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Performance Evaluation and Diversity Analysis of RIS-Assisted Communications Over Generalized Fading Channels in the Presence of Phase Noise

In this paper, we develop a comprehensive theoretical framework for analyzing the performance of reconfigurable intelligent surfaces (RISs)-assisted communication systems over generalized fading channels and in the presence of phase noise. To this end, we propose the Fox's H model as a unified fading distribution for a large number of widely used generalized fading channels. In particular, we derive a unified analytical framework for computing the outage probability and for estimating the achievable diversity order of RIS-aided systems in the presence of phase shifts that either are optimally configured or are impaired by phase noise. The resulting expressions are general, as they hold for an arbitrary number of reflecting elements, and various channel fading and phase noise distributions. As far as the diversity order is concerned, notably, we introduce an asymptotic analytical framework for determining the diversity order in the absence of phase noise, as well as sufficient conditions based on upper bounds and lower bounds for ensuring that RIS-assisted systems achieve the full diversity order in the presence of phase noise. More specifically, if the absolute difference between pairs of phase errors is less than π/2, RIS-assisted communications achieve the full diversity order over independent fading channels, even in the presence of phase noise. The theoretical frameworks and findings are validated with the aid of Monte Carlo simulations.

Index Terms-Reconfigurable intelligent surface, Fox's H-distribution, Rice fading, phase noise, outage probability, diversity order.

I. INTRODUCTION

Contemporary wireless networks modeling and analysis are vibrant topics that keep taking new dimensions in complexity, as researchers explore the potential of innovative breakthrough technologies to support the upcoming Internet of Things (IoT) and 6G era [START_REF] Letaief | The roadmap to 6G: AI empowered wireless networks[END_REF]. Among these emerging technologies, reconfigurable intelligent surfaces (RISs) [START_REF] Renzo | Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come[END_REF]- [START_REF] Wu | Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[END_REF] have been introduced with an overarching vision of artificially controlling the wireless environment for increasing the quality of service and spectrum efficiency. RIS technology is based on the massive integration of low-cost tunable passive elements on large surfaces, which can be deployed on, e.g., the facades of buildings, and are able to, e.g., reflect and modulate the incident RF signals, which leads to a more controllable wireless environment [START_REF] Renzo | Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[END_REF] and a more efficient implementation of multi-antenna transmitters [START_REF] Li | Single-RF MIMO: From spatial modulation to metasurface-based modulation authors[END_REF]. Leveraging these key properties, RIS-enabled networks challenge device-side approaches, such as massive multiple-input-multiple-output (MIMO) systems, encoding, modulation, and relaying, which are currently deployed in wireless networks in order to fully adapt to the time-variant and unpredictable channel states [START_REF] Renzo | Reconfigurable intelligent surfaces vs. relaying: Differences, similarities, and performance comparison[END_REF], [START_REF] Renzo | Smart radio environments empowered by reconfigurable intelligent surfaces: How it works, state of research, and the road ahead[END_REF]. Due to the potential opportunities offered by RIS-empowered wireless networks, a large body of research contributions have recently appeared in the literature. The interested readers are referred to the survey papers in [START_REF] Renzo | Smart radio environments empowered by reconfigurable AI meta-surfaces: An idea whose time has come[END_REF]- [START_REF] Wu | Towards smart and reconfigurable environment: Intelligent reflecting surface aided wireless network[END_REF],

where a comprehensive description of the state-of-the-art, the scientific challenges, the distinctive differences with other technologies, and the open research issues are discussed.

A. Related Works

Several research papers have appeared recently, mostly considering application scenarios where the line-of-sight link is either too weak or is not available, and, therefore, an RIS is employed to enable the reliable transmission of data through the optimization of the phase shifts of its individual reconfigurable elements and of the precoding and decoding vectors at the transmitter and receiver, respectively, e.g., [START_REF] Wu | Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[END_REF]- [START_REF] Yang | On the performance of RIS-assisted dual-hop UAV communication systems[END_REF]. Specifically, several RIS-aided designs have been recently proposed for various advanced communication techniques, including millimeterwave communications [START_REF] Shen | Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications[END_REF], unmanned aerial vehicle networks [START_REF] Yang | On the performance of RIS-assisted dual-hop UAV communication systems[END_REF], physical layer security [START_REF] Perovic | Channel capacity optimization using reconfigurable intelligent surfaces in indoor mmWave environments[END_REF], simultaneous wireless information and power transfer [START_REF] Huang | Reconfigurable intelligent surfaces for energy efficiency in wireless communication[END_REF]. However, there exist limited research efforts that have explored the communication-theoretic performance limits of RISassisted communications [START_REF] Ding | On the impact of phase shifting designs on IRS-NOMA[END_REF]- [START_REF] Yang | Accurate closed-form approximations to channel distributions of RIS-aided wireless systems[END_REF], and, therefore, a limited number of results are available to date. A major research issue for analyzing the fundamental performance limits of RIS-aided systems is the analysis of the exact distribution of the RIS end-to-end equivalent channel. To circumvent this open issue, some recent attempts for studying RIS-aided systems include the use of approximate distributions and asymptotic analysis [START_REF] Ding | On the impact of phase shifting designs on IRS-NOMA[END_REF]- [START_REF] Yang | Accurate closed-form approximations to channel distributions of RIS-aided wireless systems[END_REF]. Under the assumption of Rayleigh fading, it was shown in [START_REF] Ding | On the impact of phase shifting designs on IRS-NOMA[END_REF], [START_REF] Atapattu | Reconfigurable intelligent surface assisted two-way communications: Performance analysis and optimization[END_REF], [START_REF] Kudathanthirige | Performance analysis of intelligent reflective surfaces for wireless communication[END_REF] that the distribution of a single RIS equivalent channel follows a modified Bessel function. In [START_REF] Badiu | Communication through a large reflecting surface with phase errors[END_REF] and [START_REF] Xu | Reconfigurable intelligent surfaces assisted communications with discrete phase shifts: How many quantization levels are required to achieve full diversity?[END_REF], an RIS-aided transmission system in the presence of phase errors was considered, and the composite channel was shown to be equivalent to a point-to-point Nakagami-m fading channel by using the central limit theorem (CLT). It is known, however, that the CLT is inaccurate when the number of reconfigurable elements of the RIS is small. Recent results, in addition, showed that the approximation error attributed to the CLT can be significant in the high signal-to-noise-ratio (SNR) regime [START_REF] Ding | On the impact of phase shifting designs on IRS-NOMA[END_REF]. Approximations for the received SNR in the presence of multiple randomly deployed RISs were introduced in [START_REF] Lyu | Spatial throughput characterization for intelligent reflecting surface aided multiuser system[END_REF], and an asymptotic analysis of the data rate and channel hardening effect in an RIS-aided large antenna-array system was presented in [START_REF] Jung | Performance analysis of large intelligence surfaces (LISs): Asymptotic data rate and channel hardening effects[END_REF]. As far as the fading channel is concerned, the Rayleigh fading model has been commonly assumed, with only some exceptions that incorporated the line-of-sight (LoS) channel, yet only under the scope of phase optimization, e.g., [START_REF] Nadeem | Asymptotic max-min SINR analysis of reconfigurable intelligent surface assisted MISO systems[END_REF], [START_REF] Zhang | Analysis and optimization of outage probability in multi-intelligent reflecting surface-assisted systems[END_REF].

Rayleigh fading may have, however, limited legitimacy in RIS-aided communications in which the RIS is appropriately deployed to leverage the LoS paths for enhancing the received power.

In Table I, we summarize the communication-theoretic frameworks that, to the best of our knowledge, are available in the literature. We evince that analytical studies have been conducted predominantly over Rayleigh fading channels and that no exact analytical framework exists. In addition, the analysis of the diversity order of RIS-assisted communication systems is still an open issue. There is, however, general consensus that the CLT is not a suitable tool for analyzing the diversity order, since it yields accurate approximations in the low-SNR regime [START_REF] Ding | On the impact of phase shifting designs on IRS-NOMA[END_REF]. In this paper, we propose new analytical methods for overcoming these limitations.

B. Contributions

As a step forward to fill the mentioned research gaps, this work leverages fundamental results from Fox's H-transform theory for analyzing the performance of RIS-aided wireless communications. More precisely, we introduce a new analytical framework that provides exact analytical expressions of the outage probability for several widely used generalized fading models in the absence of phase noise. The proposed method for performance evaluation is endowed with high flexibility to capture a broad range of fading distributions, thereby unveiling the diversity order of RIS-aided networks and generalizing the results available for transmission over Rayleigh fading. In addition, we introduce a new approach for analyzing the diversity order of RIS-aided systems over generalized fading channels in the presence of phase noise. The proposed approach confirms the unsuitability of the CLT for analyzing the diversity order of RIS-aided systems, and unveils the achievable diversity order under general fading channels and phase noise distributions.

With the aid of lower bounds and upper bounds, more precisely, we identify sufficient conditions for achieving the full diversity order in RIS-assisted systems. The main contributions of this paper can be summarized as follows.

• We propose a new analytical framework for analyzing the performance of RIS-aided systems, which leverages Fox's H transform theory for modeling, in a unified fashion, general RIS-induced fading environments in terms of outage probability and achievable diversity.

• We draw multiple link-level design insights from the proposed analysis. For instance, we show that the diversity order in the absence of phase noise scales with the number of reconfigurable elements of the RIS multiplied by a factor that depends of the worst fading distribution of the transmitter-RIS and RIS-receiver links.

• We study the transmission through an RIS whose phase shifts deviate from the ideal values according to general phase noise distributions, and discuss how the presence of errors in the phase shifts influences the achievable diversity. We demonstrate, in particular, that the a sufficient condition for achieving the full diversity order is that the absolute difference between pairs of phase errors is less than π/2.

The rest of this paper is organized as follows. Section II describes the system model and the considered fading distributions. Sections III and IV are devoted to the unified performance analysis framework, where the outage probability and the diversity order of RIS-assisted communications are analyzed in the presence of perfect and imperfect phase shifts, respectively.

Simulation and numerical results are discussed in Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

We consider an RIS with N reconfigurable elements, which are arranged in a uniform array of tiny antennas spaced half of the wavelength apart and whose phase response is locally optimized.

We assume that the RIS transmits data to a single antenna receiver by reflecting an incident RF wave emitted by a single antenna transmitter. More specifically, we assume that the direct transmission link between the transmitter and the receiver is blocked, and, thus, the RIS is deployed to relay the scattered signal and to leverage virtual LoS paths for enhancing the strength of the received signal. The received SNR of the considered system is [START_REF] Basar | Wireless communications through reconfigurable intelligent surfaces[END_REF] 

γ = ρ N i=1 h i g i e jφ i 2 , ( 1 
)
where ρ is the average SNR of the RIS-assisted link, h i and g i , i = 1, 2, . . . , N are independent 1 complex coefficients that characterize the channels between the transmitter and the RIS, and the RIS and the receiver, respectively, and φ 1 , . . . , φ N are the phase shifts that are optimized to maximize the SNR at the receiver. In particular, ρ in (1) includes the path-loss of the end-to-end 1 The assumption of independent channel coefficients is made for analytical tractability and is justified, as a first-order approximation, if the reconfigurable elements of the RIS are spaced half of the wavelength apart. The generalization of the proposed analytical framework in the presence of channel correlation is postponed to future research works.

RIS channel, as described in, e.g., [START_REF] Renzo | Analytical modeling of the path-loss for reconfigurable intelligent surfaces -Anomalous mirror or scatterer ?[END_REF]- [START_REF] Tang | Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[END_REF], which is assumed to be fixed and given in this paper. The impact of channel estimation errors and overhead is not explicitly discussed in the present paper, but it can be taken into account as recently described in [START_REF] Zappone | Overhead-aware design of reconfigurable intelligent surfaces in smart radio environments[END_REF]. Usually, the RISs are positioned to exploit the LoS path with respect to the location of the transmitter to increase the received power. In this case, Rician fading is a better small-scale fading model in the presence of a LoS path. However, the Rician distribution does not belong to the family of distributions in [START_REF] Wu | Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[END_REF]. Therefore, we consider a further generalized fading model.

f |y i | (x) = κ y i H m y i ,n y i p y i ,q y i   c y i x (a ij , A ij ) y j=1:p y i (b ij , B ij ) y j=1:q y i   , (2) 
Assumption 2: Using the hyper-Fox H-distribution, the pdf of a Rician fading channel is

f |y i | (x) = ∞ k=0 κ y k H 1,0 0,1   c y k z - (k + 1 2 , 1 2 )   , (3) 
where

c y k = √ K y + 1, κ y k = e -K y K y k √ K y +1 Γ(k+1)
, and K y for y ∈ {h, g} denotes the Rice factors of the transmitter-RIS and RIS-receiver links, respectively.

In the following sections, by leveraging the H-transform, we establish a unified framework for analyzing the performance of RIS-assisted communications where the fading envelope is described by the Fox's H-distribution for non-specular small-scale fading and the hyper Fox's H-distribution under LoS propagation. Perfect and imperfect phase shifts are analyzed.

III. OUTAGE PROBABILITY -NO PHASE NOISE

The optimal design for the phase shifts of an RIS-assisted link consists of setting the phase shift of each element φ i so that all phase contributions due to the phase of h i , i.e., ∠h i and the phase of g i , ∠g i , i = 1, . . . , N, are compensated [START_REF] Basar | Wireless communications through reconfigurable intelligent surfaces[END_REF]. Accordingly, substituting φ n = -∠(h n + g n ), n = 1, . . . , N, in (1), the outage probability in the absence of phase noise is

P ρ N i=1 |h i ||g i | 2 < γ th = P N i=1 |h i ||g i | < √ ρ t
, where ρ t = γ th /ρ. An analytical expression of the outage probability is given in the following proposition.

Ψ S (s) = τ (2πw) N C 1 . . . C N N i=1 Γ(-u i )Θ i (u i ) c u i i s N i=1 u i du 1 du 2 . . . d u N where w = √ -1, Θ j (u j ) = m j j=1 Γ (ξ j + Ξ j u j )) n j j=1 Γ (1 -δ j -∆ j u j )) p j j= n j +1 Γ (δ j + ∆ j u i ) q j j= m j +1 Γ(1 -ξ j -Ξ j u j ) and C i , i = 1, . . . , N represents the contours [τ i -w∞, τ i + w∞] , τ ∈ R. ( 9 
)
Proposition 1: The outage probability with optimal phase shifts is

Π(ρ, N) = τ H 0,0: m 1 , n 1 ,..., m N , n N 0,1: p 1 , q 1 ,..., p N , q N      c 1 √ ρ t . . . c N √ ρ t -: (1, 1), (δ 1 , ∆ 1 ) p 1 ; . . . ; (1, 1), (δ N , ∆ N ) p N (0; 1, . . . , 1) : (ξ 1 , Ξ 1 ) q 1 ; . . . ; (ξ N , Ξ N ) q N      , (4) 
where 

τ = N i=1 κ h i κ g i c h i c g i , c i = c h i c g i ,
(δ i , ∆ i ) p i = (a ij + A ij , A ij ) h j=1:p h i , (a ij + A ij , A ij ) g j=1:p g i (5) (ξ i , Ξ i ) q i = (b ij + B ij , B ij ) h j=1:q h i , (b ij + B ij , B ij ) g j=1:q g i (6)
and

m i = m h i + m g i , n i = n h i + n g i + 1, q i = q h i + q g i , p i = p h i + p g i + 1
. Proof: Let Γ(•) be the gamma function and j be the imaginary unit. By defining S =

N i=1 |h i | |g i |, we have [40] Π(ρ, N) = 1 2πj C s -1 Ψ S (s)e s √ ρ ds, (7) 
where

Ψ S (s) = N i=1 L(f |h i ||g i | )(s)
and L(•) stands for the Laplace transform. Applying [41, Theorem (4.1)] for the pdf of the product of two Fox's H distributions yields f |h i ||g i | , which is, in turn, the Fox's H distribution as follows

f |h i ||g i | (x) = κ h i κ g i H m i , n i -1 p i -1, q i   c h i c g i x (a ij , A ij ) h j=1:p h i , (a ij , A ij ) g j=1:p g i (b ij , B ij ) h j=1:q h i , (b ij , B ij ) g j=1:q g i   . (8) 
Then, by evaluating the Laplace transform of f |h i ||g i | with the help of [39, Eq. (2.20)], Ψ S follows as shown in [START_REF] Wu | Beamforming optimization for wireless network aided by intelligent reflecting surface with discrete phase shifts[END_REF] at the top of this page. By plugging ( 9) into ( 7), the outage probability can be written as in [START_REF] Huang | Reconfigurable intelligent surfaces for energy efficiency in wireless communication[END_REF] shown at the top of the next page. The desired result follows by recalling that

1 2πw L s -1 Ψ S (s)e sz ds = τ (2πw) N C 1 . . . C N N i=1 Γ(-u i )Θ i (u i ) c u i i (10) × 1 2πw γ-w∞ γ+w∞ e sz s N i=1 u i -1 dsdu 1 du 2 . . . d u N = τ (2πw) N C 1 . . . C N N i=1 Γ(-u i )Θ i (u i ) c u i i z -N i=1 u i Γ(1 -N i=1 u i ) du 1 du 2 . . . d u N . 1 2πj L s -a e sz ds = z a-1 Γ(a)
and by capitalizing on the multiple Mellin-Barnes type contour integral of the multivariate Fox's H function [START_REF] Mathai | The H-Function: Theory and Applications[END_REF]Def. A.1] with the aid of some algebraic manipulations.

Remark 1: Although the numerical evaluation of the multivariate Fox's H-function is unavailable in mathematical software packages, e.g., MATLAB and Mathematica, efficient implementations have been reported in the literature [START_REF] Chergui | Rician K-factor-based analysis of XLOS service probability 5G outdoor ultra-dense networks[END_REF]. They are used to obtain the numerical results.

Proposition 2:

The outage probability of RIS-assisted communications in Rice fading is

Π(ρ, N) = ∞ k 1 ,...,k N =0 ∞ t 1 ,...,t N =0 τ H 0,0:2,1,...,2,1 0,1:1,2,...,1,2 ∆ √ ρ t . . . ∆ √ ρ t -: (1, 1); . . . ; (1, 1) (0; 1, . . . , 1) : (k 1 + 1, 1 2 ), (t 1 + 1, 1 2 ); . . . ; (k N + 1, 1 2 ), (t N + 1, 1 2 ) , (11) 
where ) . Proof: We use the distribution in (3) and apply the same procedure as for the proof of (4).

∆ = (1 + K h ) (1 + K g ) and τ = N i=1 e -K h K h k i Γ(k i +1) e -K g K g t i Γ(t i +1

Remark 2:

The derived analytical expressions for the outage probability in ( 4) and ( 11) are general and new, and can be easily mapped into most existing fading models. The obtained analytical frameworks are, to the best of our knowledge, the first ones in the literature that yield the exact end-to-end SNR distribution of an RIS-assisted systems in terms of the multivariate Fox's H-function. This is in contrast with the recently reported expressions in [3, Eqs. ( 4), [START_REF] Li | Single-RF MIMO: From spatial modulation to metasurface-based modulation authors[END_REF]] and [START_REF] Atapattu | Reconfigurable intelligent surface assisted two-way communications: Performance analysis and optimization[END_REF]Eq. (17)], which are based on approximations (the CLT in [START_REF] Basar | Wireless communications through reconfigurable intelligent surfaces[END_REF] and the moment-based Gamma approximation in [START_REF] Atapattu | Reconfigurable intelligent surface assisted two-way communications: Performance analysis and optimization[END_REF]), in order to overcome the intricacy of the exact statistical modeling of the end-to-end SNR in RIS-aided systems. The novelty of the proposed approach is also apparent from the summary given in Table I. For the convenience of the readers, Table II provides the explicit expression of the outage probability for several widely used fading distributions.

A. Diversity Order and Coding Gain

In this section, we analyze the diversity order and coding gain of RIS-assisted communications over generalized fading channels. In the current literature, the diversity order has been assessed by relying on approximations and bounds [START_REF] Boulogeorgos | Performance analysis of reconfigurable intelligent surface-assisted wireless systems and comparison with relaying[END_REF]- [START_REF] Yang | Accurate closed-form approximations to channel distributions of RIS-aided wireless systems[END_REF] (see Table I), and under Rayleigh fading. A common approach for analyzing the diversity order of RIS-aided systems is to leverage the CLT.

However, this approach is accurate only for a large number of reconfigurable elements [START_REF] Basar | Wireless communications through reconfigurable intelligent surfaces[END_REF], and, in general, it is not sufficiently accurate for high-SNR analysis, which is the regime of interest for analyzing the diversity order [START_REF] Xu | Reconfigurable intelligent surfaces assisted communications with discrete phase shifts: How many quantization levels are required to achieve full diversity?[END_REF]. In [START_REF] Boulogeorgos | Performance analysis of reconfigurable intelligent surface-assisted wireless systems and comparison with relaying[END_REF], for example, the diversity order was shown to be N 2 π 2 16-π 2 in Rayleigh fading, which implies that the full diversity order cannot be obtained even in the absence of phase errors. By resorting to some bounds, however, the authors of [START_REF] Xu | Reconfigurable intelligent surfaces assisted communications with discrete phase shifts: How many quantization levels are required to achieve full diversity?[END_REF] recently showed that the full diversity order equal to N is achievable in Rayleigh fading (even in the presence of phase errors). A detailed summary of the current methods and results on the diversity order of RIS-aided systems is available in Table I.

In what follows, building upon the high-SNR analysis of the exact outage probability in Proposition 1 and Proposition 2, we compute the exact diversity order and coding gain of RISassisted systems over generalized fading. We prove, in particular, that the diversity order in Rayleigh fading is N and that it may exceed this value in less severe fading channels. . For each pole s j , define the set of indexes

K (l) j = {k : k ∈ {1, . . . , m l }, r k,j = ξ lj -Ξ lj ξ lk Ξ lk ∈ {0, 1, 2, . . .}} and let N (l) j l = |K (l) j l |
be the multiplicity of the pole ζ l with j l = arg min j=1,..., m l {ξ lj /Ξ lj }. The asymptotic expansion of (4) near

ρ t = γ th ρ = 0 is [46, Theorem 1.2] Π(ρ, N) ≈ τ Γ(1 + N l=1 ζ l ) N l=1 Θ(-ζ l ) ln ρ c 2 l γ th N (l) j l -1 c ζ l l γ th ρ ζ l 2 , ( 12 
)
where the constants Θ l , l = 1, . . . , N, are given by 

Θ l (ζ l ) = 1 Γ N (l) j l      k∈K (l) j l (-1) r k,j l r k,j l !Ξ k      i ∈K (l) j l Γ (ξ i + Ξ i ζ l ) n l i=1 Γ (1 -δ i -∆ i ζ l )) p l i= n l +1 Γ (δ i + ∆ i ζ l ) q l i= m l +1 Γ(1 -ξ i -Ξ i ζ l ) . (13) 
f |y i | (x) = m y i Γ(m y i ) H 1,0 0,1   m y i x - (m y i -1 2 , 1 2 )   Π(ρ, N ) = N i=1 Γ(m h i )Γ(m g i ) -1 H 0,0:2,1,...,2,1 0,1:1,2,...,1,2      m h 1 m g 1 √ ρt . . . m h N m g N √ ρt -: (1, 1), -; . . . ; (1, 1), - (0; 1, . . . , 1) : {ξ1, Ξ1}; . . . ; {ξN , ΞN }      {ξi, Ξi} = (m h i , 1 2 ), (m g i , 1 
2 )

α-µ Fading [43,
Table IIV]:

f |y i | (x) = η y i Γ(µ y i ) H 1,0 0,1   η y i x - (µ y i -1 α y i , 1 α y i )   where η y i = Γ(µ y i + 2 α y i ) Γ(µ y i ) Π(ρ, N ) = N i=1 Γ(µ h i )Γ(µ g i ) -1 H 0,0:2,1,...,2,1 0,1:1,2,...,1,2      η h 1 η g 1 √ ρt . . . η h N η g N √ ρt -: (1, 1), -; . . . ; (1, 1), - (0; 1, . . . , 1) : {ξ1, Ξ1}; . . . ; {ξN , ΞN }      {ξi, Ξi} = (µ h i , 1 α h i ), (µ g i , 1 α g i ) Rice Fading [44,
Eq.

(2.16)] 

f |y i | (x) = lim K-→∞ K k=0 κ y k H 1,0 0,1   c y k z - (k + 1 2 , 1 2 )   Π(ρ, N )= ∞ k 1 ,...,k N =0 ∞ t 1 ,...,t N =0 τ H 0,0:2,1,...,
f |y i | (x) = m y i m y s i Γ(m y s i )Γ(m y i ) × H 1,1 1,1   m y i x m y s i (-m y s i + 1 2 , 1 2 ) (m y i -1 2 , 1 2 )   Π(ρ, N ) = N i=1 Γ(m g s i )Γ(m g i )Γ(m h s i )Γ(m h i ) -1
H 0,0:2,3,...,2,3 0,1:3,2,...,3,2 

       m h 1 m g 1 m h s 1 m g s 1 √ ρt . . . m h N m g N m h s N m g s N √ ρt -: (1,
       {δi, ∆i} = (1 -m h si , 1 
2 ), (1 -m g si , 1 
2 )

{ξi, Ξi} = (m h i , 1 2 ), (m g i , 1 
2 )

Generalized K [43,
Table IIV]:

f |y i | (x) = m y i k y i Γ(m y i )Γ(k y i ) × H 2,0 0,2   x m y i k y i - (m y i -1 2 , 1 2 ), (k y i -1 2 , 1 2 )   Π(ρ, N ) = N i=1 Γ(m h i )Γ(κ h i )Γ(m g i )Γ(κ g i ) -1
H 0,0:4,1,...,4,1 0,1:1,4,...,1,4 

     m h 1 κ h 1 m g 1 κ g 1 √ ρt . . . m h N κ h N m g N κ g N √ ρt -: (1,
     {ξi, Ξi} = (m h i , 1 2 
), (m g i ,

1 2 ), (k h i , 1 2 ), (k g i , 1 2 ) 
Proof: Equation ( 12) is obtained by evaluating the residues of the Mellin-Barnes integrals in [START_REF] Cui | Secure wireless communication via intelligent reflecting surface[END_REF] at the poles of the terms Γ(ξ lj + u l Ξ lj ), j = 1, . . . , m l , according to [46, Theorem 1.2] and by keeping only the dominant terms using [START_REF] Kilbas | H-Transforms: Theory and Applications[END_REF]Eq. (1.8.3)].

As mentioned, the Fox's H-function fading distribution generalizes many well-known fading distributions, such as the Rayleigh, Nakagami-m, and α-µ distributions. It is interesting to analyze how the general expressions derived for the asymptotic outage probability simplify when selecting the parameters corresponding to known distributions. We have three possible scenarios.

• Scenario 1: The poles

ξ lj
Ξ lj , j = 1, . . . , m l are simple. This occurs when r kj l is neither a negative integer nor zero. In this case N (l) j l = 1. This case study applies, for instance, to i.ni.d. h i and g i over Nakagami-m and i.ni.d. α-µ, with α h i µ h i = α g i µ g i , fading channels. • Scenario 2: The poles ξ lj Ξ lj , j = 1, . . . , m l , all coincide. This occurs when

ξ lj Ξ lj = ξ lk
Ξ lk , k, j = 1, . . . , m l , and in this case N (l) j l = m l . This case study includes, as special cases, Rayleigh, i.i.d. Nakagami-m, and α-µ, with α h i µ h i = α g i µ g i , fading channels, for which N (l) j l = 2. • Scenario 3: Some poles are simple and the others coincide, such that r kj l = -r, where r is a positive integer. This case study, however, does not apply to [START_REF] Shen | Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications[END_REF], since only the smallest pole (the dominant pole), i.e., j l = arg min j=1,..., m l {ξ lj /Ξ lj }, is considered in [START_REF] Shen | Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications[END_REF].

Taking into consideration the just mentioned scenarios, the diversity order and the coding gain of RIS-assisted systems over generalized fading channels is stated in the following proposition.

Proposition 4: Consider the general Fox's-H fading model in [START_REF] Wu | Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[END_REF]. The asymptotic (for high-SNR) outage probability of an RIS-aided system can be formulated as

Π(ρ, N) ≈ ρ→∞ (G c ρ) -G d , (14) 
where G d denotes the diversity order given by

G d = N i=1 min j=1,..., m l ξ ij Ξ ij 2 , (15) 
and G c denotes that coding gain given by Proposition 5: Consider an RIS-assisted communication system over Rician fading. From [START_REF] Cui | Secure wireless communication via intelligent reflecting surface[END_REF], the asymptotic outage probability is

G c =            1 γ th τ N i=1 Θ i (-ζ i ) c ζ i i Γ(1+ N i=1 ζ i ) - 2 N i=1 ζ i Scenario 1, 1 γ th τ N i=1 Θ i (-ζ i ) ln ρ c 2 i γ th c ζ i i Γ(1+ N i=1 ζ i ) - 2 N i=1 ζ i Scenario 2, (16) 
Π(ρ, N) ≈ 2 N (1 + K h ) N (1 + K g ) N Γ(1 + 2N) e -N (K h +K g ) ln ρ ∆ 2 γ th N ρ γ th -N . ( 17 
)
Proof: It follows by computing the residues at ζ l = min{2k l + 2, 2t l + 2}, l = 1, . . . , N, and by keeping only the dominant term of the infinite series expansion in [START_REF] Cui | Secure wireless communication via intelligent reflecting surface[END_REF], which corresponds to k l = t l = 0. Then, steps similar to Proposition 3 yield ( 17) with the aid of some manipulations.

By substituting the specific parameters of the fading models summarized in Table II into the generalized expressions of the outage probability in Propositions 4 and 5 (under the assumptions of Scenarios 1 and 2), it is possible to obtain explicit expressions for the corresponding diversity order G d and coding gain G c . These are reported in Table III, from which the following important conclusions and performance trends are unveiled.

• Over Rayleigh fading channels, the obtained results coincide with those derived in earlier research works as reported in Table I, but by using different methods of analysis, e.g., approximations and bounds.

• RIS-aided systems achieve a diversity order equal to N for an arbitrary number N of reconfigurable elements in both Rayleigh and Rice fading. The impact of the LoS component, i.e., K, is mainly reflected in the achievable coding gain. In particular, a strong LoS component (large K) is beneficial.

• Under severe fading m h i , m g i < 1 or α h i µ h i , α g i µ g i < 1, RIS-aided systems achieve a diversity order less than N. However, such a scenario may not occur in optimized deployments in which the RISs are positioned in order to leverage the LoS paths with the transmitter and possibly with the receiver. In these cases, m h i and m g i are, in fact, relatively large. • Under fading channels less severe than Rayleigh, e.g., m h i and m g i are larger than one, a diversity order greater than N can be obtained.

TABLE III DIVERSITY AND CODING GAIN OF RIS-ASSISTED SYSTEMS OVER WIDELY USED FADING CHANNELS

Distribution Diversity Order Coding Gain

Rayleigh N

1 γ th -ln γ th ρ N 2 N Γ(1+2N) -1 N i.ni.d. Nak.-m N i=1 min{m h i , m g i } 1 γ th      2 N N j=1 (m h j m g j ) min{m h j ,m g j } Γ   m x =arg min x∈{h,g} {m x j } j -min{m h j ,m g j }    ( N i=1 Γ(m h i )Γ(m g i ))Γ(1+2 N i=1 min{m h i ,m g i })      1 N i=1 min{m h i ,m g i } i.ni.d. α-µ α h i µ h i = α g i µ g i N i=1 min{α h i µ h i ,α g i µ g i } 2 1 γ th     N j=1 α c=arg min x∈{h,g} {α x j µ x j } j Γ   µ x∈{h,g} =c j - 1 α x∈{h,g} =c j min{α h j µ h j ,α g j µ g j }   N j=1 η h j η g j -min{α h j µ h j ,α g j µ g j } Γ(µ h j )Γ(µ g j ) Γ(1+ N i=1 min{α h i µ h i ,α g i µ g i })     2 N i=1 min{α h i µ h i ,α g i µ g i } Rice N 1 γ th e (K h +K g ) -ln ∆ 2 γ th ρ -1 Γ(1+2N) 1 N 2(1+K h )(1+K g )
• Under the assumption of Scenario 2, which encompasses i.i.d. Rayleigh fading, the scaling law of the outage probability as a function of ρ → ∞ is (ln (ρ)/ρ) N . This trend is in agreement with [START_REF] Atapattu | Reconfigurable intelligent surface assisted two-way communications: Performance analysis and optimization[END_REF], where it was proved by using exact analysis for N = 1 and upper and lower bounds for N > 1. Similar trends were reported in [START_REF] Xu | Reconfigurable intelligent surfaces assisted communications with discrete phase shifts: How many quantization levels are required to achieve full diversity?[END_REF]. It is worth noting that this scaling law holds true for Rice fading as well, as unveiled, for the first time in the literature, by [START_REF] Yang | On the performance of RIS-assisted dual-hop UAV communication systems[END_REF]. As remarked in [START_REF] Atapattu | Reconfigurable intelligent surface assisted two-way communications: Performance analysis and optimization[END_REF], this is a new scaling law, which generalizes the definitions of diversity order and coding gain typically used in wireless communications [START_REF] Wang | A simple and general parameterization quantifying performance in fading channels[END_REF].

• Under the assumptions of Scenario 1 (e.g., i.ni.d. Nakagami-m and α-µ fading in Table III), the scaling law (ln (ρ)/ρ) N does not emerge, and the outage probability scales as ρ -N for ρ → ∞. To be best of the authors knowledge, this difference in the scaling law between Scenario 1 and Scenarios 2 was never reported in the literature.

To the best of our knowledge, the analytical framework introduced in this section is the first one that is exact and is applicable to generalized fading channels. Also, the corresponding diversity analysis is not based either on approximations or bounds.

IV. OUTAGE PROBABILITY -WITH PHASE NOISE

In practice, the phase shifts of the reconfigurable elements of an RIS cannot be optimized with an arbitrary precision, e.g., because of the finite number of quantization bits used or because of errors when estimating the phases of the fading channels [START_REF] Badiu | Communication through a large reflecting surface with phase errors[END_REF], [START_REF] Qian | Beamforming through reconfigurable intelligent surfaces in single-user MIMO systems: SNR distribution and scaling laws in the presence of channel fading and phase noise[END_REF]. In these cases, the phase of the ith element of the RIS can be written as φ i = -∠h i -∠g i + θ i , where θ i denotes a random phase noise, which is assumed to be i.i.d. in this paper. Thus, the equivalent channel observed by the receiver is a complex random variable and the SNR is

γ = ρ N i=1 |h i ||g i |e jθ i 2 = ρ|H| 2 . ( 18 
)
We assume that the distribution of θ i is arbitrary but its mean is zero. Examples of phase noise distributions include Gaussian, generalized uniform, and uniform RVs whose characteristic functions, E{e jtθ } = K t , are as follows:

1) Gaussian θ i ∼ N (0, σ 2 ) [47] K t ≈ e -σ 2 t 2 2 , (19) 
2) Generalized uniform θ i ∼ U(-qπ, qπ), q = 1, [24]

K t = sin(qπt) qπt , (20) 
3) Uniform

θ i ∼ U(-π, π) [24] K t = sin(πt) πt , (21) 
where (a) follows from E{e

jtθ i } θ i ∈[π,π] ≈ σ 2 ≪1 E{e jtθ i } θ i ∈[-∞,∞]
, which stems from the fact that, in practice, we are interested in standard deviations of only a few degrees.

It is worth noting that the Gaussian distribution is versatile to represent continuous phase errors. In [START_REF] Lo | Error probability of binary phase shift keying in Nakagami-m fading channel with phase noise[END_REF], e.g., it was shown that the phase errors are Gaussian distributed under widely applicable assumptions. Likewise, due to hardware limitations, only a finite number of phase shifts can be realized, which leads to quantization errors. In this case, the generalized uniform distribution constitutes a versatile model to account for the quantization noise by setting q = 2 -L , where L ≥ 1 is a positive integer that denotes the number of quantization bits used [START_REF] Badiu | Communication through a large reflecting surface with phase errors[END_REF], [START_REF] Qian | Beamforming through reconfigurable intelligent surfaces in single-user MIMO systems: SNR distribution and scaling laws in the presence of channel fading and phase noise[END_REF].

The SNR in [START_REF] Ding | On the impact of phase shifting designs on IRS-NOMA[END_REF] is formulated in terms of the square magnitude of a linear combination of complex random variables with random magnitudes and random phases. In general, the calculation of the exact distribution of the SNR in ( 18) is an open research issue, and is very intricate for arbitrary values of N. To tackle this issue, we proceed as follows: (i) first, we study the distribution of the SNR in [START_REF] Ding | On the impact of phase shifting designs on IRS-NOMA[END_REF] under the assumption of a large number of reconfigurable elements N of the RIS, i.e., N ≫ 1. The obtained analytical framework is based on the CLT and is typically appropriate for analyzing RIS-aided systems with practical numbers of reconfigurable elements and for typical values of ρ. As noted in, e.g., [START_REF] Xu | Reconfigurable intelligent surfaces assisted communications with discrete phase shifts: How many quantization levels are required to achieve full diversity?[END_REF], the resulting analysis is usually not accurate in the high-SNR regime (i.e., for ρ → ∞), and, therefore, for analyzing the attainable diversity order; and (ii) then, we introduce upper and lower bounds for the SNR in [START_REF] Ding | On the impact of phase shifting designs on IRS-NOMA[END_REF] in the presence of phase noise. The objective is to identify sufficient conditions for achieving the full diversity order. The main peculiarity of the latter approach lies in its applicability to RIS-aided systems with an arbitrary number of reconfigurable elements N and for any SNR regime.

A. Performance Analysis for Large N and Finite Values of ρ

In this sub-section, we introduce an analytical framework for computing the outage probability of RIS-aided systems in the presence of phase noise and under the assumption N ≫ 1.

Proposition 6: Define Λ 1 = E{|h i |} and Λ 2 = E{|g i |}.
For large values of N, the outage probability in the presence of phase noise can be formulated as follows.

• Case 1: In the presence of Gaussian and generalized uniform phase noise, we have

Π(ρ, N) = 1 2π H 0,2:1,1;1,1;2,1 3,1:1,1;2,1;2,2 -γ th N 2 4ν 2 ρ γ th N 2 ν 2 ρ γ th N 2 ν 2 ρ B; (0, 2); (1, 1), ν 2 2σ 2 X , 2 ; (1, 1), ν 2 2σ 2 Y , 2 
(1; 0, -1, -1) : (0, 1);

ν 2 2σ 2 X , 1 ; ν 2 2σ 2 Y , 1 , 1 2 , 1 , (22) 
where B = {(1; -1, -1, -1), 1 2 ; -1, 0, -1 , (1; 0, -1, -1)},

ν = K 1 Λ 1 Λ 2 , σ 2 Y = 1 2N (1 -K 2 ), and σ 2 X = 1 2N (1 + K 2 -2K 2 1 Λ 2 1 Λ 2 2
).

• Case 2: In the presence of uniform phase noise, we have

Π(ρ, N) = π -1 H 0,0:2,1;2,1 0,1:2,2;2,2 γ th N 2 ρ γ th N 2 ρ -: (N, 2) , (1, 1); (N, 2) , (1, 1) (0; 1, 1) : (N, 1) , 1 2 , 1 ; (N, 1) , 1 2 , 1 . ( 23 
)
Proof: The proof is based on the application of the CLT. See Appendix A.

To the best of our knowledge, Proposition 6 is a new result that is not available in the literature and is applicable to generalized fading distributions in the presence of phase noise.

B. Diversity Analysis for Large N

Based on Proposition 6, this sub-section studies the outage probability in the high-SNR regime, i.e., for ρ → ∞. It is known, however, that the CLT may not be suitable for analyzing the outage probability for ρ → ∞ if N is fixed. The analysis of this sub-section serves, therefore, as a benchmark for better understanding the limitations of the CLT when applied to RIS-aided systems for analyzing their performance in the high-SNR regime. This is elaborated next.

Proposition 7: Assume ρ → ∞. Based on Proposition 6, the asymptotic outage probability in the presence of phase noise can be formulated as

Π(ρ, N) ≈ ρ→∞      A G ρ γ th -ν 2 2σ 2 X + 1 2 Case 1, Γ(N -1 2 ) 2 Γ(N ) 2 ρ γ th -1 Case 2, (24) 
where

A G = (N 2 ν 2 ) -ν 2 2σ 2 X + 1 2 √ π ν 2 2σ 2 Y Γ ν 2 2σ 2 X Γ -ν 2 2σ 2 X Γ 1 2 -ν 2 2σ 2 X Γ 3 2 + ν 2 2σ 2 X . (25) 
Proof: Equation ( 24) is obtained by computing the residues of the integrand in ( 40) and ( 42)

by using [START_REF] Kilbas | H-Transforms: Theory and Applications[END_REF]Eqs. (1.84,1.85)]. As for Case 1, the residue is computed at the points

u 1 = ν 2 2σ 2 X , u 2 = min ν 2 2σ 2 Y , 1 2 = 1 2
, and u 3 = 0. As for Case 2, the residue is computed at

(u 1 , u 2 ) = ( 1 2 , 1 2 ). 
From ( 24), we evince that the diversity order based on the CLT approximation for N ≫ 1 is

G CLT d =          NE + 1 2 Case 1, 1 Case 2, (26) 
where

E = (K 1 Λ 1 Λ 2 ) 2 / (1 + K 2 -2K 2 1 Λ 2 1 Λ 2 2 ).
Remark 4: Based on (26), we conclude that, in general, the diversity order in the presence of phase noise is less that the full diversity order that is achievable in the absence of phase noise, which is given in [START_REF] Huang | Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends[END_REF]. As a case study, let us consider that the phase noise originates from the quantization bits L used for the phase shifts. From [START_REF] Wang | Chernoff bounds and saddlepoint approximations for the outage probability in intelligent reflecting surface assisted communication[END_REF], we obtain E = 1 2 for L = 1 and E < 1 for L > 1. Over Rayleigh fading, in particular, we obtain

G CLT d ≈ 0.78N + 0.5 if L = 2 and G CLT d ≈ 0.8N + 0.5 if L → ∞ (i.e.
, no phase noise). Therefore, we evince that G CLT d < G d for finite and infinite values of L, which is in disagreement with [START_REF] Huang | Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends[END_REF] in the absence of phase noise (i.e., L → ∞).

The example in Remark 4 confirms the unsuitability of the CLT for high-SNR analysis, and, in particular, for estimating the diversity order of RIS-assisted systems. To further corroborate the statements in Remark 4, let us assume N = 1 in [START_REF] Ding | On the impact of phase shifting designs on IRS-NOMA[END_REF]. In this case, we would have

γ (N = 1) = ρ(|h 1 | |g 1 | cos (θ 1 )) 2 + ρ(|h 1 | |g 1 | sin (θ 1 )) 2 = ρ|h 1 | 2 |g 1 | 2 ,
which implies that the SNR is independent of the phase error. This is different from [START_REF] Wang | Chernoff bounds and saddlepoint approximations for the outage probability in intelligent reflecting surface assisted communication[END_REF].

In the next sub-section, we introduce sufficient conditions for ensuring that the full diversity order is achieved in RIS-assisted communications impaired by phase noise.

C. Diversity Analysis for Arbitrary N

The analytical framework introduced in the previous section based on the CLT is usually accurate for analyzing the performance of RIS-assisted communications for practical values of N and for typical values of the SNR. However, it is not sufficiently accurate for estimating the diversity order, i.e., for ρ → ∞. In the present paper, for these reasons, we do not attempt to introduce approximated analytical frameworks but focus our attention on identifying sufficient conditions for guaranteeing that RIS-aided systems achieve the full diversity order even in the presence of phase noise. This is a fundamental open issue for designing and optimizing RISaided systems. For example, the approach introduced in this section allows us to identify the minimum number of quantization bits that are needed for ensuring no diversity loss. This specific problem has been recently analyzed in [START_REF] Xu | Reconfigurable intelligent surfaces assisted communications with discrete phase shifts: How many quantization levels are required to achieve full diversity?[END_REF], where it is shown that, under i.i.d. Rayleigh fading, two quantization bits (i.e., L = 2) are necessary. The approach proposed in [START_REF] Xu | Reconfigurable intelligent surfaces assisted communications with discrete phase shifts: How many quantization levels are required to achieve full diversity?[END_REF] is specifically tailored for analyzing the impact of quantization bits in the presence of i.i.d. Rayleigh fading.

The analytical approach proposed in this section, on the other hand, is applicable to arbitrary distributions for the channel fading and for the phase noise.

To this end, we re-write the end-to-end SNR in [START_REF] Ding | On the impact of phase shifting designs on IRS-NOMA[END_REF] 

as γ = ρ|H| 2 = ρ (X 2 + Y 2 ), where X = N i=1 |h i ||g i | cos(θ i ) and Y = N i=1 |h i ||g i | sin(θ i ). Also, we define ε min = min n =m∈[1,N] {cos (θ n -θ m )}.
The main results are stated in the following two propositions. 

|h i | 2 |g i | 2 ≤ ρ X 2 + Y 2 ≤ ρ N i=1 |h i | |g i | 2 (27) 
Proof: Be definition, we have

X 2 = N n=1 |h n | 2 |g n | 2 cos 2 (θ n ) + N n=1 N m =n=1 (|h n | |g n | cos (θ n )) (|h m | |g m | cos (θ m )) (28) 
Y 2 = N n=1 |h n | 2 |g n | 2 sin 2 (θ n ) + N n=1 N m =n=1 (|h n | |g n | sin (θ n )) (|h m | |g m | sin (θ m )) (29) 
By using the identity cos (α + β) = cos (α) cos (β)sin (α) sin (β), we obtain

X 2 + Y 2 = N n=1 |h n | 2 |g n | 2 + N n=1 N m =n=1 |h n | |g n | |h m | |g m | cos (θ n -θ m ) (a) ≥ N n=1 |h n | 2 |g n | 2 + ε min N n=1 N m =n=1 |h n | |g n | |h m | |g m | (b) ≥ N n=1 |h n | 2 |g n | 2 (30) 
X 2 + Y 2 = N n=1 |h n | 2 |g n | 2 + N n=1 N m =n=1 |h n | |g n | |h m | |g m | cos (θ n -θ m ) (c) ≤ N n=1 |h n | 2 |g n | 2 + N n=1 N m =n=1 |h n | |g n | |h m | |g m | = N n=1 |h n | |g n | 2 (31) 
where (a) and (b) follow under the assumption ε min ≥ 0, and (c) follows because cos (θ nθ m ) ≤ 1 for any phase errors. This concludes the proof. {cos (θ nθ m )} ≥ 0, RIS-assisted transmission achieves the full diversity order in the presence of phase noise.

Proof: It follows from Proposition 8, by noting the following: (i) the upper bound in [START_REF] Jung | Performance analysis of large intelligence surfaces (LISs): Asymptotic data rate and channel hardening effects[END_REF] coincides with the SNR in the absence of phase errors, which is shown to achieve the full diversity order in Section III, and (ii) the lower bound in [START_REF] Lyu | Spatial throughput characterization for intelligent reflecting surface aided multiuser system[END_REF] is the SNR of an equivalent maximal-ratio combining system whose links have an SNR equal to |h n | 2 |g n | 2 . From [START_REF] Wang | A simple and general parameterization quantifying performance in fading channels[END_REF], the diversity order of the lower bounds in [START_REF] Lyu | Spatial throughput characterization for intelligent reflecting surface aided multiuser system[END_REF] is the same as the diversity order of the upper bound in [START_REF] Jung | Performance analysis of large intelligence surfaces (LISs): Asymptotic data rate and channel hardening effects[END_REF], since the latter bound corresponds to the SNR (scaled by a fixed constant) of an equivalent equal-gain combining system. This concludes the proof. {cos (θ nθ m )} < 0, in other words, a diversity loss may occur.

Based on Proposition 8 and Proposition 9, the following remarks can be made:

• The condition ε min = min n =m∈ [1,N ] {cos (θ nθ m )} ≥ 0 implies that the absolute difference between pairs of phase errors is always less than π/2. This yields important guidelines to make the design of RISs robust to the phase noise.

• Assume that the phase noise is determined by the number L of quantization bits used. Then, by definition, we have cos 2π 2 L ≤ cos (θ nθ m ) ≤ 1. This yields ε min = cos (π) = -1

for L = 1, ε min = cos (π/2) = 0 for L = 2, and ε min > 0 for L > 2. Therefore, the full diversity order can be ensured if at least two quantization bits are used. This result is in agreement with [START_REF] Xu | Reconfigurable intelligent surfaces assisted communications with discrete phase shifts: How many quantization levels are required to achieve full diversity?[END_REF], but generalizes it to arbitrary fading distributions and phase noise distributions.

• The potential loss of diversity for ε min = min

n =m∈[1,N ]
{cos (θ nθ m )} < 0 can be understood by considering the case study for N = 2 and L = 1 in Proposition 8. In this case, we

obtain X 2 + Y 2 | worst case = (|h 1 | |g 1 | -|h 2 | |g 2 |) 2 .
The negative sign in the latter equation is responsible for the potential loss of diversity order for ε min < 0.

In conclusion, with the aid of the sufficient condition identified in Proposition 9, an RIS can be appropriately optimized in order to guarantee that the full diversity order is achieved. To the best of our knowledge, this result for arbitrary fading and phase noise distributions was never reported in the literature. A similar approach could be applied to the analysis of hardware impairments different from the phase noise.

V. NUMERICAL RESULTS

In this section, we report some numerical results in order to substantiate the obtained analytical expressions of the outage probability and the analysis of the diversity order and coding gain with the aid of Monte Carlo simulations. Unless otherwise stated, the SNR threshold is set to γ th = 0 dB. It is worth mentioning that the numerical results consider relatively small values of N in order to better highlight the impact of the diversity order, which is the main focus of the present paper, similar to [START_REF] Xu | Reconfigurable intelligent surfaces assisted communications with discrete phase shifts: How many quantization levels are required to achieve full diversity?[END_REF].

Figure 1 shows the outage probability of an RIS-assisted system in the absence of phase noise as a function of the average SNR (i.e., ρ), for several values of N and under Nakagami-m fading for m g i > m h i , i = 1, . . . , N, with min i=1,...,N {m h i } = 0.5. We observe that the exact expression of the outage probability in (4) and its corresponding high-SNR approximation in [START_REF] Perovic | Channel capacity optimization using reconfigurable intelligent surfaces in indoor mmWave environments[END_REF] are in close agreement with Monte Carlo simulations. In particular, Fig. 1 diversity analysis in Section III-A. As expected, the outage probability decreases significantly as the number N of reconfigurbale elements of the RIS increases.

confirms that correctness of the

Figure 2 shows the outage probability vs. the average SNR ρ over α-µ fading in both i.i.d and i.ni.d. scenarios. The conclusions are similar to those in Fig. 1. We observe, in particular, that the outage probability over i.ni.d. α-µ fading decreases at a rate of ρ

-N i=1 min{α h i µ h i ,α g i µ g i } 2
, in agreement with [START_REF] Shen | Secrecy rate maximization for intelligent reflecting surface assisted multi-antenna communications[END_REF] and more precisely with ( 14) and ( 16), under the assumptions of Scenario 1.

Over i.i.d. fading, in addition, the figure confirms that the outage probability scales with ln (ρ)/ρ, as predicted by [START_REF] Hou | MIMO assisted networks relying on large intelligent surfaces: A stochastic geometry model[END_REF], under the assumptions of Scenario 2, and unveiled in [START_REF] Atapattu | Reconfigurable intelligent surface assisted two-way communications: Performance analysis and optimization[END_REF] and [START_REF] Xu | Reconfigurable intelligent surfaces assisted communications with discrete phase shifts: How many quantization levels are required to achieve full diversity?[END_REF] over i.i.d. Rayleigh fading channels.

Figure 3 illustrates the outage probability of an RIS-aided system in the presence of phase noise over Nakagami-m fading. The phase noise is modeled by assuming that the phases are quantized by using L = 1 and L = 2 quantization bits. The numerical results obtained with Monte Carlo simulations are in agreement with the analytical findings in Section IV. The figure confirms, in particular, that the CLT does not yield, in general, an accurate estimate of the diversity order. In addition, we observe, that a two-bit quantization (L = 2) for the phase shifts yields, in the considered case study, sufficiently good performance in terms of outage probability. In particular, the full diversity order can be achieved, as stated in Proposition 9.

Figure 4 shows the outage probability as a function of the number of quantization bits for the phase shifts of the RIS. Figure 4 further corroborates the performance trends illustrated in Fig. 3. In particular, we observe that L = 3 provides an outage probability that is close to the setup in the absence of phase noise. Furthermore, Fig. 4 confirms that the CLT does not provide reliable estimates of the outage probability in the considered setup.

VI. CONCLUSION

In this paper, we have introduced a comprehensive analytical framework for analyzing the outage probability and diversity order of RIS-assisted communication systems over generalized fading channels and in the presence of phase noise. The proposed approach leverages the analytical formalism of the Fox's H functions. We have substantiated, over generalized fading channels, that the central limit theorem is not, in general, a suitable approach for analyzing the diversity order of RIS-aided systems. Therefore, we have introduced a new analytical approach for computing the diversity order in the absence of phase noise, and we have identified sufficient conditions for ensuring that the full diversity order is achieved in the presence of phase noise.

In particular, we have proved that RIS-assisted communications achieve the full diversity order provided that the absolute difference between pairs of phase errors is less than π/2. The obtained findings are shown to be in agreement and to generalize previous results available in the literature. Y ), where, by using the second-order statistic computation method in [START_REF] Picinbono | Second-order complex random vectors and normal distributions[END_REF], we

obtain ν = K 1 Λ 1 Λ 2 , σ 2 X = 1 2N (1 + K 2 -2K 2 1 Λ 2 1 Λ 2 
2 ), and σ 2 Y = 1 2N (1 -K 2 ), where

Λ 1 = E{|h i |} and Λ 2 = E{|g i |}, (32) 
which, using [START_REF] Wu | Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[END_REF], is computed using the Mellin transform of the Fox's H function [39, Eq. (2.8)] 2 .

Moreover, since the considered phase errors distributions are symmetric around their mean value that is equal to zero, we obtain E{XY } = 0. Hence, X and Y are uncorrelated RVs, and, hence, as normal RVs, independent. Accordingly, |H b | 2 is the sum of a scaled non-central chi-squared RV X 2 and a gamma variable Y 2 , which are mutually independent. Thus, we have

Lf |H b | 2 (s) = Lf X 2 (s)Lf Y 2 (s) = e -ν 2 s 1+2σ 2 X s 1 + 2σ 2 X s 1 + 2σ 2 Y s . (33) 
By applying the same steps as in [START_REF] Cui | Secure wireless communication via intelligent reflecting surface[END_REF], i.e., by computing the inverse Laplace transform of [START_REF] Zhang | Analysis and optimization of outage probability in multi-intelligent reflecting surface-assisted systems[END_REF], the distribution of |H b | 2 can be formulated as

P |H b | 2 < t = L -1 s -1 Lf |H b | 2 (s), t (a) = ∞ k=0 (-1) k (ν 2 ) k k! L -1 s k-1
(1 + 2σ 2 X s)

k+ 1 2 (1 + 2σ 2 Y s) 1 2 , t , (34) 
where (a) follows by using e -x = ∞ k=0 (-1) k x k k!

.

Substituting (1 + x) -a = 1 Γ(a) L Γ(s)Γ(as)x -s ds in [START_REF] Wang | A simple and general parameterization quantifying performance in fading channels[END_REF], and applying and applying L -1 {s -a ; x} = x a-1 Γ(a) [39, Eq. (2.15)], the distribution of |H b | 2 can be formulated as

P |H b | 2 < t = 1 π(2πw) 2 C 1 C 2 Γ(u 1 )Γ(u 2 ) (2σ 2 X ) u 1 (2σ 2 Y ) u 2 Γ 1 2 -u 1 Γ 1 2 -u 2 Γ(1 + u 1 + u 2 ) ×t u 1 +u 2 2 F 1 1 2 -u 1 , -u 1 -u 2 , 1 2 , ν 2 t du 1 du 2 , (35) 
where 2 F 1 (•) denotes the Gauss hypergeometric function [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF]. Using the representation of the 2 F 1 (•) hypergeometric function in terms of Mellin-Barnes integrals [START_REF] Mathai | The H-Function: Theory and Applications[END_REF], we obtain [START_REF] Danufane | On the path-loss of reconfigurable intelligent surfaces: An approach based on Green's theorem applied to vector fields[END_REF] shown at the top of the next page. P |H b | 2 < t = 1 √ π(2πw) 3 (36)

× C 1 C 2 C 3 Γ(u 1 )Γ(u 2 )Γ(u 3 ) ( 2σ 2 X ν 2 t ) u 1 ( 2σ 2 Y ν 2 t ) u 2 (ν 2 ) u 1 +u 2 +u 3 Γ 1 2 -u 1 -u 3 Γ(-u 1 -u 2 -u 3 )Γ 1 2 -u 2 Γ(1 + u 1 + u 2 )Γ 1 2 -u 3 Γ (-u 1 -u 2 ) (-t) u 3 du 1 du 2 du 3 P |H b | 2 < t = 1 √ π(2πw) 3 × C 1 C 2 C 3 Γ(u 1 )Γ(u 2 )Γ(u 3 ) Γ 1 2 -u 1 -u 3 Γ(-u 1 -u 2 -u 3 )Γ 1 2 -u 2 Γ(1 + u 1 + u 2 )Γ 1 2 -u 3 Γ (-u 1 -u 2 ) Γ ν 2 2σ 2 X -u 1 Γ ν 2 2σ 2 X -2u 1 Γ ν 2 2σ 2 Y -u 2 Γ ν 2 2σ 2 Y -2u 2 t ν 2 u 1 +u 2 -t ν 2 u 3 du 1 du 2 du 3 . (40)
From [START_REF] Ding | On the impact of phase shifting designs on IRS-NOMA[END_REF], the outage probability for large N is obtained as 

Π(ρ, N) = P |H b | 2 < γ th N 2 ρ . (37) 
To circumvent this, we use the Euler-Gauss limit [START_REF] Gradshteyn | Table of Integrals, Series, and Products[END_REF] for

Z ∈ { ν 2 2σ 2 X , ν 2 2σ 2 Y } as Z s ≃ N ≫1 Γ(Z -s) Γ(Z -2s) . (39) 
Based on [START_REF] Mathai | The H-Function: Theory and Applications[END_REF], we obtain [START_REF] Trigui | Unified analysis and optimization of D2D communications in cellular Networks over fading channels[END_REF], shown at the top of this page. By applying [39, eq. (A.1)] to [START_REF] Trigui | Unified analysis and optimization of D2D communications in cellular Networks over fading channels[END_REF] and using the identity Γ 1 2u 3 = Γ(-2u 3 )2 2u 3 +1 √ π Γ(-u 3 )

, we obtain [START_REF] Badiu | Communication through a large reflecting surface with phase errors[END_REF] after some manipulations.

If the phase noise has a uniform distribution over [-π, π], we have 2 F 1 1 2u 2 , -u 1u 2 , 0 = 1 in [START_REF] Renzo | Analytical modeling of the path-loss for reconfigurable intelligent surfaces -Anomalous mirror or scatterer ?[END_REF], since ν = 0. Substituting σ 2 X = σ 2 Y = 1 2N , and using the Euler-Gauss limit [52]

N s ≃ N ≫1 Γ(N -s) Γ(N -2s) , (41) 
we obtain

P |H b | 2 < t = 1 π(2πw) 2 × C 1 C 2 Γ(u 1 )Γ(u 2 ) Γ 1 2 -u 1 Γ 1 2 -u 2 Γ(1 + u 1 + u 2 ) Γ(N -u 1 ) Γ(N -2u 1 ) Γ(N -u 2 ) Γ(N -2u 2 ) t u 1 +u 2 du 1 du 2 , (42) 
which leads to [START_REF] Xu | Reconfigurable intelligent surfaces assisted communications with discrete phase shifts: How many quantization levels are required to achieve full diversity?[END_REF] with the aid of [39, eq. (A.1)]. This completes the proof.

  and H[•, . . . , •] is the multivariable Fox's H-function whose definition in terms of Mellin-Barnes contour integrals is given in [39, Definition A.1] with

Proposition 3 :

 3 Consider the multivariate Fox's H-function in (4) and define the set of poles S = (ζ 1 , . . . , ζ N ), where ζ l = min j=1,..., m l ξ l1 Ξ l1 , . . . , ξ l m l Ξ l m l

Remark 3 :

 3 where ζ l = min j=1,..., m l {ξ lj /Ξ lj }, and the constants Θ l (ζ l ) are given in Proposition 3 with N j l = 2 for Scenario 1 and 2, respectively. Proof: It follows from Proposition 3, under the assumptions stated in Scenarios 1 and 2. The usually considered Rayleigh fading channel model (see TableI) can be retrieved from Proposition 4 by considering Scenario 2 with ζ l = 2 for l = 1, . . . , N.

Proposition 8 :

 8 Assume ε min = min n =m∈[1,N ] {cos (θ nθ m )} ≥ 0. The SNR in (18) is upper and lower bounded as follows ρ N i=1

Proposition 9 :

 9 If ε min = min n =m∈[1,N ]

Remark 5 :

 5 The upper bound in[START_REF] Jung | Performance analysis of large intelligence surfaces (LISs): Asymptotic data rate and channel hardening effects[END_REF] can be applied only ifε min = min n =m∈[1,N ] {cos (θ nθ m )} ≥ 0.This implies that Proposition 9 yields a sufficient condition for achieving the full diversity order. If ε min = min n =m∈[1,N ] 

Fig. 1 .

 1 Fig. 1. Outage probability vs. the average SNR in Nakagami-m fading.

Fig. 2 .

 2 Fig. 2. Outage probability vs. the average SNR in α-µ fading.

Fig. 3 .

 3 Fig. 3. Outage probability vs. the average SNR, for different values of L and N (Nakagami-m fading with m = 1.5).

Fig. 4 .

 4 Fig. 4. Outage probability vs. L over Nakagami-m fading (m = 1.5) for different values of the average SNR and N = 4.

  VII. APPENDIX AFor sufficiently large N, the distribution of H b = 1 N H tends to a non-circularly symmetric complex Gaussian RV whereX = Re{H} = 1 N N i=1 |h i ||g i | cos(θ i ) and Y = Im{H} = 1 N N i=1 |h i ||g i | sin(θ i )are approximately Gaussian due to the CLT. In particular, X ∼ N (ν, σ 2 X ) and Y ∼ N (0, σ 2

2

  For instance, we obtainΛi = √ π 2 , i = 1, 2, for Rayleigh fading, Λi = Γ(m i + 1 2 ) √ m i Γ(m i )for Nakagami-m fading, and Λi = 4 π(K i +1) 1F1 -1 2 , 1, -Ki in Rician fading, respectively.

  However, in the obtained current form, the distribution of |H b | 2 in (37) involves an undermined form in the high-SNR regime. When t → 0, more precisely, we have lim

TABLE I PERFORMANCE

 I ANALYSIS FRAMEWORKS AND DIVERSITY ANALYSIS AVAILABLE IN THE LITERATURE (N = NUMBER OF RECONFIGURABLE ELEMENTS OF THE RIS)

	Ref.	Channel Model	Phase Noise	Method of Analysis		Diversity Order	Diversity Order
					(without phase noise)	(with phase noise)
	[19]	Rayleigh	No	Laguerre Series	N 2	π 2 16-π 2 (as for the CLT)		-
	[20]	Rayleigh	No	Gamma Approximation		N		-
	[21]	Rayleigh	No	Method in [34]		N		-
	[22]	Arbitrary	Yes	Large N , Nakagami Distr.		m in [22, Eq. (12)]	m in [22, Eq. (12)]
	[23]	Rayleigh	L-bit Quant.	Bounds		N	< N+1 2	if L = 2; N if L ≥ 3
	[24]	Rayleigh	Yes	Large N , Gamma Approx.	1/AF in [24, Eq. (20)]	1/AF in [24, Eq. (20)]
	[25]	Rayleigh	No	GK Approximation		N		-
	[26]	Rayleigh	No	Chernoff Bound		N		-
	[27]	Rayleigh	1-bit Quant.	Gamma Approximation		N		(N + 1)/2
	[28]	Rice	No	Method in [34]		N		-
	[29]	Rayleigh	No	GK Approximation		N		-
	This Arbitrary Fox's H	Arbitrary	Exact and Bounds		see (13)		see Prop. 9

TABLE II OUTAGE

 II PROBABILITY OF RIS-ASSISTED SYSTEMS OVER WIDELY USED FADING CHANNEL MODELS

	Instantaneous Fading Distribution	Outage Probability Π(ρ, N )
	Nakagami-m Fading [43, Table IIV]: