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In the past as well as present wireless communication systems, the wireless propagation environment is regarded as an uncontrollable black box that impairs the received signal quality, and its negative impacts are compensated for by relying on the design of various sophisticated transmission/reception schemes. However, the improvements through applying such schemes operating at two endpoints (i.e., transmitter and receiver) only are limited even after five generations of wireless systems. Reconfigurable intelligent surface (RIS) or intelligent reflecting surface (IRS) have emerged as a new and revolutionary technology that can configure the wireless environment in a favorable manner by properly tuning the phase shifts of a large number of quasi passive and low-cost reflecting elements, thus standing out as a promising candidate technology for the next-/sixth-generation (6G) wireless system. However, to reap the performance benefits promised by RIS/IRS, efficient signal processing techniques are crucial, for a variety of purposes such as channel estimation, transmission design, radio localization, and so on. In this paper, we provide a comprehensive overview of recent advances on RIS/IRS-aided wireless systems from the signal processing perspective. We also highlight promising research directions that are worthy of investigation in the future.

I. INTRODUCTION

While the fifth-generation (5G) wireless communication system is under deployment worldwide, research interest has shifted to the future sixth-generation (6G) wireless system [START_REF] Saad | A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[END_REF]- [START_REF] Zhang | 6G wireless networks: Vision, requirements, architecture, and key technologies[END_REF], which targets supporting not only cutting-edge applications like multisensory augmented/virtual reality applications, wireless brain computer interactions, and fully autonomous in the wireless propagation environment. By judiciously tuning the phase shifts of the RIS/IRS, the signals reradiated from the RIS/IRS can be added constructively with the signals from other paths to enhance the received signal power at the desired users, or can be combined destructively to mitigate the undesired signals at unintended users such as multiuser interference and signal leakage at the eavesdroppers. Due to these functionalities, RIS/IRS can be used to extend the coverage area, improve the channel rank, mitigate the interference, enhance the reliability, and improve the positioning accuracy. Unlike conventional relaying techniques, an RIS/IRS is free from RF chains and amplifiers, and thus entails much reduced power consumption and hardware cost. Furthermore, due to their quasi passive nature, RIS/IRS can be fabricated with a low profile, light weight, and limited thickness, which enables them to be readily layered on surfaces available in the environment, including building facades, ceilings, street lamps, and so on.

The appealing advantages of RIS/IRS have led to extensive research focused on its fundamental performance limits [START_REF] Basar | Wireless communications through reconfigurable intelligent surfaces[END_REF]- [START_REF] Zhou | Spectral and energy efficiency of IRS-assisted MISO communication with hardware impairments[END_REF], channel modeling [START_REF] Tang | Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[END_REF]- [START_REF] Sun | A 3D non-stationary channel model for 6G wireless systems employing intelligent reflecting surfaces with practical phase shifts[END_REF], and prototype design [START_REF] Dai | Reconfigurable intelligent surface-based wireless communications: Antenna design, prototyping, and experimental results[END_REF]- [START_REF] Zhang | A wireless communication scheme based on space-and frequency-division multiplexing using digital metasurfaces[END_REF]. It was shown in [START_REF] Pei | RIS-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials[END_REF] that, in an indoor realistic propagation environment, 26 dB power gain can be achieved by an RIS/IRS prototype consisting of 1100 controllable elements operating in the 5.8 GHz band. In addition, several tutorial/overview papers have summarized recent developments in this area, including the technical challenges [START_REF] Wu | Intelligent reflecting surface-aided wireless communications: A tutorial[END_REF], operation principles [START_REF] Liu | Reconfigurable intelligent surfaces: Principles and opportunities[END_REF], transmission design and applications [START_REF] Gong | Toward smart wireless communications via intelligent reflecting surfaces: A contemporary survey[END_REF], electromagnetic modeling [START_REF] Di Renzo | Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[END_REF], practical design issues [START_REF] Zheng | A survey on channel estimation and practical passive beamforming design for intelligent reflecting surface aided wireless communications[END_REF] and channel estimation [START_REF] Swindlehurst | Channel estimation with reconfigurable intelligent surfaces -a general framework[END_REF].

In this paper, we provide a systematic overview of existing works on IRS/RIS mainly from the signal processing point of view, by focusing on channel estimation, transmission design and radio localization issues. Specifically, in Section II, we overview existing contributions on channel estimation based on the structure of the channels, including unstructured channels that model low-frequency rich-scattering scenarios and structured channels that are appropriate for high-frequency sparse channels. In Section III, we overview existing works on transmission design from two aspects, namely, optimization techniques and the availability of channel state information (CSI). The existing contributions on transmission design are classified into three cases, based on fully instantaneous CSI, two-timescale CSI and fully long-term CSI, respectively. Then, in Section IV, we introduce RIS/IRS-aided localization techniques by differentiating between far-field and near-field channel models. Promising research directions for future work are highlighted in Section V and conclusions are drawn in Section VI.

Notations: 1 M and 0 M are column vectors of all ones and all zeros, respectively. The Hadamard, Kronecker and Khatri-Rao products between two matrices A and B are denoted by A B, A ⊗ B and A B, respectively. A 2 denote the 2-norm of matrix A. A (:,n) and A (m,:) denote the nth column and the m-th row of matrix A, respectively. (•) 

II. CHANNEL ESTIMATION

In this section, we overview existing methods for channel estimation. For illustrative purposes, we focus our attention on the uplink, but similar considerations can be made for the downlink. The uplink channel estimation scenario for a narrow-band RIS-aided1 multi-user communication system is shown in Fig. 1. The system model consists of one BS with N antennas, one RIS with M reflecting elements, and K single-antenna users. Let H ∈ C N ×M denote the RIS-BS channel, h r,k ∈ C M ×1 the user-RIS channel of user k, and h d,k ∈ C N ×1 the user-BS channel of user k. We assume that all the channels are subject to quasi-static fading and hence the channel coefficients remain constant within one channel coherence interval.

At time slot t, the received baseband signal at the BS is given by

y t = K k=1 P k (h d,k + HΘ t h r,k )x k,t + n t , (1) 
where x k,t ∈ C is the pilot signal transmitted by user k satisfying the constraint |x k,t | = 1, P k is the transmit power, n t ∼ CN 0, σ2 I N is the additive white Guassian noise (AWGN), and Θ t is the reflection coefficient matrix of the RIS. In general, Θ t is a diagonal matrix given by Θ t = diag (θ t ), where

θ t = [θ t,1 , • • • , θ t,M ]
T is the corresponding reflection coefficients at the RIS with θ t,m = α m e jϕt,m being the reflection coefficient corresponding to the m-th reflecting element. Here, α m and ϕ t,m ∈ [0, 2π) are the amplitude and the phase shift of the m-th element of the RIS, respectively. For simplicity, the reflection amplitude is assumed to be α m = 1, ∀m. 2 A key property for channel estimation in RIS-aided systems is that there is a scaling ambiguity issue that prevents the RIS-BS channel and the user-RIS channel from being individually identifiable. Specifically, for any invertible M × M diagonal matrix Λ, we have

HΘ t h r,k = HΛΘ t Λ -1 h r,k = HΘ t hr,k , (2) 
where H = HΛ and hr,k = Λ -1 h r,k . Hence, even if HΘ t h r,k can be estimated based on [START_REF] Saad | A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[END_REF], one is still not able to extract the individual channels H and h r,k . Fortunately, there is generally no need to address this ambiguity issue when designing the phase shift matrix at the RIS for data transmission without loss of optimality. Denote the cascaded channel for user k as G k = Hdiag (h r,k ) ∈ C N ×M . Then, the received signal in (1) can be rewritten as

y t = K k=1 P k (h d,k + G k θ t )x k,t + n t . (3) 
Hence, as will be seen in Section III, the cascaded channel G k and the direct channel h d,k are sufficient for designing RIS-aided communications. As a result, most of the existing contributions have focused on designing algorithms to estimate the cascaded channels and the direct channel h d,k separately 3 .

In the following, we review the state-of-art techniques based on the structure of the channel models, namely, unstructured channel models and structured channel models.

A. Unstructured Channel Models

In this subsection, we consider the case when the channels are characterized by rich scattering. This is often the case in sub-6 GHz communication systems, where the propagation environment cannot be efficiently parameterized. In the following, we first consider the simple single-user case, and then address the multiuser case.

1) Single-user Case: Since a single user is considered, the user index is omitted in the following derivations and the received signal model in (3) becomes

y t = √ P (h d + Gθ t )x t + n t . (4) 
The m-th column of G is denoted by

g m . Define H = [h 1 , • • • , h M ] and h r = h 1 r ; • • • ; h M r . Then, g m = h m r h m .

By defining the overall channel as

c = h T d , g T 1 , • • • , g T M T , (4) 
can be rewritten as

y t = √ P x t 1, θ T t ⊗ I N c + n t . (5) 
Assume that T time slots are used for channel training, i.e, T time slots are reserved for estimating the end-to-end channel, and define

Φ =   1, θ T 1 • • • 1, θ T T   ∈ C T ×(M +1) , Ξ = Φ ⊗ I N . (6) 
Stacking the T training time slots together, the overall received signal vector can be expressed as    y 1 . . .

y T    = √ P    x 1 1, θ T 1 ⊗ I N . . . x T 1, θ T T ⊗ I N    c +    n 1 . . . n T    = √ P XΞc + n, (7) 
where we have defined

X = diag ([x 1 1 N ; • • • ; x T 1 N ]) and n = n T 1 , • • • , n T T T . By defining y = y T 1 , • • • , y T T
T and Z = XΞ, the overall received signal vector in [START_REF] Pan | Reconfigurable intelligent surfaces for 6G systems: Principles, applications, and research directions[END_REF] can be written as y =

√ P Zc + n. ( 8 
)
Our aim is to estimate c based on the pilot matrix Z that is assumed to be known and depends on the pilot sequence being used for channel estimation. To ensure that c can be uniquely estimated, Z must be a full rank matrix. Hence, the number of time slots for channel training need to satisfy the condition T ≥ (M + 1).

In general, based on [START_REF] Yuan | Reconfigurableintelligent-surface empowered wireless communications: Challenges and opportunities[END_REF], there are two common methods for estimating c.

Method I: Least Squares (LS) Estimator

The simplest method to estimate c is the LS estimator, which is formulated as

ĉ = arg min c y - √ P Zc 2 , (9) 
for which the solution is

ĉ = 1 √ P Z H Z -1 Z H y. (10) 
Assume that the noise vectors are uncorrelated, that is n ∼ CN 0, σ 2 I N T . Then, the LS channel estimate is equivalent to the maximum likehood (ML) estimate, and it is an unbiased estimator, e.g., E {ĉ} = c. The error covariance matrix of the estimated channel is equal to the Cramér-Rao bound (CRB):

R e = E (c -ĉ) (c -ĉ) H = 1 P E Z H Z -1 Z H nn H Z Z H Z -1 = σ 2 P Z H Z -1 = σ 2 P Ξ H Ξ -1 = σ 2 P Φ H Φ -1 ⊗ I N . (11) 
Note that the error covariance matrix in [START_REF] Basar | Wireless communications through reconfigurable intelligent surfaces[END_REF] is not related to the training signals sent by the users, e.g., X. Therefore, the optimization of the channel estimation boils down to the design of the training phase shift matrix Φ. In the following, two commonly used schemes are introduced.

• On-off Scheme [START_REF] Mishra | Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer[END_REF], [START_REF] Yang | Intelligent reflecting surface meets OFDM: Protocol design and rate maximization[END_REF]: The simplest scheme is the on-off scheme adopted in [START_REF] Mishra | Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer[END_REF], [START_REF] Yang | Intelligent reflecting surface meets OFDM: Protocol design and rate maximization[END_REF]. The main idea is to switch each reflecting element on and off [START_REF] Mishra | Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer[END_REF], or to switch groups of reflecting elements on and off [START_REF] Yang | Intelligent reflecting surface meets OFDM: Protocol design and rate maximization[END_REF] to reduce the training overhead. Specifically, in the first time slot, all the reflecting elements are switched off, and the BS estimates the direct channel h d . Then, in the remaining time slots, only one element (group) is switched on while keeping the others off. In this scheme, the number of time slots for channel training is equal to T = M +1. Note that θ t,m = 0, 1 corresponds to the case when the reflecting element is off and on, respectively. Hence, the training phase shift matrix is given by

Φ = 1 0 T M 1 M I M . ( 12 
)
Then, based on [START_REF] Basar | Wireless communications through reconfigurable intelligent surfaces[END_REF], the error covariance matrix is equal to

R e = σ 2 P Ξ H Ξ -1 = σ 2 P Φ H Φ -1 ⊗ I N = σ 2 P 1 -1 T M -1 M E M ⊗ I N , (13) 
where E M = 1 M 1 T M + I M . Hence, the error variance of the channels is obtained as

var ĥd = σ 2 P I N , var (ĝ m ) = 2σ 2 P I N , m = 1, • • • , M. (14) 
The factor 2 in the numerator of var (ĝ m ) is due to the error propagation of the estimation error of h d . The main drawback of the on-off scheme is that switching off all the reflecting elements except one would reduce the reflected power, which degrades the received signal-to-noise ratio (SNR).

• Discrete Fourier Transform (DFT) Scheme [START_REF] Zheng | Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization[END_REF]- [START_REF] Zheng | Fast channel estimation for IRSassisted OFDM[END_REF]:

To enhance the reflected signal power, the discrete DFT training scheme was proposed in [START_REF] Zheng | Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization[END_REF]. Specifically, the training phase shifts at the RIS are optimized to minimize the mean squared error, and it is demonstrated that the DFT training scheme achieved the optimal performance. Based on the DFT method, the training phase shift matrix Φ is equal to the first M + 1 columns of a T × T DFT matrix, which is given by

[Φ] t,m = e -j 2π(t-1)(m-1) T , t = 1, • • • , T, m = 1, • • • , M.
Then, the error covariance matrix is equal to

R e = σ 2 P Ξ H Ξ -1 = σ 2 P Φ H Φ -1 ⊗ I N = σ 2 T P I N (M +1) . (15) 
Hence, the error variance of the channels is given by

var ĥd = var (ĝ m ) = σ 2 T P I N , m = 1, • • • , M + 1. (16) 
By comparing ( 16) with ( 14), the DFT training scheme reduces the channel error by a factor equal to 1/T for the direct channel ĥd and by a factor equal to 1/(2T ) for the RIS-reflected channels ĝm , ∀m. Recently, the DFT training scheme has been extended to the multiple-input multiple-output (MIMO) case in [START_REF] Zhou | Joint transmit precoding and reconfigurable intelligent surface phase adjustment: A decompositionaided channel estimation approach[END_REF] and to the orthogonal frequency division multiplexing (OFDM) system in [START_REF] Zheng | Fast channel estimation for IRSassisted OFDM[END_REF]. • Hadamard Matrix [START_REF] Zhou | Joint transmit precoding and reconfigurable intelligent surface phase adjustment: A decompositionaided channel estimation approach[END_REF], [START_REF] You | Channel estimation and passive beamforming for intelligent reflecting surface: Discrete phase shift and progressive refinement[END_REF]: The training phase shift matrix can also be designed using the first M +1 columns of the T × T Hadamard matrix [START_REF] Zhou | Joint transmit precoding and reconfigurable intelligent surface phase adjustment: A decompositionaided channel estimation approach[END_REF], where T = 2 or T is a multiple of 4. Specifically, one can construct a Tdimensional Hadamard matrix as follows

D T = D T /2 D T /2 D T /2 -D T /2 , D 2 = 1 1 1 -1 , with T = 2 n , n = 1, 2, • • • . It can be readily verified that D H 2 B D 2 B = T I.
Then, the training phase shift matrix Φ can be set equal to the first M + 1 columns of the matrix D 2 B . Then, the error covariance matrix is calculated as in [START_REF] Yang | On the performance of RIS-assisted dual-hop UAV communication systems[END_REF], which means that setting the training phase shift matrix as the Hadamard matrix results in the minimum MSE of the estimator. Compared to the DFT matrix, the main advantage is that only two discrete phase shifts, namely {0, π}, are required for channel training, which can reduce the hardware complexity, and is thus an appealing solution from the implementation standpoint. Method II: Linear Minimum Mean-Squared-Error (LMMSE)

The LS estimators do not exploit prior knowledge of the channel distributions. When such information is available, the optimal estimate of c that minimizes the MSE, which is defined as E cĉ 2 , is the MMSE estimate, which is

given by ĉmmse

= E [ c| y] . (17) 
Since c depends on the cascaded channel that is the product of the user-RIS channel and the RIS-BS channel, the unknown vector c is, in general, not Gaussian distributed. This means that the posterior distribution p( c| y) is difficult to obtain, and thus ĉmmse cannot be readily calculated in a closed form expression. To address this issue, the LMMSE method was proposed in [START_REF] Kundu | Channel estimation for reconfigurable intelligent surface aided MISO communications: From LMMSE to deep learning solutions[END_REF].

Before introducing the LMMSE method, we first provide the distributions of various channels. The most common approach is to assume that the channel coefficients are correlated. Specifically, the three channels in the RIS-aided system model in Fig. 1 can be written as

H = R 1 2 HB HR 1 2 HR , h r = R 1 2 hrR hr , h d = R 1 2 h d B hd , (18) 
where R HB and R h d B are the spatial correlation matrices with unit diagonal elements at the BS for channel H and h r , respectively, R hrR and R HR are the spatial correlation matrices with unit diagonal elements at the RIS for channel h r and H, respectively. Then, H, hr , and hd have probability distributions equal to H ∼ CN (0, I M ⊗ I N ), hr ∼ CN (0, I M ) and hd ∼ CN (0, I N ), respectively. Based on the above definitions, using the linear model in [START_REF] Yuan | Reconfigurableintelligent-surface empowered wireless communications: Challenges and opportunities[END_REF], the LMMSE of c is given by [START_REF] Kundu | Channel estimation for reconfigurable intelligent surface aided MISO communications: From LMMSE to deep learning solutions[END_REF] 

ĉ = E [c]+ √ P C cc Z H P ZC cc Z H +σ 2 I T N -1 (y-ȳ) , (19) 
where C cc = E cc H and ȳ = E{y}. ȳ can be readily shown to be the zero vector. Since H and h r are independent and have zero mean, we have E [c] = 0. Hence, the matrix C cc can be formulated as

C cc = R h d B 0 N ×M N 0 M N ×N (R hrR R HR ) ⊗ R HB . (20) 
Then, the error covariance matrix for the channel estimate is given by [START_REF] Kundu | Channel estimation for reconfigurable intelligent surface aided MISO communications: From LMMSE to deep learning solutions[END_REF]]

R e = C -1 cc + P σ 2 Z H Z -1 = C -1 cc + P σ 2 Φ H Φ ⊗ I N -1 . (21) 
To minimize the MSE, the majorization-minimization (MM) algorithm was proposed in [START_REF] Kundu | Channel estimation for reconfigurable intelligent surface aided MISO communications: From LMMSE to deep learning solutions[END_REF] to optimize the training phase shift matrix Φ. However, the simulation results in [START_REF] Kundu | Channel estimation for reconfigurable intelligent surface aided MISO communications: From LMMSE to deep learning solutions[END_REF] show that the performance of the optimized phase shift matrix is similar to that of the DFT matrix. For this reason, we assume the DFT-based training phase shift matrix, and the corresponding error covariance matrix of the LMMSE channel estimator is given by

R e = C -1 cc + T P σ 2 I N (M +1) -1 . (22) 
As for the special case when all the channels undergo uncorrelated Rayleigh fading, we obtain

C cc = I N (M +1)
and

R e = σ 2 σ 2 + T P I N (M +1) . (23) 
Hence, the error variance of the channels is given by

var ĥd = var (ĝ m ) = σ 2 σ 2 + T P I N , m = 1, • • • , M. ( 24 
)
By comparing [START_REF] Yildirim | Modeling and analysis of reconfigurable intelligent surfaces for indoor and outdoor applications in future wireless networks[END_REF] with ( 16), we observe that the LMMSE has a smaller estimation error as compared to the LS method.

Training Overhead Analysis: To ensure that c can be uniquely estimated using the LS or the LMMSE estimators, the number of time slots for channel training needs to fulfill the condition T ≥ (M +1). In typical setups, this results in an excessive training overhead, e.g.,when the number of reflecting elements M is large. In this case, the remaining time slots for data transmission are, in fact, significantly reduced.

To reduce the pilot overhead, the authors of [START_REF] Yang | Intelligent reflecting surface meets OFDM: Protocol design and rate maximization[END_REF] and [START_REF] Zheng | Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization[END_REF] proposed the element grouping (EG) method. In practical RISaided communication systems, the channel associated with adjacent RIS reflecting elements may be highly correlated. In such cases, the EG method groups the adjacent elements and assigns the same reflection pattern to them. This scheme is effective when the reflecting elements are installed closely together. Assume that the group size is J. Thus, the number of groups is M = M/J, which is assumed to be an integer. Then, define θ t = θ t ⊗ 1 J , where θ t ∈ C M ×1 , so that

Gθ t = G (θ t ⊗ 1 J ) = G (I M ⊗ 1 J ) θ t = G θ t , (25) 
where G = G (I M ⊗ 1 J ) ∈ C N ×M , and each column of G is the unit-coefficient combination of the columns of G corresponding to the group of reflecting elements. Then, the model in [START_REF] Sun | A 3D non-stationary channel model for 6G wireless systems employing intelligent reflecting surfaces with practical phase shifts[END_REF] has the same form as the original models. Hence, the above mentioned channel estimation methods can be directly applied. In this case, to estimate the direct channel h d and the reflected channel G , the minimum training pilot overhead is J + 1, which is lower than M + 1 for the original model. When G is estimated, the original channel G can be approximately recovered as G ≈ G ⊗ 1 T J Simulation Results: For illustration, we consider a singleuser scenario and compare the MSE performance of various algorithms in Fig. 2. For simplicity, the exponential spatial correlation model is adopted, namely

[R HB ] i,j = ρ |i-j| 1 , [R HR ] i,j = ρ |i-j| 2 , [R hrR ] i,j = ρ |i-j| 3 , [R h d B ] i,j = ρ |i-j| 4
. The number of antennas and reflecting elements are N = 8 and M = 63, respectively. The SNR is defined as γ = P σ 2 . The simulation results confirm the theoretical results. The LS-on-off scheme provides the worst MSE performance, while the LMMSE DFT approach offers the best estimation accuracy. Note that except for the LS EG DFT approach, the MSE performance of the other LS methods does not depend on the correlation coefficients since they do not exploit the prior knowledge of the spatial correlation. In contrast, the MSE performance of the LMMSE DFT scheme decreases as the correlation increases. It is interesting to observe that the MSE of the LS EG DFT method decreases by increasing the spatial correlation and approaches the MSE of the LS DFT method without grouping, which demonstrates that the EG scheme is effective when the reflecting elements are strongly correlated.

2) Multi-user Case: Now, we consider the multi-user case, and briefly review several existing methods for channel estimation.

Method I: Direct Channel Estimation Method [START_REF] Nadeem | Intelligent reflecting surface-assisted multiuser MISO communication: Channel estimation and beamforming design[END_REF] In [START_REF] Nadeem | Intelligent reflecting surface-assisted multiuser MISO communication: Channel estimation and beamforming design[END_REF], the authors proposed a channel estimation algorithm that is a direct extension of the single-user case. Specifically, the channel estimation period is divided into T sub-phases, and the RIS applies the phase shift vector θ t in the t-th subphase. In each sub-phase, the users transmit orthogonal pilot sequences with length K, and the k-th user's pilot sequence is defined as

x k = [x k,1 , • • • , x k,K ] T ∈ C K×1 , such that x H k x l = 0 for k = l, ∀l, k, and x H k x k = K.
In different sub-phases, the users adopt the same set of pilot sequences while the RIS uses different phase shift vectors. In the t-th sub-phase, the received training signal Y t ∈ C N ×K at the BS is given by

Y t = K k=1 P k (h d,k + G k θ t )x T k +N t , t = 1, • • • , T, (26) 
where N t ∈ C N ×K is the noise matrix at the BS, whose columns are independent and have probability distribution CN 0, σ 2 I N . By right multiplying both sides of (26) with x * k and by taking into account that the users' pilot sequences are orthonormal, we have

y t,k = P k (h d,k + G k θ t ) + n t,k , t = 1, • • • , T, (27) 
where

y t,k = Y t x * k and n t,k = N t x * k .
The obtained expression in [START_REF] Tang | MIMO transmission through reconfigurable intelligent surface: System design, analysis, and implementation[END_REF] is similar to the single-user case in (4), and the already described single-user channel estimation algorithms can be directly applied. For this scheme, the minimum number of sub-phases is equal to T = M + 1 [START_REF] Nadeem | Intelligent reflecting surface-assisted multiuser MISO communication: Channel estimation and beamforming design[END_REF]. Hence, the pilot overhead is equal to K(M + 1).

Method II: Exploiting the Common RIS-BS Channel [START_REF] Wang | Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis[END_REF] The above channel estimation scheme fails to exploit the inherent structure of RIS-aided communication systems, and requires a large amount of pilot training overhead, especially when K and/or M are large. Specifically, all users' cascaded channels share the same RIS-BS channel and, therefore, it is possible to reduce the channel training overhead since the number of independent complex variables to be estimated is KN + N M + M K rather than (M + 1)N K.

In [START_REF] Wang | Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis[END_REF], the authors exploited the common RIS-BS channel and proposed a novel three-stage channel estimation algorithm. In the first stage, the RIS is switched off, and the direct user-BS channels can be readily estimated. In the second stage, one reference user is selected and only this user can transmit its pilot signals. For ease of notation, let us denote this selected user as user 1. Since the direct channel h d,1 has been estimated in stage one, its impact when estimating the cascaded channel of user 1, i.e., G 1 , can be subtracted from the received signal at the BS, and the cascaded channel G 1 can be estimated using the same channel estimation methods as for the single-user case. Now, we focus on the third stage. For simplicity, we assume that the channels estimated in the first two stages are perfect. By substituting G 1 = Hdiag (h r,1 ) into (1), the received signal can be rewritten as

y t = K k=1 √ P k h d,k x k,t + √ P 1 G 1 θ t x 1,t + K k=2 √ P k G 1 diag (θ t ) hk x k,t + n t , (28) 
where hk = diag(h r,1 )

-1 h r,k , k = 2, • • • , K. If h r,k can be estimated, the cascaded channel G k for k = 2, • • • , K can be calculated as G k = G 1 diag( hk ).
Hence, the remaining task is to estimate h r,k , k = 2, • • • , K. In [START_REF] Wang | Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis[END_REF], the authors assume that one user sends its pilot signals x k,t = 1, P k = 1 at each time and all the other users keep silent. Thus, we have x j,t = 0 for all j = k. Then, the received signal is given by

y t = h d,k + G 1 diag (θ t ) hk + n t . (29) 
In the following, we discuss the two cases where M is less and greater than N , respectively.

Case I: M ≤ N . By setting θ t = 1, hk can be directly estimated as

hk = G -1 1 (y t -h d,k ) . (30) 
Accordingly, a single time slot is required to estimate hk in this case.

Case II: M > N . In this case, hk cannot be estimated using [START_REF] Wu | Intelligent reflecting surface-aided wireless communications: A tutorial[END_REF] since the system of equations in [START_REF] Zhang | A wireless communication scheme based on space-and frequency-division multiplexing using digital metasurfaces[END_REF] is underdetermined. To address this issue, a larger number of time slots for training is required. In the first training time slot, the first N reflecting elements are switched on and the reflection coefficients are set equal to

[θ t,1 , θ t,2 • • • , θ t,N ] T = 1.
Then, the first N coefficients of hk can be estimated as follows

     hk,1 hk,2 . . . hk,N      =    G 1,11 • • • G 1,1N . . . . . . . . . G 1,N 1 • • • G 1,N N    -1 (y t -h d,k ) , (31) 
where hk,i is the i-th element of hk and G 1,ij is the (i, j)-th entry of the matrix G 1 . In the second time slot, the next N reflecting elements are switched on, i.e., [θ t,N +1 , θ t,2 • • • , θ t,2N ] T = 1, while the others are switched off. The corresponding N coefficients in hk can be estimated using again [START_REF] Liu | Reconfigurable intelligent surfaces: Principles and opportunities[END_REF]. This procedure is repeated until all the coefficients in hk are estimated. For each user, at least M N time slots are required to estimate hk . By combining Case I with Case II, the minimum number of required pilots is equal to K + M + max (K -1, (K -1) M/N ), which is much less than the number of pilots that is needed for the channel estimation algorithm in [START_REF] Nadeem | Intelligent reflecting surface-assisted multiuser MISO communication: Channel estimation and beamforming design[END_REF]. The idea of this approach has been extended to multiuser OFDMA in [START_REF] Zheng | Intelligent reflecting surface assisted multi-user OFDMA: Channel estimation and training design[END_REF].

The main issue of the method introduced in [START_REF] Wang | Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis[END_REF] is the error propagation. The authors of [START_REF] Wei | Channel estimation for IRS-aided multiuser communications with reduced error propagation[END_REF] and [START_REF] Guo | Cascaded channel estimation for intelligent reflecting surface assisted multiuser MISO systems[END_REF] have proposed channel estimation protocols to address this issue, where the direct channel and the reflected channels are estimated at the same time. The amount of pilot overhead required by the solutions proposed in [START_REF] Wei | Channel estimation for IRS-aided multiuser communications with reduced error propagation[END_REF] and [START_REF] Guo | Cascaded channel estimation for intelligent reflecting surface assisted multiuser MISO systems[END_REF] is the same as that of the method proposed in [START_REF] Wang | Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis[END_REF].

B. Structured Channel Models

A geometric channel model or the Saleh-Valenzuela (SV) channel model [START_REF] Saleh | A statistical model for indoor multipath propagation[END_REF] is usually used to characterize the channels in the mmWave and THz frequency bands, where multipath scattering is sparse and the number of channel parameters is small. Assuming a uniform linear array (ULA) at the BS and that the RIS elements are arranged in uniform planar array (UPA), the SV channel model of the RIS-BS link in the presence of L BR spatial paths is given by [START_REF] Saleh | A statistical model for indoor multipath propagation[END_REF] 

H = LBR l=1 α l a B (ω BH,l ) a H R (ω RH,l ) = A B (ω BH )Λ BR A H R (ω RH ), (32) 
where the diagonal matrix Λ BR = diag(α 1 , . . . , α LBR ) contains the complex path gains α = [α 1 , . . . , α LBR ] T . The columns of A R (ω RH ) = [a R (ω RH,1 ) , . . . , a R (ω RH,LBR )] denote the steering vectors of an M x × M z UPA, namely the RIS, on the xz-plane, which are expressed as

a R (ω RH,l ) = a x (ω x,l ) ⊗ a z (ω z,l ), ∀l, (33) 
where a x (ω x,l ) = [1, e jω x,l , . . . , e j(Mx-1)ω x,l ] T is the horizontal array response with spatial frequency ω x,l = 2π d λc sin(φ el,l ) cos(φ az,l ), and a z (ω z,l ) = [1, e jω z,l , . . . , e j(Mz-1)ω z,l ] T is the vertical array response with spatial frequency ω z,l = 2π d λc cos(φ el,l ). Here, d denotes the antenna spacing, λ c is the carrier wavelength, and φ el,l and φ az,l denote the elevation and the azimuth, respectively, angles of departures (AoDs) from the RIS. The two-dimensional (2D) spatial frequency vector ω RH,l = [ω x,l , ω z,l ] T corresponds to the 2D spatial angles {φ el,l , φ az,l }.

The steering vectors of an N -element ULA A B (ω BH ) = [a B (ω BH,1 ) , . . . , a B (ω BH,LBR )] are the same as [START_REF] Di Renzo | Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[END_REF], but the angles of elevation are φ el,l = π 2 , ∀l. Hence, a B (ω

BH,l ) is a B (ω BH,l ) = [1, e jω BH,l , . . . , e j(N -1)ω BH,l ] T , ∀, l, (34) 
where ω BH is the angle of arrival (AoA) spatial frequency vector at the BS, which is given by ω BH = [ω BH,1 , . . . , ω BH,LBR ].

The SV channel model for the user-RIS link in the presence of L RU spatial paths has a similar structure. Precisely, denoting by h r,k ∈ C M ×1 the channel from user k to the RIS, it can be formulated as

h r,k = LRU l=1 β k,l a R (ω RHr,k,l ) = A R (ω RHr,k )β k , (35) 
where β k = [β k,l , . . . , β k,LRU ] T is the vector of complex path gains, and the matrix A R (ω RHr,k ) = [a R (ω RHr,k,1 ) , . . . , a R (ω RHr,k,LRU )] collects the steering vectors of the propagation paths whose AoA spatial frequency vector is ω RHr,k = [ω T RHr,k,1 , . . . , ω T RHr,k,LRU ] T . Accordingly, the received baseband signal in (1) is rewritten as4 

y t = K k=1 P k HΘ t h r,k x k,t + n t = K k=1 P k G k θ t x k,t + n t . ( 36 
)
1) Single-user case: Let us start with the analysis of the single-user case. By omitting the user index for simplicity, (36) reduces to

y t = √ P Gθ t x t + n t . (37) 
The overarching idea of estimating a channel with an inherent geometric structure is to reconstruct the channel by estimating a small number of angles and gains instead of directly estimating all the channel coefficients. We overview several existing channel estimation methods based on this approach. Method I: One-Stage Channel Estimation [START_REF] Wang | Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems[END_REF], [START_REF] Liu | ADMM based channel estimation for RISs aided millimeter wave communications[END_REF] In this method, the estimation of the cascaded channel is reformulated in terms of an AoA estimation problem

y t = ZA(ω)γ + n t , ( 38 
)
where Z is the known sensing matrix that contains the training pilots, the matrix A(ω) is the array response that depends on the spatial frequency vector ω and γ is the vector with the unknown channel gains. The detailed definitions of Z, A(ω) and γ will be given later. Accordingly, any known AoA estimation algorithms, including the multiple signal classification (MUSIC) [START_REF] Schmidt | Multiple emitter location and signal parameter estimation[END_REF], the estimation of signal parameters via rational invariance techniques (ESPRIT) [START_REF] Roy | ESPRIT -A subspace rotation approach to estimation of parameters of cisoids in noise[END_REF] and compressed sensing (CS) based techniques, can be directly applied. Specifically, by utilizing the identity AB CD = (A ⊗ C)(B D), the cascaded channel G can be formulated as

G = Hdiag(h r ) = H h T r = A B (ω BH ) Λ BR ⊗ β T A H R (ω RH ) A T R (ω RHr ) . (39) Denoting by ω = [ω T BH , ω T RH , ω T RHr ] T , using the identity vec(A diag(b) ⊗ d T C) = (C T A)(b⊗d)
and vectorizing both sides of [START_REF] De Araújo | Channel estimation for intelligent reflecting surface assisted MIMO systems: A tensor modeling approach[END_REF], we arrive at

vec(G) = A(ω)γ, (40) 
where

A(ω) = A T R (ω RHr ) A H R (ω RH ) T A B (ω BH ), (41) 
γ = α ⊗ β. (42) 
The matrix A T R (ω RHr ) A H R (ω RH ) T is the cascaded array response at the RIS [START_REF] Chen | Channel estimation for reconfigurable intelligent surface aided multi-user MIMO systems[END_REF], whose k-th column is

A T R (ω RHr ) A H R (ω RH ) k,: T = a T R (ω RHr,p ) a H R (ω RH,q ) T = a R (ω RHr,p -ω RH,q ), (43) 
where p = k/L BR and q = mod LBR (k). The vector γ depends on the complex path gains of the cascaded channel. By combining [START_REF] He | Cascaded channel estimation for large intelligent metasurface assisted massive MIMO[END_REF] with ( 40), [START_REF] He | Cascaded channel estimation for large intelligent metasurface assisted massive MIMO[END_REF] can be reformulated in a compact form as

y t = √ P x t θ T t ⊗ I N vec(G) + n t = √ P x t θ T t ⊗ I N A(ω)γ + n t . (44) 
Similar to [START_REF] Pan | Reconfigurable intelligent surfaces for 6G systems: Principles, applications, and research directions[END_REF], the measurement (pilot) signals received at the BS over T training time slots are stacked into a vector, as

y = √ P ZA(ω)γ + n ∈ C N T ×1 , (45) 
where

Z =    x 1 θ T 1 ⊗ I N . . . x T θ T T ⊗ I N    .
By inspection of [START_REF] Zheng | Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization[END_REF], the obtained signal model corresponds to a standard AoA estimation problem as formulated in [START_REF] Liu | Matrix-calibration-based cascaded channel estimation for reconfigurable intelligent surface assisted multiuser MIMO[END_REF]. Therefore, the deterministic maximum likehood (DML) criterion can be adopted to estimate ω [START_REF] Swindlehurst | Channel estimation with reconfigurable intelligent surfaces -a general framework[END_REF] ω = arg min ω y H P ⊥ ZA(ω) y, where P ⊥ ZA(ω) is the projection orthogonal to the columns of ZA(ω). Given the estimate, the vector of channel gains is given by γ = (ZA( ω)) † y/ √ P . However, the DML criterion ignores the structural properties of the signal in [START_REF] Zheng | Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization[END_REF]. More precisely, the cascaded gain vector γ in ( 42) is a nonlinear function of α and β, and the elements of γ are not independent. In addition, the spatial frequency of each cascaded steering vector in [START_REF] Mishra | Channel estimation and low-complexity beamforming design for passive intelligent surface assisted MISO wireless energy transfer[END_REF] is different. In order to exploit the inherent relationship between the columns of the cascaded array response matrix, the authors of [START_REF] Wang | Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems[END_REF] and [START_REF] Liu | ADMM based channel estimation for RISs aided millimeter wave communications[END_REF] adopted the CS technique, according to which each array response matrix A(ω) is replaced by a dictionary matrix composed of potential steering vectors. Specifically, (40) is approximated using the virtual angular domain (VAD) representation, i.e., [START_REF] Wang | Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems[END_REF] 

vec(G) ≈ A D γ D , (46) 
where γ D is an L BR L RU -sparse vector with L BR L RU nonzero elements corresponding to the cascaded channel gains. The matrix A D is the composite dictionary of A(ω) and is defined as

A D = A T RD A H RD T ⊗A BD .
The columns of the overcomplete dictionary matrix A BD ∈ C N ×GB (N G B ) are the BS steering vectors whose sample spatial frequencies are chosen from pre-discretized grids. However, the overcomplete dictionary matrix A RD ∈ C M ×GR (M G R ) is specified by a two-dimensional grid and its columns can be written as a x (ω x,q ) ⊗ a z (ω z,p ), 1 ≤ q, p ≤ √ G R with ω x,q and ω z,p being independently selected from pre-discretized grids. By capitalizing on the sparse approximation in [START_REF] Jensen | An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator[END_REF], the estimation of G can be transformed into a sparse signal recovery problem as

min γ D ||γ D || 1 (47a) s.t. ||y - √ P ZA D γ D || 2 ≤ ξ, (47b) 
where the 1-norm of γ D enforces the sparse structure and ξ ≥ 0 is an error tolerance parameter that depends on the noise power. Problem (47) can be solved by using several classical CS algorithms, such as the orthogonal matching pursuit (OMP) [START_REF] Wang | Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems[END_REF] and the alternating direction method of multipliers (ADMM) [START_REF] Liu | ADMM based channel estimation for RISs aided millimeter wave communications[END_REF]. After recovering γ D , the cascaded channel G can be retrieved from [START_REF] Jensen | An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator[END_REF]. However, the main issue with the CS approach used for solving Problem [START_REF] Zhou | Joint transmit precoding and reconfigurable intelligent surface phase adjustment: A decompositionaided channel estimation approach[END_REF] is the large size of A D , which has G B G 2 R columns. If each spatial frequency dimension has 100 grids, this matrix has 10 10 columns. Therefore, a more tractable and practical method is needed. According to [START_REF] Candes | Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[END_REF], l log( m l ) measurements are needed for successful recovering an l-sparse vector of dimension m × 1. Thus, the required pilot overhead for solving Problem (47

) is T ≥ LBRLRU N log( GBG 2 R LBRLRU ).

Method II: Two-Stage Channel Estimation [63]-[65]

A different approach for channel estimation consists of splitting the cascaded channel into two stages. In the first stage, the AoAs at the BS are estimated. After eliminating these estimated angles from the variables to the estimated, only the cascaded spatial frequencies and the channel gains need to be determined. The estimation of both stages can be formulated in terms of several several AoA estimation problems, thus any AoA estimation algorithm can be employed.

Specifically, it is assumed that the user sends the pilot signal x t = 1 during T time slots. Defining Ξ = [θ 1 , ..., θ T ] and stacking the T observations in [START_REF] He | Cascaded channel estimation for large intelligent metasurface assisted massive MIMO[END_REF], we obtain

Y = [y 1 , . . . , y T ] = √ P GΞ + N, (48) 
where

N = [n 1 , . . . , n T ].
Based on (48), we elaborate the estimation process of both stages.

• First Stage: We rewrite [START_REF] Zheng | Fast channel estimation for IRSassisted OFDM[END_REF] as

Y = √ P A B (ω BH )B T Ξ + N ∈ C N ×T , (49) 
where

B = (Λ BR A H R (ω RH )diag(h r )) T .
Any AoA estimation algorithms can be used to determine ω BH from [START_REF] You | Channel estimation and passive beamforming for intelligent reflecting surface: Discrete phase shift and progressive refinement[END_REF]. For example, the authors of [START_REF] Ardah | TRICE: A channel estimation framework for RIS-aided millimeter-wave MIMO systems[END_REF] and [START_REF] Lin | Channel estimation for IRS-assisted millimeter-wave MIMO systems: Sparsity-inspired approaches[END_REF] approximated (49) as a sparse signal recovery problem similar to Problem [START_REF] Zhou | Joint transmit precoding and reconfigurable intelligent surface phase adjustment: A decompositionaided channel estimation approach[END_REF], and adopted the OMP technique to solve the formulated problem. Since N L BR , (49) readily satisfies the condition of the number of measurements required for successful recovery, i.e., N ≥ L BR log( GB LBR ). The main issue with the on-grid CS method is the mismatch between the estimated and the actual angles.

The estimation error can be improved by enlarging the dimension of the dictionary, but this also reduces the orthogonality of the dictionary, and leads to a higher computational complexity. Furthermore, the authors of [START_REF] Wei | Channel estimation for RIS assisted wireless communications: Part II -an improved solution based on double-structured sparsity[END_REF] and [START_REF] Zhou | Channel estimation for RIS-aided multiuser millimeter-wave systems[END_REF] first transformed the signal in [START_REF] You | Channel estimation and passive beamforming for intelligent reflecting surface: Discrete phase shift and progressive refinement[END_REF] from the spatial domain to the angle domain by utilizing a DFT matrix, and then estimated the AoAs by searching for the non-zero elements in the angle domain. However, this method is limited to massive MIMO scenarios, where the steering vectors lie approximately in the DFT matrix space. The estimation error caused by the slight power leakage can also be improved using the angle rotation technique [START_REF] Zhou | Channel estimation for RIS-aided multiuser millimeter-wave systems[END_REF]. Moreover, to address the mismatch issue, the atomic norm minimization technique was adopted in [START_REF] He | Channel estimation for RIS-aided mmWave MIMO systems via atomic norm minimization[END_REF] to estimate the off-grid angles by employing convex optimization tools.

• Second Stage: Assuming that the estimate ωBH of ω BH is perfect, we obtain

Y R = 1 √ P (A † B ( ωBH )Y) T ≈ Ξ T B + N b ∈ C T ×LBR , (50) 
where

N b = 1 √ P (A † B ( ωBH )N)
T and B is the matrix to be estimated. Correlation-ignored Approach [START_REF] Ardah | TRICE: A channel estimation framework for RIS-aided millimeter-wave MIMO systems[END_REF], [START_REF] He | Channel estimation for RIS-aided mmWave MIMO systems via atomic norm minimization[END_REF]. If one ignores the correlation among the cascaded gains and spatial frequencies, the estimation of Y R can be obtained by constructing L BR L RU -dimensional AoA estimation problems [START_REF] Ardah | TRICE: A channel estimation framework for RIS-aided millimeter-wave MIMO systems[END_REF], [START_REF] He | Channel estimation for RIS-aided mmWave MIMO systems via atomic norm minimization[END_REF]. In particular, the l-th column of ( 50) is given by

[Y R ] :,l = Ξ T diag(h r )a * R (ω RH,l )α l + [N b ] :,l = Ξ T A R ( ω Rhr,l )α l β + [N b ] :,l , (51) 
which depends on ω Rhr,l = [ω T Rhr,1ω T RH,l , ..., ω T Rhr,LRU -ω T RH,l ] T and α l β. Thus, (50) can be decomposed into L BR L RU -dimensional AoA estimation problems along with determining L BR L RU cascaded path gains at the RIS. With the estimates of ω Rhr,l and α l β from (51), the l-th column of B is estimated as

[B] :,l = A R ( ω Rhr,l ) α l β. ( 52 
)
Correlation-based Approach [START_REF] Zhou | Channel estimation for RIS-aided multiuser millimeter-wave systems[END_REF].

If one considers the fact that the cascaded gains and spatial frequencies are interrelated, the estimation complexity can be further reduced to solve one L RU -dimensional AoA estimation problem plus L BR -1 one-dimensional AoA estimation problems. In particular, [Y R ] :,l in ( 51) is rewritten as

[Y R ] :,l = α l Ξ T diag a H R ( ω RH,l ) [B] :,1 + [N b ] :,l , (53) 
where α l = α l α1 and ω RH,l = ω RH,l -ω RH,1 . The first column of B is first estimated from (51) using an L RUdimensional AoA estimation problem. Substituting the estimated [B] :,1 into (53), then [B] :,l for l = 2, ..., L BR can be determined by only estimating α l and ω RH,l through a one-dimensional AoA estimation problem. Therefore, only L BR + L RU -1 equivalent cascaded paths need to be estimated at the RIS. Compared with the correlation-ignored approach, the correlation-based approach enjoys a much lower computational complexity since it needs to solve the L RU -dimensional AoA estimation problem only once. We characterize the pilot overhead at this stage based on the condition for successful recovery using the CS technique: T ≥ L RU log( GR LRU ). Method III: Beam Training for Channel Estimation [START_REF] You | Fast beam training for IRS-assisted multiuser communications[END_REF]- [START_REF] Zegrar | A general framework for RIS-aided mmWave communication networks: Channel estimation and mobile user tracking[END_REF].

A different method for estimating sparse channels is beam training, which is suitable for line-of-sight (LoS)-dominant channels where the LoS path is much stronger than the non-LoS (NLoS) components. Specifically, the composite LoSdominant user-RIS-BS channel can be formulated as

HΘ t h r = αβa B (ω BH ) a H R (ω RH ) diag(θ t )a R (ω RHr ) .
It is readily seen that the maximum beam gain is obtained when the beams at the BS and the RIS align with the user-RIS-BS channel.

• BS Beam: Let the vector f B ∈ C N ×1 be the combiner at the BS. The maximization of |f H B a B (ω BH ) | as a function of f B returns f B,opt = a H B (ω BH ). • RIS Beam: The optimal phase shifts at the RIS that maximize |a H R (ω RH ) diag(θ t )a R (ω Rhr ) | are given by θ opt = a R (ω RH -ω Rhr ).
To estimate the AoAs and the AoDs of the LoS-dominant user-RIS-BS channel, appropriate training codebooks are first constructed for each beam by discretizing the entire angular domain. Then, an exhaustive beam training method can be used: the RIS applies the different beams of the codebook oneby-one in consecutive time slots. Then, the BS determines the optimal BS and RIS beam directions that provide the maximum received signal power/SNR. However, such an exhaustive beam training method is pilot-consuming and requires at least T = M x time slots [START_REF] You | Fast beam training for IRS-assisted multiuser communications[END_REF]. Therefore, various methods have been proposed to improve the efficiency of beam training, such as the multi-beam training method [START_REF] You | Fast beam training for IRS-assisted multiuser communications[END_REF], the ternary-tree hierarchical search [START_REF] Ning | Terahertz multi-user massive MIMO with intelligent reflecting surface: Beam training and hybrid beamforming[END_REF], and the two-way tree stage search [START_REF] Zegrar | A general framework for RIS-aided mmWave communication networks: Channel estimation and mobile user tracking[END_REF].

Simulation Results: As an example, Fig. 3 shows the normalized mean square error (NMSE) of the cascaded channel matrix that is obtained by using the one-stage and twostage estimation methods. The NMSE is defined as

NMSE = E{ G -G 2 F / G 2 F }.
The OMP algorithm is adopted to solve the AoA estimation problems in both cases. It can be seen that the two-stage method outperforms the one-stage method. This is because the two-stage method reduces the power leakage among the cascaded multipath components compared with [START_REF] Jensen | An optimal channel estimation scheme for intelligent reflecting surfaces based on a minimum variance unbiased estimator[END_REF] by dividing the cascaded paths into several groups in [START_REF] Nadeem | Intelligent reflecting surface-assisted multiuser MISO communication: Channel estimation and beamforming design[END_REF], each of which corresponds to one BS-RIS path and does not leak power to other groups. However, there is a gap between the two methods and the CRB. This is due to the inherent mismatch between the on-grid angle estimated by the OMP and the actual continuous angle. 2) Multi-user case: In the multi-user case, all users share the common channel H. This fact can be utilized to reduce the pilot overhead and the computational complexity as proposed in [START_REF] Chen | Channel estimation for reconfigurable intelligent surface aided multi-user MIMO systems[END_REF], [START_REF] Wei | Channel estimation for RIS assisted wireless communications: Part II -an improved solution based on double-structured sparsity[END_REF], [START_REF] Zhou | Channel estimation for RIS-aided multiuser millimeter-wave systems[END_REF].

Method I: Double-sparse Based Channel Estimation [START_REF] Chen | Channel estimation for reconfigurable intelligent surface aided multi-user MIMO systems[END_REF], [START_REF] Wei | Channel estimation for RIS assisted wireless communications: Part II -an improved solution based on double-structured sparsity[END_REF].

The authors of [START_REF] Chen | Channel estimation for reconfigurable intelligent surface aided multi-user MIMO systems[END_REF] investigated the row-column-block sparsity of the multi-user cascaded channels and proposed a joint multi-user channel estimation method:

• Common column-block sparsity due to the presence of common scatters near the BS: Note that all users share the same AoA array responses at the BS. Once the common AoAs are estimated from a specific user using the methods introduced in Subsection II-B1, the impact of the corresponding array responses can be eliminated from the received signals of all users. • Common row-block sparsity due to scaling property:

Based on [START_REF] Wang | Channel estimation for intelligent reflecting surface assisted multiuser communications: Framework, algorithms, and analysis[END_REF], the signals from all users propagate through the same RIS, so the cascaded channels of different users are scaled by a diagonal array, as G k = G 1 diag( hk ) defined in the text right after [START_REF] Pei | RIS-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials[END_REF]. Then, all cascaded channels are approximated by the common rowblock sparse representation as

G k = A B XA H R diag( hk )
, where the sparse matrix X contains the cascaded gains. The optimization of X and hk is formulated into a multiuser joint sparse matrix recovery problem, and solved by using the iterative reweighted algorithm [START_REF] Chen | Channel estimation for reconfigurable intelligent surface aided multi-user MIMO systems[END_REF], [START_REF] Fang | Super-resolution compressed sensing for line spectral estimation: An iterative reweighted approach[END_REF]. The pilot overhead of this method is T ≥ K M/(L BR L RU ) [START_REF] Chen | Channel estimation for reconfigurable intelligent surface aided multi-user MIMO systems[END_REF].

Method II: Exploiting the Common RIS-BS Channel [START_REF] Zhou | Channel estimation for RIS-aided multiuser millimeter-wave systems[END_REF].

The above approach still requires estimation of the unstructured vector hk , for k = 2, ..., K, the dimension of which is proportional to M . In order to reduce the number of parameters and pilot overhead, a geometric version of hk is constructed in [START_REF] Zhou | Channel estimation for RIS-aided multiuser millimeter-wave systems[END_REF]:

• First, the spatial frequencies and gains of the cascaded channel for user 1 are estimated using the method discussed in Subsection II-B1 with pilot overhead T 1 ≥ L RU log( GR LRU ).

TABLE I PILOT OVERHEAD OF VARIOUS CHANNEL ESTIMATION ALGORITHMS.

Algorithm

Pilot Overhead Pilot Overhead, G B = 4N and G R = 4M

Single user

One stage [START_REF] Wang | Compressed channel estimation for intelligent reflecting surface-assisted millimeter wave systems[END_REF], [START_REF] Liu | ADMM based channel estimation for RISs aided millimeter wave communications[END_REF] 

L BR L RU N log( G B G 2 R L BR L RU ) L BR L RU N log( 64N M 2 L BR L RU ) Two stage [63]-[65] L RU log( G R L RU ) L RU log( 4M L RU ) Multiple user [61] KM/(L BR L RU ) KM/(L BR L RU ) [67] L RU log( G R L RU ) + (K -1) L RU L BR log( G R L RU ) L RU log( 4M L RU ) + (K -1) L RU L BR log( 4M L RU )
• Then, the cascaded channels for the remaining users are reformulated as

G k = H c diag(h c,k ), for k = 2, ..., K,
where H c = Hdiag( βa R ( ω)) -1 can be constructed based on the parameters estimated from user 1. Please refer to [START_REF] Zhou | Channel estimation for RIS-aided multiuser millimeter-wave systems[END_REF] for the detailed construction of H c . The remaining unknow vector h c,k = diag( βa R ( ω))h r,k belongs to a standard AoA estimation model and can be estimated via various AoA estimation or CS methods. The required pilot overhead here is T 2 ≥ (K -1) LRU LBR log( GR LRU ). The overall pilot overhead for the scheme in [START_REF] Zhou | Channel estimation for RIS-aided multiuser millimeter-wave systems[END_REF] is given by T ≥ L RU log( GR LRU ) + (K -1) LRU LBR log( GR LRU ). Table I summarizes the pilot overhead of various algorithms using CS-based techniques. The dimension of the dictionary is generally set to 2-4 times the number of antennas. Therefore, we can substitute G B = 4N and G R = 4M into the third column to obtain a more intuitive relationship between the pilot overhead and the number of antennas in the fourth column.

III. TRANSMISSION DESIGN

Based on the channels estimated by using the methods introduced in Section II, the reflection coefficients of the RIS and the beamforming vectors at the BS can be jointly optimized to achieve the desired objectives, such as maximizing the sum spectral efficiency or energy efficiency, and minimizing the total energy consumption, symbol-error probability, or transmission delay, etc.

The same system model in Fig. 1 is considered, but we focus our attention on downlink transmission for illustrative purposes. The baseband channels from the BS to the RIS, from the RIS to user k, and from the BS to user k are denoted by

H H ∈ C M ×N , h H r,k ∈ C 1×M and h H d,k ∈ C 1×N
, respectively. The transmitted data symbols for user k is denoted by s k with E{s k } = 0 and E{s 2 k } = 1. The beamforming vector for user k is w k ∈ C N ×1 . Then, the transmitted data at the BS is given by x = K j=1 w j s j , and the received signal at user k is expressed as

y k = h H d,k + h H r,k ΘH H K j=1 w j s j + n k , (54) 
where n k ∼ CN 0, σ 2 k is the AWGN at user k and Θ is the reflection coefficient matrix defined in Section II. Using

G H k = diag h H r,k H H and θ = [θ 1 , • • • , θ M ]
T , the signal-tointerference-plus-noise-ratio (SINR) at user k is given by

SINR k = h H d,k + θ T G H k w k 2 K i=1,i =k h H d,k + θ T G H k w i 2 + σ 2 k . (55) 
Hence, it is observed from (55) that the cascaded channel G H k along with the direct channel h H d,k are sufficient for designing the transmission of the BS and the RIS. The data rate of user

k is R k = log 2 (1 + SINR k ).
For ease of writing, the collection of all beamforming vectors is denoted by

W = [w 1 , • • • , w K ].
The vast majority of the existing transmission design problems can be expressed in the following general form

min W,Θ f (W, Θ) s.t. C1 : g i (W, Θ) ≥ D i , i = 1, • • • , I, C2 : θ m ∈ S 1 or S 2 , ∀m = 1, 2, . . . , M, (56) 
where f (W, Θ) and g i (W, Θ) can be any functions that depend on W and Θ, and I denotes the number of constraints in C1. In constraint C2, S 1 and S 2 denote the set of continuous and discrete phase shifts respectively, which are given by

S 1 = θ| θ = e jϕ , ϕ ∈ [0, 2π) , (57) 
S 2 = θ| θ = e j(l-1)∆ϕ , l = 1, • • • , L , (58) 
where L = 2 b with b being the number of bits used to quantize the continuous phase shifts, and ∆ϕ = 2π/L. The formulation of constraints C1 and C2 implies that only the phase shifts of the reflecting elements are optimized. Some research works, e.g., [START_REF] Yang | IRS-enhanced OFDMA: Joint resource allocation and passive beamforming optimization[END_REF]- [START_REF] Bai | Resource allocation for intelligent reflecting surface aided wireless powered mobile edge computing in OFDM systems[END_REF], studied the case when both the phase shifts and the amplitudes of the reflecting elements can be optimized subject to the constraint |θ m | ≤ 1, ∀m.

The possibility of optimizing both the phase shifts and the amplitudes simultaneously usually results in a more complex hardware design. Hence, we limit our overview to design methods in which only the phase shift can be adjusted. It is worth noting that some works considered practical RIS reflection models with phase-dependent amplitude [START_REF] Abeywickrama | Intelligent reflecting surface: Practical phase shift model and beamforming optimization[END_REF]- [START_REF] Li | Intelligent reflecting surface enhanced wideband MIMO-OFDM communications: From practical model to reflection optimization[END_REF] or reflection models that account for the mutual coupling among the reflecting elements [START_REF] Gradoni | End-to-end mutual coupling aware communication model for reconfigurable intelligent surfaces: An electromagnetic-compliant approach based on mutual impedances[END_REF]- [START_REF] Abrardo | MIMO interference channels assisted by reconfigurable intelligent surfaces: Mutual coupling aware sum-rate optimization based on a mutual impedance channel model[END_REF]. For simplicity, we only consider the case study with phase-independent and element-independent model for S 1 and S 2 .

In the following, we discuss the existing contributions on transmission design by focusing our attention on two aspects: 1) Optimization techniques; 2) CSI availability.

A. Optimization Techniques

There are two main difficulties in solving the optimization problem in (56): 1) The optimization problem is nonconvex/NP-hard due to the unit modulus constraint or the discrete-valued phase shifts; 2) The phase shifts and the beamforming vectors are coupled as shown in the SINR expression in [START_REF] Guo | Cascaded channel estimation for intelligent reflecting surface assisted multiuser MISO systems[END_REF]. As a result, a globally optimal solution is difficult to obtain. Instead, most of the existing works have aimed at finding highly efficient and locally optimal solutions with low computational complexity. Fortunately, several works have confirmed that the suboptimal solutions can achieve improved system performance compared with the performance of systems in the absence of RISs.

If the phase shifts are given, the optimization problem reduces to a conventional beamforming design problem, which has been extensively studied in the literature. Inspired by this consideration, alternating optimization (AO) algorithms are usually applied to decouple the optimization variables. Due to the usually complicated expressions for the data rate/SINR, advanced algorithms such as the weighted minimum meansquare error (WMMSE) algorithm [START_REF] Shi | An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel[END_REF] or fractional programming (FP) [START_REF] Shen | Fractional programming for communication systems -part I: Power control and beamforming[END_REF] are often used to convert the original intractable problem into a new tractable but approximated problem. Then, the beamforming vectors at the BS are typically obtained by using existing beamforming design methods. In the following, we focus our attention on the optimization of the phase shifts of the RIS.

1) Optimization Techniques for Continuous Phase Shifts.

Existing techniques for optimizing the design of the continuous phase shifts can be classified into the following categories.

(1) Relaxation and projection [START_REF] Chen | Intelligent reflecting surface: A programmable wireless environment for physical layer security[END_REF]- [START_REF] Zhang | Sum rate optimization for two way communications with intelligent reflecting surface[END_REF]: The unit modulus constraint on the phase shift can be rewritten as S 1 = { θ| |θ| = 1, θ ∈ C}. The idea of this technique is first to relax the non-convex constraint S 1 to the convex constraint S1 = { θ| |θ| ≤ 1, θ ∈ C}, and then to project the obtained solution onto the unit-modulus constraint S 1 . Accordingly, given the solution θ m of the relaxed problem, the final solution is θ m = e jϕm , where ϕ m is the phase of θ m .

(2) Semidefinite relaxation (SDR) [START_REF] Wu | Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[END_REF]- [START_REF] Zeng | Sum rate maximization for IRS-assisted uplink NOMA[END_REF]: The SDR method is the most common method for optimizing the phase shifts under constraint S 1 , i.e., for continuous phase shifts. Define V = θθ H . Then, the unit modulus constraint can be equivalently written as V 0 and rank (V) = 1. Because of the rank one constraint, the transformed problem is still non-convex. Based on the SDR method, the non-convex rank one constraint is removed. The obtained relaxed problem is a convex semidefinite program (SDP), which can be readily solved by using CVX [START_REF] Grant | CVX: Matlab software for disciplined convex programming[END_REF]. In general, the obtained relaxed problem is not a rank-one solution, i.e., rank (V) = 1. In this case, the Gaussian randomization method [START_REF] Sidiropoulos | Transmit beamforming for physical-layer multicasting[END_REF] is utilized to obtain a rank-one solution.

(3) Majorization-Minimization (MM) algorithm [START_REF] Huang | Reconfigurable intelligent surfaces for energy efficiency in wireless communication[END_REF]- [START_REF] Peng | Multiuser full-duplex two-way communications via intelligent reflecting surface[END_REF]: The MM algorithm is another widely used technique for optimizing the phase shifts of the RIS. The MM algorithm is an iterative optimization method that approximates a difficult problem as a series of more tractable subproblems that are solved iteratively. Assume that the solution of the subproblem at the t-th iteration is θ t and the corresponding objective function is f (θ t ) 5 . Based on the MM algorithm, a surrogate objective function f ( θ| θ t ) is constructed, which fulfills the following three conditions: 1) f (

θ t | θ t ) = f (θ t ); 2) ∇ θ f ( θ| θ t ) θ=θ t = ∇ θ f (θ t )| θ=θ t ; 3) f ( θ| θ t ) ≥ f (θ)
. If these conditions are fulfilled, the sequence of the solutions obtained by solving each subproblem will converge. By replacing the original objective function with the constructed function f ( θ| θ t ) and removing the constant terms, the subproblem to be solved in each iteration is given by

max θ Re θ H q t (59a) s.t. |θ m | = 1, m = 1, • • • , M, (59b) 
where q t is a constant complex vector at the t-th iteration.

The optimal solution to the optimization problem in ( 59) is

θ t+1 = e j arg(q t ) . ( 60 
)
This procedure is iterated until convergence according to any criterion of convergence. If the phase shifts of the RIS appear in the constraints of the optimization problem, the pricingbased method can be utilized [START_REF] Pan | Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer[END_REF].

(4) Manifold approach [101]- [START_REF] Guo | Weighted sumrate maximization for reconfigurable intelligent surface aided wireless networks[END_REF]: There exist different kinds of manifold methods. In this paper, we consider the complex circle manifold (CCM) method [START_REF] Pan | Multicell MIMO communications relying on intelligent reflecting surfaces[END_REF] as an example. The constraint space in S 1 can be regarded as the product of M complex circles, which is a sub-manifold of C M given by

S M ∆ = x ∈ C M : |x l | = 1, l = 1, 2, • • • , M , (61) 
where x l is the l-th element of vector x. The main idea of the CCM method is to derive the gradient descent algorithm based on the manifold space given in [START_REF] Chen | Channel estimation for reconfigurable intelligent surface aided multi-user MIMO systems[END_REF]. The optimization problem aims at optimizing the phase shifts to minimize the objective function f (θ). The main steps can be summarized as follows.

(a) Computation of the gradient in Euclidean space: The search direction for the minimization problem is the opposite of the gradient of f (θ), which is given by η

t = -∇ θ f (θ) θ=θ t ;
(b) Computation of the Riemannian gradients: The Riemannian gradient of f (θ) at θ = θ t should lie in the tangent space T θ t S M [START_REF] Pan | Multicell MIMO communications relying on intelligent reflecting surfaces[END_REF]. Then, the Riemannian gradient of f (θ) at θ t is obtained by projecting η t onto T θ t S M , which yields

P T θ t S M (η t ) = η t -Re{η t * θ t } θ t ;
(c) Update over the tangent space: Update the point θ t on the tangent space T θ t S M as θt = θ t + βP T θ t S M (η t ), where β is a constant step size;

(d) Retraction operator: This step aims to map φt onto the manifold S M using the retraction operator θ t+1 = θt (5) Element-wise block coordinate descent (BCD) [START_REF] Yu | Enabling secure wireless communications via intelligent reflecting surfaces[END_REF]- [START_REF] Omid | Lowcomplexity robust beamforming design for IRS-aided MISO systems with imperfect channels[END_REF]: The idea of the element-wise BCD algorithm is simple. At the m-th iteration, one reflection coefficient θ m is optimized by keeping fixed the other reflecting coefficients θ m , m = m, m = 1, • • • , M . The algorithm ends after M iterations when all the reflection coefficients are optimized one-by-one while keeping the other fixed. The element-wise BCD algorithm is simple since it is simpler to optimize a single variable rather than optimizing M variables simultaneously.

However, the complexity may be high when the number of reflecting elements is large.

(6) Rank-one equivalents [START_REF] Fu | Intelligent reflecting surface for downlink non-orthogonal multiple access networks[END_REF], [START_REF] Hu | Reconfigurable intelligent surface aided mobile edge computing: From optimization-based to location-only learning-based solutions[END_REF]: Similar to the SDR method, by defining V = θθ H , the unit modulus constraint can be written as V 0 and rank (V) = 1. The rank-one constraint can be equivalently transformed to

tr (V) -V 2 = 0. (62) 
Also, tr (V) = M m=1 λ m and V 2 = λ 1 , where λ m denotes the m-th largest singular value of V. Since V 0 and V is a non-zero matrix, the equality tr (V) -V 2 = 0 holds only when λ 1 > 0 and λ m = 0, m = 2, • • • , M . Then, at the (t + 1)-th iteration of the iterative algorithm, a lower-bound for V 2 at the point V t can be derived as

V 2 ≥ V t 2 + V -V t , ∂ V V 2 | V=V t ∆ = f V; V t , ( 63 
) where ∂ V V 2 | V=V t is a subgradient of V 2 with respect to V at V = V t , which is equal to u 1 u H
1 with u 1 denoting the eigenvector that corresponds to the largest singular value of V t .

Based on [START_REF] Ardah | TRICE: A channel estimation framework for RIS-aided millimeter-wave MIMO systems[END_REF], the constraint in ( 62) can be approximated with the following convex constraint

tr (V) -f V; V t ≤ ε, (64) 
where ε is a very small positive constant. Then, using ( 63) and ( 64), one has

0 ≤ tr (V) -V 2 ≤ tr (V) -f (V; V t ) ≤ ε.
Hence, when ε tends to zero, tr (V) will approach V 2 , which ensures that the rank-one constraint is fulfilled. [START_REF] Pan | Reconfigurable intelligent surfaces for 6G systems: Principles, applications, and research directions[END_REF] Alternating direction method of multipliers (ADMM) based algorithm [START_REF] Wu | Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[END_REF], [START_REF] Li | Joint beamforming design in multi-cluster MISO NOMA reconfigurable intelligent surface-aided downlink communication networks[END_REF], [START_REF] Yang | Reconfigurable intelligent surface aided constant-envelope wireless power transfer[END_REF]: An auxiliary variable ω is introduced such that ω = θ, which can be regarded as a copy of θ. The feasible region of constraint C1 is denoted by B, which, by using the indicator function, can be formulated as follows

I B (W, θ) = f (W, θ) , if {W, θ} ∈ B ∞, otherwise. (65) 
Similarly, the feasible region that corresponds to constraint C2, i.e., S 1 can be written as follows

I S1 (ω) = 0, if ω ∈ S 1 ∞, otherwise. (66) 
Then, the equivalent ADMM reformulation for the optimization problem in ( 56) is

min W,θ,ω I B (W, θ) + I S1 (ω) s.t. ω = θ. (67) 
The augmented Lagrangian of the optimization problem in [START_REF] Zhou | Channel estimation for RIS-aided multiuser millimeter-wave systems[END_REF] is

L ξ = I B (W, θ) + I S1 (ω) + ξ 2 θ -ω + λ 2 2 , (68) 
where ξ > 0 is a constant penalty parameter, and

λ = [λ 1 , • • • , λ M ]
T is the dual variable vector of the constraint ω = θ. Based on the ADMM algorithm, the variables W, θ and ω are alternately optimized.

The ADMM algorithm is an iterative approach. In the t-th iteration, given W t , θ t and ω t , the variables are updated as follows.

(a) Updating θ: The subproblem for updating θ is

min θ f (θ) + ξ 2 θ -ω t + λ t 2 2 s.t. g i (θ) ≥ D i , i = 1, • • • , I. (69) 
Note that the unit-modulus constraint for θ is not included in this subproblem, which significantly reduces the complexity of computing θ.

(b) Updating W: The subproblem for updating W is

min W f (W) s.t. g i (W) ≥ D i , i = 1, • • • , I. (70) 
(c) Updating ω: The subproblem for updating ω is

ω t+1 = arg min ω∈S1 θ t+1 + λ t -ω 2 2 . ( 71 
)
The objective of the optimization problem in ( 71) is to project θ t+1 + λ t onto the feasible set S 1 , whose solution is 

ω t+1 = e j arg(θ t+1 +λ t ) . (d) Updating λ: The update of λ is λ t+1 = λ t + θ t+1 - ω t+1 . ( 8 
f (θ) -λ t 2M m=1 b m s.t. g i (θ) ≥ D i , i = 1, • • • , I, θ t m 2 -2Re(θ * m θ t m ) ≤ b m -1, ∀m, |θ m | 2 ≤ 1 + b m+M , ∀m, (72) 
where λ t is the regularization factor to control the feasibility of the constraints in the t-th iteration. After some transformations, the optimization problem in (72) can be solved by CVX, and the detailed procedure to solve this problem, which can be found in references [START_REF] Zhou | A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels[END_REF]- [START_REF] Chen | Robust transmission for reconfigurable intelligent surface aided millimeter wave vehicular communications with statistical CSI[END_REF], is omitted here for brevity. (9) Barrier function penalty [START_REF] Ye | Joint reflecting and precoding designs for SER minimization in reconfigurable intelligent surfaces assisted MIMO systems[END_REF], [START_REF] Hu | Angle-domain intelligent reflecting surface systems: Design and analysis[END_REF]: The unit modulus constraint can be equivalently written as tr θθ H = M and θ ∞ ≤ 1. Since θ ∞ is non-differentiable, the l p norm with large p can be used to approximate it, i.e., θ ∞ = lim p→∞ θ p .

To deal with the constraint θ p ≤ 1, the logarithmic barrier function F (x) can be used to approximate the penalty of violating the l p constraint, as

F (x) = -1 κ ln(x), x > 0, ∞, x ≤ 0, (73) 
where κ > 0 is the barrier function penalty factor. For simplicity, constraint C1 is ignored. Accordingly, the phase shift optimization problem can be reformulated as

min θ G (θ) = f (θ) + F 1 -θ p s.t. tr θθ H = M. (74) 
Due to the non-convex constraint, the optimization problem in ( 74) is still non-convex. To circumvent this issue, a possible solution is to utilize the gradient and projection method, which provides a low complexity but suboptimal solution. Specifically, the gradient of the objective function G (θ) can be formulated as

∇ θ G(θ) = θ 1-p p 2κ 1 -θ p ξ + ∇ θ f (θ), (75) 
where

ξ = θ 1 |θ 1 | p-2 , • • • , θ M |θ M | p-2 T
. Since the problem formulation in ( 74) is a minimization problem, the search direction is opposite to the direction of the gradient in [START_REF] Abeywickrama | Intelligent reflecting surface: Practical phase shift model and beamforming optimization[END_REF]. Let θ (i) denote θ at the i-th iteration, the search direction in the i-th iteration is d

(i) gd = -∇ θ G(θ)| θ=θ (i) Then, this search direction d (i)
gd is projected onto the tangent plane of tr θθ H = M , as

d (i) p = d (i) gd - d (i) gd T θ (i) * θ (i) θ (i) 2 . ( 76 
)
Then, the update of θ in the (i + 1)-th iteration is

θ (i+1) = (1 -α )θ (i) + α √ M d (i) p d (i) p 2 , (77) 
where the parameter α is obtained by

α = arg max α f   (1 -α)θ (i) + α √ M d (i) p d (i) p 2    . (78) 
(10) Accelerated projected gradient (APG) [START_REF] Shao | Minimum symbol-error probability symbol-level precoding with intelligent reflecting surface[END_REF]- [START_REF]On the maximum achievable sum-rate of the RIS-aided MIMO broadcast channel[END_REF]: For simplicity, constraint C1 is ignored and only the optimization of the phase shifts is considered. A projection operator P S1 is defined as

θ = P S1 (θ) ⇔ θm = θ m /|θ m |, if θ m = 0 1, otherwise. (79) 
Then, the update of the phase shifts in the (i + 1)-th iteration is given by

θ i+1 = P S1 z i - 1 γ i ∇ θ f (θ)| θ=zi , (80) 
where

z i = θ i + α i (θ i -θ i-1 )
, and α i is updated as

α i = ξ i-1 -1 ξ i , ξ i = 1 + 1 + 4ξ 2 i-1 2 . (81) 
In ( 80), γ i is obtained by using the backtracking line search method [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF]. (11) Gradient descent approach [START_REF] Huang | Reconfigurable intelligent surfaces for energy efficiency in wireless communication[END_REF], [START_REF] Zhi | Ergodic rate analysis of reconfigurable intelligent surface-aided massive MIMO systems with ZF detectors[END_REF]- [START_REF] Perovic | Achievable rate optimization for MIMO systems with reconfigurable intelligent surfaces[END_REF]: When the objective function f (θ) is differentiable, the optimization problem can be solved by using the gradient descent method. Specifically, let θ t be the phase shift vector at the t-th iteration. Then, the optimization variable θ at the (t + 1)-th iteration is updated as

θ t+1 = exp j arg θ t -µ ∇ θ f (θ)| θ=θ t , (82) 
where µ is the step size and the arg operator is used for satisfying the unit-modulus constraint. [START_REF] Tao | Performance analysis of intelligent reflecting surface aided communication systems[END_REF] Heuristic methods [START_REF] Zhi | Power scaling law analysis and phase shift optimization of RIS-aided massive MIMO systems with statistical CSI[END_REF]- [START_REF] Dai | Reconfigurable intelligent surface aided massive MIMO systems with low-resolution DACs[END_REF]: When the objective function is analytically involving, the above-mentioned algorithms may not be applicable or the computation of the gradient may be time-consuming. Possible solutions to circumvent this issue include the use of heuristic methods such the genetic algorithms (GA) or the particle swarm optimization (PSO) methods. More details can be found in [START_REF] Zhi | Power scaling law analysis and phase shift optimization of RIS-aided massive MIMO systems with statistical CSI[END_REF]- [START_REF] Dai | Reconfigurable intelligent surface aided massive MIMO systems with low-resolution DACs[END_REF].

(13) Deep reinforcement learning [START_REF] Huang | Reconfigurable intelligent surface assisted multiuser MISO systems exploiting deep reinforcement learning[END_REF]- [START_REF] Yang | Deep reinforcement learning-based intelligent reflecting surface for secure wireless communications[END_REF]: Machine learning methods can also be applied to optimize the phase shifts of the RIS. A suitable approach is the use of deep reinforcement learning. In fact, unlike supervised learning methods that require a large number of training labels, deep reinforcement learning based methods do not need training labels and can learn and operate in an online manner. Examples of application of deep reinforcement learning to the optimization of RIS-aided communications can be found in [START_REF] Huang | Reconfigurable intelligent surface assisted multiuser MISO systems exploiting deep reinforcement learning[END_REF]- [START_REF] Yang | Deep reinforcement learning-based intelligent reflecting surface for secure wireless communications[END_REF].

Simulation results: Fig. 4 illustrates the performance of the different algorithms discussed in this article in terms of sum rate and CPU run time. All algorithms are represented by the numbers they are introduced above. It can be seen that most of the algorithms for which a closed-form solution for the phase shifts can be found at each iteration (algorithms 3-5, 7, 9-11) provide a high sum rate with a low CPU time (around 100 seconds). However, the time-consuming algorithms (algorithms 1,2,6,8), which are implemented by using CVX, are more flexible to address optimization problems with complex constraints, such as quality of service (QoS) constraints.

2) Optimization Techniques for Discrete Phase Shifts Due to hardware limitations, it is challenging to implement continuous-valued phase shifts in practice [START_REF] Wu | Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[END_REF], [START_REF] Di | Hybrid beamforming for reconfigurable intelligent surface based multi-user communications: Achievable rates with limited discrete phase shifts[END_REF]. Hence, it is important to study the optimization of RISs subject to discrete-valued phase shifts, which leads to an NP-hard optimization problem. The existing works in this area can be classified into the following categories.

(1) Rounding method [START_REF] Chen | Intelligent reflecting surface: A programmable wireless environment for physical layer security[END_REF], [START_REF] Li | Joint beamforming design in multi-cluster MISO NOMA reconfigurable intelligent surface-aided downlink communication networks[END_REF], [START_REF] Wu | Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[END_REF], [START_REF] Zhao | Intelligent reflecting surface enhanced wireless networks: Two-timescale beamforming optimization[END_REF], [START_REF] Yuan | Intelligent reflecting surface-assisted cognitive radio system[END_REF]: The main idea of this method is first to obtain a continuous solution that fulfills the unit modulus constraint. We denote this solution as θm , ∀m. Then, the obtained solution is rounded to the nearest discrete value in S 2 as

θ m = arg min φ∈S2 θm -φ , ∀m. (83) 
(2) Binary mode selection method [START_REF] Wu | Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[END_REF], [START_REF] Hu | Robust and secure sum-rate maximization for multiuser MISO downlink systems with self-sustainable IRS[END_REF]: Note that θ m = e jϕm , ∀m, the objective function of the optimization problem can be transformed into a function of ϕ m , cos(ϕ m ) and sin(ϕ m ) 6 . For each reflecting element m, we introduce the binary vector

x m = [x 1,m , • • • , x L,m ]
T such that T . Then, we have

ϕ m = a T x m , cos (ϕ m ) = b T x m , sin (ϕ m ) = c T x m . (84) 
Based on [START_REF] Zhou | Stochastic learning-based robust beamforming design for RIS-aided millimeter-wave systems in the presence of random blockages[END_REF], the original optimization problem is converted into a binary variable optimization problem, and the branch and bound (BnB) method can be utilized to obtain the globally optimal solution [START_REF] Wu | Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[END_REF]. However, the BnB method has an exponential computational complexity. To reduce the complexity, the authors of [START_REF] Hu | Robust and secure sum-rate maximization for multiuser MISO downlink systems with self-sustainable IRS[END_REF] proposed to apply the SCA method. Specifically, the binary constraint on x l,m can be equivalently transformed into the following two continuous constraints:

x l,m -x 2 l,m ≤ 0, 0 ≤ x l,m ≤ 1. (85) 
The first constraint in [START_REF] Zhang | Sum rate optimization for two way communications with intelligent reflecting surface[END_REF] is the difference between two convex functions, and the SCA method can be used.

(3) Negative square penalty (NSP) [START_REF] Shao | A framework for onebit and constant-envelope precoding over multiuser massive MISO channels[END_REF], [START_REF] You | Energy efficiency and spectral efficiency tradeoff in RIS-aided multiuser MIMO uplink transmission[END_REF]: The NSP method [START_REF] Shao | A framework for onebit and constant-envelope precoding over multiuser massive MISO channels[END_REF] was adopted to solve the discrete phase shift in [START_REF] You | Energy efficiency and spectral efficiency tradeoff in RIS-aided multiuser MIMO uplink transmission[END_REF]. Specifically, the discrete phase shift optimization problem can be expressed as

min θ∈ S2 f (θ) (86) 
where

S2 = θ| θ = e j( 2π L l+ π L ) , l = 0, • • • , L -1 .
Based on the NSP methods, we introduce the following problem

min θ∈ S2 F (θ) ∆ = f (θ) -λ θ 2 , (87) 
where S2 = conv S2 is the convex hull of S2 , and λ is a penalty parameter. The penalty term λ θ 2 pushes each θ m to an extreme point of S2 . It is important to note that the constraint of the optimization in ( 87) is convex, which is easier to handle than the original problem formulation in [START_REF] Wu | Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[END_REF]. The authors of [START_REF] Shao | A framework for onebit and constant-envelope precoding over multiuser massive MISO channels[END_REF] provided the conditions on λ for the problem in ( 87) to be equivalent to the original problem in [START_REF] Wu | Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[END_REF]. The MM method is utilized to solve the reformulated problem in [START_REF] Cui | Secure wireless communication via intelligent reflecting surface[END_REF]. Let θ i denote the value of θ at the i-th iteration. Then, for any θ, we have

F (θ) ≤ f (θ) + λ θ i 2 -2Re θ H θ i ∆ = G θ| θ i . (88) 
Then, at the i-th iteration, the optimization problem is reformulated as follows

min θ∈ S2 G θ| θ i . (89) 
The optimization problem in (89) can be tackled by using the APG method, which can be written as

θ i+1 = P S2 z i - 1 β i ∇ θ G θ| θ i θ=θ i , (90) 
where the same notation as for the APG method introduced for the case of continuous phase shifts is used. Specifically, the projection onto the convex set S2 is denoted by P S2 (u) whose closed-form expression is [START_REF] Shao | A framework for onebit and constant-envelope precoding over multiuser massive MISO channels[END_REF] 

P S2 (u) = e j 2πl L [Re (ũ)] cos(π/L) 0 + j [Im (ũ)] sin(π/L) -sin(π/L) ,
where

n = ∠u + π/L 2π/L , ũ = ue -j 2πn L .
(4) Heuristic methods [START_REF] Dai | Reconfigurable intelligent surface aided massive MIMO systems with low-resolution DACs[END_REF]: Heuristic methods such as the PSO are effective methods to address the discrete phase shift optimization problem. More details can be found in [START_REF] Dai | Reconfigurable intelligent surface aided massive MIMO systems with low-resolution DACs[END_REF].

B. Various Levels of CSI Availability

Depending on the levels of CSI availability, existing contributions on transmission design of RIS-aided communication systems can be classified into three categories: 1) Systems designs based on instantaneous CSI; 2) Systems designs based on the so-called two-timescale CSI; 3) Systems designs that rely on fully long-term CSI. The operation protocol for each category is shown in Fig. 5 and the details for each category are given next.

1) Instantaneous CSI

For the case of instantaneous CSI, the overall CSI of the system is assumed to be available at the BS. The RISrelated channels can be the cascaded channels G k , ∀k, or the individual channels H H and h H r,k , ∀k. The existing works on the transmission design can be classified into two categories: (1) Perfect instantaneous CSI; (2) Imperfect instantaneous CSI.

(1) Perfect instantaneous CSI: Most of the existing works have considered transmission design based on the assumption that the instantaneous CSI is perfectly available. Based on this assumption, the performance gains provided by introducing an RIS in various wireless applications have been investigated, such as mmWave/terahertz systems [START_REF] Zhou | Stochastic learning-based robust beamforming design for RIS-aided millimeter-wave systems in the presence of random blockages[END_REF], [START_REF] Wang | Intelligent reflecting surface-assisted millimeter wave communications: Joint active and passive precoding design[END_REF], [START_REF] Pradhan | Hybrid precoding design for reconfigurable intelligent surface aided mmWave communication systems[END_REF]- [START_REF] Pan | UAV-assisted and intelligent reflecting surfaces-supported terahertz communications[END_REF], multicell systems [START_REF] Pan | Multicell MIMO communications relying on intelligent reflecting surfaces[END_REF], [START_REF] Xie | Max-min fairness in IRS-aided multi-cell MISO systems with joint transmit and reflective beamforming[END_REF], [START_REF] Buzzi | RIS configuration, beamformer design, and power control in single-cell and multi-cell wireless networks[END_REF], physical layer security systems [START_REF] Chen | Intelligent reflecting surface: A programmable wireless environment for physical layer security[END_REF], [START_REF] Cui | Secure wireless communication via intelligent reflecting surface[END_REF], [START_REF] Chu | Intelligent reflecting surface aided multi-antenna secure transmission[END_REF], [START_REF] Shen | Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications[END_REF], [START_REF] Dong | Secure MIMO transmission via intelligent reflecting surface[END_REF], [START_REF] Hong | Artificialnoise-aided secure MIMO wireless communications via intelligent reflecting surface[END_REF], [START_REF] Guan | Intelligent reflecting surface assisted secrecy communication: Is artificial noise helpful or not?[END_REF], simultaneous wireless information and power transfer (SWIPT) [START_REF] Pan | Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer[END_REF], [START_REF] Wu | Joint active and passive beamforming optimization for intelligent reflecting surface assisted SWIPT under QoS constraints[END_REF], [START_REF] Yang | Reconfigurable intelligent surface aided constant-envelope wireless power transfer[END_REF], [START_REF] Wu | Weighted sum power maximization for intelligent reflecting surface aided SWIPT[END_REF]- [START_REF] Feng | Waveform and beamforming design for intelligent reflecting surface aided wireless power transfer: Single-user and multi-user solutions[END_REF], mobile edge computing networks [START_REF] Bai | Resource allocation for intelligent reflecting surface aided wireless powered mobile edge computing in OFDM systems[END_REF], [START_REF] Hu | Reconfigurable intelligent surface aided mobile edge computing: From optimization-based to location-only learning-based solutions[END_REF], [START_REF] Bai | Latency minimization for intelligent reflecting surface aided mobile edge computing[END_REF]- [START_REF] Cao | Delay-constrained joint power control, user detection and passive beamforming in intelligent reflecting surface-assisted uplink mmWave system[END_REF], multicast networks [START_REF] Zhou | Intelligent reflecting surface aided multigroup multicast MISO communication systems[END_REF], [START_REF] Du | Capacity characterization for reconfigurable intelligent surfaces assisted multipleantenna multicast[END_REF], cognitive radio networks [START_REF] Yuan | Intelligent reflecting surface-assisted cognitive radio system[END_REF], [START_REF] Zhang | Intelligent reflecting surface aided MIMO cognitive radio systems[END_REF], [START_REF] Guan | Joint power control and passive beamforming in IRS-assisted spectrum sharing[END_REF], non-orthogonal multiple access [START_REF] Yang | Reconfigurable intelligent surface-assisted non-orthogonal multiple access[END_REF], [START_REF] Zeng | Sum rate maximization for IRS-assisted uplink NOMA[END_REF], [START_REF] Fu | Intelligent reflecting surface for downlink non-orthogonal multiple access networks[END_REF], [START_REF] Li | Joint beamforming design in multi-cluster MISO NOMA reconfigurable intelligent surface-aided downlink communication networks[END_REF], [START_REF] Zheng | Intelligent reflecting surface-assisted multiple access with user pairing: NOMA or OMA?[END_REF]- [START_REF] Mu | Exploiting intelligent reflecting surfaces in NOMA networks: Joint beamforming optimization[END_REF], two-way communications [START_REF] Zhang | Sum rate optimization for two way communications with intelligent reflecting surface[END_REF], [START_REF] Peng | Multiuser full-duplex two-way communications via intelligent reflecting surface[END_REF], and full-duplex (FD) communication [START_REF] Cai | Intelligent reflecting surface aided full-duplex communication: Passive beamforming and deployment design[END_REF]. In these works, the AO method was adopted to alternately optimize the beamforming vectors at the BS and the phase shifts at the RIS, and the phase shift optimization problem was addressed using the algorithms summarized in Subsection III-A.

(2) Imperfect instantaneous CSI: As discussed in Section II, channel estimation errors are inevitable. If the estimated CSI is naively regarded as perfect in the transmission design, the obtained solution will likely violate the QoS requirements. This issue is further aggravated in RIS-aided communication systems due to the additional RIS-related channels to be estimated. Hence, it is imperative to consider robust transmission designs by taking into account the channel estimation errors. Most of the early contributions in this area studied the case when the channels from the RIS to the users are imperfect [START_REF] Zhou | Robust beamforming design for intelligent reflecting surface aided MISO communication systems[END_REF]- [START_REF] Zhang | Robust and secure communications in intelligent reflecting surface assisted NOMA networks[END_REF] while regarding the channels from the BS to the RIS as perfect. This approach requires estimation of the BS-RIS and RIS-user channels separately, which is challenging to implement in practice. Instead, the authors of [START_REF] Zhou | A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels[END_REF] proposed a framework of robust transmission design for RIS-aided multiuser systems based on imperfect CSI of the cascaded channels. Two models were used to characterize the cascaded channel estimation error, namely, the bounded CSI error model and the statistical CSI error model. Specifically, the cascaded and direct channels can be written as

h d,k = ĥd,k + hd,k , G k = Ĝk + Gk , (91) 
where ĥd,k and Ĝk are the estimated channels, and hd,k and Gk are the corresponding channel estimation errors. Next, we discuss the two CSI error models.

A. Bounded CSI Error Model: In this case, the channel error is modeled as follows

Gk 2 ≤ ε c,k , hd,k 2 ≤ ε d,k , (92) 
where ε c,k and ε d,k quantify the level of channel uncertainty. Under this model, the authors of [START_REF] Zhou | A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels[END_REF] jointly optimized the active beamforming at the BS and the phase shifts at the RIS so as to minimize the total power consumption under the unitmodulus constraint for the phase shifts and by ensuring that the data rate of each user is above a threshold for all possible channel error realizations. By defining

Ω h d,k = hd,k ∈ C N ×1 : hd,k 2 ≤ ε d,k , (93) 
Ω G k = Gk ∈ C N ×M : Gk 2 ≤ ε c,k , (94) 
the robust design problem can be formulated as

min W,θ W 2 2 s.t. θ m ∈ S 1 or S 2 , ∀m = 1, 2, . . . , M, R k (W, θ) ≥ D k , ∀ hd,k ∈ Ω h d,k , ∀ Gk ∈ Ω G k , ∀k, (95) 
where D k is the minimum data requirement of user k, S 1 and S 2 are defined in ( 57) and ( 58), respectively.

The key difficulty in solving the optimization problem in (95) lies in how to deal with an infinite number of possible channel errors. The most popular technique is to use the Sprocedure, which transforms the worst-case constraints into a more tractable form with linear matrix inequalities. The AO and penalty CCP techiques were adopted to solve Problem [START_REF] Huang | Reconfigurable intelligent surfaces for energy efficiency in wireless communication[END_REF] in [START_REF] Zhou | A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels[END_REF]. Later, similar techniques were used in RIS-aided cognitive radio networks [START_REF] Zhang | Robust beamforming design for intelligent reflecting surface aided cognitive radio systems with imperfect cascaded CSI[END_REF], [START_REF] Yuan | Intelligent reflecting surface-assisted cognitive radio system[END_REF], physical layer security systems [START_REF] Hong | Robust transmission design for intelligent reflecting surface-aided secure communication systems with imperfect cascaded CSI[END_REF], and secure cognitive radio communications [START_REF] Dong | Secure cognitive radio communication via intelligent reflecting surface[END_REF]. In [START_REF] Yu | IRS-assisted green communication systems: Provable convergence and robust optimization[END_REF], the penalty-based alternating minimization method was proposed, which is guaranteed to converge to a stationary point and is a Karush-Kuhn-Tucker (KKT) solution of the considered problem.

B. Statistical CSI Error Model: For the statistical CSI error model, the channel error is modeled as a random variable. When the linear minimum mean square error (LMMSE) is used for channel estimation, the channel estimation error generally follows a complex Gaussian distribution. Hence, the channel error can be modeled as

vec Gk ∼ CN (0, Σ c,k ) , Σ c,k 0, ∀k, (96) 
hd,k ∼ CN (0, Σ d,k ) , Σ d,k 0, ∀k, (97) 
where Σ c,k ∈ C M N ×M N and Σ h,k ∈ C N ×N are positive definite error covariance matrices. Due to the randomness of the channel error, the design objective is mainly to optimize the beamforming vectors at the BS and the phase shifts at the RIS while ensuring a minimum non-outage probability. Specifically, the robust design problem can be formulated as

min W,θ W 2 2 s.t. θ m ∈ S 1 or S 2 , ∀m = 1, 2, . . . , M, Pr {R k (W, θ) ≥ D k } ≥ 1 -ρ k , ∀k, (98) 
where ρ k is the maximum outage probability. The main challenge in solving the optimization problem in (98) lies in the fact that the rate outage probability constraints do not admit a closed-form expression. One method to circumvent this issue is the Bernstein-Type inequality [START_REF] Wang | Outage constrained robust transmit optimization for multiuser MISO downlinks: Tractable approximations by conic optimization[END_REF], which transforms an intractable outage probability constraint into a tractable linear matrix inequality [START_REF] Zhou | A framework of robust transmission design for IRS-aided MISO communications with imperfect cascaded channels[END_REF]. This method has been applied to RIS-aided physical layer security systems [START_REF] Hong | Robust transmission design for intelligent reflecting surface-aided secure communication systems with imperfect cascaded CSI[END_REF], [START_REF] Hong | Outage constrained robust transmission design for IRS-aided secure communications with direct communication links[END_REF] and RIS-aided vehicular communications [START_REF] Chen | Robust transmission for reconfigurable intelligent surface aided millimeter wave vehicular communications with statistical CSI[END_REF]. Another method that can be applied is the constrained stochastic SCA algorithm proposed in [START_REF] Zhao | Outage-constrained robust beamforming for intelligent reflecting surface aided wireless communication[END_REF], which is shown to guarantee the desired outage probability performance of the users. In addition, the robust design of RIS-aided cognitive radio networks was considered in [START_REF] Zhang | Robust beamforming design for intelligent reflecting surface aided cognitive radio systems with imperfect cascaded CSI[END_REF], where it was ensured that the probability that the interference power perceived at the primary users (PUs) is below an interference temperature (IT) limit was larger than a threshold. Both the triangle inequality and the inverse Chi-square distribution techniques were invoked to derive a tractable approximate constraint.

2) Two-Timescale CSI As illustrated in Fig. 5, transmission designs based on the knowledge of the instantaneous CSI require that the BS needs to estimate the cascaded channel G k and direct channel h d,k in each channel coherence block, in which the number of time slots required for channel training is often proportional to the number of reflecting elements, e.g., for the unstructured channel models discussed in Section II. Since the RIS is not endowed with power amplification and signal processing capabilities, it is expected to be equipped with hundreds or even thousands of reflecting elements for ensuring the desired coverage. As a result, the channel training overhead may be excessive, and there may be only a few or even no time slots left for data transmission. Most recently, in instantaneous CSI cases, it was revealed in [START_REF] Zhi | Twotimescale design for reconfigurable intelligent surface-aided massive MIMO systems with imperfect CSI[END_REF], [START_REF] Kundu | Large intelligent surfaces with channel estimation overhead: Achievable rate and optimal configuration[END_REF], [START_REF] Zappone | Overhead-aware design of reconfigurable intelligent surfaces in smart radio environments[END_REF] that the net data rate that accounts for the penalty due to channel estimation overhead first increases and then decreases with the number of reflecting elements. It is well known that time division duplexing (TDD) is the preferred option in massive MIMO systems since the channel training overhead depends on the number of users, and is not related to the number of BS antennas. In RIS-aided wireless systems, no matter whether TDD or frequency division duplexing (FDD) is used, the required channel training overhead is always proportional to the number of reflecting elements under the assumption of unstructured channel models. Furthermore, in each coherence block with a duration of at most several hundred milliseconds, the BS needs to optimize the phase shifts and active beamforming vectors, which requires the BS to have sufficient computational capabilities. In addition, the phase shifts computed at the BS need to be sent to the RIS controller for updating the phase shifts in each coherence block. This would incur high feedback overhead.

To address these issues, a novel two-timescale beamforming design was first proposed in [START_REF] Han | Large intelligent surface-assisted wireless communication exploiting statistical CSI[END_REF] and its transmission protocol is shown in Fig. 5. The main idea is that the active beamforming vectors at the BS are designed based on the instantaneous effective/aggragated BS-user channels that are the superposition of the direct and RIS-reflected channels, while the phase shifts at the RIS are designed based on long-term CSI, such as their distribution parameters including channel mean and channel covariance matrices. In each coherence block, only the instantaneous effective channel of each user needs to be estimated and the channel training overhead is equal to the number of users, which is the same as for legacy massive MIMO systems without RISs. Furthermore, since the long-term CSI remains usually invariant for a large number of channel coherence blocks, the phase shifts of the RIS can be updated at a much lower rate than the fast fading fluctuations, which significantly reduces the computational burden and feedback overhead.

To better understand, let us consider the system model in Fig. 1. All the channels are assumed to be subject to correlated Rician fading When the spatial covariance matrices are identity matrices, the channels are independent and identically distributed Rician channels. When both conditions hold, the channels reduce to independent and identically distributed Rayleigh channels. The spatial covariance matrices can be estimated by using the method in [START_REF] Liang | Downlink channel covariance matrix (DCCM) estimation and its applications in wireless DS-CDMA systems[END_REF] or the model proposed in [START_REF] Björnson | Rayleigh fading modeling and channel hardening for reconfigurable intelligent surfaces[END_REF]. Also, the LoS components mainly depend on location/angle information, which can be estimated using the method in [START_REF] Zhou | Channel estimation for RIS-aided multiuser millimeter-wave systems[END_REF]. In general, the NLoS components vary rapidly and need to be estimated at each coherence block, while the LoS components change slowly and usually remain constant over a number of channel coherence blocks. Let q k ∆ = h d,k + HΘh r,k be the effective channel of user k and let Q = [q 1 , • • • , q K ] be the collection of all effective channels. In the downlink, the beamforming vector w k is a function of the effective channels Q, i.e., w k = z k (Q). By substituting w k into the optimization problem in [START_REF] Saleh | A statistical model for indoor multipath propagation[END_REF], the original problem can be converted into an optimization problem that depends only on the optimization variable θ

H = β δ 1 + δ H + 1 1 + δ H , h r,k = √ α k ε k 1 + ε k hr,k + 1 1 + ε k hr,k , ∀k, h d,k = √ γ k k 1 + k hd,k + 1 1 + k hd,k ,
min θ E {f (θ)} s.t. θ m ∈ S 1 or S 2 , ∀m = 1, 2, . . . , M, E {g i (θ)} ≥ D i , i = 1, • • • , I, (99) 
where the expectation is taken over the NLoS components of the channels. The optimization problem in the uplink can be formulated mutatis mutandis.

In the following, we discuss the existing works from two aspects: (1) Downlink transmission; (2) Uplink transmission.

(1) Downlink transmission: In the two-timescale scheme, to reduce the complexity of solving the optimization problem in [START_REF] Pan | Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer[END_REF], most existing works have adopted maximum-ratiotransmission (MRT) at the BS:

w k = P k q k q k , ( 100 
)
where P k is the transmission power of user k.

For the single-user case, the MRT precoder is optimal. This setup has been studied in [START_REF] Han | Large intelligent surface-assisted wireless communication exploiting statistical CSI[END_REF], [START_REF] Jia | Analysis and optimization of an intelligent reflecting surface-assisted system with interference[END_REF]- [START_REF] Guo | Intelligent reflecting surface configuration with historical channel observations[END_REF]. Specifically, by assuming Rician fading for the RIS-related channels and Rayleigh fading for the direct channel, an upper bound for the ergodic data rate was derived in [START_REF] Han | Large intelligent surface-assisted wireless communication exploiting statistical CSI[END_REF] using Jensen's inequality, based on which the optimal phase shift was obtained in closed form as a function of the LoS components of the channels. The work in [START_REF] Han | Large intelligent surface-assisted wireless communication exploiting statistical CSI[END_REF] was further extended in [START_REF] Jia | Analysis and optimization of an intelligent reflecting surface-assisted system with interference[END_REF] to the case where there is a co-channel BS transmitting interference signals. The authors of [START_REF] Papazafeiropoulos | Coverage probability of distributed IRS systems under spatially correlated channels[END_REF] first derived an approximated closed-form expression of the coverage probability of a multi-RIS-aided system in the presence of correlated Rayleigh fading, by using the deterministic equivalent analysis, and then optimized the phase shifts relying on the projected gradient method. Instead of using Jensen's inequality, the stochastic gradient descent method was used in [START_REF] Guo | Intelligent reflecting surface configuration with historical channel observations[END_REF] for solving the phase shift optimization problem, which is applicable to any channel distribution.

In the multiuser case, MRT at the BS was adopted in [START_REF] Dai | Reconfigurable intelligent surface aided massive MIMO systems with low-resolution DACs[END_REF], [START_REF] Al-Nahhas | Reconfigurable intelligent surface aided communications: Asymptotic analysis under imperfect CSI[END_REF]. In particular, by taking into account the use of low-resolution digital-analog converters (DACs) at the BS, the authors of [START_REF] Dai | Reconfigurable intelligent surface aided massive MIMO systems with low-resolution DACs[END_REF] derived an approximate expression for the ergodic data rate of RIS-aided massive MIMO systems. Because of the complicated expression of the obtained data rate, the heuristic PSO method was invoked to solve the rate maximization problem under the assumptions of either continuous or discrete phase shifts. Simulation results showed that three quantization bits for the phase shifts are sufficient to obtain similar performance as for the continuous phase shifts. By considering the channel estimation error of the effective channel, the authors of [START_REF] Al-Nahhas | Reconfigurable intelligent surface aided communications: Asymptotic analysis under imperfect CSI[END_REF] derived deterministic equivalents for the sum rate, where a LoS deterministic RIS-BS channel and Rician fading RIS-user/BS-user channels were assumed. The projected gradient ascent-based algorithm was used for solving the phase shift optimization problem.

In addition to the MRT, another beamforming vector that can be utilized at the BS is the optimal linear precoder studied in [192], which is the optimal solution to the problem of maximizing the minimum data rate. Specifically, the authors of [192] developed deterministic approximations of the minimum data rate using random matrix theory (RMT) tools by assuming a deterministic BS-RIS channel and correlated Rayleigh RISuser channels.

In [START_REF] Zhao | Intelligent reflecting surface enhanced wireless networks: Two-timescale beamforming optimization[END_REF] and [START_REF] Zhao | Two-timescale beamforming optimization for intelligent reflecting surface aided multiuser communication with QoS constraints[END_REF], more sophisticated algorithms, such as deep unfolding and the stochastic successive convex approximation, were utilized to jointly optimize the beamforming vectors and the phase shifts. Although the algorithms in [START_REF] Zhao | Intelligent reflecting surface enhanced wireless networks: Two-timescale beamforming optimization[END_REF] and [START_REF] Zhao | Two-timescale beamforming optimization for intelligent reflecting surface aided multiuser communication with QoS constraints[END_REF] are applicable to any channel distributions, the computational complexity would be excessive when the number of antennas at the BS is large, and thus not suitable for massive MIMO systems.

(2) Uplink transmission: Similar to the downlink, maximum-ratio-combining (MRC) at the BS is widely used in the uplink. In this case, the decoding vector is

v k = q k . ( 101 
)
The MRC scheme has been studied in [START_REF] Papazafeiropoulos | Intelligent reflecting surface-assisted MU-MISO systems with imperfect hardware: Channel estimation and beamforming design[END_REF], [START_REF] Zhi | Power scaling law analysis and phase shift optimization of RIS-aided massive MIMO systems with statistical CSI[END_REF]- [START_REF] Zhi | Twotimescale design for reconfigurable intelligent surface-aided massive MIMO systems with imperfect CSI[END_REF], [START_REF] Dai | Statistical CSI-based transmission design for reconfigurable intelligent surface-aided massive MIMO systems with hardware impairments[END_REF], [START_REF] Wang | Massive MIMO communication with intelligent reflecting surface[END_REF]. The achievable data rate was derived in [START_REF] Zhi | Power scaling law analysis and phase shift optimization of RIS-aided massive MIMO systems with statistical CSI[END_REF] for RIS-aided massive MIMO systems assuming Rician fading for the BS-RIS and RIS-user channels. Based on the obtained result, the scaling laws with respect to the number of RIS elements and the number of BS antennas were analyzed.

The work was extended in [129] to the case study where the direct link between the BS and the users are present, and the authors provided the conditions under which RISaided massive MIMO systems outperform conventional massive MIMO systems. In [START_REF] Dai | Statistical CSI-based transmission design for reconfigurable intelligent surface-aided massive MIMO systems with hardware impairments[END_REF], the achievable data rate was analyzed in the presence of transceiver hardware impairments (HWIs) and RIS phase noise over Rician fading RIS-related channels, and it was demonstrated that the hardware imperfections do not affect the power scaling law. Most recently, the authors of [START_REF] Zhi | Twotimescale design for reconfigurable intelligent surface-aided massive MIMO systems with imperfect CSI[END_REF] adopted the LMMSE estimator to estimate the effective channel, and derived a closed-form expression for the approximate achievable data rate by taking into account the channel estimation errors. A framework for the power scaling law analysis was introduced in [START_REF] Zhi | Twotimescale design for reconfigurable intelligent surface-aided massive MIMO systems with imperfect CSI[END_REF] under various channel fading distributions. Due to the complicated data rate expression, the phase shift optimization problem was solved by using the heuristic GA method in [START_REF] Zhi | Power scaling law analysis and phase shift optimization of RIS-aided massive MIMO systems with statistical CSI[END_REF]- [START_REF] Zhi | Twotimescale design for reconfigurable intelligent surface-aided massive MIMO systems with imperfect CSI[END_REF], [START_REF] Dai | Statistical CSI-based transmission design for reconfigurable intelligent surface-aided massive MIMO systems with hardware impairments[END_REF]. In addition to the effective channel estimation error, the impact of both the transceiver HWIs and the RIS phase noise on the achievable data rate was analyzed in [START_REF] Papazafeiropoulos | Intelligent reflecting surface-assisted MU-MISO systems with imperfect hardware: Channel estimation and beamforming design[END_REF] for transmission over a deterministic BS-RIS channel and other correlated Rayleigh fading channels. In [START_REF] Wang | Massive MIMO communication with intelligent reflecting surface[END_REF], the achievable data rate for imperfect effective channels was derived where all channels were assumed to undergo correlated Rayleigh fading. The authors of [START_REF] Wang | Massive MIMO communication with intelligent reflecting surface[END_REF] demonstrated that the channel hardening and favorable propagation conditions still hold for the effective channels.

Besides the MRC, another low-complexity decoding vector is the zero-forcing (ZF) detector. Let

V = [v 1 , • • • , v K ]
denote the collection of all users' decoding vectors. Then, the ZF detector at the BS is

V = Q Q H Q -1 . ( 102 
)
The two-timescale design for RIS-aided massive MIMO with ZF was studied in [START_REF] Zhi | Ergodic rate analysis of reconfigurable intelligent surface-aided massive MIMO systems with ZF detectors[END_REF], [START_REF] Zhi | Is RIS-aided massive MIMO promising with ZF detectors and imperfect CSI?[END_REF]. By approximating the noncentral Wishart distribution with a central Wishart distribution, a closed-form expression of the ergodic data rate was derived in [START_REF] Zhi | Ergodic rate analysis of reconfigurable intelligent surface-aided massive MIMO systems with ZF detectors[END_REF] under the assumption of a BS-RIS channel that undergoes Rician fading, and LoS RIS-user channels and BSuser channels that undergo Rayleigh fading. Based on the derived expression of the ergodic data rate, the gradient ascent algorithm was proposed to optimize the phase shifts of the RIS. The simulation results in [START_REF] Zhi | Ergodic rate analysis of reconfigurable intelligent surface-aided massive MIMO systems with ZF detectors[END_REF] demonstrated that the ZF detectors significantly outperform the MRC detectors in RIS-aided massive MIMO systems. The reason is that the users share the same RIS-BS channel and then their cascaded channels are highly correlated over Rician fading channels. Therefore, by effectively eliminating the interference, the ZF detector provides a higher ergodic rate as compared with the MRC. The analysis in [START_REF] Zhi | Ergodic rate analysis of reconfigurable intelligent surface-aided massive MIMO systems with ZF detectors[END_REF] was extended to the case with imperfect effective CSI [START_REF] Zhi | Is RIS-aided massive MIMO promising with ZF detectors and imperfect CSI?[END_REF], where closed-form expressions for the uplink data rate were derived. The analytical results

showed that the rate of all the users scales at least on the order of O (log 2 (M N )). The low-complexity MM algorithm was proposed to optimize the RIS phase shifts.

In the uplink, the optimal decoding vector is the LMMSE receiver given by

v k = K i=1 P i q i q H i + σ 2 I N -1 q k . ( 103 
)
Using the LMMSE receiver, the authors of [START_REF] Papazafeiropoulos | Asymptotic analysis of max-min weighted SINR for IRS-assisted MISO systems with hardware impairments[END_REF] analyzed the approximate SINR of each user by leveraging the deterministic equivalent method, where the BS-RIS channel is assumed to be deterministic and the other channels follow a correlated Rayleigh distribution. In [START_REF] Papazafeiropoulos | Asymptotic analysis of max-min weighted SINR for IRS-assisted MISO systems with hardware impairments[END_REF], both RIS phase noise and transceiver hardware impairments were taken into account, and the phase shifts of the RIS were optimized using the gradient ascent algorithm to maximize the minimum SINR.

3) Fully long-term CSI In the two-timescale design, the instantaneous effective CSI needs to be estimated in each coherence block. To further reduce the channel estimation overhead, an appealing approach is based on transmission designs that require only long-term CSI. The operation procedure is shown in Fig. 5. Specifically, at the beginning of the transmission, the BS estimates or measures the long-term CSI, based on which the BS computes the beamforming vector and the phase shifts that are used in all the subsequent coherence blocks until the long-term CSI changes. By adopting the same channel fading distribution as in the two-timescale CSI subsection, the long-term CSI problem is formulated as

min θ,W E {f (W, θ)} s.t. θ m ∈ S 1 or S 2 , ∀m = 1, 2, . . . , M, E {g i (W, θ)} ≥ D i , i = 1, • • • , I, (104) 
where the expectation is taken over the NLoS components of the channels. In contrast to the two-timescale optimization problem in [START_REF] Pan | Intelligent reflecting surface aided MIMO broadcasting for simultaneous wireless information and power transfer[END_REF], the beamforming vectors at the BS are designed based on long-term CSI. The main difficulty in solving Problem [START_REF] Wang | Intelligent reflecting surfaces assisted secure transmission without eavesdropper's CSI[END_REF] lies in the lack of explicit expressions for the objective function and constraints, i.e., the expectation in ( 104) cannot in general be formulated in a closed-form expression. In general, three optimization techniques can be utilized to circumvent this issue: (1) Applying Jensen's inequality; (2) Utilizing large system analysis; (3) Leveraging deep reinforcement learning methods.

(1) Jensen's inequality: Jensen's inequality is an effective and simple method to tackle the randomness in the channels, and has been widely used in the existing literature [START_REF] Hu | Statistical CSI based design for intelligent reflecting surface assisted MISO systems[END_REF]- [START_REF] Hua | UAV-assisted intelligent reflecting surface symbiotic radio system[END_REF]. The main idea of this method is to derive an upper bound for the function f (•) in ( 104) that is a function of the optimization variables and the long-term CSI. In these works, usually, the function f (•) in ( 104) is the data rate. Once the upper-bound is obtained, the many optimization methods overviewed in Subsection III-A can be invoked for solving the approximated phase shift optimization problem. Based on this approach, various research works can be found in the literature. The singleuser case was studied in [START_REF] Hu | Statistical CSI based design for intelligent reflecting surface assisted MISO systems[END_REF] and [START_REF] Wang | Joint transmit beamforming and phase shift design for reconfigurable intelligent surface assisted MIMO systems[END_REF] for Rician fading channels and correlated Rician fading channels, respectively.

Given the beamforming vectors, the optimal phase shifts were derived in closed form in [START_REF] Hu | Statistical CSI based design for intelligent reflecting surface assisted MISO systems[END_REF], and the SDR method was used in [START_REF] Wang | Joint transmit beamforming and phase shift design for reconfigurable intelligent surface assisted MIMO systems[END_REF] to solve the phase shift optimization problem. The authors of [START_REF] Gan | RIS-assisted multiuser MISO communications exploiting statistical CSI[END_REF] derived an upper bound for the data rate in both downlink and uplink multiuser scenarios, based on which the ADMM method was used for solving the phase shift optimization problem. The more complex multicell networks scenario in the presence of interference channels was studied in [START_REF] Peng | Analysis and optimization for RIS-aided multi-pair communications relying on statistical CSI[END_REF] and [START_REF] Luo | Reconfigurable intelligent surfaceassisted multi-cell MISO communication systems exploiting statistical CSI[END_REF] assuming Rician fading channels, and the phase shifts were optimized using the GA and CCM methods, respectively. Jensen's inequality was used in [START_REF] Hua | UAV-assisted intelligent reflecting surface symbiotic radio system[END_REF] to derive an upper bound of the ergodic data rate in RIS-aided UAV communication systems, based on which the trajectory of the UAV and the phase shifts of the RIS were jointly optimized.

(2) Large system analysis: Another widely used method to tackle the computation of the expectation in (104) relies on large system analysis [START_REF] Zhang | Large system achievable rate analysis of RIS-assisted MIMO wireless communication with statistical CSIT[END_REF]- [START_REF] Xu | On the sum-rate of RIS-assisted MIMO multiple-access channels over spatially correlated rician fading[END_REF]. The main idea is to apply the replica method in large dimension random matrix theory to derive a deterministic approximation of the ergodic data rate, based on which various optimization techniques can be used to optimize the phase shifts. Specifically, the authors of [START_REF] Zhang | Large system achievable rate analysis of RIS-assisted MIMO wireless communication with statistical CSIT[END_REF] and [START_REF] Zhang | Large-scale IRS-aided MIMO over double-scattering channel: An asymptotic approach[END_REF] considered the RIS-aided single-user case under correlated Rician fading channels and the double-scattering channel model, respectively. The gradient decent method and element-wise BCD method were used for determining the RIS phase shifts in [START_REF] Zhang | Large system achievable rate analysis of RIS-assisted MIMO wireless communication with statistical CSIT[END_REF] and [START_REF] Zhang | Large-scale IRS-aided MIMO over double-scattering channel: An asymptotic approach[END_REF], respectively. Recently, the authors of [START_REF] You | Reconfigurable intelligent surfaces-assisted multiuser MIMO uplink transmission with partial CSI[END_REF] and [START_REF] Xu | On the sum-rate of RIS-assisted MIMO multiple-access channels over spatially correlated rician fading[END_REF] studied RIS-aided MIMO multipleaccess channels. Specifically, in [START_REF] You | Reconfigurable intelligent surfaces-assisted multiuser MIMO uplink transmission with partial CSI[END_REF], the BS-RIS channel is assumed to be deterministic and the RIS-user channels are distributed according to a spatially correlated Rayleigh fading distribution. The MM method is used to solve the phase shift optimization problem. In [START_REF] Xu | On the sum-rate of RIS-assisted MIMO multiple-access channels over spatially correlated rician fading[END_REF], all the channels are assumed to be subject to correlated Rician fading and the gradient decent method is used to solve the phase shift optimization problem.

(3) Deep reinforcement learning: For example, a novel deep deterministic policy gradient (DDPG) based algorithm was proposed in [START_REF] Ren | Longterm CSI-based design for RIS-aided multiuser MISO systems exploiting deep reinforcement learning[END_REF] for solving the optimization problem in [START_REF] Wang | Intelligent reflecting surfaces assisted secure transmission without eavesdropper's CSI[END_REF]. The idea is that the BS first estimates the long-term CSI, based on which the BS randomly generates a set of instantaneous CSI samples based on the channel distribution in an offline manner. Then, the generated data set is employed for DDPG training. The final trained solutions can be used in subsequent coherence blocks. Compared with the above two methods, the appealing feature of the DDPG approach is the low training overhead, while providing almost the same performance as the existing methods.

In [START_REF] Hu | Angle-domain intelligent reflecting surface systems: Design and analysis[END_REF] and [START_REF] Hu | Location information aided multiple intelligent reflecting surface systems[END_REF], the authors considered the case study in the presence of imperfect long-term CSI. Specifically, in [START_REF] Hu | Angle-domain intelligent reflecting surface systems: Design and analysis[END_REF], the effective angles from the BS to the user are first derived, and are then used for optimizing the BS beamforming and the RIS phase shifts by accounting for the errors in angle estimation. In [START_REF] Hu | Location information aided multiple intelligent reflecting surface systems[END_REF], the authors exploited user location information to obtain the angle information and derived the corresponding angle error distribution based on the distribution of estimated location information. The achievable data rate was then derived based on the statistical information of the angle error distribution.

Simulation results: Fig. 6 illustrates the performance of transmission schemes based on instantaneous CSI, twotimescale CSI, and fully long-term CSI. We consider the uplink transmission in massive MIMO systems where lowcomplexity MRC is employed at the BS. The channel estimation overhead for long-term CSI estimation is ignored. The pilot lengths required for acquiring the necessary instantaneous CSI and two-timescale CSI are equal to

T ins = K + M + max (K -1, (K -1) M/N ) [52] and T two = K [130],
respectively. The fully long-term CSI scheme does not require estimation of the instantaneous (effective) CSI, which leads to a pilot length equal to T ful = 0.

As far as the instantaneous CSI case is concerned, in the u-th coherence block, the cascaded and direct channels of user k and the phase shifts of the RIS are denoted by G u k , h u d,k and θ u , respectively. Then, in the u-th coherence block, the instantaneous CSI-based MRC decoding vector is set as

(w u k (θ u )) H = (G u k θ u + h u d,k ) H and the corresponding SINR of user k is SINR u ins,k (θ u ) = P k (w u k (θ u )) H G u k θ u + h u d,k 2 K i=1,i =k P i (w u k (θ u )) H G u i θ u + h u d,i 2 + σ 2 w u k (θ u ) 2 , (105) 
and the corresponding average sum user rate is given by

R ins = 1- T ins T c 1 U U u=1 K k=1 log 2 1+SINR u ins,k (θ u ) , (106) 
where the factor 1 -Tins Tc accounts for the rate loss due to the pilot overhead.

As far as the two-timescale CSI scheme is concerned, the effective channel of user k in the u-th coherence block is denoted by

q u k = H u Θh u r,k + h u d,k
, where the phase shift matrix Θ remains constant for all coherence blocks 1 ≤ u ≤ U . In the u-th coherence block, the instantaneous CSI-based MRC decoding vector is set equal to (w u k (Θ)) H = (H u Θh u r,k + h u d,k ) H and then the SINR of user k is given by

SINR u two,k (Θ) = P k (w u k (Θ)) H H u Θh u r,k + h u d,k 2 K i=1,i =k P i (w u k (Θ)) H H u Θh u r,i + h u d,i 2 + σ 2 w u k (Θ) 2 . (107) 
It is worth noting that the phase shift Θ needs to be optimized only once in the considered series of coherence blocks. However, in the instantaneous CSI case, the phase shift needs to be optimized U times. The average sum user rate of the two-timescale scheme is given by

R two = 1 - K T c 1 U U u=1 K k=1 log 2 1 + SINR u two,k (Θ) . (108) 
As for the fully long-term CSI case is concerned, the long-term CSI-based MRC beamformer is set equal to

(w k (Θ)) H = E H u Θh u r,k + h u d,k
H which only contains large-scale LoS channel components and remains constant for all coherence blocks. Therefore, in the u-th coherence block, the SINR of user k is given by

SINR u ful,k (Θ) = P k (w k (Θ)) H H u Θh u r,k + h u d,k 2 K i=1,i =k P i (w k (Θ)) H H u Θh u r,i + h u d,i 2 + σ 2 w k (Θ) 2 , (109) 
and the corresponding average sum rate is

R ful = 1 U U u=1 K k=1 log 2 1 + SINR u ful,k (Θ) . (110) 
The phase shifts of the above three schemes are obtained by using the GA method with the objective of optimizing the sum data rate. However, in the instantaneous CSI scheme, the phase shift of the RIS, θ u , 1 ≤ u ≤ U , needs to be designed in each coherence block. In the two-timescale and the fully long-term CSI schemes, we only need to design the variable Θ once.

Fig. 6 clearly unveils the performance tradeoffs of the considered schemes as a function of the level of CSI available. The instantaneous CSI scheme with an ideal pilot length equal to T (ideal) ins = K = T two offers, as expected, the best performance. If, the actual pilot training overhead is taken into account, however, we note that the average rate first increases and then decreases as a function of the number M of RIS elements. On the other hand, the fully long-term CSI scheme has the lowest pilot overhead, but it offers a relatively low achievable rate since the decoding vector at the BS cannot be adjusted according to the instantaneous effective CSI. By contrast, the two-timescale scheme offers good performance while maintaining a low pilot overhead.

IV. RIS-AIDED RADIO LOCALIZATION

In wireless communication networks, radio localization [START_REF] Liu | Survey of wireless indoor positioning techniques and systems[END_REF] offers a viable alternative for obtaining user location information in GPS-denied environments [START_REF] Abu-Shaban | Error bounds for uplink and downlink 3D localization in 5G millimeter wave systems[END_REF]. Radio localization techniques are based on the general idea that the radio signals provide information on the position of network nodes. More precisely, the location of agent nodes (e.g., mobile devices or vehicles) are estimated with the aid of knownposition anchor nodes (e.g., BSs or APs) and the exchange of radio signal between the anchor and agent nodes. In general, the position of the agent node is estimated by using a two-step approach [START_REF] Caffery | Wireless location in CDMA cellular radio systems[END_REF]. First, the distance/angle-related measurements are extracted from the received signal, then the location is estimated from the measurements, such as the time of arrival (ToA), the time difference of arrival (TDoA), the received signal strength (RSS), the AoA, and the AoD.

Third generation (3G) communication systems can provide a positioning accuracy of the order of tens of meters by using TDoA measurements [START_REF] Wymeersch | 5G mmWave positioning for vehicular networks[END_REF]. This accuracy is improved to some extent in fourth generation (4G) systems. Existing studies have shown that the position errors in 5G mmWave communication systems are on the order of centimeters [START_REF] Abu-Shaban | Error bounds for uplink and downlink 3D localization in 5G millimeter wave systems[END_REF], [START_REF] Shahmansoori | Position and orientation estimation through millimeter-wave MIMO in 5G systems[END_REF], [START_REF] Guerra | Single-anchor localization and orientation performance limits using massive arrays: MIMO vs. beamforming[END_REF]. Due to thriving new applications such as smart factories, automated/assisted driving, and augmented reality, the requirements in terms of positioning accuracy for 5G/6G communication networks are becoming increasingly stringent. In addition, the reliability of the localization provided by 5G/6G communications is of particular importance. Since 5G/6G systems can be deployed in high-frequency mmWave and THz bands, the links are vulnerable to obstacles. Since LoS propagation is usually required for accurately estimating the location, existing localization methods result in prohibitively large estimation errors if the LoS link is blocked.

The use of RISs can yield reliable and high-precision position estimates at a low cost and high energy efficiency. The RISs can be integrated into existing radio localization systems to co-work with other anchor nodes, and thus provide better positioning estimates of the agent nodes. The benefits of RISs for positioning are as follows. First, an RIS can establish a virtual LoS link when the LoS link is blocked. Thus, the RIS can restore the positioning capability of the network when the GPS or the BS signals are weak. Second, RISs can be regarded, unlike active anchor nodes, as quasipassive anchor nodes that need no power amplifiers and radio frequency chains. Therefore, they can provide high-precision estimate of the locations with low hardware cost and low energy consumption. Third, RISs can be constructed with a large physical aperture. Hence, they can offer a higher angular resolution, which is appealing for radio localization. Fourth, unlike a non-reconfigurable scatterer in the environment, RISs can provide a high beamforming gain by tuning the phase shifts of the reflecting elements. As a result, the use of RISs provides several promising opportunities for assisting localization systems in next generation wireless networks.

Current state-of-the-art research on RIS-aided radio localization has mainly focused on three aspects: performance analysis, development of algorithms, and the interplay be-tween communication and localization. As far as the performance analysis is concerned, the authors of [START_REF] He | Large intelligent surface for positioning in millimeter wave MIMO systems[END_REF] studied the theoretical performance of a 2D RIS-aided mmWave positioning system by computing the CRB in the far field region. The authors of [START_REF] Liu | Reconfigurable intelligent surface aided wireless localization[END_REF] derived the Fisher information matrix (FIM) and the CRB for evaluating the performance of a three-dimensional (3D) RIS-assisted positioning system, where a near-field channel model was utilized. The authors of [START_REF] Elzanaty | Reconfigurable intelligent surfaces for localization: Position and orientation error bounds[END_REF] derived the CRB for evaluating the localization and orientation performance of synchronous and asynchronous signalling schemes in an RIS-assisted localization system in the near-field region. As far as the localization algorithms, the authors of [START_REF] Wang | Joint beam training and positioning for intelligent reflecting surfaces assisted millimeter wave communications[END_REF] considered an RIS-assisted 3D localization system, where the AoAs and AoDs were estimated by using the MLE algorithm, and user localization was obtained via a Taylor series algorithm. The localization accuracy of an indoor localization system was improved in [START_REF] Zhang | Towards ubiquitous positioning by leveraging reconfigurable intelligent surface[END_REF] and [START_REF]Metalocalization: Reconfigurable intelligent surface aided multi-user wireless indoor localization[END_REF] by choosing proper RIS reflection coefficients that maximize the differences of RSS values among adjacent locations. As far as the interplay between communication and localization is concerned, the localization accuracy and the data rate were balanced by optimizing the time allocation of an RISaided wireless communication system in [START_REF] Wang | Joint location and communication study for intelligent reflecting surface aided wireless communication system[END_REF]. In particular, the CRB and the effective achievable data rate were used as the performance metrics. The authors of [START_REF] He | Adaptive beamforming design for mmWave RIS-aided joint localization and communication[END_REF] proposed an adaptive RIS phase shifter design based on hierarchical codebooks and feedback from the mobile user for enabling accurate localization and high data rate transmission.

Under the spherical wave-front channel model, there exist only a few contributions that studied the RIS-aided radio localization problem. A near-field codebook was developed in [START_REF] Cui | Channel estimation for extremely largescale MIMO: Far-field or near-field?[END_REF] for extremely large-scale RIS (XL-RIS) beam training by dividing the two-dimensional (2D) plane into several sampled points in the x-y coordinate system. Also, the authors of [START_REF] Friedlander | Localization of signals in the near-field of an antenna array[END_REF] showed that the characteristics of the transmitted signal (transmit antenna type, size, orientation etc.) may profoundly affect the received signals in the near field, which needs to be taken into consideration for high-precision localization. In [START_REF] Abu-Shaban | Near-field localization with a reconfigurable intelligent surface acting as lens[END_REF], the FIM was analysed for an uplink localization system using an RIS-based lens, and the PEB and OEB were also evaluated by exploiting the wavefront curvature. The theoretical localization performance of multipath-aided localization in both LoS and NLoS conditions was characterized in [START_REF] Rahal | RIS-enabled localization continuity under near-field conditions[END_REF], where it was shown that using the RIS's reflected signal wavefront curvature in the near field is enough to deduce the user's position even in the absence of a direct path.

In the following, we discuss RIS-aided localization with focus on two channel conditions: 1) Far-field channel model; 2) Near-field channel model.

A. Far-Field Localization Techniques 1) System Model: In Fig. 7, as an illustrative example we consider a mmWave MIMO system for user localization in a 3D space. The considered system model consists of a BS equipped with a ULA with N t antennas, a mobile user (MU) with a ULA with N r antennas, and K -1 RISs. Each RIS is equipped with a square UPA with L 2 reflecting elements. The carrier frequency is f c with a corresponding wavelength equal to λ and bandwidth equal to B. A 3D Cartesian coordinate system is used to describe the locations of the anchor nodes. The ULA of the BS is placed parallel to the x axis without rotation, and its center is located at q = [q x , q y , q z ] T ∈ R 3×1 . The UPA of the k-th RIS is placed parallel to the yz-plane, and its center is located at s k = [s kx , s ky , s kz ] T ∈ R 3×1 . The ULA of the MU is placed on the xy-plane, and is rotated by α ∈ [0, π) radians relative to the x-axis. The center of the ULA of the MU is located at p = [p x , p y , 0] T ∈ R 3×1 . The symbols q z and s kz denote the heights of the BS and the k-th RIS with respect to the MU on the ground. The locations of the BS and the RIS are assumed to be known. Then, the objective of the positioning system is to estimate the location (p x , p y ) of the MU and its rotation angle α. To simplify the notation and to facilitate the analysis, we collect the parameters to be estimated in a vector η = [p x , p y , α] T .

A narrow-band channel model is considered. The overall channel from the MU to the BS is expressed as the combination of the direct BS-MU channel and the channels reflected by all the RISs. In mathematical terms, we have

H = H BM + K-1 k=1 H RIS,k , (111) 
where H BM ∈ C Nr×Nt is the BS-MU channel and H RIS,k ∈ C Nr×Nt is the k-th RIS's reflected channel. For the sake of analysis, we only consider the LoS paths in the channels of H BM and H RIS,k , which can be further expressed as ), where PL 0 , PL 1 , • • • , PL K-1 are the corresponding path losses. Based on [START_REF] Tang | Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[END_REF] and [230], the path loss of the BS-MU channel in (112a) can be expressed in dB as

H BM = h 0 a RX (θ RX,0 )a H TX (θ TX,0 ), (112a) 
H RIS,k = h k a RX (θ RX,k )a H RIS,OUT (ϕ a out,k , ϕ e out,k )Θ k • a RIS,IN (ϕ a in,k , ϕ e in,k )a H TX (θ TX,k ), (112b) 
PL 0 =10 log 10 (64π 3 ) + 10α 0 log 10 d BM + 20 log 10 f c + ξ 0 , (114) 
where d BM is the distance (in meters) between the BS and the MU, α 0 is the path loss exponent. ξ 0 ∼ N (0, σ 2 SF0 ) is the log-normal term accounting for the shadow fading, where σ 2 SF0 denotes the log-normal shadowing variance. The path loss of the RIS-reflected channel via the k-th RIS can be expressed in dB as

PL k =10 log 10 (64π 3 ) + 10α k log 10 (d BR • d RM ) + 40 log 10 f c + ξ k , (115) 
where d BR and d RM are the distances (in meters) of the BS-RIS k link and RIS k-MU link, respectively. α k is the path loss exponent of the reflected channel, and ξ k is the log-normal term accounting for the shadow fading following distribution N (0, σ 2 SF k ) with variance σ 2 SF k . For estimating the locations of users, we assume a pilotbased transmission scheme. The transmitted pilot signal is a continuous time-domain waveform x(t) with bandwidth B and duration of T o seconds. Assuming M t pilot signals, i.e.,

x(t) = [x 1 (t), x 2 (t), • • • , x Mt (t)] T ∈ C Mt×1 , is transmitted at time t with corresponding beamforming matrix denoted by F = [f 1 , f 2 , • • • , f Mt ] ∈ C Nt×Mt where M t
N t , then the signal y(t) ∈ C Nr×1 received at the MU is given by

y(t) = H BM Fx(t -τ 0 ) + K-1 k=1 H RIS,k Fx(t -τ k ) + n(t),
where τ 0 is the propagation delay of the direct BS-MU path, and τ k , k = 1, 2, • • • , K -1 is the propagation delay from the BS to the MU via the k-th RIS. The delays τ k , k = 0, 1, 2, • • • , K -1 is also called TOAs. The received noise n(t) is Gaussian with zero mean and two-sided power spectral density equal to N 0 /2.

2) Two-Step Localization Scheme: The position and orientation of the MU can be estimated based on the observed signal y(t) by using a two-step localization scheme. In the first step, the angles, channel gains, and time delays are estimated using some existing methods. For example, the channel gains { ĥk , ĥ0 } can be estimated with the LS approach, while the angles { θT X,0 , φa out,k , φe out,k , θRX,0 , θRX,k } can be estimated by using array signal processing algorithms in the spatial domain, such as MUSIC and ESPRIT. The estimated time delays {τ k , τ0 } can be extracted from the pilot signal. In the second step, the position of the MU can be obtained by using multi-angulation (or triangulation) from the anglerelated measurements, or by using multi-lateration (or trilateration) methods from distance-related measurements, or by a combination of both.

As shown in Fig. 7, the localization measurements are closely related with the coordinates and rotation angle of MU, which means that there exists a mapping from the MU's location to the measurements obtained in the first step, which can be described as follows.

ToA: The propagation delay of the BS-MU path, which is related with the MU coordinate p, is given by

τ0 = q -p /c + n t0 , (116) 
where c is the speed of light and n t0 denotes the ToA error. The ToA τk0 from the MU to the k-th RIS can be obtained by subtracting the propagation delay of the k-th RIS-BS path from the propagation delay of the path from BS to MU via the k-th RIS, which are expressed as

τk0 = p -s k /c + n t k = τk -q -s k /c + n t k , (117) 
where n t k denotes the ToA error.

The ToA measurements are related with the path lengths, which are further related with the MU position. Specifically, the τ0 and τk0 can describe the estimated distance of the direct path as well as the estimated distance from the MU to the k-th RIS, which are expressed as follows

d0 = cτ 0 = q -p + n d0 , (118a) dk = cτ k0 = p -s k + n d k , (118b) 
where n d0 and n d k are the estimation errors.

TDoA: The location of the MU can be derived from the TDoA, which describes the distance differences between different pairs of the direct MU-BS path and the k MU-RIS paths.

Specifically, by taking the direct path from the BS to MU as the reference path, the TDoA can be expressed as

τtd,k = τk0 -τ0 . (119) 
Then, the distance difference corresponding to the TDoA is represented as

cτ td,k = cτ k0 -cτ 0 = dd,k = ( dk -d0 ) = p -s k -q -p + n td k , (120) 
where n td k is the estimation error of d d,k .

AoA and AoD: The angle-related measurements (AoA and AoD) are estimated at the arrays of BS, MU, and RIS using angle estimation algorithms. They are also closely related with the MU position, which can be described as

θT X,0 = arcsin p x -q x p -q 2 + n θ T X,0 , (121) 
φa out,k = arcsin   p y -s ky (p x -s kx ) 2 + (p y -s ky ) 2   + n a k , (122) 
φe out,k = arccos -s kz p -s k 2 + n e k , (123) 
θRX,0 = arcsin (p x -q x ) cos α -(p y -q y ) sin α p -q 2 + n θ RX,0 , (124) 
θRX,k = arcsin (p x -s kx ) cos α -(p y -s ky ) sin α p -s k 2 + n θ RX,k . (125) 
where n θ T X,0 ,n a k ,n e k , n θ RX,0 , and n θ RX,k denote error associated to the AoA and AoD estimations. Besides, θ T X,k are known values, which can be calculated in advance from the known coordinates of the BS and RISs.

Channel Gains: Some recent works, e.g., [START_REF] He | Large intelligent surface for positioning in millimeter wave MIMO systems[END_REF], [START_REF] Elzanaty | Reconfigurable intelligent surfaces for localization: Position and orientation error bounds[END_REF], extract the distance information from the channel gains h k according to the relations h

0 = λ 4π 1 d BM and h k = λ 4π 1 d BR d RM .
However, the channel gains depend on the distance-dependent large-scale path loss as well as the distance-independent shadowing fading. Thus, it may not be accurate to extract the distance information from the channel gains. Therefore, this measurement is not considered in the following numerical results.

In the second step, by collecting the equations mapping the MU position into the measurements illustrated above, a set of interlinked equations can be formulated. The position and rotation angle of the MU, i.e., the vector η = [p x , p y , α] T can be retrieved by jointly solving the set of equations. The larger the number of measurements (equations) is available, the better the estimate of the position is. The obtained equations are, however, nonlinear, and the measurements are affected by errors. Consequently, they are difficult to solve. To circumvent this difficulty, wireless localization algorithms, such as the Chan algorithm [START_REF] Chan | A simple and efficient estimator for hyperbolic location[END_REF] and the Taylor series algorithm [START_REF] Foy | Position-location solutions by Taylor-series estimation[END_REF] can be utilized.

3) Position Error Bound (PEB) and Rotation Error Bound (REB) Analysis: To evaluate the performance of the position and orientation estimation, we analyze the FIM and CRB. To provide a benchmark for the accuracy of the position estimation, the CRB and the PEB/REB are investigated in [START_REF] He | Large intelligent surface for positioning in millimeter wave MIMO systems[END_REF], [START_REF] He | Adaptive beamforming design for mmWave RIS-aided joint localization and communication[END_REF], by assuming a 2D localization problem formulation. In the following, we derive the CRB and PEB/REB in a general 3D space. Further details can be found in [START_REF] Liu | Optimization of RIS configurations for multiple-RIS-aided mmwave positioning systems based on CRLB analysis[END_REF].

First, we construct the FIM based on the channel parameters, including the ToA, AoA, AoD, and the complex channel gains. The unknown parameters are collected in the following vector

η = [τ , θ TX,0 , θ RX , ϕ a out , ϕ e out , h R , h I ] T , (126) 
where

τ = [τ 0 , τ 1 , • • • , τ K-1 ] T , (127a) 
θ RX = [θ RX,0 , θ RX,1 , • • • , θ RX,K-1 ] T , (127b) 
ϕ a out = [ϕ a out,1 , ϕ a out,2 , • • • , ϕ a out,K-1 ] T , (127c) 
ϕ e out = [ϕ e out,1 , ϕ e out,2 , • • • , ϕ e out,K-1 ] T , (127d) 
h R = [h R,0 , h R,1 , • • • , h R,K-1 ] T , (127e) 
h I = [h I,0 , h I,1 , • • • , h I,K-1 ] T , (127f) 
and θ TX,0 denotes the AOD from the BS to the MU. The real parts of the channel gains h R,k = Re{h k } are collected in the vector h R and the imaginary parts h I,k = Im(h k ) are collected in the vector h I . We denote the unbiased estimator of the unknown channel parameters as η. Then, the mean-square error bound is

E[( η -η)( η -η) H ] ≥ J -1 η , (128) 
where J η is the (6K -1) × (6K -1) dimensional FIM.

Assuming that the noise is a wide-sense stationary (WSS) Gaussian random vector and is written as n(t), the element in the m-th row and n-th column of matrix J η can be written as [START_REF] Kay | Fundamentals of statistical signal processing[END_REF] [

J η ] mn = E y(t)|η - ∂ 2 ln p(y(t) |η ) ∂η m ∂η n ≈ 2 N 0 T0 0 Re ∂µ H (t) ∂η m ∂µ(t) ∂η n . ( 129 
)
where η m denotes the m-th element of η, T 0 denotes the observation time, µ(t) = y(t) -n(t), and p(y(t) |η ) denotes the probability density function (PDF) (i.e, the likelihood function) of the random vector y(t) conditioned on the parameter vector η.

The FIM of the position and orientation of the MU, i.e., η, can be obtained by applying a transformation of variables from the channel parameters η to the location parameters η. Specifically, the FIM of η is obtained by applying the transformation matrix T defined as

[T] 1:3,m = [ ∂η m ∂p x , ∂η m ∂p y , ∂η m ∂α ] T . (130) 
The equation for the FIM of the position and orientation parameters in η is given by [234]

J = TJ η T H . (131) 
Once the FIM is obtained, the CRB is obtained by inverting the matrix. Thus, the PEB is equal to the square root of the trace of the first 2 × 2 sub-matrix and can be formulated as

PEB = tr J -1 1:2,1:2 , (132) 
and the REB is equal to the square root of the third entry of diagonal Simulation results: To illustrate the position accuracy that can be obtained in the presence of RISs, we report some numerical results based on the measurements of the TDoA in [START_REF] Wang | One-bit symbol-level precoding for MU-MISO downlink with intelligent reflecting surface[END_REF]. Specifically, we compare the root mean square error (RMSE) of the position estimation obtained by using Taylor and Chan's algorithms against the the CRB. The locations in metre of the BS and MU are q = [0, 0, 40] T and p = [90, 30, 0] T , respectively, and the locations of three RISs are s1 = [START_REF] Roy | ESPRIT -A subspace rotation approach to estimation of parameters of cisoids in noise[END_REF][START_REF] Zheng | Intelligent reflecting surface-enhanced OFDM: Channel estimation and reflection optimization[END_REF][START_REF] Ren | Intelligent reflecting surface-aided URLLC in a factory automation scenario[END_REF] T , s2 = [50, 50, 5] T and s3 = [START_REF] Wei | Channel estimation for RIS-empowered multi-user MISO wireless communications[END_REF][START_REF] Zhou | Spectral and energy efficiency of IRS-assisted MISO communication with hardware impairments[END_REF][START_REF] Cui | Coding metamaterials, digital metamaterials and programmable metamaterials[END_REF] T . The setup with RISs is considered as a case study. The phase shift matrix of the RIS is set to a unit identity matrix for the sake of analysis, if the matrix is optimized, the estimation accuracy will be improved. The other simulation parameters are given in the caption of the figure, where σ td denotes the variance of the Gaussian estimation error n td k . It can be seen that Taylor's and Chan's algorithms achieve almost the same performance and have negligible performance loss compared with the CRB.

REB = tr J -1 3,3 . (133 

B. Near-Field Localization Techniques

Thanks to the absence of power amplifiers, digital processing units, and RF chains for each scattering element, a large number of quasi passive reflecting elements can be integrated on the RIS panel at an affordable cost and power consumption. Consequently, an RIS may evolve into a panel with a very large size, which is sometimes called XL-RIS.

In this case, as illustrated in Fig. 9, the RIS may be large enough and the observation point may be sufficiently close to it that the far-field planar wave assumption may not hold anymore. Specifically, the spherical curvature of the wavefront may not be ignored. In these cases, specifically, a signal formulation that accounts for the near-field is needed. According to [START_REF] Selvan | Fraunhofer and fresnel distances: Unified derivation for aperture antennas[END_REF], the far-field of the RIS can be defined as the set of observation distances R that are greater than the Fraunhofer distance R f , i.e.,

R ≥ R f = 2L 2 λ , ( 134 
)
where L is the maximum aperture of the RIS UPA and λ is the carrier wavelength. This conventional definition of far-field region corresponds to a maximum phase error equal to π/8 over the entire length L.

According to [START_REF] Yang | Deep reinforcement learning-based intelligent reflecting surface for secure wireless communications[END_REF], the Fraunhofer distance can be quite large if an XL-RIS is utilized and its size is sufficiently large with respect to the wavelength. If the RIS is deployed at highfrequency bands, such as mmwave/sub-THz, the Fraunhofer distance also increases due to the smaller wavelength [START_REF] Dovelos | Intelligent reflecting surfaces at Terahertz bands: Channel modeling and analysis[END_REF]- [START_REF] Di Renzo | Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[END_REF]. For instance, let us consider a 100×100-UPA RIS panel that operates at the carrier frequency of 200 GHz. The RIS elements are assumed to be spaced by one half-wavelength, i.e. λ 2 = 0.75 mm, and, thus, the maximum aperture (the diagonal) of the RIS panel is √ 2 × 100 × λ 2 ≈ 10.6 cm. Then, the Fraunhofer distance for this scenario is R f = 7.5 meters. Therefore, it is likely that some users are in the near-field when the RIS is deployed for indoor scenarios. In this case, the spherical wavefront of the electromagnetic waves cannot be ignored. Recent system-level simulations have shown that the near-field region may not be ignored in outdoor scenarios either [START_REF] Sihlbom | Reconfigurable intelligent surfaces: Performance assessment through a system-level simulator[END_REF].

1) Near-Field Channel Model: In the near-field region, spherical wave-front provide an underlying generic parametric model for estimating the positions of MUs and scatterers [START_REF] Yin | Scatterer localization using large-scale antenna arrays based on a spherical wave-front parametric model[END_REF]. Under the assumption of a spherical wave-front, the steering responses of the RIS and the BS arrays need to be parameterized by taking into account the 3D location of the signal source rather than by simply utilizing the AoDs and the AoAs.

As an example, let us consider the uplink transmission where MU is equipped with one antenna, the RIS is an M x × M z UPA that lies on the XOZ plane, and the BS is equipped with an N -element ULA. In the near-field, the channel from the MU to the RIS is

h r = LRU l=0 βl a R (r l ) = A R (r l ) β, (135) 
where L RU is the number of scatterers or spatial paths, the vector β = [ β0 , . . . , βLRU ] T contains the complex path gains, and the matrix A R (r l ) = [a R (r 0 ) , . . . , a R (r LRU )] collects the steering vectors associated with the scatterers that produce the multiple propagation paths. The LoS path from the MU to the RIS is denoted as path 0, and the location of the MU is denoted as r 0 = [x 0 , y 0 , z 0 ] T . The steering vector associated with the l-th scatterer located at p l = [x l , y l , z l ] T is denoted as a(p l ), and is given by

a(p l ) = [e -j 2π λ d1,1(p l ) , • • • , e -j 2π λ d 1,Mz (p l ) , • • • , e -j 2π λ d Mx ,1 (p l ) , • • • , e -j 2π λ d Mx,Mz (p l ) ] T , ( 136 
)
where d m,n (p l ) represents the distance from the scatterer located at p l to the (m, n)-th RIS element. We concentrate on the LoS channel between the RIS and the AP and assume that the communication channel is slowly varying and frequency-flat. By taking the spherical nature of the wave propagation, the path length from each antenna elements of the BS to each elements of the RIS determines the phase shifts of the received signals. Similar to [START_REF] Bohagen | Design of optimal high-rank line-of-sight MIMO channels[END_REF] and [START_REF] Bohagen | On spherical vs. plane wave modeling of line-of-sight mimo channels[END_REF], we assume that the path loss of all the received paths is the same and is denoted by α. Under this assumption, the elements of the BS-RIS LoS channel are collected in the matrix H whose elements are

H(m, n) = α exp j 2π λ r m,n , (137) 
where r m,n denotes the path length between the m-th antenna element of the BS and the n-th RIS element. The signal transmitted by the MU is denoted by s and the received data at the BS is

y = HΘh r s + n, (138) 
where n ∼ CN 0, σ 2 I and Θ denote the AWGN and the reflection coefficient matrix defined in Section II, respectively. The set of unknown parameters are

η = [p 0 , p 1 • • • , p LRU , β T ] T , (139) 
where β = [α β0 , . . . , α βLRU ] T denotes the vector of cascaded channel fading coefficients. A commonly adopted localization method is the maximumlikelihood estimation. The log-likelihood function of the received signal y is given by f (y|Θ, η) ∝ -||y -HΘh H r (η)s|| 2 , where irrelevant constant terms are ignored. Then, the maximum likehood estimation problem for the locations of the MU and the scatterers is given by max 

where S η denotes the set of feasible locations.

2) Near-Field Localization Scheme: The location of the MU can be estimated via a two-stage near-field localization scheme. As the phase shift of the RIS can be obtained as Θ by leveraging the methods discussed in Section III, here we only focus on the localization problem. In the first stage, the coarse estimation of the positions of MU and scatterers is derived [START_REF] Cui | Channel estimation for extremely largescale MIMO: Far-field or near-field?[END_REF], [START_REF] Chen | Maximum-likelihood source localization and unknown sensor location estimation for wideband signals in the near-field[END_REF]. In the second stage, the finer estimation of the positions of MU and scatterers can be estimated with the iterative methods, e.g., two-dimensional search [START_REF] Wei | Channel estimation for extremely large-scale massive mimo: Far-field, near-field, or hybrid-field?[END_REF]. The details of the two-stage near-field localization scheme are outlined below.

Stage 1: Suppose that the transmit signal is s = 1. As the received power from the scatterer-reflected paths is much weaker than the LoS path, we first try to find the location of MU based on the LoS path with the largest received power. In the first stage, the location of the MU is estimated as follows:

p0 = arg min p0 ||y -H Θa R (p 0 )|| 2 . ( 141 
)
Without any prior information for the source location, the objective function in [START_REF] You | Energy efficiency and spectral efficiency tradeoff in RIS-aided multiuser MIMO uplink transmission[END_REF] needs to be evaluated over a set of grid locations. For the sake of reducing complexity, a nonuniform grid may be used. Specifically, the angle and distance are sampled in the polar domain using a uniform grid in [START_REF] Cui | Channel estimation for extremely largescale MIMO: Far-field or near-field?[END_REF].

In general, the grids should be dense near the array and sparse away from the array [START_REF] Chen | Maximum-likelihood source localization and unknown sensor location estimation for wideband signals in the near-field[END_REF].

With the obtained location, the corresponding channel gain can be obtained by using the projection method as β0 = (H Θa R ( p0 )) H y

||H Θa R ( p0 )|| 2 . ( 142 
)
Then, the locations of the scatterers are estimated as pl = arg min

p l y -l -H Θa R (p l ) 2 , (143) 
where y -l = y-l-1 s=1 H Θ βs a R ( ps ), and the corresponding channel gain is obtained as

βl = (H Θa R ( pl )) H y -l ||H Θa R ( pl )|| 2 . ( 144 
)
Stage 2: With the coarse stimation, a refined estimation can be further conducted in the second stage. The position of the MU and the scatterers can be refined using a finer grid while keeping the estimation of other locations fixed. Specifically,

min p l ||y -HΘh r (p l , η -l )|| 2 , (145) 
where η -l = [r 0 , • • • , rl-1 , rl+1 , • • • , rLRU , βT ] T . Several iterations are needed for high-resolution location estimates. Simulation results: For the near field localization case, we evaluate the localization performance in terms of the MSE, which is obtained by the proposed two-stage near-field localization scheme. The locations of BS and RIS are q = [3, 0, 3] T and p = [0, 0.5, 2] T , while the locations of the MU and scatterers are randomly generated in the 5 m × 5 m cell range. The number of RIS elements is 21 × 21, and the phase shift matrix is obtained by maximizing the received signal power. It can be seen that the MSE performance degrades with the number of scatterers due to the more scattered energy and the feedback estimation error propagation, while increasing the SNR can help improve the localization accuracy.

V. FUTURE DIRECTIONS

In this section, we summarize some open research issues that are focused on the modeling, the analysis, and the optimization of RIS-aided wireless systems.

A. Mobility

Most existing works focus on quasi-static scenarios where the users and the RISs are assumed to be nearly stationary. However, it is also imperative to investigate scenarios with mobility [START_REF] Zegrar | A general framework for RIS-aided mmWave communication networks: Channel estimation and mobile user tracking[END_REF], [START_REF] Mao | Channel estimation for reconfigurable intelligent surface assisted wireless communication systems in mobility scenarios[END_REF]- [START_REF] Huang | Transforming fading channel from fast to slow: Intelligent refracting surface aided high-mobility communication[END_REF], such as wireless systems in the presence of vehicles, trains, and UAVs. In these scenarios, in particular, the RISs may even be mobile as they may be carried by UAVs or they may be deployed in trains. In these scenarios, several challenging research problems emerge. For example, the estimation of rapidly time-varying channels becomes more challenging. Therefore, new channel estimation methods are required to quickly and accurately track the channels, in order to enable the design of accurate phase shifts at the RIS. Also, since the channel is rapidly changing, the channel estimation and the RIS phase shift configuration need to be executed more frequently. As a result, it is crucial to design effective signal processing schemes to avoid a prohibitively high overhead in high-mobility scenarios. Furthermore, the RIS has the potential to reduce the Doppler and delay spread [START_REF] Matthiesen | Intelligent reflecting surface operation under predictable receiver mobility: A continuous time propagation model[END_REF], which deserves further research in more practical scenarios.

B. Near-Field Channel

To ensure a sufficiently large coverage, the aperture of the RIS planar array is typically large in order to compensate for the absence of power amplifiers and digital signal processing units for regenerating the signals. Depending on the size of the RIS, the operating frequency, and its distance from the transmitter and the receiver, it may be necessary to utilize a near-field communication model [START_REF] Björnson | Power scaling laws and near-field behaviors of massive MIMO and intelligent reflecting surfaces[END_REF], [START_REF] Feng | Wireless communication with extremely large-scale intelligent reflecting surface[END_REF]- [START_REF] Wei | Codebook design and beam training for extremely large-scale RIS: Far-field or near-field?[END_REF]. Nearfield communication models are, however, less understood than their far-field counterparts. Therefore, it is essential to consider accurate channel models to unveil the fundamental performance limits and the scaling laws of RISs in this context. It is well known, for example, that the scaling laws of the electromagnetic field radiated by the RIS is different in the near-field and far-field regions [START_REF] Danufane | On the path-loss of reconfigurable intelligent surfaces: An approach based on green?s theorem applied to vector fields[END_REF]. Also, new low-overhead channel estimation strategies are needed since the channel sparsity in the angle domain, which is based on the far-field planar wavefront assumption, may no longer hold when using the near-field spherical wavefront assumption [START_REF] Cui | Channel estimation for extremely largescale MIMO: Far-field or near-field?[END_REF].

C. Active RIS

Quasi Passive RIS architectures have attracted significant attention due to their low hardware cost and energy consumption. Nevertheless, quasi passive architectures have their limitations. Since the signals reflected by the RIS is determined by the product of the distances from the transmitter to the RIS and from the RIS to the receiver in the far-field region, the received signal strength is relatively small compared with that from direct links, especially when the direct links are strong. The recently proposed active RIS architecture is a promising solution to overcome this issue [START_REF] Zhang | Active RIS vs. passive RIS: Which will prevail in 6G?[END_REF]- [START_REF] Khoshafa | Active reconfigurable intelligent surfaces-aided wireless communication system[END_REF]. After integrating active reflection-type amplifiers [START_REF] Zhang | Active RIS vs. passive RIS: Which will prevail in 6G?[END_REF], in addition to adjusting the phase shifts, active RISs can simultaneously amplify the magnitude of the reflected signals. However, the amplification at the active RIS requires an additional power supply. Therefore, more dedicated beamforming at the BS and phase shifts at the RIS should be designed to balance the performance and energy consumption. Meanwhile, channel estimation with active RISs needs to incorporate the statistical properties of amplification-induced noise, which is more challenging and worth further investigation. Besides, how to decide the optimal deployment of the active RISs is still an open question.

D. Double/multi-RIS

Most of the existing works have considered quasi passive beamforming designs and channel estimation schemes in systems with a single RIS. In some scenarios, however, it may be convenient to enable the transmission of signals through reflections from multiple RISs in order to route the signals and bypass the blocking objects in a smart manner, directly at the electromagnetic level (electromagnetic routing) [START_REF] Di Renzo | Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come[END_REF]. Thus, double/multiple RISs may be utilized to realize a blockage-free communication network via multiple signal reflections. Moreover, the proper design of the cooperative quasi passive beamforming can eliminate the inter-RIS interference, and achieve multiplicative beamforming gain from the inter-RIS reflection channel [START_REF] Han | Cooperative double-IRS aided communication: Beamforming design and power scaling[END_REF]- [START_REF] Niu | Double intelligent reflecting surface-assisted multi-user MIMO mmwave systems with hybrid precoding[END_REF]. However, these methods require highly accurate CSI, which is challenging to obtain due to the coupling of the different reflected signal links and more channel coefficients to be estimated [START_REF] You | Wireless communication via double IRS: Channel estimation and passive beamforming designs[END_REF]- [START_REF]Efficient channel estimation for double-IRS aided multi-user MIMO system[END_REF]. In this context, channel estimation methods in double/multi-RIS aided communication scenarios in the presence of single/double/multi-reflection links need to be investigated. In addition, existing research works on double/multi-RIS aided systems often ignore the impact of the secondary reflections among the RISs, which may be a reasonable approximation if the RISs are in the farfield of each other but it may not hold anymore if the RISs are closely located. Finally, the analysis and design of multi-RIS communications at high frequency bands is an open research issue as well.

E. Multifunction RISs

In the existing literature, most of the research works concentrate on RISs that operate as anomalous reflectors or as reflecting lenses. An RIS, however, can realize multiple signal transformations depending on how the scattering matrix (or equivalently the surface impedance) is designed [START_REF] Di Renzo | Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come[END_REF]. Recently, notably, a few research attempts have been made to design RISs that operate as anomalous refracting mirrors or as anomalous refracting lenses [START_REF] Cho | mmWall: A reconfigurable metamaterial surface for mmWave networks[END_REF] as well RISs that can simultaneously realize reflections and refractions in order to guarantee omni-coverage performance [START_REF] Zhang | Intelligent omni-surfaces: Ubiquitous wireless transmission by reflective-refractive metasurfaces[END_REF]- [START_REF] Mu | Simultaneously transmitting and reflecting (STAR) RIS aided wireless communications[END_REF]. Multifunction RISs are an emerging research topic, and the corresponding modeling, performance evaluation, and optimization are still at its infancy.

VI. CONCLUSIONS

In this paper, we provided a comprehensive overview of state-of-the-art research for new and revolutionary RIS/IRSaided wireless systems, with an emphasis on signal processing techniques for solving various channel estimation, transmission design and radio localization problems. Specifically, we first reviewed existing results on channel estimation under unstructured and structured channel models. Next, we provided a detailed overview of the research results from the perspective of different optimization techniques and availability of CSI. In particular, several optimization techniques were described for optimizing RIS with discrete and continuous time shifts. As far the availability of CSI is concerned, three main cases were considered, namely, fully instantaneous CSI, two-timescale CSI, and fully long-term CSI. Simulation results demonstrated that the two-timescale CSI scheme constitutes a promising approach when the pilot overhead is taken into account. Furthermore, radio localization is an important application of RISs, and it has been thoroughly reviewed by considering deployment scenarios and channel models that account for farfield and near-field propagation. Finally, several open research problems have been discussed.
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 6 Fig.6. Comparison of achievable rate under three different levels of CSI availability in an RIS-aided massive MIMO system, where K = 4, U = 50, δ = 1, ε k = 20, ∀k and N = 100. The number of time slots in each coherence block is Tc = 196[START_REF] Ngo | Energy and spectral efficiency of very large multiuser MIMO systems[END_REF],[START_REF] Zhang | Power scaling of uplink massive MIMO systems with arbitrary-rank channel means[END_REF]. For brevity, we set k = 0, ∀k and consider the rank-1 LoS BS-RIS channel H = a N a H M .
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 7 Fig. 7. Illustration of an RIS-aided localization system.

where h 0

 0 and {h 1 , • • • , h K-1 } are the complex channel gains of the BS-MU direct link and the BS-RIS-MU reflected links, respectively. Θ k is the reflection coefficient matrix of the k-th RIS. a TX (θ TX,0 ) ∈ C Nt×1 and a RX (θ RX,0 ) ∈ C Nr×1 are the antenna response vectors of the transmitter and the receiver, in which θ TX,0 denotes the AoD and θ RX,0 denotes the AoA of the BS-MU direct link. Since the transmitter and the receiver use ULAs, a TX (θ) and a RX (θ) can be expressed as a TX (θ) = [1, e j 2π λ d sin(θ) , • • • , e j(Nt-1) 2π λ d sin(θ) ] T , (113a) a RX (θ) = [1, e j 2π λ d sin(θ) , • • • , e j(Nr-1) 2π λ d sin(θ) ] T , (113b) where d denotes the distance between adjacent antennas and θ is the AoA or AoD. The a X (ϕ a x,k , ϕ e x,k ) in (112b) denotes the array response vector of the RIS array, which is equal to a RIS,IN (ϕ a in,k , ϕ e in,k ) and a RIS,OUT (ϕ a out,k , ϕ e out,k ) when x is equal to IN and OUT, respectively. Since the RISs use UPAs, a X (ϕ a x,k , ϕ e x,k ) can be expressed as a X (ϕ a x,k , ϕ e x,k ) = [1, e j 2π λ d cos(ϕ e x,k ) , • • • , e j 2π λ (L-1)d cos(ϕ e x,k ) ] T ⊗ [1, e j 2π λ d sin(ϕ e x,k ) sin(ϕ a x,k ) • • • , e j 2π λ (L-1)d sin(ϕ e x,k ) sin(ϕ a x,k ) ] T , where ϕ a in,k and ϕ e in,k are the azimuth AoA and elevation AoA at the k-th RIS from the BS, while ϕ a out,k and ϕ e out,k are the azimuth AoD and elevation AoD at the k-th RIS to the MU. The complex channel gains h k , k = 0, 1, • • • , K -1 in (112) follow the distribution of CN (0, 10 -PL k 10
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  ∀k, where β, α k and γ k are the large-scale path loss coefficients, δ, ε k and k are the Rician factors, H, hr,k ,

and hd,k are LoS components, H ∼ CN (0, R HR ⊗ R HB ), hr,k ∼ CN (0, R hrR,k ) and hd,k ∼ CN (0, R h d B,k ) are NLoS components with R HR , R HB , R hrR,k and R h d B,k being the corresponding spatial covariance matrices. When the Rician factors are equal to zero, the channels become correlated Rayleigh channels.

In the remaining parts, we use RIS to represent RIS/IRS for notational simplicity.

Reflection amplitude variation can be exploited for further enhancing the multiuser communication performance, especially when the CSI is not perfectly estimated in practice[START_REF] Zhao | Exploiting amplitude control in intelligent reflecting surface aided wireless communication with imperfect CSI[END_REF].

Due to the page limit, we do not discuss methods where the individual channels H and h r,k are estimated individually. Interested readers can refer to[START_REF] He | Cascaded channel estimation for large intelligent metasurface assisted massive MIMO[END_REF]-[START_REF] Hu | Semi-passive elements assisted channel estimation for intelligent reflecting surface-aided communications[END_REF] for more details.

For simplicity, we ignore the direct BS-user channels since they are likely blocked by obstacles at high frequency bands.

When the beamforming vectors in W are given, the objective function in (56) is denoted by f (θ), and the functions in constraint C1 are denoted by g i (θ), ∀i.

The objective function may also include the phase differences. For illustration purposes, this is ignored in this paper.