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While quasi-Newtonian complex fluids under steady-state flow, dense non-Brownian suspensions
exhibit complex “macro-fragile” behaviors under varying flow conditions, as revealed by abrupt
shear inversions (reversals). Here, we introduce an experimental setup to systematically explore
their macro-fragile response to shear rotations, where one suddenly rotates the principal axes of
shear by an angle θ. This reveals a transient decrease of the shear stress under shear rotation.
Moreover, the orthogonal shear stress, which vanishes in steady state, takes non-negligible values
with a rich θ-dependence, changing qualitatively with ϕ, and resulting in a force that tends to reduce
or enhance the direction of flow for small or large ϕ. These findings are confirmed and rationalized
by particle-based numerical simulations and a recently proposed constitutive model. We show that
the angular dependence of the orthogonal stress results from an interplay between hydrodynamic
and contact stresses, which balance changes with ϕ.

Suspensions of non-Brownian hard particles in liquid
form a large class of complex fluids [1, 2]. When
solid and fluid are mixed in roughly equal proportion,
they are called dense suspensions. Their widespread
use in industry calls for the development of proper
constitutive characterization and modelling, in order to
enable reliable quantitative process design.

This effort has a long history [1]. In steady state,
the viscosity of non-Brownian suspensions is observed to
be either deformation-rate-independent [3, 4] or slightly
shear thinning [5–9]. Shear thickening is also observed
when particles are repulsive beyond pure hard-core
forces [10, 11], but we here focus on the strictly hard-
sphere case. The low shear-rate value of the viscosity
increases with the solid volume fraction ϕ, and diverges
at the jamming volume fraction ϕJ [3, 4].

However, dense suspensions exhibit striking unsteady
behaviors, e.g. the sharp viscosity drop in orthogonal
superposition [12–15]. The simplest illustration is shear
reversal, where a suspension initially sheared in steady
state under a given deformation rate γ̇, is suddenly
sheared with a rate −γ̇ [16]. The viscosity drops suddenly
at reversal, passes through a minimum value and climbs
up to its steady-state value after a few strain units [16–
23].

Under shear, suspensions develop an anisotropic
contact network which takes up most of the stress at
large concentrations [10, 20, 24–29] and is built in a finite
strain [16]. Upon shear reversal, the micro-structure is
initially not compliant with the new direction of shear,
leading to a viscosity dip which ends when the micro-
structure is rebuilt in the new orientation [16]. The
fact that the principal axes of the micro-structure have
to rotate over a finite strain to sustain a change of

applied load is known as macrofragility [30]. For shear
reversal, the rotation of the stress axes is maximal, as
the compressional and elongational axes are swapped.
The associated macro-fragile response has been carefully
characterized numerically [21, 22, 31].

Beyond shear reversal, a full characterization of the
fragility of dense suspensions is however absent. Here
we fill this gap by considering the response to shear
rotations, i.e. rotations of the stress axes by an arbitrary
angle θ about the gradient direction. We perform
shear rotations in experiments, with a specifically
designed rheometer, discrete element simulations, and
the Gillissen-Wilson constitutive model [32, 33]. We
report the viscosity drop as a function of θ and strain
after rotation γ.

We also unveil a new non-Newtonian phenomenon:
following a shear rotation, the shear viscosity orthogonal
to the flow direction, η32, is transiently finite, reaching
up to 50% of the usual shear viscosity η12. Moreover,
we show that the nature of angular dependence of η32
depends on ϕ: while at moderate ϕ, η32 shows a change
of sign in θ ∈ [0, π], associated to a force resisting shear
rotation for small θ values, for the largest ϕ values it
keeps a constant sign. We show that this is due to the
decreasing relative contribution of hydrodynamic stresses
versus contact stresses when ϕ increases.

Experimental setup We designed a cross rheometer,
sketched in Fig. 1, made with two parallel plates mounted
on two motorized linear stages (Newport MFA-CC)
acting in perpendicular directions, allowing for arbitrary
relative parallel motion and therefore arbitrary simple
shear with velocity gradient orthogonal to the plates. We
apply a simple shear (Fig. 1(b)) with velocity gradient
L = ∇u = γ̇e1e2 (with (∇u)αβ = ∂βuα), from which we
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FIG. 1. Sketch of the setup. (a) View along the flow-gradient
direction. Two translation stages (light green) independently
move an upper plate (orange) and a lower plate (green gray).
The suspension (gray) is sheared between these plates. (b)
Shear plane view. A force sensor below the lower plate
measures the horizontal stresses. (c) Shear rotation by an
angle θ in the reference frame of the bottom plate: the top
plate moves along IO, then along OJ . A transient force
F = F//e1 + F⊥e3 is recorded during OJ .

define the strain-rate tensor E = γ̇Ê ≡ (L +LT)/2. The
shear rate γ̇ is related to the velocity of the top plane
relative to the bottom plane v = γ̇ge1, g = 1mm being
the gap width between the two plates.

A force sensor (AMTI HE6x6-1) measures the
tangential force F⃗ = F⃗∥ + F⃗⊥ exerted on the lower plate

(and thus by the upper plate on the suspension), with F⃗∥
and F⃗⊥ respectively along e1 and e3 (Fig. 1(b)-(c)). We
define the shear viscosity η12 =Σ ∶ e1e2/γ̇, as well as the
“orthogonal” shear viscosity η32 =Σ ∶ e3e2/γ̇. Both have
opposite θ-parities: η12 is even, η12(γ, θ) = η12(γ,−θ),
while η32 is odd, η32(γ, θ) = −η32(γ,−θ) (in particular
this enforces that η32(γ,0) and η32(γ, π) vanish).
A shear rotation is a preshear (IO on Fig. 1(c)) of

10 strain units, a strain large enough to reach steady
state, followed by a second shear where we rotate the
flow direction e1 and vorticity direction e3 by an angle
θ ∈ [0,2π] around the gradient direction e2 (OJ in
Fig. 1(c)). The viscosities η12(γ, θ) and η32(γ, θ) are
recorded via a DAQ (USB-1608FS-PLUS, MCCDAQ) as
a function of the subsequent strain γ < 10. The strain
resolution is ∼ 3 × 10−3 and the lowest available strain is
∼ 1 × 10−2, and θ is sampled every π/18.
The suspension particles are PMMA spheres with

a diameter of 40µm (Microbeads TS40). They are
dispersed in PEG (Sigma-Aldrich, η0 = 38.4Pa s) (resp.
silicon oil M1000, Roth, η0 = 0.98Pa s) for suspensions at
ϕ = 0.45 (resp. ϕ = 0.57).

Numerics & model We perform the same protocol in
DEM simulations of a suspension of N = 2000 frictional
particles subject to lubrication and contact forces in a tri-
periodic configuration, using a method described in [27,
34]. The suspension is bidisperse (with a size ratio 1 ∶ 1.4)
and the friction coefficient is µp = 0.5.
We also compare our results to the predictions of the

GW model, a model capturing the features of shear
reversal [32, 33]. The GW model considers the time
evolution of a fabric tensor ⟨nn⟩ where n is the unit
separation vector between pairs of particles in a near
interaction via contact or lubrication forces

∂t⟨nn⟩ = L ⋅ ⟨nn⟩ + ⟨nn⟩ ⋅LT − 2L ∶ ⟨nnnn⟩
− β [Ee ∶ ⟨nnnn⟩ + ϕ

15
(2Ec +Tr(Ec)δ)] , (1)

with Ec (resp. Ee) the compressive (resp. extensive)
part of E, and β a free parameter. The tensor ⟨nnnn⟩
is approximated in terms of ⟨nn⟩ with the Hinch & Leal
closure [35]. Furthermore, the GW model decomposes
the stress Σ in contributions from hydrodynamics, ΣH,
and contacts, ΣC,

ΣH

ηsγ̇
= αÊ ∶ ⟨nnnn⟩ ; ΣC

ηsγ̇
= χÊc ∶ ⟨nnnn⟩ . (2)

Here α = α0

(1−ϕ/ϕRCP)2 and χ = χ0

(1−ξ/ξJ)2 , with α0 and χ0

free parameters, are such that they diverge respectively
at the random close packing volume fraction ϕRCP and

when the ‘jamming coordinate’ ξ = − ⟨nn⟩∶Ec

∣Ec∣ reaches

the the jamming value ξJ = ϕJ
(213β2−234β+2080)
15(9β2+54β+416) [32, 36],

which in steady state occurs at the frictional jamming
point, ϕ = ϕJ < ϕRCP.
Results In Fig. 2(a), we show the viscosity η12(γ, θ)

measured in experiments, for a moderately dense
suspension at ϕ = 0.45. It decreases at low strain
values, passes via a minimum before increasing back to its
steady-state value. The minimum is located at a strain
γmin increasing with θ, from γmin ≲ 0.1 for the smallest
considered θ values to γmin ≈ 0.35 for shear reversal
(θ = π). As shown in Fig. 2(b), the minimum value η12,min

gradually decreases when θ increases, to reach its lowest
value for shear reversal. Once normalized by the steady-
state value ηSS12 , η12,min/ηSS12 for a given θ decreases when
ϕ increases, as is already known for shear reversal [21].
Interestingly, for the lowest ϕ = 0.45, η12,min ≈ ηSS12 for
θ ≲ π/4: η12 seems oblivious to the shear rotation at
small angles, which we could interpret as a non-fragile
response. (We will see that this is not quite true when
considering η32.)
We compare these data with the DEM ones in a radial

representation η12(γ, θ) in Fig. 2(c), with experiments
in the top half and numerics in the bottom half. The
agreement is good, besides simulations predicting a
quicker relaxation to steady state than actually observed.
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FIG. 2. (a) Shear viscosity η12 normalized by the steady-state
value ηSS

12 as a function of strain γ in experiments for ϕ = 0.45,
for several values of θ ∈ [0, π], increasing from light to dark.
The minimum values of the viscosity η12,min/ηSS

12 for each θ are
circled. (b) η12,min/ηSS

12 as a function of shear rotation angle
θ for ϕ = 0.45,0.55 and 0.57. (c) and (d) Polar representation
of η12(γ, θ) and η32(γ, θ), normalized by ηSS

12 , for ϕ = 0.45,
in experiments (top half) and numerical simulations (bottom
half). (e) and (f) Same, but for ϕ = 0.57.

We turn in Fig. 2(d) to η32, again comparing
experiments in the top half and numerics in the bottom
half. Both data are in excellent agreement and reveal a
structure with a mixture of first and second order odd
circular harmonics (respectively ∝ sin θ and ∝ sin 2θ)
coming with similar amplitudes. For 0 < θ ≲ π/2, we
find η32 < 0 for γ ≲ 1, i.e. the suspension exerts on
the top plate a “restoring” force in the direction of
decreasing θ values. In a force control setup where one
sets the upper plate force F⃗∥ rather than its displacement,
the suspension would thus be stable with respect to
shear rotations, by rotating the velocity of the top plate
towards lower θ values. By contrast, for π/2 ≲ θ < π,
we find η32 > 0 for γ ≲ 2, which can be interpreted as the
suspension tending to bend the top plate trajectory to
larger θ values.

In Fig. 2(e),(f), we show η12 and η32 for ϕ = 0.57, close
to ϕJ ≈ 0.58. Both experimental and numerical data show

FIG. 3. Contributions to the orthogonal viscosity from
contacts (a) and hydrodynamics (b), in the GW model in the
top halves and DEM simulations in the bottom halves. (c) A
particle during initial shear at t = 0− has more near contacts
in compressional quadrants (red) than elongational quadrants
(blue). (d)–(e) Looking down from the gradient direction,
just after shear rotation by θ = π/2 the new compressional
and elongational quadrants are respectively below and above
the dashed lines. Contact forces come from the new
compressional, and are dominated by the more numerous
contacts in the old compressional (red arrow), leading to ηC

32 >
0 (d). Hydrodynamic forces have symmetric contributions
from new compressional and elongational quadrants, leading
to ηC

32 = 0 (e).

that the relaxation to steady state is quicker than at ϕ =
0.45 [21, 23]. More importantly, the first harmonic of η32
dominates. For 0 < θ < π, we find η32 > 0: the suspension
always tend to push the top plate to move towards larger
θ values, that is, the response is no longer stabilizing for
small shear rotations.

Our simulations also show that the stress response
is closely mimicked by the microstructure response,
characterized by the fabric evolution after shear
rotation [34]. Notably, however, the fabric evolution does
not exhibit any qualitative change upon increase of ϕ that
we could correlate to the change of behavior of η32.

To understand the origin of the η32 behavior, we
interrogate the GW model, performing shear rotations
and looking separately at the contact and hydrodynamic
contributions to the stress response. As shown in
Fig. 3(b), the large second harmonic of η32 is due to the
hydrodynamic component ηH32, which at ϕ = 0.45 still
accounts for a substantial part of the total stress [28].
In contrast, the contact contribution ηC32 has a dominant
first harmonic, with ηC32 > 0 for 0 < θ < π, as shown in
Fig. 3(a). This is confirmed by numerical simulations,
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which compare well to the predictions of the GW model
for both stress components.

The difference between contact and hydrodynamic
contributions can be qualitatively understood. In
Fig. 3(c), we sketch a particle during preshear. It shows
a fore-aft asymmetry: it has more near interactions
(lubricated and in contact) in the compressional
quadrants (in red) than in the elongational one (in
blue). The same particle is seen from the gradient
direction e2 right after a shear rotation with θ = π/2
in Fig. 3(d),(e). After rotation, the fore-aft asymmetry
accumulated in preshear is a “left-right” asymmetry, and
fore-aft symmetry is temporarily restored. Post-rotation
contact stresses (Fig. 3(d)) stem from contacts in the
post-rotation compressional quadrant, below the dashed
line, and due to the left-right asymmetry, are dominated
by contacts that carry over from the pre-rotation in
the intersect of pre- and post-rotation compressional
quadrants. Contact forces F⃗C in this overlap region
(red vector) are such that e3 ⋅ F⃗C > 0, giving a
positive contribution to η32. By contrast, in Fig. 3(d),
all interactions contribute hydrodynamic forces, and
the fore-aft symmetry ensures that the hydrodynamic
contribution from the post-rotation elongational and
compressional quadrants share the same e1 component,
but have opposite e3 component. This results in a net-
zero hydrodynamic contribution to η32.

Whereas this reasoning can be extended to show that
ηC32 > 0 for θ ∈]0, π[, the sign of ηH32 for θ ≠ π/2 depends
on aspects of the distribution of near interactions that
cannot be deduced from symmetry considerations. The
GW model however gives us a quantitative picture
alongside a microstructural insight. Calling ⟨nn⟩ss the
steady-state fabric in pre-shear, we get the following
contributions to η32 at γ = 0+ [34]

ηH32
ηs
= α(ϕ)

14
sin 2θ (⟨nn⟩ssxx − ⟨nn⟩sszz) (3)

ηC32
ηs
= χ(ξ)

7
[ sin 2θ

4
(⟨nn⟩ssxx − ⟨nn⟩sszz) − sin θ⟨nn⟩ssxy] ,

with

ξ = [ cos2 θ⟨nn⟩ssxx + ⟨nn⟩ssyy + sin2 θ⟨nn⟩sszz
− 2 cos θ⟨nn⟩ssxy]/2 .

For the contact contribution, we find that the first
harmonic dominates for the values of ϕ and β
investigated. It is such that ηC32 > 0 for 0 < θ < π.
By contrast, the hydrodynamic contribution only has a
second harmonic, and dominates the response at angles
close to θ = 0 and θ = π. Moreover, its sign is not obvious,
as it is set by ⟨nn⟩ssxx − ⟨nn⟩sszz. With the values of β
used here, we always find ⟨nn⟩ssxx−⟨nn⟩sszz < 0 in the GW
model. For small θ values, it therefore “stabilizes” the
microstructure, as sgnηH32 = − sgn θ, so that it provides

a restoring force acting against the rotation of the flow
direction. From previous simulations, ⟨nn⟩ssxx − ⟨nn⟩sszz
is known to be tiny [23]. In our simulations, where
we compute ⟨nn⟩ based on particle pairs separated by
at most a gap of ϵc = 0.05 times the average radius
of the pair, we also find ⟨nn⟩ssxx − ⟨nn⟩sszz < 0, albeit
decreasing in amplitude when ϕ increases. Interestingly,
the value of ⟨nn⟩ssxx − ⟨nn⟩sszz becomes positive for small
enough ϵc, which highlights how subtle the hydrodynamic
stabilization is.

We have shown how to characterize the macro-fragile
response of dense suspensions using shear rotations. We
performed shear rotations experimentally, numerically,
and in a constitutive model, which revealed a rich
phenomenology. The shear viscosity exhibits a dip
(except at small θ for the smallest ϕ explored here,
ϕ = 0.45) on strain scales of order unity or less,
which amplitude increases upon increase of ∣θ∣ or ϕ
increase. Remarkably, whereas in steady state symmetry
imposes that η32 vanishes, we find that η32 ≠ 0 during
the transient micro-structure reorganization following a
shear rotation, with ∣η32∣ reaching up to 50% of η12
at ϕ = 0.57, and 10% of ηSS12 . The qualitative angular
structure of η32(γ, θ) depends on ϕ, which is explained
by the predominance of either hydrodynamic or contact
stresses. For ϕ = 0.45, the second harmonic of η(γ, θ)
is large as hydrodynamic stresses dominate, while for
ϕ = 0.57 it is small as contact stresses dominate. One
consequence is that for small θ, η32 produces a force that
acts to reduce (stabilize) θ at smaller ϕ while it increases
(destabilizes) θ at larger ϕ.

These findings are relevant to virtually all actual flows
of suspensions that involve changes in the flow geometry,
e.g. extrusions, flows of suspensions in porous materials,
landslides on varying slope directions. The decrease
of η12 under shear rotations has already been used to
design energy-saving flow strategies [13, 14], however the
behavior of η32 has so far been overlooked. Whereas
in this work we impose the deformation and measure
η32, in many cases one imposes the force or stress. A
finite η32 may lead to non-trivial trajectories, e.g. during
the pulling or the sedimentation of an object in a dense
suspension, especially if the suspension is not stable
against shear rotations.

We have here focused on shear rotations, which
form only a subset of all the flow changes that can
happen in a complex geometry. In general one would
also need to characterize changes from simple shear to
extensional flows, and of course non-uniform flows, which
are known to induce migration phenomena [37]. While
characterizing all flow histories relevant for applications
(or even a carefully selected subset) is a major task, our
results show that it would certainly reveal non-trivial yet
possibly important stress responses. As the GW model
captures the salient features of the stress response under
shear rotation, as well as for non-uniform flows [38], it
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could also prove an efficient design tool in this endeavour.
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