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Introduction

Root cause analysis (RCA) in semiconductor industry is the process of discovering the root causes of a failure in order to identify appropriate actions to systematically prevent and solve the underlying issues [START_REF] Abs Group Inc | Root Cause Analysis Handbook: A Guide to Effective Incident Investigation[END_REF]. Reliability engineers (experts) in semiconductor industry are usually tasked with carrying out RCA technique known as Failure mode and effects analysis (FMEA). FMEA involves reviewing several components, assemblies, and subsystems to identify potential failure modes in a system and their root causes. This process is done to improve product reliability and quality; cut production cost and reduce defective parts susceptible to failures. Inspection, testing, localization, failure reproduction and documentation are amongst the major steps needed for RCA. Documentation is the most important of all these stages if automation is to be enabled.

Failure Analysis (FA) is a scientific decision making process which aims to discover the root cause for the incorrect behaviour of a product; that is, the failure of a device or a component to meet user expectations [START_REF] Bazu | Failure analysis. A practical guide for manufacturers of electronic components and systems[END_REF]. Failure Analysis (FA) 4.0 addresses a fundamental challenge for the digital industrialized world by ensuring that increasingly complex electronic systems operate with complete reliability and safety in daily use. This is essential in safety-critical applications such as autonomous vehicles [START_REF] Duan | Improved systemic hazard analysis integrating with systems engineering approach for vehicle autonomous emergency braking system[END_REF][START_REF] Gultekin | Real-time fault detection and condition monitoring for industrial autonomous transfer vehicles utilizing edge artificial intelligence[END_REF] and in digitalized industrial production (Industry 4.0) [START_REF] Behbahani | Need for robust sensors for inherently fail-safe gas turbine engine controls, monitoring, and prognostics[END_REF]on Intelligent Computing and Science, 2011;on Industry 4.0 and Smart Manufacturing, 2020). The intent of FA 4.0 is therefore to provide innovative AI-based tools and methods to support expert failures analysis during the development and manufacture of electronic components and systems [START_REF] Ding | Research of intelligent fault diagnosis based on machine learning[END_REF][START_REF] Li | Intelligent fault diagnosis for large-scale rotating machines using binarized deep neural networks and random forests[END_REF][START_REF] Abidi | Predictive maintenance planning for industry 4.0 using machine learning for sustainable manufacturing[END_REF][START_REF] Priyanka | Digital twin for oil pipeline risk estimation using prognostic and machine learning techniques[END_REF][START_REF] Huang | Intelligent diagnostic and prognostic method based on multitask learning for industrial equipment[END_REF]. With its holistic approach spanning chip production [START_REF] Hu | A particle swarm optimization algorithm for multi-row facility layout problem in semiconductor fabrication[END_REF], assembly and packaging (IFIP TC5 International Conference on Knowledge Enterprise: Intelligent Strategies in Product Design and Management, 2006), to board and system level, the project's outcomes will be crucial for the competitiveness of European electronic devices, especially in the demanding automotive and industrial sectors.

Due to the demanding complexities and time consuming processes involved, failure analysis is carried out manually, driven by single tasks coming from production, reliability testing and field returns. The time-consuming processes does not allow for analysis of combined electrical and material testing and metrology data from along the manufacturing process flow. It is also susceptible to human error, as diagnostic tools are not linked to each other or a central database to provide information for the next steps in a failure analysis workflow. Semi-automating this complex process using AI-based methods would ameliorate some of this human challenges. Thus, proper documentation allows for a successful FA, helping to identify potential failure modes based on expert experience with similar products and processes. Consequently, a database of failures and their corrective actions are maintained in semiconductor industries today. the Failure Reporting, Analysis and Corrective Action System (FRACAS) is a closed-loop feedback path by which pertinent reliability data is collected, recorded and analyzed during in-house (laboratories) and production/operation to determine where failure concentration in the design of the equipment [START_REF] Mario | Failure reporting, analysis and corrective action system in the us semiconductor manufacturing equipment industry: A continuous improvement process[END_REF][START_REF] Ezukwoke | Intelligent fault analysis decision flow in semiconductor industry 4.0 using natural language processing with deep clustering[END_REF]. The heart of FRACAS is its database management system (DBMS) which classifies failure modes into categories that are essential in identifying the processes in the product (hardware/software) life cycle requiring the most attention for reliability improvement [START_REF] Mario | Failure reporting, analysis and corrective action system in the us semiconductor manufacturing equipment industry: A continuous improvement process[END_REF]. The report obtained from FRACAS DBMS contains information describing the type of failure and origin of detection; a set of analysis (in the form of triplets-Step type, Substep technique and Equipment) proposed to find the failure root cause; conclusion on the outcome of failure analysis. In later sections of this paper, we will refer to failure description as pre-triplet data and the set of analysis as triplets as they are composed of three major keys. Each triplets makes a failure decision and the objective of this paper it to generate a set of n-triplets that suites a particular failure description.

The objective of our paper is to present a first of its kind application of a generative sequence-to-sequence language model for structured failure analysis triplet generation given a failure description and a near human judgement evaluation metric to measure the difference between the human and machine generated triplets. The remaining part of Section I introduces the domain of failure analysis decision flow, its formalization and what is meant by pre-trained language model; Section II introduces language models (LM) and pretrained language model (PLM) for the downstream task of failure analysis triplet generation (FATG); Section III presents the experimental setup; Section IV, the results and finally, the conclusion in Section V.

Failure analysis decision flow

Failure analysis decision flow is a structured database of failure analysis steps performed by industrial experts on a defected device with the expectation of finding the root cause of the failure. Depending on the cause of the failure and the origin of the failure report, different combinations of equipment are required to find the root cause of a failure. The location of failure analysis lab (FA-lab) is significant in the failure analysis process as the absence of the proper equipment may be lead to repetition of FA, incomplete FA or transfer to different FA-lab. The Figure (1a) illustrates a typical failure analysis process as seen from the FRACAS perspective. An important part of FRACAS is the final report (database) Figure 1: FRACAS: Structured representation of the failure analysis process. A failure description take indistinct failure analysis flow (path) to finding the root cause of the failure [START_REF] Ezukwoke | Intelligent fault analysis decision flow in semiconductor industry 4.0 using natural language processing with deep clustering[END_REF]. containing details of failure analyses and different combinations of FA. It is important to note that a failure description may have more than one failure analysis path leading to the same finding of the root cause. In fact, one failure description may have two different path with the same sequence of step type and substep technique but only differing in the analysing equipment. Failure description (FDR). This is a free-text language encoding describing the type and context of failure observed on a microelectronic component or a semiconductor device. Given that free-text from FRACAS report contains lexical and technical jargons, symbolic imputations, abbreviations and numerous language encoding (due to the different geographical locations of the FA-expert); it becomes necessary to preprocess them into tokens understandable by machines using natural language processing techniques before modeling. Similar preprocessing pipeline proposed by [START_REF] Ezukwoke | Intelligent fault analysis decision flow in semiconductor industry 4.0 using natural language processing with deep clustering[END_REF] for FRACAS data (Figure (1b)) for unsupervised modeling is adopted in this paper. Failure Analysis Triplets (FATs). A series of Step type, Substep technique and equipment proposed by a failure analyst in order to find the root cause of a failure and propose a corrective action. The number of failure analysis triplets proposed by a failure analyst (expert) depends on the FDR and the available equipment. Depending on the failure description and available expertise and equipment, different length of FA can be proposed (See Figure 2). The FRACAS database, contains a description, and empty space padded failure analysis associated with the FDR. The padding is based on the longest failure analysis triplets. Failure Analysis Triplets Generation (FATG). This is a scientific process of generating a series of sequential failure analysis text associated with a failure description. We model the FATG as a sequence-to-sequence data-to-text problem where the input is the FDR (structured tabular data), and the output is a long sequence of a failure analysis triplets. Data-to-text generation is commonly described as a task of automatically producing non-contextual, non-linguistic inputs [START_REF] Gatt | Survey of the state of the art in natural language generation: Core tasks, applications and evaluation[END_REF]. Early methods apply knowledge-based expert systems [START_REF] Kukich | Design of a knowledge-based report generator[END_REF] for automatically generating natural language reports from computer databases; while recent generation techniques train endto-end auto-encoding (encoder-decoder) architectures [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF] for similar purpose. Encoder-decoder framework are sequence-to-sequence (Seq2Seq) deep learningbased modeling technique employed in Long-Short-Term Memory (LSTM) [START_REF] Liu | Recurrent neural network for text classification with multi-task learning[END_REF][START_REF] Ramachandran | Unsupervised pretraining for sequence to sequence learning[END_REF][START_REF] Mccann | Learned in translation: Contextualized word vectors[END_REF] and Transformers [START_REF] Vaswani | Attention is all you need[END_REF] for natural language generation (NLG). In later sections of this paper, we explore language models, in particular, pre-trained language models based on Transformer architecture for FATG. We evaluate the performance of the different models using the popular scoring metrics like BLEU, ROUGE and METEOR. We first formalize our problem in a probabilistic graphical setting before extending it to language modeling. Formalization. Given failure analysis description (FDR) tx i u N i"1 P R D , where N is the number of observation and D is the dimension of the preprocessed data, and a set of failure analysis triplets tλ i u N i"1 P R M , where M is the dimension of λ. We express the FATG as data-to-text problem by defining the input space as a joint space of x and λ. Let us begin by modeling them individually, the FDR (input space) probability mass function is,

p x pxq " N ź i"1 p x px i |x 1:i´1 q (1)
and the failure analysis triplets (FAT), The joint probability space is given as,

p λ pλq " N ź i"1 p λ pλ i |λ 1:i´1 q (2)
p x,λ px, λq " N ź i"1 p x,λ pλ i |x 1:i´1 , λ 1:i´1 q (3)
Compact representation. We present a compact representation for Equation (3) as follows. Let us represent the joint space between failure description x P R D and failure analysis triplets λ P R M i.e tx i , λ i u N i"1 P R K as Λ P R K , where K " D `M is the dimension of the joint space-a sum of the dimensions of x and λ respectively.. We define the compact joint probability space between x and λ as, ppΛq "

N ź i"1 ppΛ i |Λ 1:i´1 q (4)
This compact joint space can be modeled into a likelihood function, ř N i"1 log ppΛ i |Λ 1:i´1 ; φq and its parameter, φ estimated using deep neural network used in training pre-trained language models.

Pretrained Language Models (PLMs)

Interesting developments in deep learning domains resulting from the ability to effectively train models with large parameters has increased rapidly over time. One of the reasons for this is the access to innovative high computing clusters. Large datasets containing millions of observations (with similar or larger number of tokens) is needed to fully train model parameters and prevents overfitting. However, building large-scale labeled datasets can be computational expensive even for a high resource computing cluster for most NLP tasks due to the annotation costs. Pre-trained Model is originally introduced by [START_REF] Dai | Semi-supervised sequence learning[END_REF] for NLP; [START_REF] Liu | Recurrent neural network for text classification with multi-task learning[END_REF] as a shared LSTM encoder with Language Model (LM) for multi-task learning (MTL) using fine-tuning; Prajit [START_REF] Ramachandran | Unsupervised pretraining for sequence to sequence learning[END_REF] Since large-scale unlabeled corpora require less computing resources, annotations is not usually needed or relatively easy to construct. Hence, to leverage the huge unlabeled text data, we can first learn a good representation from unlabelled corpora and then use these representations for other downstream tasks. Advantages of such pre-training methods include: (i) Learning universal language representations given their large access to tokens and using them for downstream tasks (such as done here for FATG); (ii) better initialization leading to better generalization on transfer learning; (iii) helps to avoid overfitting on small token data. Recent studies have demonstrated significant performance gains on many NLP tasks with the help of the representation extracted from the PLMs on the large unannotated corpora.

Given that most PLMs have relied greatly on Recurrent Neural Network (RNN) architectures such as Long-Short Term memory (LSTM) [START_REF] Melis | On the state of the art of evaluation in neural language models[END_REF][START_REF] Merity | Regularizing and optimizing lstm language models[END_REF][START_REF] Conneau | Supervised learning of universal sentence representations from natural language inference data[END_REF] and Gated Recurrent Neural Network (GRNN) [START_REF] Chaturvedi | Story comprehension for predicting what happens next[END_REF], it is impossible to ignore their significance for language generation task [START_REF] Wen | Semantically conditioned lstm-based natural language generation for spoken dialogue systems[END_REF]. RNNs make output predictions at each time step by computing a hidden state vector H t based on the current input token and the previous states. However, because of their auto-regressive property of requiring previous hidden states vectors H t´n (where n is all hidden states vectors until t) to be computed before the current time step, t, they require a large amount of time and memory which can be unbearable. The problem with RNN based models is their inability to adapt to long sequence tasks rising from their lack of attention to previously seen sequences; they are computationally demanding and do not benefit from parallelization. As a result, Transformer models [START_REF] Vaswani | Attention is all you need[END_REF] which is built on a Self-attention [START_REF] Vaswani | Attention is all you need[END_REF] (also an auto-regressive mechanism) is preferred over RNNS. They rely on dot-products between elements of the input sequence to compute a weighted sum [START_REF] Lin | A structured self-attentive sentence embedding[END_REF][START_REF] Ahmed | Weighted transformer network for machine translation[END_REF][START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF][START_REF] Kim | Structured attention networks[END_REF] which serves as a critical ingredient in natural language generation tasks. The Table (1) below shows a list of state-of-the-art pre-trained models built on LSTM and Transformers architectures together with the size of trainable parameters they were trained on.

In general, pre-trained language models are classified into three taxonomies according to [START_REF] Qiu | Pre-trained models for natural language processing: A survey[END_REF] [START_REF] Devlin | BERT: pre-training of deep bidirectional transformers for language understanding[END_REF] and XLNet [START_REF] Yang | XLNet: Generalized Autoregressive Pretraining for Language Understanding[END_REF], are most useful for tasks that require understanding complete sentences such as sentence classification or extractive question answering. See Decoder Pre-training. often referred to as auto-regressive models, for example, GPT [START_REF] Radford | Language models are unsupervised multitask learners[END_REF], use only the decoder during a pretraining that is usually designed XNLG: Unspecified parameter size in the original paper. Pre-trained on 10-hidden encoder layers and 6-hidden decoder layers with same model parameters as Transformer [START_REF] Vaswani | Attention is all you need[END_REF]. so that the model predict the next words. The attention layers can only access the words positioned before a given word in the sentence, hence, their use for text generation task.

Language Modeling (LM)

Language Models (LMs), sometimes referred to as Unidirectional or auto-regressive LMs is a probabilistic density estimation approach to solving unsupervised NLP task (such as text generation). Given a text sequence tx i u N i"1 P R D , its probability density mass ppxq can be expressed as, ppxq "

N ź i"1 ppx i |x 0:i´1 q (5)
Where x 0 indicates the beginning of the sequence (usually a special token such as ă |startoftext| ą). The conditional probablity can be modeled using a probability distribution over x i given contextual tokens x 0:i´1 . The contextual tokens can be modeled using neural encoder encoder as follows:

ppx i |x 0:i´1 q " softmaxpencoderpx 0:i´1 qq (6)
Note that the softmax function can be any prediction function that fits the expectation and the final hidden layerencoder can be self-masked decoder. We proceed with training the network with maximum likelihood estimate as follows:

L LM " N ÿ i"1 log ppx i |x 0:i´1 ; θq (7)
Where θ is the vector of parameters of the neural network. Other versions of losses are available to training the network depending on the user preference and problem description (See Qiu et al. ( 2020)).

Transformer Neural Network

Transformer network [START_REF] Vaswani | Attention is all you need[END_REF] uses an encoder-decoder architecture with each layer consisting of an attention mechanism called multi-head attention, followed by a feedforward network. From the source tokens, learned embedding of dimension d model are generated which are then modified by an additive positional encoding (PE).

Position Embedding (PE) is computed using the word position (pos) in the sentence and the dimension of the word vector as follows:

P Eppos, 2iq " sinppos{10000 2i{dmodel q (8)

P Eppos, 2i `1q " cosppos{10000 2i{dmodel q (9)
The PE corresponds to a sinusoidal wave with wavelength forming a geometric progression between 2π ´10000 ¨2π to allow the model learn relative positions. Scaled Dot-Product Attention. A multi-head attention mechanism builds upon scaled dot-product attention, which operates on a query Q, key K and a value V :

AttentionpQ, K, V q " softmax ˆQK T ? d k ˙V (10) 
Where d k is the dimension of the key. The input are concatenated in the first layer so that each pQ, K, V q form the word vector matrix. Multi-head attention mechanisms obtain h different representations of pQ, K, V q, compute scaled dot-product attention for each representation, concatenate the results, and project the concatenation with a feed-forward layer.

head i " AttentionpQW Q i , KW K i , V W V i q (11) M ultiHeadpQ, K, V q " Concatphead 1 , . . . , head h qW O (12) 
Where W i and W O are the learned projection parameters,

W Q i , W K i P R d model ˆdk , W V i P R d model ˆdv , W O P R hdvˆd model
and h denotes the number of heads in the multi-attention. d v is the dimension of the values. [START_REF] Vaswani | Attention is all you need[END_REF] employs h " 8 parallel attention layers (heads) and set d k " d v " d model {h " 64 to achieve the same computational cost as using single-head attention. Position-wise Feed-Forward Networks (PFFN). The component of each layer of the encoder-decoder network is a fully connected feed-forward network applied to each position separately and identically. The authors propose using a two-layered network with a ReLU activation. Given trainable weights W 1 , W 2 , b 1 , b 2 , the sub-layer is defined as:

F F N pxq " maxp0, xW 1 `b1 qW 2 `b2 (13) 
The proposed dimensionality of input and output is d model " 512, and the inner-layer has dimensionality d f f " 2048 [START_REF] Vaswani | Attention is all you need[END_REF]. 

Generative Pre-trained Transformer (GPT) model

Generative Pre-training model [START_REF] Radford | Improving language understanding by generative pre-training[END_REF]) is a type of transformer model that uses a multi-layer Transformer decoder [START_REF] Liu | Generating wikipedia by summarizing long sequences[END_REF] instead of the encoderdecoder model introduced by [START_REF] Vaswani | Attention is all you need[END_REF]. The model structure begins with training in an unsupervised setting corpus of tokens U " tu 1 , . . . , u n u with a standard likelihood objective to maximize:

L 1 pUq " ÿ i logP pu i |u i´k , . . . , u i´1 ; Θq ( 14 
)
Where k is the context window and Θ is the neural network parameters obtained when modeling conditional probability P. This model applies a multi-headed self-attention operation over the input context tokens followed by position-wise feed-forward layers to produce an output distribution over target tokens as follows:

h 0 " U W e `Wp (15) 
h i " transformer_blockph i´1 q @i P r1, ns

P puq " softmaxph n W T e q (17)

Where U " pu ´k, . . . , u ´1q is the context vector of tokens, n here is the number of layers while W e and W p are the token embedding and position embedding matrix respectively. The results on our data for FATG shows that GPT models outperformed other models and the baseline model by over 100% on BLEU score.

BART (Bidirectional Auto-Regressive Transformer)

model BART is a Bidirectional Auto-Regressive Transformer trained by ( 1) corrupting text with an arbitrary noising function, and (2) learning a model to reconstruct the original text [START_REF] Lewis | Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[END_REF]. BART uses a standard Transformer-based neural machine translation architecture (i.e Encoder-Decoder Transformer as seen in Figure 3). The BART loss function, L 2 pUq, used to train the pre-trained model is the negative log likelihood of the original training documents:

L 2 pUq " ´ÿ i logP pu i |u i´k , . . . , u i´1 ; Θq (18) 
Note that the corpus of tokens U " tu 1 , . . . , u n u is as seen for GPT while Θ is the neural network parameters.

PLMs for Failure analysis generation domain task

Despite the overwhelming performance of PLMs on opensource datasets, adapting them to domain specific downstream task can be challenging and sometimes futile. (FATG) using the two transformer models described in previous sections (2.2, 2.3). Since, there are no labelled instance of FAT datasets, as they are confidential and unavailable from other domains, domain-adaptive intermediate fine-tuning [START_REF] Phang | Sentence encoders on stilts: Supplementary training on intermediate labeled-data tasks[END_REF] becomes a challenging task and hence, the poor performance on FATG task reported for GPT3 architecture and BERT (dropped due to lack of meaningful generation). It has been shown

that the additional training with general-purpose text corpora (for example, WebText) on the same text generation task can improve the performance on a specific domain [START_REF] Li | Pretrained language models for text generation: A survey[END_REF]. Interestingly, this is the case for GPT2 as it has been trained on WebText corpora, saving us time due intermediate fine-tuning. Results shows outstanding performance for all GPT2 models for the downstream FATG task. We fine-tune the PLMs using the vanilla fine-tuning method as seen in DialogGPT [START_REF] Zhang | Dialogpt: Large-scale generative pre-training for conversational response generation[END_REF] for conversational response generation. The input and output data structures used for fine-tuning and generation are illustrated in the Figure ( 4) and maintain similar likelihood objective function used for pre-training for the fine-tuning phase.

Experiments

Setup 

Dataset

We perform experimentation using real failure analysis data from a semiconductor industry, taking into account only successful failure analysis for one year (2019). In order to train the transformer model, we first concatenate all input features along the horizontal axis (x´axis) with the triplet data. The size of the data after preprocessing for one year ( 2019) is 5809.

The 10-input failure description features (see has a dimension of R 69 with the longest FA having 23 triplets. We preprocess FDR, x according to the scheme presented in [START_REF] Ezukwoke | Intelligent fault analysis decision flow in semiconductor industry 4.0 using natural language processing with deep clustering[END_REF] and vectorize the joint space tx, λu using a byte-level version of Byte Pair Encoding (BPE) from GPT2.

Evaluation metric

BLEU (Bilingual Evaluation Understudy) is a context-free precision-based metric for evaluating the quality of text which has been machine-translated from one natural language to another [START_REF] Papineni | Bleu: A method for automatic evaluation of machine translation[END_REF][START_REF] Lin | Automatic evaluation of summaries using n-gram cooccurrence statistics[END_REF] and has also been adopted for dialog generation task [START_REF] Sai | A survey of evaluation metrics used for nlg systems[END_REF]. It is a precision-based metric that computes the n-gram overlap between the reference (original) and its hypothesis. In particular, BLUE is the ratio of the number of overlapping n-grams to the total number of n-grams in the hypothesis. It is formally defined as,

BLEU ´N " BP ¨exp ˜N ÿ n"1 w n log P recision n ¸(19)
w n is the weights of the different n ´grams and BP known as the brevity penalty is used to discourage short meaningless hypothesis,

BP " $ & % 1, if |hyp| ą |ref| e ´1´| ref| |hyp| ¯otherwise (20) 
Where |ref| and |hyp| are the length of the reference and hypothesis respectively. Precision is defines as,

P recision n " ř pnPhyp ř n-gramPpn Count clip pn-gramq ř pnPhyp ř n-gramPpn Countpn-gramq (21) 
Where p n is a subset of n-tokens in the hypothesis tokens and Count clip pn ´gramq is the maximum number of times the given n-gram appears in any one of the corresponding reference sentences. In our case, we use it to compare the original expert triplet failure analysis to the Transformer generated triplets without respect to context. The average BLEU score (Avg-BLEU) is computed on a one-to-one basis (Expert triplets-to-Transformer triplets). ROUGE (Recall-Oriented Understudy for Gisting Evaluation) [START_REF] Lin | ROUGE: A package for automatic evaluation of summaries[END_REF]) is a recall-based metric similar to BLEU-N in counting the n-gram matches between the hypothesis and reference. It is computed as follows:

ROU GE ´N " ř srPref ř n-gramPsr Count match pn-gramq ř srPref ř n-gramPsr Countpn-gramq (22) 
Where ref is the reference text and s r is the hypothesis summary. ROUGE-L is the Fmeasure of the longest common subsequence (LCS) between a pair of sentences. LCS(p, r) is the common subsequence in p and r with maximum length. ROUGE-L is computed as follows:

ROU ROUGE-L is a matching and credible metric for the downstream task of failure analysis triplets generation task, as it does not take into account, contextual meaning but rather, word order and their maximum length. Its F-measure is highlighted to show its significance. The weight parameter β 2 emphasizes the precision as much as the recall.

METEOR proposed by [START_REF] Banerjee | METEOR: An automatic metric for MT evaluation with improved correlation with human judgments[END_REF] addresses the major drawback of BLEU including, inability to account for recall and inflexible n-gram matching by proposing an F-measure with flexible n-gram matching criteria. The F-measure is computed as follow: 

F ´score " 10Precision ˆRecall Recall `9Precision ( 
The numerators in Equation ( 31) is the length between the maximum n-grams in |ref| and |hyp|, and the Levenshstein distance, Lev(ref, hyp). Maximum is taken to avoid numerical problem that arise from empty sequence for either reference or hypothesis (as observed for FATG) or sometimes both. When compared to human evaluation, LESE-N performs comparatively similar, especially LESE-3 for FATG compared to other metric used for quantitative evaluation.

Decoding method

Top-k Sampling. Given a conditional probability distribution ppx t |x 0:t´1 q, it top-k vocabulary {V : V k Ă V } is defined as the set of size -k which maximizes the conditional probability ř xPV k ppx t |x 0:t´1 q. At each time step, the top-k possible next tokens are sampled according to their relative probabilities. The conditional distribution can be re-scaled thus,

p 1 px i |x 0:i´1 q " # ppx i |x 0:i´1 q ř xPV k ppx i |x 0:i´1 q , if x i P V k 0, otherwise (32) 
and then sampling on the re-scaled probabilities. Nucleus Sampling2 [START_REF] Holtzman | The curious case of neural text degeneration[END_REF]. Given a conditional probability distribution ppx t |x 0:t´1 q, the top-p vocabulary {V :

V p Ă V } is denoted by, ÿ xPV p ppx i |x 0:i´1 q ě p i (33) 
Where p t is a user defined threshold taking values between r0, 1s. otherwise known as top-p, nucleus sampling is a stochastic decoding sampling method that uses the shape of a probability distribution to determine the set of tokens to sample from. It avoids text degeneration by truncating the tail of the probability distribution. Furthermore, it resolves the challenge of flat and peaked-distribution faced when using top-k by re-scaling the distribution ppx t |x 0:t´1 q from which the next token is sampled as,

p 1 px i |x 0:i´1 q " # ppx i |x 0:i´1 q ř xPV p ppx i |x 0:i´1 q , if x i P V p 0, otherwise (34) 
The size of the sampling set will adjust dynamically based on the shape of the probability distribution at each time-step [START_REF] Holtzman | The curious case of neural text degeneration[END_REF].

Results

Quantitative Evaluation

We evaluate the performance of PLMs for Failure analysis generation (FATG). Evaluating the generative power of a model requires an equally optimized decoding method. We combine top-p " 0.95 and top-k " 10 with a normalizing temperature value of 1.9 for decoder sampling of pretrained BART, GPT2, GPT2-Medium, GPT2-Large and OPENAI-GPT3 models. Top-k (with k " 10) performs well for the generative decoder sampling of mini-GPT. forms considerably better than the baseline (mini-GPT), GPT3 and BART models. The best peforming GPT2 (GPT2 Large) outperforms the base model by 49% on the BLEU metric; 73% better than BART and GPT3 for FATG. The LESE metric evidently shows that GPT2, GPT2 Medium and GPT2 Large is trained on correlating domain knowledge related to failure analysis and reliability engineering, hence, the adaptive transfer of knowledge for failure analysis triplets generation. ). The checkpoint weights from previous year (for instance, year 2019 is used for training year -2020 and so on). The marginal improvement in the LESE-3 scores for year-2021 suggests that the weight (w 2019 ), generalizes the sub-domains. Improvement in LESE-3 is not monotonic, observe the best scores (in bold-blue) for year-2020 and only slightly less for year-2021 due to insufficient learning data. w : : Fine-tuned pre-trained weight.

Results (as seen on

The best performing model on longest common triplets (LCT), related to longest common subsequence generation is GPT2 Medium and Large. Both ROUGE-L and METEOR favor long sequence triplet generation. Similarly, GPT2 Medium, measures up in performance with GPT2 Large (in terms of ROUGE-L and METEOR). In the next section, where we compare the model FATG to expert (human) triplets, we show that the FATs generated by GPT2 Medium and GPT2 Large are not differentiable.

Qualitative Evaluation: FATG

The quality of FATG of a model depends on its ability to adapt previously seen source domain knowledge to downstream domain task (at training time) as well as the quality of prompt (at generation time). Well preprocessed training data (Λ) and prompt (failure description), x are two of the major factors that can degrade the generative quality. We classify this generation difficulty into three classes (i) Short-sequence FATG (ii) Long-sequence FATG. Transformers-based PLMs are by default designed for long sequence generation and particularly perform well for generating contextual text and summarization task. We evaluate their performance for structured FATG and report our findings.

Short sequence FATG (SS-FATG)

Given a FDR prompt and a short human-expert failure analysis triplets (with length ranging between 3 ´6), Short sequence FATG (SS-FATG) is the ability of a fine-tuned to generate the same order and length of the FATs given by human-expert. Short sequence FATs (SS-FATs), can be partial incomplete FA that compliments a main FA. We observe from generation task, that all the models including mini-GPT (non-pretrained baseline), long sequence with low BLEU and LESE scores. GPT3 is modeled with the objective of generating long sequences for story-telling, hence, its behaviour during FATG. We give an illustration of a case of SS-FATG task using the best result from GPT2 and a much lesser The light green highlights are the correct FA generations while the grey highlight are incorrect FA generation. We observe that all FATs generated by the fine-tuned GPT2 Medium are correct and ordered compared to those generated by fine-tuned BART model. A complete table containing generation of other models for the same prompt is given below (see Table 5). Other SS-FATG examples are given in Tables (6 and7).

FDR

Long sequence FATG

. Long sequence FATG (LS-FATG) is the ability of a fine-tuned PLM to generate longlength sequences that preserve the sequential order as the original human-expert FATs. Long sequence FATs (LS-FATs) are complete failure analysis containing all sequence of FAs in the correct order. They are usually above 7 or more triplets, depending on the number of locations the failure device is transferred before finding the root cause. Attention mechanism in transformers are modeled to generate long text sequences, for instance, in the case of DialogGPT [START_REF] Zhang | Dialogpt: Large-scale generative pre-training for conversational response generation[END_REF] for conversational response generation, as well as for text summarization. In this context of FATG, their performance score is attenuated since we are modeling structured data. The best LESE-1 score obtained for a FDR prompt having 7-FATs is 31% with fine-tuned GPT2 (Base and Large). Despite been suited for long text generation, GPT3 fails to generate triplets consistent with human FATs. Nothing-withstanding, GPT3 generates FATs consistent with what an expert would propose for similar failure description. In generating LS-FATs, none of the models accurately generated the correct equipment proposed by human-expert, however, the equipment generated could serve similar purpose as that proposed by expert. Again, we observe all GPT2 models perform on par for generating long sequences when compared with BART and GPT3 (See full comparison on Table 8). It is very clear that the order of performance of Transformer for structured SS-FATG task is GTP2 M & L ą GPT2 ą BART ą GPT3 and GTP2 M & L ą GPT2 ą GPT3 ą BART for LS-FATG. Furthermore, depending on the description and location of the FA, different FATs can be generated with keywords of the location of the FA in response to the prompt. This is illustrated in the example below, The triplets generated for the different locations differ by the type of equipment used for failure analysis and only slightly in step and substep technique. It implies that specifying the location of FA in the failure description, consequently improves the accuracy of both SS-FATG and LS-FATG.

Discussion

We examine the near human accuracy of LESE score over other evaluation metric. The generation results from Figure (5a) indicates a perfect LESE-1 and LESE-3 score of 100%; BLEU-1 and BLEU-3 scores of 100% and ROUGE-1 and ROUGE-L (F1-score) of 99.9%. However, if we flip the equipment in the last two triplets (Figure (5b &5c)), the LESE-1 and LESE-3 scores become (83.33%, 50.00%); BLEU-1 and BLEU-3 scores (100%, 90.9%); ROUGE-1 and ROUGE-L (F1-score) are (88.88%, 88.88%). We discover that both BLEU and ROUGE scores suffer significant setbacks due to this small flip and do not accurately quantify the change. Furthermore, BLEU-1 does not seem to distinguish the difference between equipment in the last two FATs, since it only seeks to find the intersection between sets in hypothesis and reference. LESE-1 and LESE-3 accurately measures the difference in 

Figure 2 :

 2 Figure 2: Failure analysis decision flow graphical formalization. A, B, C and D are different failure description with different failure analysis triplets length.

Figure 3 :

 3 Figure 3: BERT: Random tokens are replaced with masks, and the document is encoded bidirectionally. Missing tokens are predicted independently. GPT: Tokens are predicted auto-regressively, meaning GPT can be used for generation. However words can only condition on leftward context, so it cannot learn bidirectional interactions. BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitrary noise transformations.Here, a document has been corrupted by replacing spans of text with mask symbols. The corrupted document (left) is encoded with a bidirectional model, and then the likelihood of the original document (right) is calculated with an auto-regressive decoder[START_REF] Lewis | Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension[END_REF].

  Figure 4: PLM for Failure analysis triplet generation (FATG). Both GPT and BART architecture are trained on joint input space tx, λu P Λ. Only the failure description (FDR) is the required input for generation.

  50.00% -Rec.: 50.00% -LESE-3: 50.00%(c) LESE-3 cost matrix after flipping equipment. LESE-3 " 50.00%.

Figure 5 :

 5 Figure 5: LESE-3 cost matrix before and after flipping equipment in triplet generated by GPT2. observe the final Levenshstein distance before flipping is 2 and 6 after flipping. The LESE-3 (F1score) reflects this change in equipment and correlates with human evaluation.

Figure 6 :

 6 Figure 6: LESE-3 cost matrix with unequal 3-gram length of reference and hypothesis.

  

  Table (1) for other Encoder pre-training examples.

Table 1 :

 1 Pre-trained Language architectures well established for performing generative task.

  . Experimentation is carried out on a High performance computing (HPC) cluster with 80 cores 2 ˆIntel Xeon E5-2698 v4 2.20GHz CPU (80 cores), 512G RAM size and 8 ˆNvidia V100 32G GPU.

miniature-GPT For our experiment, we maintain similar properties of the Transformer as proposed by

[START_REF] Vaswani | Attention is all you need[END_REF]

. The d model , d v , d k are the same. The model is trained for 100 epochs. The maximum length of sequence is 80, vocabulary size used is 20K words, embedding size is 256. Top-k

(Holtzman et al., 2019a) 

decoding is used for generating the FA triplets. Pre-trained GPT-2 & 3. We fine-tune three versions of the GPT-2 (gpt2, gpt2-medium (335M parameters), gpt2-large (774M-1.5B parameters)) for the purpose of failure analysis generation provided by the Huggingface API 1 . The begin of sequence token, bos is set to ă |startoftext| ą; End of sequence token, eos, ă |endoftext| ą and padding token, pad_token is ă |pad| ą. Batch size for training and evaluation is 1; weight decay is 0.05 and the number of training epochs is 100. GPT2 is trained on 40G of WebText data (web pages from outbound links on Reddit) excluding Wikipedia pages; the texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) and contains a vocabulary size of 50257. The inputs are sequences of 1024 consecutive tokens. OPENAI-GPT3 (175B parameters and 500B tokens) however was trained on BooksCorpus dataset

[START_REF] Zhu | Aligning books and movies: Towards story-like visual explanations by watching movies and reading books[END_REF]

, which contains over 7000 unique unpublished books from a variety of genres including Adventure, Fantasy, and Romance. GPT3 uses similar encoding as GPT2, a bytepair encoding (BPE) vocabulary with 40K merges. BART Model. The bos, eos, pad_token and tokenization (byte-pair encoding) are same with those used for GPT-2. We use the same pre-training data as

[START_REF] Liu | Roberta: A robustly optimized bert pretraining approach[END_REF]

, consisting of 160Gb of news, books, stories, and web text.

  Table 2) also called Expert features include: Reference, Subject, Site, Requested activity, Priority level, High confidentiality, Context, Objectives / Work description, Source of failure / request, Source of failure (Detailled) to train the Transformer model. The features are concatenated along the horizontal axis with the FATs for Modeling. FATs

	Feature	Description	Example
	Reference	Concatenated tokens describing the failure	PTM BOUSKOURA _18_04655
		analysis team, FA-lab, year and ID	
	Subject	A unique subject particular to the fault expert	Load failure
		desire to analyse	
	Site	Failure analysis lab site	Grenoble
	Requested activity	Major fault analysis requested by expert or	Failure Analysis
		client	
	Priority level	Level of priority given to failure device	P1, P2 or P3
	High confidentiality	Confidentiality level	Yes or No
	Context	Context reason for the failure analysis	Non-operational Heat Soak Fail
	Objective/Work description Objective of the failure analysis	Check possible cause of failure
	Source of failure/Request	Entity that identified the failure	Customer Complaint
	Source of failure (Detailed)	Details on the failure source	Reliability Failure

Table 2 :

 2 Brief description of the input failure description (FDR) variables and their corresponding examples.

  For better understanding of the sequential generation of FATs and to address the drawback of ROUGE, we propose LEvenshtein Sequential Evaluation (LESE) metric. LESE is an n-gram Levenshtein distance[START_REF] Levenshtein | Binary codes capable of correcting deletions, insertions, and reversals[END_REF] based metric used for measuring the similarity between two sequences by computing the n-gram edits (insertions, deletions or substitutions) required to change one sequence into another. It is unbiased in the computation of precision and recall as it takes into account the total number of n-grams as the denominator, in the computation of the precision and recall rather than unigrams. Given a reference sequence, ref" a 1 , . . . , a m and a hypothesis sequence, hyp" b 1 , . . . , b n , where m and n are the length of ref and hyp respectively, the nonsymmetric n-gram Levenshtein distance (Lev) is given by the recurrence,

	Where	P recision "	Num. mapped unigrams Num. unigrams in candidate	(27)
	and	Recall "	Num. mapped unigrams Num. unigram in reference	(28)
	METEOR tends to reward longer contiguous matches using a penalty term known as frag-
	mentation penalty (Banerjee and Lavie, 2005).
	3.2.1 LESE: LEvenshtein Sequential Evaluation metric
		$ ' ' Lev pi,0q " ' ' ' ' ' ' Lev p0,jq "	ř i k"1 wpa k q ř j k"1 wpb k q	for 1 ď i ď m for 1 ď j ď n
	Lev pi,jq pr,hq "	' & Lev pi´1,j´1q ' ' ' $ ' & Lev d pi ´1, jq for a i:i`n´gram " b j:j`n´gram
		' ' ' ' ' ' % 1 `min	' %	Lev The
	LESE-N (F1-score) is computed thus,
		LESE-N "	p1 `β2 qP Lev R Lev β 2 P Lev `RLev	(30)
	The value of β in Equation (30) is 1 for all experiments with Precision and Recall defined
	as follow,			
	$ & P Lev " max	! 0, ˇˇ| maxp|r| n-gram ,|h| n-gram q´Lev pm,nq pr, hq| |n-gram in hypothesis|	ˇˇ)
	% R Lev " max	! 0, ˇˇ| maxp|r| n-gram ,|h| n-gram q´Lev pm,nq pr, hq| |n-gram in reference|	ˇˇ)
					26)

i pi, j ´1q for a i:i`n´gram " b j:j`n´gram Lev s pi ´1, j ´1q (29) Lev pm,nq pr,hq " Lev pm,nq pr,hq{{n-gram is the n-gram Levenshtein distance; r and h refer to the reference and hypothesis sequence while Lev d , Lev i and Lev s denote the deletion, insertion and substitution operations. The smaller the Levenshstein distance between two sequences, the higher their similarity, hence, Lev(ref, hyp) = 0 when hyp = ref.

Table 3

 3 

	Model	BLUE-1 BLEU-3 MET.	ROUGE-1 Prec. Rec.	F1	ROUGE-L Prec. Rec.	F1	LESE-1 Prec. Rec.	F1	Lev-1	LESE-3 Prec. Rec.	F1	Lev-3
	mini-GPT 11.54	7.51	34.61 11.22 16.12 12.63 10.19 14.79 11.52 8.11	8.57	7.11 46.69 0.38	0.27	0.30 16.0
	BART :	6.14	4.71	9.23 11.24 10.79 10.16 10.40 10.06 9.43	5.26	4.04	4.08 42.71 1.68	1.29	1.28 14.0
	GPT3 :	6.10	2.30	30.69 7.07 13.49 8.84	6.29 12.22 7.91	4.10	9.83	5.46 82.16 0.41	0.63	0.42 28.0
	GPT2 :	22.18	17.39	29.71 30.25 33.79 29.67 28.35 31.62 27.75 22.04 23.99 20.97 42.26 11.03 11.99 10.49 15.0
	GPT2-M : 22.15	17.32	30.38 29.89 34.36 29.69 27.97 32.20 27.78 21.97 24.81 21.21 43.28 11.10 12.56 10.74 15.0
	GPT2-L : 22.46	17.60 30.79 29.73 34.77 29.82 27.86 32.63 27.93 21.88 24.91 21.25 43.41 11.04 12.56 10.73 16.0
	Table 3: Model comparison on BLEU (Papineni et al., 2002), ROUGE-1 & L (Lin, 2004) and
	METEOR (MET.) (Banerjee and Lavie, 2005) scores (%). Higher values (in bold-blue) is preferred
	for all metric except Lev (average n-gram Levenshstein distance). GPT2-L (Large) and GPT2-M
	(Medium) are both competitive in performance with Large, averagely performing better on BLEU,
	ROUGE and LESE scores compared to baseline (mini-GPT). GPT2-M performs best on LESE-3
	triplet score, closely followed by GPT2-L. Prec. Rec; and F1 denote Precision, Recall and F1-score
	respectively. {Model}									

) indicates GPT2-Model trained on the Webtext dataset per-: : Pre-trained model.

Table 4 :

 4 GPT2

	Weight Year BLUE-1 BLEU-3 MET.	ROUGE-1 Prec. Rec. F1	ROUGE-L Prec. Rec. F1	LESE-1 Prec. Rec.	F1	Lev-1	LESE-3 Prec. Rec.	F1	Lev-3
	w :	2019 22.15	17.32	30.38 29.89 34.36 29.69 27.97 32.20 27.78 21.97 24.81 21.21 43.28 11.10 12.56 10.74 15.0
	w 2019 2020 21.64	17.16	29.70 27.99 34.31 28.32 26.39 32.47 26.69 21.59 24.73 21.02 41.96 11.21 12.89 10.96 15.0
	w 2020 2021 24.02	18.32 31.71 31.59 35.98 31.71 29.69 33.83 29.79 22.20 24.83 21.57 45.06 10.57 12.03 10.32 16.0

Medium: Transfer learning model comparison across yearly FA data (year-2020 P R 5672ˆ79 ; year-2021 P R 2906ˆ79

Table 5 :

 5 failed abnormal thd analysis failure manufacturing axis customer limit complaint castelletto data SSBART, GPT2 (base), GPT2 Medium and GPT2 Large are capable of generating short sequences. However, PT-BART generates incorrect SS-FATs while GPT3 generates mostly Sample preparation; Package decap; TOOL DECAP § Physical Analysis; SEM; FIB/SEM § Physical Analysis; FIB Cross Section; FIB/SEM § Non destructive Inspection; Optical microscopy; METALGRAPHIC MICROSCOPE MX61 § Global fault localisation; Static Laser Techniques; EMMI OBIRCH § Global fault localisation; EMMI; EMMI OBIRCH § Electrical Failure Verification; Electrical parametrical test; BENCH TEST

	FATs

FATs (Human) § Others; administrative activity; OM113 -LEICA M165C § Non destructive Inspection; X-ray; PK103 -PHOENIX X-RAY NANOMEX § Electrical Failure Verification; Electrical parametrical test; ZZ003 -CRI7 § Electrical Failure Verification; Electrical parametrical test; BART § d abnormal thd § Physical Analysis; Optical inspection; ANALYSIS EQU EQUIPMENT § Others; administrative failed; thD403 § Others; administrative activity; FINAL REPORT GENERATION § Non destructive Inspection; Optical microscopy; LOW POWER SCOPE 0.00 0.00 GPT3 § sample preparation package; decap; tools § sample preparation; package decap; sp001 -wet + microscopio § physical analysis; sem; em202 -nvision 40 § others; administrative activity; om103 -leica dm lmp § others; administrative activity; om113 -leica m165c § non destructive inspection; ir microscopy; om111 -olympus mx51 -f § electrical failure verification; electrical parametrical test; zz003 -cri7 ( m202 § global fault localisation; emmi; failure rate chain chain analyzer ( ecn § global fault localisation; emmi; fi105 -s105 ) oem esafm01 § electrical failure verification; electrical parametrical test; fv001 -bench test § electrical failure verification; continuity test; ftracer -ecn 4 -FATG. A comparison of the failure analysis generated for different models given a prompt with 4-human expert FATs. GPT2-Medium performs the best in generating highly correlating FATs as the human expert with a perfect LESE-1 and LESE-3 scores. GPT3 § sample preparation package decap tools § sample preparation; package decap; sp001 -wet + microscopio § physical analysis; sem; em202 -nvision 40 § others; administrative activity; om103 -leica dm lmp § others; administrative activity; om113 -leica m165c § non destructive inspection; ir microscopy; om111 -olympus mx51 -f § electrical failure verification; electrical parametrical test; zz003 -cri7 § global fault localisation; static laser techniques; fi105 -iphemos § global fault localisation; emmi; emmi obirch ch § electrical failure verification; electrical parametrical test; fv001 -bench test 0.00 0.00 GPT2 § rejects shz obirch pocutornplgattransport § Sample preparation; Die Delayering; PARALLEL LAPPING-ECN6432 § Physical Analysis; SEM; FIB/SEM § Physical Analysis; FIB Cross Section; FIB/SEM § Non destructive Inspection; Optical microscopy; METALGRAPHIC MICROSCOPE MX61 § Global fault localisation; Static Laser Techniques; EMMI OBIRCH § Global fault localisation; EMMI; EMMI OBIRCH § Electrical Failure Verification; Electrical parametrical test; BENCH TEST GPT2 Medium § Sample preparation; Package decap; TOOL DECAP § Physical Analysis; SEM; FIB/SEM § Physical Analysis; FIB Cross Section; FIB/SEM § Non destructive Inspection; Optical microscopy; METALGRAPHIC MICROSCOPE MX61 § Global fault localisation; Static Laser Techniques; EMMI OBIRCH § Electrical Failure Verification; Continuity test; CURVE TRACER 1

Table 6 :

 6 SS-FATG. A comparison of the failure analysis generated for different models given a

prompt with 5-human expert FATs. LESE-3 scores for this FDR is null indicating the absence of correlating triplets with human FATs. GPT-2 Medium LESE-1 scores outperform other models signaling quality generation of step types and substep techniques.

Table 7 :

 7 conti severirty preanalysis final coppell § Sample preparation; Package decap; CHEMICAL HOOD § Sample preparation; Package decap; LASER DECAPPER § Physical Analysis; Optical inspection; L200 MICROSCOPE 2 § Physical Analysis; Optical inspection; NIKON STEREO MICROSCOPE IN CPL FA § Others; administrative activity; FINAL REPORT GENERATION SS-FATG. A comparison of the failure analysis generated for different models given a prompt with 3-human expert FATs. GPT2 performs the best in generating high correlating FATs as the human expert.BART generation result.

		result serial pras visual assembly coppell cse stated field ale preanalysis michael incident	
		passivation dodge comm stmicroelectronics required material eos scott customer		
	FDR	segment production belvidere conti ppm final failure registration hole supplier		
		complaint chr relevant cseale shorted severirty analyst product standard		
		analysis ecu type location inspection vin mileage quantity warranty subtype		
		FATs	LESE-1 (%)	LESE-3 (%)
		§ Physical Analysis; Optical inspection; ANALYSIS EQUIPMENT		
	FATs (Human)	§ Physical Analysis; Optical inspection; HIGH POWER SCOPE	100	100
		§ Physical Analysis; Optical inspection; LOW POWER SCOPE		
	mini-GPT	-	-	-
			5.56	0.00
		electrical failure verification		
			34.78	0.00
	GPT2 Medium	§ 30.77	0.00
		§ conti cseale		
		§ Sample preparation; Package decap; CHEMICAL HOOD		
	GPT2 Large	§ Sample preparation; Package decap; LASER DECAPPER	33.33	0.00
		§ Physical Analysis; Optical inspection; L200 MICROSCOPE 2		
		§ Physical Analysis; Optical inspection; NIKON STEREO MICROSCOPE IN CPL FA		
		§ Others; administrative activity; FINAL REPORT GENERATION		

BART § d abnormal thd § Physical Analysis; Optical inspection; ANALYSISIS EQUIPMENT § Others; administrative; failed tht abnormal observed mud abnormal § Inspection; Optical inspection; HIGH POWER failed STd abnormal § Non destructive Inspection; Optical microscopy; LOW POWER SCOPE 19.05 0.00 GPT3 § sample preparation; package decap; tools § sample preparation; package decap; sp001 -wet + microscopio § physical analysis; sem; em202 -nvision 40 § others; administrative activity; om103 -leica dm lmp § non destructive inspection; ir microscopy; om111 -olympus mx51 -f § electrical failure verification; electrical parametrical test; fv001 -bench test § global fault localisation; emmi; fibsem § global fault localisation; emmi; analyzer § global fault localisation; emmi; lsm GPT2 § signature andorch conditions huawei § Physical Analysis; Optical inspection; LSM § Physical Analysis; Optical inspection; L200 MICROSCOPE 2 § Others; administrative activity; FINAL REPORT GENERATION § Global fault localisation; Static Laser Techniques; LSM

  sample preparation; package decap; tools § sample preparation; package decap; sp001 -wet + microscopio § physical analysis; sem; em202 -nvision 40 § others; administrative activity; om103 -leica dm lmp § non destructive inspection; ir microscopy; om111 -olympus mx51 -f § electrical failure verification; electrical parametrical test; fv001 -bench test § global fault localisation; sample preparation; dies localisation tracernernbased fault § electrical failure verification; dies marginal parametrical test; 401 -fa Sample preparation; Package decap; CHEMICALDECAP ACID § Sample preparation; Package decap; HOTPLATE § Physical Analysis; Optical inspection; MICROSCOPE MX51 § Physical Analysis; Optical inspection; METALGRAPHIC MICROSCOPE MX61 § Non destructive Inspection; Optical microscopy; MICROSCOPE VH8000 § Non destructive Inspection; X-ray; 3D X-RAY § Electrical Failure Verification; Continuity test; CURVE TRACER 2 § Non destructive Inspection; Optical microscopy; MICROSCOPE MX51 Sample preparation; Package decap; CHEMICALDECAP ACID § Sample preparation; Package decap; HOTPLATE § Physical Analysis; Optical inspection; MICROSCOPE MX51 § Physical Analysis; Optical inspection; METALGRAPHIC MICROSCOPE MX61 § Non destructive Inspection; Optical microscopy; MICROSCOPE VH8000 § Non destructive Inspection; X-ray; 3D X-RAY § Electrical Failure Verification; Continuity test; CURVE TRACER 2 § Non destructive Inspection; Optical microscopy; MICROSCOPE MX51 Sample preparation; Package decap; CHEMICALDECAP ACID § Sample preparation; Package decap; HOTPLATE § Physical Analysis; Optical inspection; MICROSCOPE MX51 § Physical Analysis; Optical inspection; METALGRAPHIC MICROSCOPE MX61 § Non destructive Inspection; Optical microscopy; MICROSCOPE VH8000 § Non destructive Inspection; X-ray; 3D X-RAY § Electrical Failure Verification; Continuity test; CURVE TRACER 2 § Non destructive Inspection; Optical microscopy; MICROSCOPE MX51

	FDR	failure customer complaint amp reliability analysis shenzhen		
		FATs	LESE-1 (%) LESE-3 (%)
		§ Sample preparation; Package decap; MANUAL CHEMICAL DECAP		
		§ Physical Analysis; SEM; PHILIPS SEM XL40 (RSE001)		
		§ Non destructive Inspection; X-ray; B800_FA-XR01		
	FATs (Human)	§ Physical Analysis; SEM; HITACHI SEM TM-1000 (RSE002)	100	100
		§ Non destructive Inspection; Optical microscopy; OLYMPUS MICROSCOPE SZ40 (ROS005)		
		§ Electrical Failure Verification; Continuity test; TEKTRONIX 370A CURVE TRACER		
		§ Electrical Failure Verification; Continuity test; KEITHLEY PARAMETRIC ANALYZER		
	mini-GPT	-	-	-
		§ d abnormal thd abnormalities failed tht abnormal parametric gnd amp		
	BART	§ Physical Analysis; FIB Cross Section; EM202 -NVISION 40	6.25	0.00
		§ Others Others; administrative activity; OM800 -LEICA -FA		
		§ Others; administrative; failed THdd abnormal		
	GPT3	§ 22.22	0.00
	GPT2	§ 31.11	0.00
	GPT2 Medium	§ 29.79	0.00
	GPT2 Large	§ 31.11	0.00

Table 8 :

 8 LS-FATG.Failure analysis triplets generated for the different models. LESE-1 scores for GPT2-Large and Base are best performing in generating correlating FATs as the human expert.

	Long sequence FATG (LS-FATG)
	FDR prompt: failure customer complaint amp reliability analysis shenzhen
	Human FATs:
	§ Sample preparation; Package decap; MANUAL CHEMICAL DECAP
	§ Physical Analysis; SEM; PHILIPS SEM XL40 (RSE001)
	§ Non destructive Inspection; X-ray; B800 FA-XR01
	§ Physical Analysis; SEM; HITACHI SEM TM-1000 (RSE002)
	§ Non destructive Inspection; Optical microscopy; OLYMPUS MICROSCOPE SZ40 (ROS005)
	§ Electrical Failure Verification; Continuity test; TEKTRONIX 370A CURVE TRACER
	§ Electrical Failure Verification; Continuity test; KEITHLEY PARAMETRIC ANALYZER
	GPT2-M FATs: BLEU-3: 0.00% LESE-3: Prec.: 0.00% Rec.: 0.00% F1.: 0.00%
	§ Sample preparation ; Package decap ; CHEMICALDECAP ACID
	§ Sample preparation ; Package decap ; HOTPLATE
	§ Physical Analysis ; Optical inspection ; MICROSCOPE MX51
	§ Physical Analysis ; Optical inspection ; METALGRAPHIC MICROSCOPE MX61
	§ Non destructive Inspection ; Optical microscopy ; MICROSCOPE VH8000
	§ Non destructive Inspection ; X-ray ; 3D X-RAY
	§ Electrical Failure Verification ; Continuity test ; CURVE TRACER 2
	

§ Non destructive Inspection ; Optical microscopy ; MICROSCOPE MX51 BART FATs: BLEU-3: 0.00% LESE-3: Prec.: 0.00% Rec.: 0.00% F1.: 0.00% § d abnormal thd abnormalities failed tht abnormal parametric gnd amp § Physical Analysis ; FIB Cross Section ; EM202 -NVISION 40 § Others Others ; administrative activity ; OM800 -LEICA -FA § Others ; administrative ; THdd abnormal

Transformers: https://github.com/huggingface/transformers

Nucleus sampling: https://github.com/ari-holtzman/degen
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Conclusion

We evaluate the efficiency of pre-trained transformer models for the downstream task of failure analysis triplet generation. We observe that forward only auto-regressive modelling used in GPT2 and GPT3 gives it excellent capabilities to generate structured data. When adapted for FATG, GPT2 ROUGE scores outperforms other benchmarks for generating both short and long FATs, λ's. Since, ROUGE, BLEU and METEOR scores do not accurately convey human-expert evaluation, we introduce Levenshstein Sequential Evaluation (LESE) metric. LESE-N performs on par with human expert judgment for different test cases. GPT2-Medium and Large models perform best on LESE-1 and LESE-3 triplet scores, which corresponds to human judgement.

Fine-tuned BART generates very short triplets and seeks contextual representation of triplets making it unfit for structured long-text sequences while GPT3, generates long storytelling-like data that do not necessarily follow known expert failure analysis FATs.
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