third spatial dimension of heights. We noticed 

significant height underestimation for the taller trees, which is likely due to the fact that tall trees, 

despite methodological data balancing, are generally rare and are extremely hard to infer from optical 

imagery. Secondly, the mismatch between the aerial imagery and the LiDAR height dataset 

(Supplementary Fig. 8) could cause problems for high-resolution studies. The mismatch occurred since 

regular orthoimages are generated using a terrain model. True orthoimages could be a potential solution 

for fixing this issue 15. Thirdly, a single model generalized on all trees might not be sensitive enough to 

capture the height differences between different tree species with diverse traits. Lastly, the individual 

tree height was defined as the maximum height within each predicted tree crown, thereby making the 

tree height products dependent on the individual tree crown segmentations. If the segmentation model 

had a systematic bias, then it might be propagated to the error calculation of the height model. Potential 

future studies could involve evaluations with field-collected data.    
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from summer (as used for this study) are generally subject to a fee and the ownership and user rights of 
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downloaded from https://land.copernicus.eu/pan-european/high-resolution-layers/forests.  
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