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Multi-Transmitter Coded Caching Networks with
Transmitter-side Knowledge of File Popularity

Berksan Serbetci, Eleftherios Lampiris, Thrasyvoulos Spyropoulos, Giuseppe Caire, Petros Elia

Abstract—This work presents a new way of exploiting non-
uniform file popularity in coded caching networks. Focusing on
a fully-connected fully-interfering wireless setting with multiple
cache-enabled transmitters and receivers, we show how non-
uniform file popularity can be used very efficiently to accelerate
the impact of transmitter-side data redundancy on receiver-
side coded caching. This approach is motivated by the recent
discovery that, under any realistic file-size constraint, having
content appear in multiple transmitters can in fact dramatically
boost the speed-up factor attributed to coded caching.

We formulate an optimization problem that exploits file pop-
ularity to optimize the placement of files at the transmitters.
Consequently, we propose a search algorithm that solves the
problem at hand while reducing the variable search space
significantly. We also prove an analytical performance upper
bound, which is in fact met by our algorithm in the regime of
many receivers. Our work reflects the benefits of allocating higher
cache redundancy to more popular files, but also reflects a law
of diminishing returns where for example very popular files may
in fact benefit from minimum redundancy. In the end, this work
reveals that in the context of coded caching, employing multiple
transmitters can be a catalyst in fully exploiting file popularity,
as it avoids various asymmetry complications that appear when
file popularity is used to alter the receiver-side cache placement.

Index Terms—Coded caching, optimization, femtocaching.

I. INTRODUCTION

In the context of cache-aided, interference-limited commu-
nication networks, the work of Maddah-Ali and Niesen [2]
revealed how content that is properly placed at the caches
of the receivers, can be used as side information to cancel
interference and reduce delivery time.

In particular, the work in [2] considers a single-antenna
broadcast (downlink) configuration, where a transmitter has
access to a library of N files, each of size F bits. The
transmitter serves—via a unit-capacity bottleneck link—a set
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of K receiving users, each endowed with a cache of size M ·F
bits, corresponding to a fraction γ ≜ M

N of the library. The
setting involves a cache-placement phase where the caches are
filled with content in a manner oblivious to future demands,
and then a subsequent delivery phase which starts with each
user simultaneously demanding an independent file.

By exploiting content redundancy where each bit of data can
be placed at KM/N = Kγ users, the algorithm in [2] could
multicast different messages to Kγ+1 users at a time because
each receiver could cancel the interference by accessing their
own cache. This speedup factor of Kγ + 1 is commonly
referred to as the Degrees-of-Freedom (DoF) performance, and
it implies a worst-case delivery time1 equal to

TMN =
K(1− γ)

1 +Kγ

K→∞
=

1− γ

γ
. (1)

The above delay was shown in [3] to be within a multiplicative
factor of at most 2.01 from the information-theoretic optimal,
and to be exactly optimal over the class of schemes that
employ uncoded cache placement [4], [5].

Subpacketization and the redundancy constraint: The
above unbounded gain is in practice infeasible, mainly because
it requires each file to be divided (subpacketized) into at least(
K
Kγ

)
subfiles. Having files that do not scale exponentially in

K, constitutes a prohibitive fundamental bottleneck [6], [7]
which hard-bounds the DoF at very modest values2.

A simple way to abide by the file-size constraint, is simply
to assign the same cache content to entire groups of users (cf.
[11]). With this number of groups Λ being constrained as(

Λ

Λγ

)
≤ F, (2)

the placement algorithm of [2] is used to create Λ different
caches, and to assign the same cache to all the users belonging
to the same group. Then, to satisfy the user demands, the
delivery algorithm of [2] — which now enjoys a reduced DoF
Λγ+1 — is repeated K

Λ times, resulting in a delivery time of

TΛ =
K(1− γ)

1 + Λγ
. (3)

Coded caching with transmitter-side cache redundancy:
As it turns out, the above subpacketization bottleneck is
intimately connected, not only to the content redundancy Kγ
at the receiver side, but also at the transmitter side. This
connection was made in [12] which — in the context of

1This is the normalized time that guarantees the successful delivery of all
requested files, independent of the file-demand pattern.

2Some interesting progress on this, can be found in [6]–[10].
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multiple transmitting nodes (see [13]–[16]) — employed a
novel fusion of coded caching and multi-antenna precoding,
to dramatically reduce the subpacketization requirements of
coded caching, and in the process to show that having multiple
transmitter-side redundancy can in fact multiplicatively boost
the caching gain. In particular, for the coded caching scenario
in [13] (see also [14]) where the K receivers are served by KT

transmitters each having access to a cache of normalized size
γT ∈ [ 1

KT
, 1], the work in [12] showed that for L ≜ KT γT ,

and under the subpacketization of (2) with Λ ≤ K
L , then one

can get a dramatically decreased delivery time of

T =
K(1− γ)

L(1 + Λγ)
, (4)

which is optimal under the assumption of uncoded place-
ment [17].

The above performance is achieved when each library file
enjoys, on the transmitter side, an identical cache-redundancy
equal to L, i.e. each file is cached at exactly L transmitters. In
our current work here, we propose and explore the endowing
of some (generally more popular) files, with higher redundancy
than their less popular counterparts. As we will see, this ap-
proach will not only improve performance, but will also allow
us to utilize file popularity without breaking the symmetry of
coded caching, as can often be the case when file popularity
is used to alter the placement at the receiver side. This will
become clearer below when we recall some existing methods
of utilizing this knowledge.

File popularity in coded caching, and the problem of
symmetry: Before recalling how non-uniform file popularity
has been used in coded-caching, let us quickly recall that
exploiting file popularity has been a key concept from the
early works of Content Delivery Network systems [18], [19],
Content-Centric and Information-Centric Networks [20], [21],
multi-tier networks [22], as well as in wireless edge caching
works [23] that followed the femto-caching ideas of [24].
Such works generally focus on exploiting caches to ‘prefetch’
content, and have little to do with using caches to handle
network interference. Even works that do consider PHY-
aspects like multi-antenna beamforming, often assume that
transmissions are, in essence, non-interfering [25], [26].

The connection between caching and interference man-
agement was mainly explored by works capitalizing on the
interplay between coded caching and multiple transmitters,
which initially focused on worst-case metrics, thus neglecting
the effects of non-uniform file popularity. Recently a variety of
works such as [27]–[36], explored different ways of exploiting
this popularity in the single-stream coded caching model. As
these efforts progressed, it was soon realized that incorporating
file popularity in coded caching, brings to the fore a certain
non-beneficial asymmetry which we discuss below.

In general, knowing the file popularity, would allow the
grouping of similarly popular files, in order to allocate more
cache space to popular files, thus leading to higher redundancy
for more popular files and faster delivery. Given, though, the
multicast nature of coded caching, this approach brings to
the fore the dilemma of whether or not multicast delivery
messages should combine content from files that are dissimilar

in terms of popularity. This is an important dilemma with
serious ramifications. Choosing to not encode across different
sub-libraries negates the very idea of coded caching, which
benefits from encoding over as many users as possible. After
all, the gains of coded caching are proportional to how many
users/files one encodes over. Instead, here, not encoding across
sub-libraries, forces algorithms to separately deliver one sub-
library after the other, which is a time-consuming process. On
the other hand, choosing to have popular and unpopular (sub)
files coexist in a single transmission, can suffer from a certain
asymmetry in the size of the composite subfiles. In principle,
popular subfiles will tend to be longer than unpopular ones3.
This can in turn force very substantial zero-padding, which
implies that only a fraction of the delivered bits actually
corresponds to real content.

Drawing from the first paradigm, different works [27]–
[30] consider multicast messages (taken from [2]) which are
composed of content from only one sub-library at a time. As
was nicely shown in [28], this approach provides for a bounded
gap to the information-theoretic optimal4. This gap in [28] was
shown in [30] to vanish for the special case of K = 2.

Following the second paradigm, works such as [31]–[33] fa-
cilitate coding across sub-libraries, after optimizing the amount
of cache each file can occupy as a function of its popularity.
Interestingly, in some cases such as in [28], [33], the opti-
mization suggests — under certain very important assumptions
— the need for only a very small number of sub-libraries.
A similar conclusion was drawn in [36] for a decentralized
setting5. Another interesting decentralized approach can be
found in [34] which combines a popularity-aware placement
with a clique-cover delivery algorithm, to achieve — under the
assumption of a Zipf distribution (cf. [38]) and in the limit of
large K and large Kγ — an order optimal performance6. This
performance was further improved in [35] which presented a
delivery algorithm based on index coding (cf. [39]).

Current contribution: Boosting the impact of transmitter-side
data redundancy using file popularity

The dramatic impact of transmitter-side cache redundancy
in coded caching, together with the aforementioned problem of
symmetry, are two main motivating factors of our work. Focus-
ing on a setting with KT cache-aided transmitters tasked with
serving K cache-aided receiving users, we explore the effect of
allowing different files to experience different transmitter-side
redundancies, depending on their popularity. In the context of
coded caching, this constitutes a novel approach that allows
us to benefit from a non-uniform file popularity, while having
receivers that are agnostic to this popularity.

3This goes back to having designated more cache space for popular files,
which often implies that the multicast messages will carry popular subfiles
that are larger than their unpopular counterparts.

4The multiplicative gap is approximately 50. Naturally the metric is the
average delivery time, averaged over all demands.

5Centralized coded caching [2] assumes that the identity of the users is
known during the placement phase and provides a deterministic caching
strategy. On the other hand, decentralized coded caching [37] assumes that
the identity of the users is unknown during the placement and each chunk of
a file is cached with a specified probability.

6This means that, in the limit of infinite K, the gap to optimal is finite.
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The main objective is to optimally divide the library into an
arbitrary number of non-overlapping sub-libraries, and then to
optimize the number of transmitters allocated to the files of
any given sub-library. Our road map to solve the problem is
as follows:

Step 1: We will formulate an optimization problem that
exploits file popularity to optimize the placement of files at
the transmitters, while having receivers that are agnostic to
this popularity.

Step 2: We will show that finding the optimal solution to
this placement proves to be a hard optimization problem.

Step 3: We will propose a search algorithm –together with
a proof that reduces significantly the variable search space–
that solves the problem at hand. Our proposed algorithm has

complexity O
(
log2

N
Q

)Q
, where N is the number of files and

Q is the number of sub-libraries.
Step 4: We will provide an upper bound on the number

of sub-libraries that yields a feasible solution, and show
that a feasible solution will never yield having more than
a certain number of sub-libraries, i.e., Q is very small for
realistic system parameters. As our algorithm is guaranteed
to yield a feasible solution, this upper bound will also hold
for any solution that our algorithm provides, hence ensuring
our algorithm to deal with a large range of parameters while
enjoying its polynomial complexity.

Step 5: We will provide an analytical performance upper
bound, which is in fact met by our algorithm in the regime of
many receivers.

By solving this problem, we offer a multiplicative perfor-
mance boost compared to the uniform popularity scenario
(cf. (4)), as well as a number of additional significant ad-
vantages compared to the state of art.

• A first advantage is that the receiver-side placement
remains agnostic to file popularity. This allows the network
to easily adapt to possible changes in file popularity, because
updating the caches of a modest number of centralized trans-
mitters is much easier than doing so for a large number of
distributed receivers.

• Additionally, as we discussed earlier, popularity-aware
receiver-side caching requires i) an accurate knowledge of the
users that will be active during the placement phase and, ii)
creates sub-file asymmetries which reduce the resulting gains.

• Finally, the adopted receiver-side placement strategy does
not require the identity of the users to be known during the
placement phase.

The work provides interesting insights. While it is beneficial
to allocate higher cache redundancy to popular files (so that
the majority of requests experience higher DoF performance),
this has to be done with caution because after a certain point
a law of diminishing returns kicks in. This is particularly true
for very popular files, where—as we will see—a minimum
redundancy is beneficial.

In the end, a key ingredient in our work is the fact that
files do not have unbounded sizes. This may seem like an
esoteric detail, but is in fact at the core of many coded
caching problems. In our particular problem, having finite file
sizes is what makes the impact of transmitter-side redundancy
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caches

γT fraction
of library

γT fraction
of library

...
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of library
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...
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of library
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of library
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Fig. 1. Wireless network with KT transmitters and K receivers, where each
transmitter and each receiver caches up to γT fraction of the library and γ
fraction of the library respectively, from a library of N files with different
popularity.

so powerful, and thus what motivates us to optimize this
redundancy.

Paper outline: In Section II we present the system model
and the notation. In Section III we discuss the caching and
delivery algorithms as well as the optimization problem that
we seek to solve. Further, in Section IV we first provide a
proof that reduces significantly the variable search space and
then we describe an algorithm that solves the optimization
problem. In Section V we calculate a theoretical limit to the
performance of our setting, while we prove that the reduced
variable search space has the added benefit of providing an
increased performance under any choice of variables. Finally,
in Section VI we evaluate numerically the algorithm by plot-
ting the multiplicative performance increase, compared to the
uniform popularity case, as a function of the Zipf parameter
α and for various number of users K.

II. SYSTEM MODEL & NOTATION

We consider the fully-connected, KT -transmitter cache-
aided setting, as depicted in Figure 1, where KT single-
antenna transmitters serve K single-antenna receivers. Each
transmitter and each receiver can store fraction γT ∈ [ 1

KT
, 1]

and fraction γ ∈ [0, 1] of the library, respectively. We assume
that the library is comprised of N files W 1,W 2, . . . ,WN ,
and that each file has size F bits7 and is of finite size. We
assume that the system operates in the high Signal-to-Noise-
Ratio region and that a single transmitter-to-receiver link has
(normalized) capacity equal to one file per unit of time, as
well as that the channel between any set of transmitters and
receivers is of full rank with probability one8.

7This assumption is common in the literature, as non-equally sized files
can be handled by making a content chunk the basic caching unit, as in [24].

8This requirement holds true in many wireless settings, as well as in wired
settings with network-coding capabilities at the intermediate network nodes.
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The caches of the transmitters and the receivers are filled
with content during the placement phase. During the delivery
phase, each user will concurrently request a single file, and we
assume that these requests follow a file popularity distribution
that is known during the cache placement. In particular, we
will focus on file popularity that follows the Zipf distribu-
tion [38] with parameter α > 0, under which the probability
that file W j is requested, takes the form

pj =
n−α∑N
k=1 k

−α
, ∀j ∈ {1, ..., N}. (5)

Notation: Symbols N,R,C denote the sets of natural, real
and complex numbers, respectively. For n, k ∈ N, n ≥ k, we
denote the binomial coefficient with

(
n
k

)
, while [k] denotes

the set {1, 2, ..., k}. We use | · | to denote the cardinality of
a set. Bold letters are reserved for vectors, while for some
vector h, comprised of Q elements, we denote its elements
as hq , q ∈ [Q], i.e., hT ≜ [h1, h2, ..., hQ].

III. CACHING AND DELIVERY POLICIES & MAIN PROBLEM

As suggested above, the caching policy at the transmitter-
side is popularity-aware, while the receiver-side placement is
not. We begin with the general description of the transmitter-
side caching policy and further describe the placement policy
at the caches of the receivers. Given these, we continue with
the delivery algorithm, which is based on the algorithm of [12].
The last part of this section is dedicated to the presentation of
the optimization problem that assigns content to the caches of
the transmitters.

A. Caching and delivery policies

1) Transmitter-side caching policy: We segment the library
into Q non-overlapping sub-libraries. Such segmentation is
described via sets Bq ⊂ [N ], q ∈ [Q], and signifies that
all files belonging to the same library would be assigned the
same transmitter-side cache redundancy Lq ∈ [1,KT ]. In other
words, each file of sub-library Bq will be stored at exactly
Lq different transmitters. As a consequence, variable Lq is
restricted to be in the range [1,KT ]. On one end, we force
each file to be cached by at least 1 transmitter, hence allowing
any request pattern to be satisfied in a finite time. On the
other end, the number of transmitters that can store a file
is, naturally, limited by the number of different transmitters.
The above-described cache-redundancies need to satisfy the
collective transmitter side cache-constraint

Q∑
q=1

|Bq| · Lq ≤ N · L, (6)

where for simplicity we use herein L ≜ KT γT .
In addition to the collective cache-constraint of (6), the

transmitter-side placement algorithm also needs to satisfy the
per-transmitter cache-constraint of our model. In Appendix I
we propose an explicit algorithm which, for arbitrary Q, B and
L satisfying (6), provides a placement which is based solely
on the constraint in (6), while also satisfying the individual
cache constraint.

Parameters Description
N Number of different files
K Number of users
γ Fraction of library each user can store
Λ Number of caches with different content
KT Number of single-antenna transmitters
γT Fraction of library each transmitter can store
j File index
pj Probability that file W j will be requested
α Zipf parameter
Q Number of sub-libraries
Bq Content of sub-library q
n Vector storing the boundaries of the sub-libraries
Lq Number of transmitters caching file W j , ∀j ∈ Bq

L Vector storing Lq

Kq Number of users requesting a file from Bq

Kq Expected number of users requesting a file from Bq

T (Q,n,L) Delay of expected requests as a function of Q,n,L
T ⋆ Min. expected delay optimized over all variables
T ⋆
Q Min. expected delay optimized over n,L. Fixed Q

T ⋆
Q,n Min. expected delay optimized over L. Fixed Q,n

SQ Problem search space
πq Sum probability of sub-library Bq

TABLE I
NOTATION SUMMARY

2) Receiver-side caching policy: The receivers cache using
a modified version of the algorithm of [2]. Specifically, we
create a set of Λ < K different caches and assign one to
each user in a round-robin manner. Variable Λ is chosen such
that Λγ is an integer and the subpacketization constraint is
satisfied, i.e.

(
Λ
Λγ

)
≤ F . Each file W j , j ∈ [N ], is split into(

Λ
Λγ

)
equally-sized subfiles

W j → {W j
τ , τ ⊂ [Λ], |τ | = Λγ}, (7)

thus, each subfile has as index some set τ , which is a Λγ-sized
subset of set [Λ]. Then, the ℓth cache takes the form

Zℓ =
{
W j
τ : ℓ ∈ τ,∀j ∈ [N ]

}
, ∀ℓ ∈ Λ, (8)

which simply means that cache ℓ consists of all subfiles
W j
τ , whose index τ contains ℓ. The round-robin manner of

assigning caches to users results in an approximate K
Λ users

to be assigned the same exact content.

Example 1. Let us assume a setting comprised of K = 50
users, each equipped with a cache of normalized size γ = 1

10 ,
and which users are divided into Λ = 10 groups. For example,
such grouping would yield Group 1 as G1 = {1, 11, ..., 41},
Group 2 as G2 = {2, 12, ..., 42} and so on.

In the placement phase the files are divided into
(
Λ
Λγ

)
= 10

subfiles as W j → {W j
1 ,W

j
2 , ...,W

j
10}, ∀j ∈ [N ]. Then, the

contents of each cache would be

Z1 = {W 1
1 , ...,W

j
1 }, . . . , Z10 = {W 1

10, ...,W
j
10}.

In the final step, each user of G1 is assigned cache Z1, each
user of Group 2 is assigned Z2 and so on.

3) Content delivery policy: The delivery phase begins with
the concurrent request of any single file from each user.
The fulfilment of these requests happens in a per-sub-library
manner. Specifically, for each set of Kq users, requesting files
from sub-library Bq , we employ the algorithm of [12].
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B. Main optimization problem - Placement at the transmitters

Having described the caching policy at the users and the
subsequent delivery policy it remains to design the caches of
the transmitters such as to reduce the delivery time. To this
end, we need to

• select the number of sub-libraries Q,
• segment the library into Bq ⊂ [N ], q ∈ [Q], and
• associate a cache redundancy Lq with each Bq .
Since the request pattern is of a stochastic nature we will

focus on minimizing the delivery time of the expected demand.
In other words, we assume that the number of users requesting
a file from sub-library Bq is Kq = Kq = Kπq , where we
denote the cumulative probability of the files of sub-library
Bq , q ∈ [Q] by πq ≜

∑
k∈Bq

pk .
Taking the above into account, the delivery time for each

sub-library takes the form

Tq =
Kq(1− γ)

min{Lq(1 + Λγ),Kq}
, q ∈ [Q], (9)

where the minimum in the denominator describes that the
number of users served in a given time-slot is upper bounded
by the number of available users.

In addition, in order to magnify the impact of transmitter-
side cache redundancy, we impose a further constraint on the
value of Lq . Specifically, we force Lq ≤ Kq

Λ , which ensures
that the achieved DoF is always a multiple of Lq , i.e. takes the
form Lq(Λγ + 1) for any value of Lq (cf. [12]). Beyond this
value of Lq the best known results achieve only an additive
gain i.e., increasing the DoF by 1 for each increase of Lq by
1, while negatively affecting the subpacketization [40].

Remark 1. While treating demands in a per sub-library
manner is not necessarily optimal we note that, at the time of
this writing, no known delivery algorithm can merge demands
from multiple libraries in a single transmission. In particular,
to date, no known multi-transmitter coded caching algorithm
can improve the current performance we achieve, by simulta-
neously transmitting files that have different transmitter-side
redundancy. We believe this to be an interesting open problem.

Combining the delivery time of each sub-library we get the
achievable delay of

T =

Q∑
q=1

Kπq(1− γ)

min{Lq(1 + Λγ),Kπq}
. (10)

We can further improve the delivery time of (10) by
considering that a set of ultra popular files may be requested by
a significant amount of users, hence these files can be naturally
multicasted from a single antenna, i.e. to be communicated
sequentially and without employing coded caching techniques.
This would allow to serve a significant number of users with
minimal transmitter-side resources, since storing each file at
a single transmitter would suffice to satisfy such demands.
We place these files in sub-library B1, while noting that
this additional (natural multicasting) option does not limit
the optimization range because B1 could be—if indicated by
the optimization—empty. Consequently, the cache redundancy
assigned to this sub-library is L1 = 1, and the respective

delay is T1 = |B1| and corresponds to broadcasting the whole
content of the sub-library.

Combining the above-described delivery delays of each
sub-library, and for simplicity refraining from displaying the
minimum function, the overall delay achieved takes the form

T (Q,B,L) = |B1|+
Q∑
q=2

Kπq(1− γ)

Lq(1 + Λγ)
. (11)

Because (11) is linearly dependent on the number of users
requesting a file from each sub-library, we can conclude that
the expected delay is equal to the delay of the expected
demand, i.e. Kq = Kπq .

Thus, the optimization problem at hand is expressed as

Problem 1 (General Optimization Problem).

min.
Q,B,L

E{T (Q,B,L)} (P1-a)

s.t. Q ∈ [N ], (P1-b)

|B1|+
Q∑
q=2

Lq|Bq| ≤ LN, (P1-c)

Lq ∈ [1, Uq] , ∀q ∈ [Q]. (P1-d)

where Uq ≜ min {KT ,Kπq/Λ}.

IV. DESCRIPTION OF THE OPTIMIZATION ALGORITHM

Retrieving the optimal solution of Problem 1 requires opti-
mizing variables Q,B,L. The main difficulty we face is that
the complexity increases exponentially for non-trivial values of
Q. This high complexity is attributed to the need to segment set
[N ] into Q non-overlapping subsets, which have the property
of minimizing the problem at hand. For example, for Q = 2
the search space for B has size 2N , due to the need to consider
every possible subset size for sub-library B1, i.e.(

N

1

)
+

(
N

2

)
+ ...+

(
N

N

)
= 2N . (12)

In the general case, the size of the search space is exponen-
tial in N , as we show in the following proposition.

Proposition 1. The size of the search space for determining
sub-libraries B in Problem 1, takes the form

|S1(Q)| = QN , Q ∈ [N ]. (13)

Proof. The size of the search space is equivalent to the number
of ways in which N objects can be partitioned into Q different
subsets. We omit the straightforward proof.

We employ the following steps to solve Problem 1.
1) In Lemma 1 (Section IV-A) we prove that the optimal

solution of Problem 1 should be of the form Bq =
{nq−1+1, ..., nq}, ∀q ∈ [Q], where n0 = 0 and nQ = N .
In other words, the first sub-library should be comprised
of the n1 most popular files, the second sub-library would
contain files {n1 +1, ..., n2}, and so on. From this point
on we refer to a library segmentation using vector

n ≜ {n1, ..., nQ=N}. (14)
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We can easily deduce the size of the reduced search space

|S2(Q)| =
(
N

Q

)
≈
(
N

Q

)Q
, (15)

which considerably prunes the search space from expo-
nential in N to polynomial in N , without sacrificing
optimality.

2) We provide an algorithm that searches S2(Q) requiring

complexity at most
(
log2

N
Q

)Q
.

3) We reformulate the objective function as a set of nested
problems, as follows

min.
Q(n⋆,L⋆)

min.
n(L⋆)

min.
L

E{T (Q,n,L)},

which effectively means that for each search of the
outmost variables Q and n we optimize the innermost
variables n(L) and L, respectively hence, maintaining
the optimality of the solution [41].

4) As we show in Section IV-B, calculating the optimal
L can be achieved via the use of the Karush-Kuhn-
Tucker (KKT) conditions. In other words, the innermost
problem has an analytical solution, conditional on the
values of Q and n, which can be used directly for the
outer optimization of these variables. Furthermore, the
continuous relaxation of L required by the application of
the KKT conditions would result in a small performance
degradation9, which we show in Lemma 4 is at most 12%.

5) Finally, we prove that the objective function, when opti-
mized over both L and n is monotonically decreasing
when Q ∈ [1, Q⋆] and monotonically increasing for
Q ∈ [Q⋆, N ]. Thus, the function has a single minimum
point which we calculate using a bisection algorithm.

A. Reduced sub-library search space

In order to show the optimality of the solution when
considering the reduced sub-space in (14)-(15), we begin with
a corollary that describes the relationship between the cache-
allocation among any two arbitrary sub-libraries.

Corollary 1. For two arbitrary sub-libraries Bq,Br ⊂ [N ]
for which πq > πr, their respective optimal cache-redundancy
allocations satisfy L⋆q > L⋆r .

Proof. The proof is relegated to Appendix II-A.

With this in place, we proceed with the lemma that es-
tablishes the optimality of the consecutively indexed library
segmentation.

Lemma 1. For arbitrary number of sub-libraries Q, the sub-
libraries producing the optimal delay are those whose files
have consecutive indices.

Proof. The proof is relegated to Appendix II-B.

9The performance boost offered is already hundreds of percent even for
modest system parameters.

Consequently, using Lemma 1 we can simplify the objective
function as

E
{
T (Q,n,L)

}
= n1 +

Q∑
q=2

Kq(1− γ)

Lq(1 + Λγ)
, (16)

and the optimization problem takes the following form.

Problem 2 (Main Optimization Problem).

min.
Q,n,L

E
{
T (Q,n,L)

}
(P2-a)

s.t. Q ∈ [N ], (P2-b)

n1 +

Q∑
q=2

Lq(nq − nq−1) ≤ LN, (P2-c)

Lq ∈ [1, Uq] , ∀q ∈ [Q]. (P2-d)

The constraints of Problem 2 are those of Problem 1, with
the notable difference being constraint (P2-c) which substitutes
(P1-c), to yield a substantially reduced search space without
loss of optimality.

As we discuss in Section V, the library segmentation of
Problem 2 has an added benefit, on top of reducing the
search space, compared to the general library segmentation
of Problem 1. We show that any library segmentation as the
one proposed in Problem 2, and under the optimal allocation
of cache-redundancies Lq , would outperform the uniform
popularity setting. On the other hand, the general library
segmentation of Problem 1 does not share this property (see
discussion in Corollary 2 and Remark 6).

B. Optimizing cache redundancies Lq
We begin this section with the following lemma.

Lemma 2. The objective function is convex in variables L for
fixed Q and n.

Proof. The proof is relegated to Appendix II-C.

Hence, applying the KKT condition would provide the
optimal vector L. The Lagrangian takes the form

L =n1+

Q∑
q=2

Kπq(1− γ)

Lq(1 + Λγ)
+λ

(
n1+

Q∑
q=2

Lq(nq−nq−1)−LN

)

+

Q∑
q=2

µq(−Lq + 1) +

Q∑
q=2

νq(Lq − Uq), (17)

where Lq , µq , νq ≥ 0, ∀q ∈ [Q] and λ ∈ R.

Lemma 3. The optimal cache-allocation vector L for fixed
Q,n is given by

Lq =


1, q ∈ ϕ∪{1}
Uq, q ∈ ψ√

πq
nq−nq−1

LN − n1 − ΦS −ΨS∑
r∈χ

√
πr(nq−nq−1)

, q ∈ χ

(18)

where ΦS =
∑
q∈ϕ(nq−nq−1), ΨS =

∑
q∈ψ Uq ·(nq−nq−1),

and ϕ ∪ χ ∪ ψ ∪ {1} = [Q].
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Proof. The proof is relegated to Appendix II-D.

Theorem 1. The expected delay optimized over L takes the
form

T ⋆(Q,n) =n1 +
K(1− γ)

1 + Λγ

∑
q∈ϕ

πq + |ψ|Λ(1− γ)

1 + Λγ

+
K(1− γ)

1 + Λγ

(∑
q∈χ

√
πq(nq − nq−1

)2
LN − n1 − ΦS −ΨS

. (19)

Proof. The proof is direct by inserting the calculated values Lq
from (18) into the expression of the expected delay (16).

Lemma 4. The continuous relaxation of L requires the use of
memory sharing (cf. [2]). This would result in a performance
loss that is bounded by a multiplicative factor of 1.12.

Proof. The optimal solution provided by Lemma 3 may pro-
duce non-integer Lq . In order for the algorithm of [12] to
handle such non-integer values, we apply memory sharing
as in [2]. Specifically, each file with a non-integer cache-
redundancy Lq would be split into two parts, one part is
cached with redundancy ⌈Lq⌉, and the other part with ⌊Lq⌋.
If we denote with p ∈ [0, 1] the fraction of the file stored with
redundancy ⌈Lq⌉ we can calculate its value through

p⌈Lq⌉+ (1− p)⌊Lq⌋ = Lq. (20)

The memory sharing approach invariably results in some loss
in performance, but as we show promptly it remains small.

Assuming that the target non-integer cache redundancy of
sub-library Bq is Lq+r, r<1, i.e., p=r by (20), focusing on
the performance loss between the theoretical (non-integer) Lq
compared to the one achieved by memory sharing, we have

p
Lq+1 + 1−p

Lq

1
Lq

= 1 +
r(1− r)

Lq(Lq + 1)
. (21)

We can see that the biggest gap in (21) occurs when r = 1
2 .

It follows that the maximum difference between the delivery
time achieved without memory sharing and after we apply the
technique would be for ⌊Lq⌋ = 1 amounting to < 12%, while
for ⌊Lq⌋ = 2 this would be < 4%. Similar calculations show
that for sub-libraries with even higher Lq the performance loss
due to memory sharing becomes negligible.

Taking into consideration that only one sub-library can have
cache-redundancy ⌊Lq⌋ = 1, it follows that the overall loss
due to memory sharing is strictly less than 12%10.

Remark 2. Equation (19) can be simplified when ϕ = ψ = ∅
to the following

T ⋆(Q,n) = n1 +
K(1−γ)
1 + Λγ

(∑Q
q=2

√
πq(nq−nq−1

)2
LN − n1

. (22)

10Note that the memory sharing needs to be applied only at the very last
step, hence this bound for the loss is valid for the final overall average delay.

C. Optimizing n

Using the objective function in (16), i.e. optimized over
variables L, we can proceed to minimize it with respect
to n for some instance of Q. To this end, we propose an
algorithm (Algorithm 1), which recursively optimizes each of
the elements of n.

Remark 3. Numerical evaluation of (16) suggests that it is
discrete convex [42]. This suggests that applying Algorithm
1 yields the optimal result. We defer the formal proof of
this statement to future work, due to considerable technical
difficulty.

Algorithm 1: update(nq)
Input: n1, n2, ..., nq−1, Q

1 Initialize: Sq = {nq−1 + 1, N+q−Q} (Search space)
2 while Sq(1) ̸= Sq(2) do
3 (Calculate delay using first search space point)

nq = Sq(1)

n⋆(q + 1 : Q) = update(nq+1)

TSq(1) = T
(
n1, ..., nq−1, Sq(1),n

⋆(q + 1 : Q)
)

4 (Calculate delay using second search space point)

nq = Sq(2)

n⋆(q + 1 : Q) = update(nq+1)

TSq(2) = T
(
n1, ..., nq−1, Sq(2),n

⋆(q + 1 : Q)
)

5 (Update search space with mid-point)

sa = round
(
Sq(1) + Sq(2)

2

)
sb = arg min

s∈Sq

Ts

Sq =
{
min{sa, sb},max{sa, sb}

}
(23)

Output: n(q : Q) =
{
Sq(1), n

⋆
q+1, ..., n

⋆
Q

}
a) Intuition behind the algorithm: The main idea behind

our algorithm is based on the observation that one can easily
compare the delivery time achieved by two vectors n(1) and
n(2), where i) the first q−1 elements of these vectors are the
same, ii) they differ in the q-th element, and iii) the remaining
Q − q elements are chosen such that the delivery time is
minimized, given the first Q − q elements. In other words,
we are interested in comparing the following vectors

n(1) = {n1, ..., nq−1, nq(1), n
⋆
q+1(1), ..., n

⋆
Q(1)},

n(2) = {n1, ..., nq−1, nq(2), n
⋆
q+1(2), ..., n

⋆
Q(2)},

where n⋆r denotes the r-th element that, conditioned on all
previous elements, produces the lowest delivery time.

Hence, by fixing the first q − 1 elements and, at the same
time, for each value of nq having access to the values of
elements {q+1, ..., Q} that produce the lowest delivery time,
we can apply the bisection algorithm to optimize the value
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of nq , by searching the discrete space between nq−1 + 1 and
N −Q+ q.

b) Explanation of algorithm: Our algorithm consists of a
single recursive function that begins from the maximum search
space for n1, i.e. points 0 and N −Q.

Initially, the algorithm creates a While loop which stops
when the search space is reduced to a single element. Inside
the While loop, the algorithm sets n1 equal to the lower bound-
ary of the search space and proceeds to calculate the optimal
remaining Q−1 elements. To achieve this, it recursively calls
update(n2).

In the same spirit, update(n2) starts searching for the
optimal n2, conditioned on the value of n1 that is given
as input. To this end, the algorithm sets n2 = n1 + 1 and
recursively calls update(n3). The recursive call of function
update continues in the same manner until the last element,
nQ, is reached. At this point, since all previous elements are
set (elements 1, .., Q−1) the algorithm can perform a bisection
in the discrete space and produce the optimal nQ.

The bisection procedure for nQ, given fixed n1, .., nQ−1,
is done by calculating the delivery time achieved using the
lower boundary point (Step 3), and then by calculating the
delivery time achieved by the highest boundary point (Step 4).
Then, the boundaries of the new search space would include
the boundary of the previous search space that produced the
smallest delay as well as the middle point of the old boundary.

When the optimal nQ is produced, the algorithm returns that
value to update(nQ−1), which continues with the calculation
of the delay for point nQ−1. Further, the algorithm seeks
to calculate the delivery time when nQ−1 is equal to the
other boundary of its search space. Similarly to before, the
algorithm needs to first optimize nQ, and as a result calls
update(nQ). After this operation has produced the optimal
nQ the algorithm calculates the delivery time corresponding
to the higher boundary point of search space SQ−1 and now
is able to update the boundaries of the search space. The new
boundaries of the search space are the middle point of the old
search space and the boundary of the old search space which
has produced the lowest delivery time. Due to the convexity
of each point nq , given that all previous points are the same,
and that all following points are optimized, we can conclude
that the new search space is reducing the delivery time.

Theorem 2. The worst-case complexity of Algorithm 1 is poly-

nomial in N , and specifically is upper bounded by
(
log2

N
Q

)Q
.

Proof. Let us denote with xq the search space for each sub-
library. It follows that

∑
q xq = N , while the searching

complexity of our algorithm takes the form∏
q

log2 xq. (24)

Then, the search space values xq which maximize (24) are
x1 = ... = xQ = N

Q , hence the complexity of this part of the
algorithm is upper-bounded by(

log2
N

Q

)Q
. (25)

D. Optimizing the number of sub-libraries Q

Equipped with Algorithm 1, which outputs the optimal
library boundaries for an arbitrary Q, we need to search for
Q⋆ such that

Q⋆ = arg min
Q∈[N ]

E{Tn,L(Q)}. (26)

As we show in the following lemma, function T (Q,n⋆) is
monotonous decreasing in the absence of (P2-d).

Lemma 5. The objective function of Problem 2, in the absence
of (P2-d), is monotonous decreasing with respect to Q.

Proof. Let us assume some arbitrary Q, for which the optimal
delivery time, optimized over n⋆,L⋆ takes the form

TQ(n
⋆
Q,L

⋆
Q) = n1 +

Q∑
q=2

Kq(1− γ)

Lq(1 + Λγ)
. (27)

We can transition to Q+1 sub-libraries and split the last sub-
library into two sub-libraries, i.e.

nQ+1 = {n⋆1(Q), ..., n⋆Q−1(Q), nQ(Q+ 1), nQ+1(Q+ 1)}

and LQ+1 = {L⋆1(Q), L⋆1(Q), ..., L⋆Q(Q), L⋆Q(Q)}. The above
choice of variables Q + 1, nQ+1, LQ+1 produces the same
delivery time as Q,n⋆Q,L

⋆
Q, i.e.

TQ+1(nQ+1,LQ+1) = TQ(n
⋆
Q,L

⋆
Q). (28)

Since increasing the number of sub-libraries leads to at least
the same delivery time, it follows that the objective function
is monotonous decreasing with respect to Q, when optimized
over variables n and L.

Theorem 3. The globally optimum average delay takes the
form TQ⋆(n⋆Q⋆ ,L⋆Q⋆), and is achieved with Q⋆ sub-libraries,
with boundaries n⋆Q⋆ and redundancy L⋆Q⋆ .

Proof. Lemma 5 shows the monotonicity of the objective
function in the absence of constraint (P2-d). Conversely, by re-
introducing the constraint we can guarantee that the objective
function is monotonous increasing after point Q⋆. Therefore,
there exists an optimal number of sub-libraries Q⋆ that will
give the global minimum for the average delay.

Using the result of Lemma 5 we can see that a simple
bisection algorithm, as illustrated in Algorithm 2, in the
discrete search space allows to successfully retrieve Q⋆.

Algorithm 2: A simple bisection algorithm

1 Input: N , K, γ, Λ, KT , γT , α;
2 Initialize: T ∗

0 = ∞, T ∗
1 = min{N, K(1−γ)

L(1+Λγ)}, Q = 1;
3 while T ∗

Q < T ∗
Q−1 do

4 Q = Q+ 1;
5 Compute T ∗

Q by solving Problem 2 and using
Algorithm 1 for the search range of n;

6 Q∗ = Q− 1;
7 Output: T ∗

Q∗ ;
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Fig. 2. The bound on the optimal number of sub-libraries, as a function of
α for different L values, K = 2000, Λ = 40, γ = 0.1 and N = 6000.

Theorem 4. The optimal number of sub-libraries will not
exceed κKΛ , where κ ≤ 1, i.e., Q⋆ = O

(
K
Λ

)
.

Proof. The proof is relegated to Appendix II-E.

In Figure 2, we plot the upper bound on the optimal number
of sub-libraries, as a function of α for different L values. We
set K = 2000, Λ = 40, γ = 0.1 and N = 6000. It is clear
that the upper bound on Q⋆ is less than K

Λ = 50 and decreases
drastically as both α and L increases.

Remark 4. For most VoD services, typical α values lie
between 0.8 and 2 [43]. Moreover, it is also fair to assume that
K scales with Λ as modifying the number of users would also
require to tune the transmitter side cache fraction γ, eventually
tuning Λ to satisfy the subpacketization constraint (2). Finally,
Q⋆ does not scale with the library size N . Therefore, for a
wide range of realistic system parameters, Algorithm 1 ensures
its polynomial complexity.

Remark 5. It is also interesting to note that throughout the
simulations (see Section VI) under realistic assumptions, the
observed optimal value of the number of sub-libraries Q⋆

remains very small, and upper bounded by Q⋆ = 3, thus
further revealing that the overall complexity of designing the
caches of the transmitters remains computationally feasible.

E. Problem 2’s relation to biconvex minimization problems

Before moving on to the analysis of the performance of our
proposed method, we would like to discuss the relationship
between Problem 2 and the biconvex minimization problems.
We begin by proving the biconvexity of our problem.

Lemma 6. Function (P2-a) is biconvex in L,n for fixed Q.

Proof. The proof is detailed in Appendix II-C.

There are various methods and algorithms in the liter-
ature for solving biconvex minimization problems through
exploitation of the biconvex structure of the problem [44].
For instance, Alternate Convex Search (ACS) is a minimiza-
tion method, where the variable set is divided into disjoint

blocks [45]–[47], and only one set of variables is optimized
while the others remain fixed in each step. ACS does not
provide any global optimality guarantee and the final solution
may reach a local optimum or a saddle point. The Global
Optimization Algorithm (GOA), proposed in [48], aims to
take advantage of the biconvex structure of the problem using
a primal-relaxed dual approach, which can provide an upper
bound and a lower bound to the optimal solution, thus further
leading to a finite ϵ-convergence to the global optimum.

Even though our objective function (P2-a) is a biconvex
function, constraint (P2-d) is not convex when n are optimized
for fixed Q and L. Therefore, Problem 2 does not satisfy
Conditions(A) provided in [48], which points to the reason
why our problem cannot be solved by GOA. Further, using
GOA to calculate a bound of our problem, would require the
discarding of constraint (P2-d). As we show in the next section
(Section V), discarding constraint (P2-d) allows us to reach an
analytical solution for the performance of our setting.

We need to note here that a setting where constraint (P2-d)
is always satisfied can be interpreted as one with a very high
number of users, or more accurately a very high ratio K

Λ , and
very high number of transmitters KT . In such a setting, as it
will also become evident from the simulations (Section VI),
the achieved delay and the upper bound performance are
becoming narrowly smaller.

V. PERFORMANCE ANALYSIS

In this section we provide a bound on the expected achieved
delivery time, and further prove that any sub-library segmen-
tation, as described by our main problem (Problem 2), would
yield a decreased expected delivery time compared to the
uniform popularity case.

The bound is achieved by utilizing the outcome of Lemma 5,
describing the monotonicity of the objective function over vari-
able Q, as well as expression (29), obtained in the following
lemma, describing the form of the objective function optimized
with respect to L.

Lemma 7. The optimal allocation of the cache-redundancy
vector L for each sub-library, under the assumption that
constraint (P2-d) is satisfied away from the boundaries, results
in the objective function

T (Q,n) = n1+
K(1− γ)

1 + Λγ

(∑Q
q=2

√
πq(nq−nq−1)

)2
LN − n1

. (29)

Proof. Inserting the optimal cache-allocation calculated in
(18) for ϕ = ψ = ∅ into (16) yields the result.

The main idea behind the performance bound is to utilize
the monotonicity of the objective function with respect to Q, in
the absence of constraint (P2-d), which leads to the conclusion
that the expected delay is minimized when Q = N .

Lemma 8. The minimum expected delivery time E{T ⋆} under
the assumption of file popularity following a Zipf distribution
with parameter α is lower bounded by

E{T ⋆} ≥ K(1− γ)

LN(1 + Λγ)

(∑N
q=1 q

−α/2
)2

∑N
q=1 q

−α
. (30)
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Fig. 3. The bound on the multiplicative boost, (31), as a function of α.

Consequently, the maximum multiplicative ratio Gmax that
can be achieved by the optimal expected delay T ⋆ compared
to the delay of the uniform popularity case is bounded as

Gmax ≤ N

∑N
q=1 q

−α(∑N
q=1 q

−α/2
)2 . (31)

Proof. In order to bound the optimal expected delivery time
we remove constraint (P2-d) and constraint Lq ≥ 1.

Then, it follows from Lemma 5 that the minimum value
of (P2-a) is achieved for Q⋆ = N , which implies n = [N ], i.e.
each sub-library is comprised of a single file. By incorporating
the result of (29) we can write the expectation of the objective
function for Q = N and n = [N ] as

E{T (N, [N ])} =
K(1− γ)

LN(1 + Λγ)

(
N∑
q=1

√
pq

)2

. (32)

Using that the fact that the file popularity follows the Zipf
distribution with parameter α, we can rewrite (32) as

E{T (N, [N ])} =
K(1− γ)

LN(1 + Λγ)

(∑N
q=1

1
qα/2

)2
∑N
q=1

1
qα

. (33)

The ratio between the above result and the uniform-popularity
case, where the delivery time is Tu = K(1−γ)

L(1+Λγ) , yields the
result of (31).

As we can see, the gain achieved is not depend on the
number of users K. This is due to the lack of constraint (P2-d)
which would otherwise enforce each cache-allocation variable
Lq ≤ min{Kq

Λ ,KT }. In Figure 4 we compare the theoretical
result from (31) with the numerical results of Section VI. It
is interesting to note that as the number of users increases,
the gains achieved in the simulations are moving closer to the
theoretical bound. This can be attributed to the fact that as the
number of users increases the cache-allocation variables Lq
are allowed to increase, in conjunction with constraint (P2-d),
hence the Lq variables move closer to their optimal values.

We continue with a result that shows that any library
segmentation, as long as constraint (P2-d) is satisfied, would

K = 300

K = 500

K = 1000

K = 2000

Performance boost

Upper bound

α0.5 1.5
1

2

3

4

5

1

Fig. 4. The multiplicative boost of the expected performance achieved by
our algorithm compared to the setting with uniform file popularity. The
comparison is displayed here as a function of the Zipf parameter and for
various K. The number of files across the examples is N = 6000.

lead to a lower or equal delay compared to the uniform
popularity case.

Corollary 2. Any library segmentation n that respects con-
straint (P2-d) and is optimized over vector L improves upon
the delivery time of the uniform popularity case i.e.

E
{
T (Q,n,L)

}
<

K(1− γ)

L(1 + Λγ)
, (34)

Lq≤Uq, ∀q ∈ [Q], n ∈ [N ]Q : ni < nj , i < j.

Proof. We consider some arbitrary library segmentation n
which respects constraint (P2-d), and the objective function
in (29), i.e. after optimized over vector L.

E{T (Q,n)} =
K(1− γ)

L(1 + Λγ)

(∑Q
q=1

√
πq(nq−nq−1)

)2
N

(35)

≤ K(1−γ)
L(1+Λγ)

∑Q
q=1(

√
πq)

2
∑Q
q=1(

√
nq−nq−1)2

N
(36)

=
K(1− γ)

L(1+Λγ)
. (37)

The transition from (35) to (36) makes use of the Cauchy-
Schwartz inequality, where the first summation in (36) is equal
to 1, while the second summation is equal to N . Thus, any
library segmentation n, under the optimal cache-redundancy
allocation, is upper bounded by the delivery time of the
uniform popularity setting.

Further, we can deduce the choices of n that do not
improve the delivery time, compared to the uniform case.
Specifically, we can view E{T (Q,n)} as the dot prod-
uct of vectors π1/2 ≜ (

√
π1, ...,

√
πQ) and n1/2 ≜

(
√
n1,

√
n2 − n1...,

√
nQ − nQ−1).

In order for the equality to hold in the Cauchy-Schwartz in-
equality, since neither π1/2 nor n1/2 can be the all zero vector,
it is required that the two vectors are linearly dependent, i.e.
π1/2 = λn1/2, λ ∈ R, [49]. In other words,

λ2(nq − nq−1) = πq, ∀q ∈ [Q]. (38)
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Fig. 5. Expected DoF and standard deviation achieved under the placement
dictated by the algorithm of Section IV. User preferences are drawn according
to the Zipf distribution. The deviation from the mean is remains less than 1
DoF for small values of α, while for bigger values of α and number of users
the deviation is approximately 5− 10% of the achieved DoF.

Summing (38) over all q yields λ2·N = 1. Thus, for π1 it must
hold that π1 = n1

N , which cannot be satisfied regardless of the
sub-library segmentation when α > 0 and Q > 1. Hence, any
choice of n which satisfies constraint (P2-d), would lead to
an improved delivery time compared to the uniform-popularity
case.

Remark 6. Based on the result of Corollary 2, we can see that
this improvement would not necessarily hold in the general
library segmentation considered in Problem 1. Specifically, we
can easily see that there are many library segmentations that
satisfy π1/2 = 1

N · n1/2.

VI. NUMERICAL EVALUATION

To illustrate the performance of our proposed placement,
we consider two scenarios that differ on the library sizes and
the caching capabilities of the transmitters and the users. The
first scenario focuses on a library with TV series, comprised
of many files, but each of relatively small size, thus allowing
a higher percentage of the library to be stored at the receivers.
On the second scenario, we have a library of movies which,
although has much fewer individual files, nevertheless each
file has higher size.

Scenario 1: We consider a typical, dense multiple trans-
mitter setting [24], [50]–[52], where a set of KT = 50 single-
antenna transmitters are connected to K receivers. The content
library is comprised of N = 6000 TV series episodes, such as
typically found in the Netflix catalogue of European countries
[53]. The size of each such episode is assumed to be 100MB,
i.e. of standard definition quality, while its duration approx-
imately 45min. Each transmitter and each receiver can store
10% of the whole library, i.e. γT = γ = 1

10 which amounts
to 60GB. For a packet size of 1KB the subpacketization is
constrained to be F ≤ 105, thus the maximum number of
different caches allowed is Λ = 40 (

(
40
4

)
≈ 9 · 104).

In Figure 4 we plot, for varying number of users K ∈
{300, 500, 1000, 2000}, the ratio of the delivery time of the
non-uniform setting over the expected delivery time of our
scheme as well as the upper bound calculated in Section V,
as a function of parameter α. We observe that for α = 0.8

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3
1

2

3

4

5

Fig. 6. Scenario 2. The multiplicative boost of the expected performance
achieved by our algorithm compared to the setting with uniform file popularity.
The comparison is displayed here as a function of the Zipf parameter, for
various numbers of users K. The library has N = 3000 files.

the delay reduction, compared to the uniform popularity case,
ranges between 25% (factor 1.3) and 45% (factor 1.8) for
K = 500 and K = 2000, respectively and further increases to
a multiplicative factor of 2.8 for α = 1.2. Another important
point is that for α ≤ 1.2 the proposed scheme remains close
to the upper bound.

Further, in Figure 5 we plot the average DoF performance as
a function of α for all the values of K of our example, as well
as the deviation from the mean produced by 103 simulations.
We note that for practical values of parameter α (α ≤ 1.2),
the DoF performance varies slightly from the mean value.

The optimal sub-library boundaries n⋆ and the optimal
cache-allocation values L⋆ for each of the parameters of
Scenario 1 are displayed in Table II.

Scenario 2: Let us now consider another network that
aims to serve content from a library of N = 3000 movies,
typical of a Netflix catalogue [53], each of size of 1GB,
of average duration 1.5h, and of standard definition quality.
User demands are satisfied by a set of KT = 20 single-
antenna transmitters. Due to the much higher per-file size, the
normalized cache of a user is γ = 1

50 , while we consider
that each transmitter’s cache is γT = 1

10 . Hence, a user
dedicates 60GB for caching, while a transmitter dedicates
300GB. Assuming, as before, that the minimum packet size
is 1KB, translates to a maximum supacketization of F ≤ 106

packets thus, the maximum number of different caches allowed
is Λ = 150 (

(
150
3

)
≈ 5, 5 · 105).

The performance boost, compared to the non-popularity
case, is displayed in Figure 6 for varying number of users
K = {500, 1000, 2000}. It is interesting to note that as the
number of users increases, one can get close to the bound.

VII. FINAL REMARKS AND CONCLUSIONS

Our work showed for the first time how one can leverage file
popularity in order to optimize the cached content at multiple
transmitters and achieve multiplicative increase in the perfor-
mance of coded caching systems. This performance increase
can occur even when the file popularity is not very skewed,
and it can occur in the subpacketization-constrained regime,
where it is indeed needed the most. While most single antenna
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K = 300 K = 500 K = 1000 K = 2000
α n∗ L̄ n∗ L̄ n∗ L̄ n∗ L̄
0.2 [0] [5.0000] [0, 2174] [5.5415, 4.6928] [0, 1004, 2183] [5.9728, 5.1550, 4.6962] [0, 466, 2138] [6.4407, 5.2914, 4.6998]
0.4 [0] [5.0000] [0, 1923] [6.2933, 4.3900] [0, 817, 2530] [7.4944, 5.2183, 4.3049] [0, 353, 1907] [8.9654, 5.7116, 4.3878]
0.6 [0] [5.0000] [0, 1678] [7.3849, 4.0740] [0, 634, 2262] [9.8119, 5.4960, 3.9679] [0, 251, 1652] [13.1689, 6.3736, 4.0858]
0.8 [0] [5.0000] [0, 1431] [8.8101, 3.6899] [0, 498, 2036] [13.3912, 5.8530, 3.6148] [0, 191, 1439] [20.4944, 7.1939, 3.7507]
1 [1] [5.0007] [0, 1582] [10.7041, 1.7959] [0, 490] [18.2515, 3.8216] [0, 157, 1278] [30.3803, 8.1446, 3.4096]
1.2 [1] [5.0007] [0, 816] [11.3591, 1.1409] [0, 250] [20.8692, 4.1308] [0, 233] [41.1398, 3.6763]
1.4 [1] [5.0007] [3] [5.0020] [0, 28] [20.2321, 4.7679] [0, 212] [46.6118, 3.3188]
1.6 [1] [4.2058] [2] [5.0013] [5] [5.0033] [0, 98] [47.8672, 2.1325]
1.8 [1] [3.5129] [2] [3.9464] [4] [4.9572] [0, 15] [46.3237, 3.6761]
2 [1] [2.9401] [1] [4.9001] [3] [4.3115] [5] [5.0033]

TABLE II
OPTIMAL SUB-LIBRARY BOUNDARIES n⋆ AND OPTIMAL ANTENNA ALLOCATIONS L⋆ . THE NUMBER OF SUB-LIBRARIES IS GIVEN BY Q = 1 + |n⋆|.

WHEN THE FIRST VALUE OF n⋆ IS 0 IT POINTS TO AN EMPTY B1 SUB-LIBRARY.

cache-aided systems exhibit success in increasing the “usable”
part of a user’s cache when exploiting file-popularity at the
receiver side, we have showed here how multi-transmitter
environments can provide multiplicative gains by becoming
popularity-aware, while not affecting the structural symmetry
in which coded caching thrives.
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APPENDIX I
TRANSMITTER-SIDE CACHING POLICY

To implement the cache-redundancy allocation of our algo-
rithm, for any values of parameters Q,n,L, we extend the
approach of [12] to account for multiple sub-libraries with
different redundancies. We note that the objective is to place
each file of sub-library Bq in exactly Lq different transmitters.
The proposed placement paired with the delivery process we
described in the main part of the document can produce the
DoF performance of (9), as illustrated in [12].

The placement is done sequentially. We start from the first
sub-library and we consecutively cache the whole first file
into the first L1 transmitters, then the second file (of the first
sub-library) into transmitters L1 + 1 through 1 + (2L1 − 1
mod KT ), and so on for the remaining files of B1. The
selection of the transmitters is always done using the modulo
operation, which means that when we place a file at the last
transmitter, we continue the process with the first transmitter.

After storing each file from the first sub-library in a total of
L1 transmitters each, we proceed with the second sub-library.

Continuing from the transmitter after the one last used, i.e.
continuing from transmitter 1+(n1 ·L1 mod KT ), we again
sequentially fill the caches, starting from the first file of the
second sub-library, which we now store in L2 consecutive
transmitters, and so on. The process is repeated for each sub-
library Bq , using the corresponding Lq , starting every time
from the transmitter after the one last used.

Overall, the above process stores each file of sub-library Bq
in exactly Lq distinct transmitters. Further, through this cyclic
assignment of files into transmitters we can guarantee that
the cache-size constraint is satisfied, i.e. that each transmitter
stores exactly γTN files.

APPENDIX II
PROOFS OF SECTION IV

A. Proof of Corollary 1
The delay required to satisfy solely the demands corre-

sponding to sub-libraries q, r can be written, after normal-
ization by K(1−γ)

1+Λγ , as

Tp(Lq, Lr) =
πq
Lq

+
πr
Lr
. (39)

Using an equal cache-allocation, Lq = Lr = L̃, yields

Tp(L̃, L̃) =
πq

L̃
+
πr

L̃
. (40)

In contrast, if we assume that the two cache-allocations differ
by ℓ such that ℓ < L̃, we have

Tp(L̃+ℓ, L̃−ℓ) =
πq

L̃+ ℓ
+

πr

L̃− ℓ
(41)

=
(πq − πr)L̃

L̃2 − ℓ2
− (πq −Kr)ℓ

L̃2 − ℓ2
(42)

<
(πq − πr)

L̃
− (πq − πr)ℓ

L̃2
< Tp(L̃, L̃),

which shows that it is always a better strategy to allocate
higher cache redundancy to sub-libraries with higher cumu-
lative probability.

B. Proof of Lemma 1
We assume that {Bq}Qq=1 is an optimal library segmentation

where, without loss of generality, πq ≥ πq+1,∀q ∈ [Q−1].
In a different case we can rename the sub-libraries such that
πq ≥ πq+1,∀q ∈ [Q− 1]. We pick two files, W ra , W rb , with
corresponding popularity pra > prb , such that W ra ∈ Ba and
W rb ∈ Bb, while πa < πb, else we wouldn’t have anything to
prove. Further, assuming that La and Lb > La correspond
to the optimal cache-allocation of Ba and Bb, respectively
we can calculate the expected delay, T1, of this sub-library
segmentation and cache-allocation using (11).

Now, we can proceed to calculate the delay, T2 of a similar
system with the same cache-allocation as before, but now files
W ra ,Wrb are swapped, i.e. W ra ∈ Bb and W rb ∈ Ba.

The difference of the two delays then takes the form

T1 − T2 =
pra
La

+
prb
Lb

−
(
prb
La

+
pra
Lb

)
(43)

= (pra − prb)
Lb − La
Lb · La

> 0. (44)
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Using the above result, and beginning from some arbitrary
segmentation of the library we can select pairs of files which
belong in different sub-libraries such that the probability of
one file is higher than the probability of the other, while the
more popular file resides in the less popular sub-library and
swap them. As we showed, performing this task will always
transition the system to a lower delivery time.

Continuing to perform this task would result in a library
segmentation where each sub-library has files of consecutive
indices.

C. Convexity of (16) for fixed Q,n

Let us define the Hessian of T ⋆Q with respect to L by H1,
which is given by

H1 =


∂2T∗(Q)
∂L2

1

∂2T∗(Q)
∂L1L2

. . . ∂2T∗(Q)
∂L1LQ

∂2T∗(Q)
∂L2L1

∂2T∗(Q)
∂L2

2
. . . ∂2T∗(Q)

∂L2LQ

...
...

. . .
...

∂2T∗(Q)
∂LQL1

∂2T∗(Q)
∂LQL2

. . . ∂2T∗(Q)
∂L2

Q

 . (45)

Focusing on the q-th diagonal element of H1 we have

∂2T ⋆Q
∂L2

q

=
∂2

∂L2
q

(
n1+

Q∑
r=2

K(1− γ)πr
Lr(1 + Λγ)

)
= 2

Kπq(1− γ)

L3
q(1 + Λγ)

>0.

Similarly, we can show that the non-diagonal elements of
H1 are equal to 0. Let us consider arbitrary element (q, s),
q ̸= s for which we have

∂2T ⋆Q
∂Lq∂Ls

=
∂2

∂Lq∂Ls

(
n1 +

Q∑
r=2

Kπr(1− γ)

Lr(1 + Λγ)

)
=

∂

∂Ls

(
− Kπq(1− γ)

L2
q(1 + Λγ)

)
= 0.

We can now conclude that H is positive semi-definite
since its diagonal elements are positive, while its non-diagonal
elements are zero. Thus, function T ⋆Q,n is convex in L.

Now, we continue with proving the convexity of T ∗(Q) in n
for fixed L. Since pj is defined only for discrete j, we replace
the Zipf distribution with a continuous Pareto distribution,

f(j) = j−α(H(N,α)︸ ︷︷ ︸
≜C

)−1,

where H(N,α) is the generalized Harmonic number.
Let us define the Hessian of T ∗(Q) with respect to n as

H2, which is given similarly to (45).
Following similar arguments used in showing the positive

semi-definiteness of H1, we will show that H2 is also positive
semi-definite. It is trivial to show that first diagonal element of
H2 is always non-negative. Let us consider a different diagonal
element q > 1, for which we get

∂2T ⋆Q
∂n2q

= −K(1− γ) α n
−(α+1)
2

C(1 + Λγ)

[
1

Lq
− 1

Lq+1

]
≥ 0,

due to the fact that Lq ≥ Lq+1, ∀q ∈ [2, Q].
Since function (16) is a linear combination of terms, where

each term is solely dependent on one of the Lq variables

it follows that a double partial differentiation over different
Lq, Lk would produce 0. Therefore, we conclude that H2 is
positive semi-definite and function T ⋆Q is convex in n for fixed
L. Therefore, the function in (29) is biconvex.

Finally, all the constraints are affine. Thus, Problem 2 for
fixed Q is a biconvex problem.

D. Proof of Lemma 3

The output of the KKT conditions provides three different,
and non-overlapping, subsets of [Q]. The first set, ϕ, is
comprised of those q ∈ [Q] for which Lq = 1 (apart from
q = 1 for which, by definition, L1 = 1). The second set,
ψ, is comprised of those q for which Lq = Uq . Finally, the
remaining q are contained in set χ and for these we need to
calculate the cache-allocation variable Lq .

Hence, the expected delay can be written as

T ⋆(Q,n) =n1 +
K(1− γ)

1 + Λγ

∑
q∈ϕ

πq + |ψ|Λ(1− γ)

1 + Λγ

+
K(1− γ)

1 + Λγ

∑
q∈χ

πq
Lq
. (46)

The cache capacity constraint becomes∑
q∈χ

Lq(nq − nq−1) =

LN −
[
n1+

∑
q∈ϕ

(nq−nq−1) +
∑
q∈ψ

Uq(nq−nq−1)

]
. (47)

Taking the derivative of (17) with respect to Lq such that
q ∈ χ, and equating it to 0 yields

∂L
∂Lq

= −Kπq(1− γ)

(1 + Λγ)L2
q

+ λ(nq − nq−1) = 0. (48)

Separating Lq from the remaining terms in (48) yields

Lq =
1√
λ

√
K(1− γ)πq

(1 + Λγ)(nq − nq−1)
(49)

Lq(nq − nq−1) =
1√
λ

√
K(1− γ)πq(nq − nq−1)

(1 + Λγ)
. (50)

Further, from (48) keeping on one side terms Lq, (nq −
nq−1), λ we get

Lq(nq − nq−1)λ =
K(1− γ)πq
(1 + Λγ)Lq

. (51)

Summing (50) and (51) over all q ∈ χ

(50)⇒
∑
q∈χ

Lq(nq − nq−1) =
1√
λ

∑
q∈χ

√
K(1− γ)πq(nq − nq−1)

(1 + Λγ)

(52)
(51)⇒
∑
q∈χ

Lq(nq − nq−1) =
1

λ

K(1− γ)

(1 + Λγ)

∑
q∈χ

πq
Lq
. (53)
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Replacing λ from (53) to (52) yields

∑
q∈χ

Lq(nq − nq−1) =

K(1−γ)
1+Λγ

∑
q∈χ

√
πq(nq − nq−1)

K(1−γ)
(1+Λγ)

∑
q∈χ

πq

Lq

K(1−γ)
(1 + Λγ)

∑
q∈χ

πq
Lq

=

K(1−γ)
1+Λγ

∑
q∈χ

√
πq(nq−nq−1)∑

q∈χ Lq(nq−nq−1)
. (54)

Replacing the left-hand-side of (54) with (46) and the de-
nominator of (54) from (47) yields the result of Theorem 1.

E. Proof of Theorem 4

We will show that for any given set of system parameters,
a solution to Problem 2 for fixed n and fixed Q is feasible
only when Q ≤ κKΛ , where κ < 1.

Since Problem 2 aims to minimize the objective func-
tion (P2-a), for any fixed n and Q, the solution obtained
by KKT conditions will spend the cumulative budget LN
in (P2-c) as much as possible, i.e., the left hand side of (P2-c)
will be maximized as increasing the number of transmitters al-
located to sub-libraries decreases the objective function (P2-a).

Let L̂ be a feasible solution to Problem 2 consisting of Q̂
sub-libraries. We also set n1 = 0, i.e., we assume that the
first sub-library is empty, and will not spend any collective
transmitter side cache capacity budget. Since we are going
to provide an upper bound on Q⋆, we will later consider the
possibility of this sub-library being non-empty11.

We will only focus on the case KT ≥ Kπq

Λ , ∀q ∈ [Q̂] as
KT ≤ Kπq

Λ case is trivial. Consequently, Uq =
Kπq

Λ , ∀q ∈ [Q̂],
and we assume that the following ordering is satisfied12,

L̂2 ≥ L̂3 ≥ · · · ≥ L̂Q̂.

For α > 0, it is easy to verify from (5) that p1 > p2 >
· · · > pN . We also know from (P2-d) that

Kπq
Λ

≥ 1,∀q ∈ [Q̂] (55)

must hold since Uq ≥ 1 for any feasible solution.
Now, we will find the maximum number of groups that

yields a feasible solution for the case where the cumulative
budget in (P2-c) is spent as much as possible —so that (P2-a)
is minimized as discussed above—.

Let us set LQ̂ = 1, and LQ̂−1 = 1 + ϵQ̂−1, where ϵQ̂−1

is arbitrarily small. Then, (55) must hold with equality for
q = Q̂. Similarly, for q = Q̂ − 1, (55) holds with equality
where the right hand side is equal to 1 + ϵQ̂−1 ≈ 1.

Since p1 > p2 > · · · > pN , it is clear that in order to have
πQ̂ ≈ πQ̂−1, |BQ̂| > |BQ̂−1| for any α > 0.

Following the same argument, a feasible solution that leads
to the maximum possible number of sub-libraries Q̂ and
simultaneously satisfies (P2-c) and (P2-d) would then need
to spend as minimum budget as possible for the sub-libraries

11Note that if n1 ̸= 0, then L1 = 1 for the files within this sub-library.
By setting n1 = 0, we restrict to the case where all files are served by
coded caching and no files to be broadcasted, eventually minimizing the cache
capacity budget that is spent by the first sub-library.

12Any feasible solution will satisfy a similar ordering with a possible
permutation [2, Q̂] → [2, Q̂].

B3 to BQ̂ and spend the remaining budget for the sub-library
B2 to satisfy (P2-c), yielding

L̂ = [U2, 1 + ϵ3, . . . , 1 + ϵQ̂−1, 1], (56)

where U2 = Kπ2

Λ .
Next, we will show that Q̂ will not exceed κKΛ . Following

a similar argument that we used in Appendix II-C, we will
replace the Zipf distribution with the continuous Pareto dis-
tribution. We will consider the cases of α ̸= 1 and α = 1
separately.

a) Case 1: α ̸= 1: In this case, we have

πq =
n1−αq − n1−αq−1

C(1− α)
.

Then, for the feasible solution given in (56), for ϵq → 0,
∀q ∈ [3, Q̂− 1], (P2-c) becomes

K

Λ

(
1− N1−α − n1−α2

C(1− α)

)
n2 + (N − n2) ≤ LN(

K

Λ
− KN1−α

ΛC(1−α)
−1

)
n2+

K

ΛC(1−α)
n2−α2 − (L−1)N ≤ 0,

(57)

where C ≜ H(N,α) is the generalized Harmonic number.
Also, from (P2-d), we have

K

Λ

(
N1−α − n1−α2

C(1− α)

)
≥ 1. (58)

Let ν1 and ν2 be the solutions to (57) and (58) respectively
with equality, i.e.,(
K

Λ
− KN1−α

ΛC(1−α)
−1

)
ν1+

K

ΛC(1−α)
ν1

2−α − (L−1)N = 0,

(59)
and

ν2 =

(
N1−α − C(1− α)Λ

K

) 1
1−α

. (60)

To maximize the left hand side of (P2-c), we need to find
the maximum n2, henceforth denoted by n̂2, that satisfies
both (57) and (58). Therefore, we have n̂2 = min{ν1, ν2}.

The remaining budget must be distributed among Q̂ − 2
sub-libraries13 evenly –since for ϵq → 0, ∀q ∈ [3, Q̂− 1], the
cache redundancies of these sub-libraries are equal– to obtain
the feasible solution given in (56), yielding

K

Λ

(
N1−α − n̂1−α2

C(1− α)

)
1

Q̂− 2
≥ 1

Q̂ ≤ K

Λ

(
N1−α − n̂1−α2

C(1− α)

)
+ 2. (61)

Finally, since the optimum number of sub-libraries Q⋆ must
be less than or equal to the maximum number of sub-libraries
that yields to the feasible solution spending the cumulative
budget as much as possible, Q⋆ ≤ Q̂, and Q⋆ is then upper
bounded by

Q⋆ ≤ K

Λ

(
N1−α − n̂1−α2

C(1− α)

)
+ 2. (62)

13Note that we set n1 = 0 in the beginning. As we are providing an upper
bound, we are adding the possibility of B1 being non-empty.
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b) Case 2: α = 1: We follow the same arguments as in
Case 1, and we skip the details due to space restrictions. In
this case, we have

πq =
log nq − log nq−1

logN
.

Then, for the feasible solution given in (56), for ϵq → 0,
∀q ∈ [3, Q̂− 1], (P2-c) becomes

K

Λ

log n2
logN

+N − n2 ≤ LN, (63)

and from (P2-d), we have

K

Λ

(
1− log n2

logN

)
≥ 1. (64)

Consequently, n2 must satisfy both (63) and (64). Let ν1 and
ν2 be the solutions to (63) and (64) respectively with equality.
Then, we have

ν1 =
(L− 1)ΛN logN

KW
(

(L−1)ΛN logN
K e

Λ log N
K

) , (65)

where W (.) is the Lambert W function, and

ν2 = N1− Λ
K . (66)

To maximize the left hand side of (P2-c), we need to find
the maximum n2, henceforth denoted by n̂2, that satisfies
both (63) and (64). Therefore, we have n̂2 = min{ν1, ν2}.

Finally, following the same arguments as in the α ̸= 1 case,
we have

Q⋆ ≤ K

Λ

(
1− log n̂2

logN

)
+ 2. (67)

It is easy to verify that for any α > 0, Q⋆ is less than κKΛ ,
where κ < 1, and κ decreases as both α and L increase. As
a consequence, Q⋆ does not scale with the library size N .
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