
HAL Id: hal-03837736
https://hal.science/hal-03837736v2

Preprint submitted on 4 Nov 2022 (v2), last revised 16 Aug 2023 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Physics-guided interpretable probabilistic representation
learning for high resolution image time series

Yoël Zérah, Silvia Valero, Jordi Inglada

To cite this version:
Yoël Zérah, Silvia Valero, Jordi Inglada. Physics-guided interpretable probabilistic representation
learning for high resolution image time series. 2022. �hal-03837736v2�

https://hal.science/hal-03837736v2
https://hal.archives-ouvertes.fr


1

Physics-guided interpretable probabilistic
representation learning for high resolution image

time series
Yoël Zérah , Silvia Valero , Jordi Inglada

Abstract—Learning representations that capture meaningful
underlying information of data is a promising solution to reduce
the reliance on labeled data for downstream applications. With
the advent of the big remote sensing data era, self-supervised
deep learning methods have become a valuable tool to ex-
tract high-level, complex abstractions and representations from
large volumes of data. However, classical methodologies such
as Variational Autoencoders are focused on imposing statistical
constraints on the latent space and they do not learn generic and
interpretable representations of the data.

To address such limitation, this work presents a generic
physics-guided representation learning methodology to discover
semantic representations. To address it,the proposed approach
constrains the learning process with the incorporation of prior
physical knowledge. This study shows through an example how
the methodology can be used to solve remote sensing inverse
problems. Specifically, the inversion of a crop phenology model
derived from NDVI time series is proposed. As a result, the prob-
ability distributions of the intrinsic physical model parameters
are inferred. The feasibility of the method is evaluated on both
simulated and real Sentinel-2 data and compared with different
standard algorithms.

Index Terms—Generative Models, Autoencoders, Satellite
Image Time Series, Self-Supervised Representation Learning,
Bayesian physics-guided learning, Inverse problems, Phenology
Monitoring, Large Scale.

I. INTRODUCTION

NOWADAYS, vast amount of data are acquired by
satellite-borne sensors for Earth Observation. In the last

decade, the Sentinel-2 (S2) satellites of EU’s Copernicus pro-
gram have been acquiring optical Satellite Image Time Series
(SITS), with high spatial, spectral and temporal resolutions.
These data enable large scale applications of Earth monitoring
with stunning precision, such as urban sprawl, agricultural
cycles, fast disaster analysis and response, climate change
impact evaluation, etc. [1], [2].

While remote sensing provides very rich data about Earth’s
surface state, actual extraction of useful information is not
straightforward. Satellite data is complex, with wide variability
and information redundancy among its several dimensions.
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Y. Zérah, S. Valero, J. Inglada are with CESBIO, Université de
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Besides, cloud coverage and sensor overpass (e.g. S2 swath
intersections) lead to an irregular temporal and spatial sam-
pling. Traditional statistical methods typically struggle to cope
with the huge dimensionality of satellite data. Therefore, there
is a need to produce reduced representations that capture the
important aspects of the data.

Deep representation learning [3] aims at transforming data
into more useful representations and is especially suited to
large data volumes. Such a representation should identify the
most informative components of input data for downstream
applications. Because producing annotated data-sets for satel-
lite data is costly and difficult, self-supervised representation
learning is promising.

Generative models are well suited to unsupervised represen-
tation learning, in that they learn to generate data from input
parameters. These parameters constitute a de facto generative
representation of data and capture enough information to be
able to synthesize data. Representation learning performs then
the inverse task by finding the representation that matches data
with regards to a given generative model.

Because models are never perfect (epistemic uncertainty)
and data may be subject to noise (aleatoric uncertainty),
representations derived from generative models should be
described with uncertainties. In generative models, Bayesian
inference theory enables inferring probabilistic latent represen-
tations capturing these uncertainties. Nonetheless, separating
aleatoric and epistemic uncertainties may be intractable: only
a predictive uncertainty that combines both can be usually
quantified [4].

Uncertainty quantification in representations can be per-
formed with Variational Autoencoders (VAE) [5], that are a
type of generative model that combines Bayesian theory with
deep learning [6], [7]. VAE are successfully used to capture
generative factors of data as probabilistic latent variables,
yet they face several challenges for producing meaningful
representations. They cannot embed a too powerful generative
model, for they tend in such cases to reconstruct data while
ignoring the latent representation [8]. Furthermore, learned
representations aren’t interpretable, in the sense that they
don’t match with human-defined concepts [9]. Interpretable
representations would ensure that downstream applications are
explainable and justifiable.

Because remote sensing deals with physical data, such as
reflectances for Sentinel-2 optical images, there is a large
quantity of scientific knowledge about those measurements and
the physical processes that they are tied to. There are priors
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and models for physical data derived from human expertise,
geographical and natural sciences. Integrating prior knowledge
into representation learning has been of great interest recently,
with gray-box approaches [10].

In this paper, we aim at developing novel approaches
to integrate physical knowledge to learn interpretable repre-
sentations. For instance, variables involved in physical pro-
cesses, such as moisture, temperature and solar irradiance for
vegetation growth, phenological phases dates in vegetation
monitoring, etc., are interpretable representations of physical
data. More generally, when latent variables are the parameters
of physical, or user-defined models used to guide training, they
are directly interpretable. To learn such representations, we
semantically bind VAE latent variables to user-defined physical
model parameters.

The remainder of this article is organized as follows. Section
II introduces current approaches for learning interpretable
representations of data with VAE frameworks. Section III
presents how physical priors can be incorporated into the
learning process in different ways to make representations
interpretable. Section IV defines a temporal model for satellite
optical time series for phenology monitoring, that is integrated
in the proposed pheno-VAE. Two time series data-sets are
also described. At last, the benefits of using the proposed
methodology for the inversion of the previous presented model
are presented in Section V, where experimental results are
shown.

II. RELATED WORKS

A. Representation learning with Variational Autoencoders

Autoencoders (AE) are self-supervised neural networks that
learn low dimensional representations from unlabeled data.
An encoder reduces the dimension of the input data into
deterministic latent variables that are used by the decoder
to reconstruct the input data. Both the encoder and the
decoder are neural networks that are trained simultaneously
to optimize the compression of the input data. The loss is
usually a mean squared error (MSE) of the reconstruction.
A Variational Autoencoder (VAE, see Fig. 1) embeds the

Fig. 1. Classical Variational Autoencoder

representation in the latent space, as random variables [6].
Specifically, the encoder outputs the parameters λ of a so-
called variational distribution. The variational distribution
belongs to a parametric distribution family, usually a Gaussian
distribution. The VAE latent space being a distribution, it
fosters regular and continuous representations, making it more
suitable to represent high level features. Then the realizations

z of this distribution are taken as input to the decoder.
The decoder’s output are also distribution parameters, from
which reconstructions x̂ are sampled. This is sometimes called
ancestral sampling [11].

A well-known problem of VAEs is the over-pruning of
latent variables [12], [13]. When the decoder is a too powerful
generative model, it is able to reconstruct the input while
ignoring some latent variables. In this case, latent variables can
become redundant, and their distributions collapse. Another
challenge of representation learning with VAE is the model
identification issue related to the classical standard Gaussian
prior. Despite the existence of many distribution families,
most works only consider Gaussian latent spaces. This can
limit the ability of VAE to infer meaningful representations.
Finally, as above-mentionned, the latent distributions learned
by traditional VAE architectures aren’t easily interpretable
because associated latent variables are the generative factors
of an unknown generative model.

B. Disentanglement

There is a significant amount of research that attempts
to improve the interpretability and meaningfulness of latent
representations learned by VAE, with disentanglement [14].
Disentanglement is a meta-prior about data, that assumes the
existence of independent factors of variation that generate the
data [3], [15]. A disentangled representation should capture
these factors into different independent variables. Disentan-
glement introduces some form of separation so that each
component of the representation may encode uncorrelated
features at various abstraction levels.

To learn disentangled representations, most approaches rely
on a regularization of the latent space to enforce the same
properties (closeness to the prior, independence between latent
variables, etc.) [16]. Traditionally, a supplementary regular-
izing term is added to the Evidence Lower BOund (ELBO)
objective function to penalize the variational distribution. For
instance, β-VAE [17] adds a tunable hyper-parameter to the
ELBO loss to control the balance between the reconstruction
ability and the regularization of the latent space. Factor-VAE
[18] enforces latent variable independence by encouraging
the aggregated latent distribution qλ(z) to be factorial, by
penalizing the total correlations qλ(z). In [19], disentangle-
ment is promoted by matching the covariance of the joint
latent distribution to that of the prior. While many advances
have been made to learn disentangled representations, it is
difficult to compare and evaluate results obtained by different
representation learning methodologies. The main problem is
that, although several metrics exist, it is still unclear how to
quantify disentanglement [16].

Furthermore, it is shown theoretically in [20] that there are
no disentangled representations without inductive priors. It is
underlined that increased disentanglement does not seem to
provide better performances on downstream tasks. Besides,
existing disentanglement approaches focus on separating in-
dependent factors of variations despite the fact that real-
world observations are often not structured into meaningful
independent causal variables to begin with [21].
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Fig. 2. Incorporation of physical priors in machine learning models.

In particular, there is often significant correlation between
factors of variations in physical data. Semantics of physics-
based latent variables should correspond to some properties of
the observations, that are not necessarily independent. There-
fore, disentanglement may not be the best approach to find
interpretable representations of such data. Interpretability (the
correspondence to human-defined concepts) and explainability
(the ability of predictions and decisions to be understood
by humans) are mostly secondary in disentanglement studies,
behind informativeness and independence criteria [9], [22].

C. Physics-based generative models

Imposing statistical structures with disentanglement latent
representations in VAE doesn’t ensure which particular prop-
erties are uncovered in representations. Abundant literature and
models are available to describe and explain the observations
of various physical systems. Instead of seeking disentangle-
ment, it can be preferable to enforce specific priors by using
scientific knowledge about the observed processes or about the
physics of the sensor, .

Integrating physical priors into the learning process has re-
cently been the motivation of works proposing hybrid methods.

Theoretically, three types of priors can be introduced to
guide learning toward physically consistent predictions [23]
(see Fig. 2): “observational biases”, “inductive biases” and
“learning biases”. Observational biases are brought through the
choice of data that capture the physical properties of interest.
Inductive biases are incorporated by the tailoring of models
so that predictions are guaranteed to follow specified physical
behaviors. Learning biases are enforced through the choice
of loss functions. Several recent methods based on generative
models integrate physics with learning biases, and induction
biases by specifically tweaking the generative processes (e.g.
the decoders in AE) [24]–[26]. For instance, in [27], observa-
tional knowledge of galaxy images (point spread function and
noise level of images), is used in the decoding process and

in the loss function of a VAE. This method can also be used
to denoise images, because physical-based latent parameters
generate noiseless reconstructions from input images.

Sometimes, knowledge about the physics of the data is
available in the form of a parametric physical model, whose
parameters are physical variables. In AE’s framework, this is
performed by replacing the neural network decoder by a user-
defined decoder (see Fig. 3), with the code/latent variables
being semantically tied to its parameters [28]. In this setup,
latent representations become interpretable because they are
the parameters of a known generative model.

In [29], a model of elliptic galaxy images replaces the clas-
sical AE’s decoder. In [30], different methodologies present
the replacement of the decoder by user-defined models F , to
learn probabilistic representations with VAE. It is proposed
to infer representations that are partially interpretable. Such a
latent space has an interpretable part bound to a user-defined
decoder, and a non interpretable part bound to a neural network
decoder.

Fig. 3. VAE with user-defined decoder

When replacing the decoder with a user-defined function,
all latent variables are forced to be taken into account for the
reconstruction, as long as they have impact in the function
output. Therefore, it effectively avoids the over-pruning of
latent variables. Another interesting point of this setup is that
this strategy solves the inverse problem associated with the
user-defined model by only training the encoder.

Here, we propose to perform the integration of a user-
defined function in a VAE decoder, beyond what is depicted
in [30]. We further incorporate inductive and learning biases
for representation learning of physical data. We also propose
a novel training procedure based on the sampling of the latent
distribution.

III. METHODOLOGY

The theoretical basis of VAE is firstly introduced through
the perspective of variational inference (VI) before presenting
the proposed physics-guided methodology. Secondly, differ-
ent methodological contributions are presented to incorporate
physical priors through inductive and learning biases: (i) a new
Monte-Carlo reconstruction loss strategy for the incorporation
of physical models in VAE decoders, (ii) the possibility and
benefit of using variational distributions other than Gaussian
to better model physical quantities, (iii) the incorporation
of physical priors by imposing complementary relationship
constraints on latent distributions.
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A. Amortized variational inference with VAE

Let there be a probabilistic model that has observations x
and latent variables z, with its joint density:

p(x, z) = p(x|z)p(z) (1)

with p(z) the prior over the latent distribution and p(x|z)
the likelihood. It should be noted that p(x, z) is a generative
model of observations from latent variables, and z is then a
generative factor, and a representation of x. Computing the
posterior p(z|x) is known as the inference problem. Although
Bayes theorem,

p(z|x) =
p(x|z)p(z)

p(x)
=
p(x|z)p(z)∫
p(x, z)dz

, (2)

defines a rigorous mathematical formulation for any infer-
ence problem, it is not directly applicable. This is because∫
p(x, z)dz can become intractable due to the large dimension-

ality of z. To overcome this issue, instead of calculating the
exact posterior, approximation methods are commonly used.
In particular, variational inference methods approximate the
posterior with a so-called variational distribution qλ(z|x), that
is restricted to belong to a λ-parameterized distribution family
Qλ.

To ensure that qλ(z|x) is the best approximation of the pos-
terior among Qλ, inference methods minimize the Kullback-
Leibler (KL) divergence between the posterior and its approx-
imation:

q∗λ(z) = arg min
qλ∈Qλ

KL (qλ(z|x)‖p(z|x)) . (3)

The KL-divergence is also untractable here because of the
evidence term, log p(x) = log

∫
p(x, z)dz.

KL (qλ(z|x)‖p(z|x)) = E [log qλ(z|x)]

− E [log p(x, z)]

+ log p(x)

(4)

The optimization problem can be solved by using the ELBO
denoted in (5), by considering a prior distribution p(z) over
the variational distribution.

ELBO (qλ) = −KL (qλ(z|x)‖p(z|x)) + log p(x)

= E [log p(x, z)]− E [log qλ(z|x)]

= E [log p(x|z)]−KL (qλ(z|x)‖p(z))

(5)

Because the evidence is constant with respect to λ, maxi-
mizing the ELBO leads to minimizing the KL divergence term
in (3).

In VAE, the likelihood p(x|z, θ) is embedded in the decoder,
and the posterior distribution qλ(z|x, φ) in the encoder, with
θ and φ the respective networks’ parameters. The encoder
infers the variational parameters λ. The variational distribution
is typically chosen to be Gaussian: qλ(z|x, φ) = N (z|λ)
with λ = [µz(x, φ),Σz(x, φ)], with µz and Σz being the
mean vector and the covariance matrix of the latent variables.
This choice enables the explicit computation of the KL loss
term with a standard Gaussian prior, and a differentiable
sampling strategy1 using the reparameterization trick (see (6)).

1with respect to variational parameters

In practice, Σz is assumed to be a diagonal matrix, because it
prevents having to ensure definite positiveness and it reduces
the number of inferred latent parameters.

z = µz + Σ1/2
z ε, ε ∼ N (0, I) ⇒ z ∼ N (µz,Σz)

(6)
The decoder infers the parameters of the distribution of

the reconstructions selected among a chosen parametric dis-
tribution family — although this aspect is often overlooked
in the literature. In this work, the distribution of the decoder
is chosen as Gaussian: p(x̂|z, θ) = N (x̂|µx̂(z, θ),Σx̂(z, θ)),
with µx̂ and Σx̂ the corresponding mean vector and covari-
ance matrix. The covariance matrix Σx̂ is commonly set as a
hyper-parameter (often set to identity matrix). It can also be
considered a trainable parameter or estimated from the input’s
distribution [31].

Traditionnally, the negative ELBO (5) is the loss func-
tion minimized during the VAE training process. It has
two terms : L = Lrec + LKL. The reconstruction term
Lrec = −E [log p(x|z)] is the expectation of the Negative
Log Likelihood (NLL). It forces decoded samples to match
the initial input data. Lrec can be approximated as the average
NLL over a number L of Monte-Carlo samples of the latent
distribution (see (7)). However in practice with a batch size
large enough, z is typically only sampled once per iteration
[6].

E [log p(x|z)] ≈ 1

L

L∑
i=1

log p(x|z(i)) (7)

This term depends on the distribution chosen in the decoder,
commonly a Bernoulli or a Gaussian distribution. Using a
MSE loss instead would be equivalent to minimizing the
NLL of a unit-variance Gaussian. However, this assumption
of constant variance of reconstructions does not allow to
accurately estimate the uncertainty of the predictions. Using
MSE as a reconstruction loss typically results in VAE being
over-regularized [32].

The second term of the ELBO LKL = KL (qλ(z|x)‖p(z)),
is a regularization term that penalizes the mismatch of the
variational distributions to the prior p(z). This term has a
closed form with Gaussian latent spaces and the usual prior
N (0, I).

Because VAE use the ELBO to optimize neural network
weights θ and φ instead of the variational parameters λ, it is
an amortized variational inference approach — VAE learn a
function that maps x to variational distribution parameters λ.

B. Monte Carlo reconstruction loss for deterministic decoders

The physics-guided learning methodology presented in this
work proposes the use of physical-based decoders (see Fig.
3). The outputs of a deterministic user-defined decoder F can
no longer be distribution parameters, but transformations of
latent distribution samples. It implies that only samples from
p(x|z) are available for the reconstruction loss computation.
Therefore, we propose to approximate p(x|z) as a Gaussian
distribution and to evaluate its parameters (see the mean µx̂ in
(8) and the covariance matrix Σx̂ in (9)) from reconstructions
obtained by Monte-Carlo sampling the latent distribution and
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decoding the samples. The difference between a classical
Gaussian decoder and our proposed approach is depicted in
Fig. 4).

µx̂(z) ≈ 1

K

K∑
i=1

F(z(i)) (8)

Σx̂(z) ≈ 1

K − 1

K∑
i=1

(
F(z(i))− µx̂

)(
F(z(i))− µx̂

)>
(9)

The Monte-Carlo sampling of latent space brings up a new
hyper-parameter K: the number of latent samples drawn from
the latent distribution inferred from each input sample x. In
particular, the latent distribution sampling involved is used to
approximate the NLL, and not the expectation of the NLL.
The total number of latent samples drawn should be L ×K,
but we still set L = 1. The choice of K is a trade-off
between accuracy of µx̂ and Σx̂, and training time, because
latent distribution sample requires a forward pass through the
decoder. Finally, the reconstruction loss term for a Gaussian
decoder is described in (10).

Lrec(x) =
1

2

[
(x− µx̂)

>
Σ−1x̂ (x− µx̂) + ln (|Σx̂|)

]
(10)

Σx̂ is approximated as a diagonal covariance matrix by
assuming the independence of reconstruction components. Not
assuming diagonality of covariance matrix could improve
reconstruction quality, and add structure to residuals [33].
However, covariance matrix inversion and determinant com-
putation would become prohibitively expensive for any large
dimensional data.

The Gaussian NLL encourages both the reconstruction error
of each sample to be small, and the reconstruction variance to
model uncertainty, even if the distribution of reconstructions
is not Gaussian . If the error isn’t small, the variance can be
increased to still minimize the loss (e.g. when the error cannot
be minimized, uncertainty is increased). The ln (|Σx̂|) term
prevents the variance from arbitrarily increasing as a trivial
way of minimizing the loss.

C. The variational distribution as an inductive bias

To learn latent semantic representations, the incorporation
of inductive biases is essential. The use of a physical-based
decoder implies that latent variables are tied to physical
measurements. Therefore, knowledge about the probability
distribution characterizing these measurements can be used to
discard the classical prior and posterior Gaussian assumption.
We advocate for choosing a variational distribution family that
matches assumptions about each semantic latent variables, and
a prior that accounts for knowledge about the data-set.

The choice of the variational distribution is limited to dis-
tributions that can be sampled in a differentiable way, so that
gradients can be propagated through. Three different sampling
techniques can be considered to enable various distribution
choices [6]:

1) A reparameterization trick to sample location-scale fam-
ily distributions [34], such as the usual Gaussian distri-
bution (see (6)).

Fig. 4. Predicting parameters of a Gaussian decoder. Left: original Gaussian
decoder, with both the mean and the covariance being output by a trained
neural network. Right: a non-trainable decoder, where the mean and variance
are estimated from a set of K reconstructed samples x̂ obtained by the Monte-
Carlo sampling strategy.

2) Composition of auxiliary random variables. For instance,
log-normal, logit-normal, Dirichlet, exponential distribu-
tion samples may be generated by transforming “elemen-
tary” distributions (respectively by composing Gaussian
with logarithm, Gaussian with sigmoid, Gaussian with
softmax [35] and uniform with logarithm).

3) The inverse transform sampling method described in
(11), that can be used to sample any continuous random
variable z ∼ A. This technique can be used provided its
inverse cumulative distribution function (ICDF) F−1A is
differentiable, by propagating a sample from a uniform
distribution U(0, 1).

z = F−1A (u) , u ∼ U (0, 1) ⇒ z ∼ A (11)

In practice, the gradient of the ICDF computed during
training may diverge. In intervals of zero density, the
CDF is constant at y = c and its reciprocal has infinite
derivative at x = c. Therefore uniform sampling of
u must be done inside an interval I where the CDF
is strictly monotonous. In fact, due to the numerical
precision ε, the interval I has to be restricted even further
(see (12)).

I = FA (X) , X = {x ∈ [0, 1] s.t. dFA (x) ≥ ε}
(12)

As mentioned above, latent variables are semantically re-
lated to the prior knowledge of the physical model, therefore,
the physical measurements, corresponding to the parameters
may be bounded. If parameters to be estimated are known
to belong to a certain bounded interval, their corresponding
variational distributions should have closed-support. Physical
models can be mathematically defined even with out-of-
bounds parameters, but samples generated with these param-
eters would not be realistic. Such reconstructions could still
minimize the reconstruction loss, and hamper training while
the encoder learns to infer wrong latent representations. This
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can be especially detrimental when some training samples are
not well described by the physical model. The VAE would
then bend the model instead of increasing latent uncertainty.

The above-described sampling techniques can be used to
sample bounded distributions. This can be achieved by com-
posing unbounded distribution samples, such as Gaussian
samples drawn from the reparameterization trick, with sig-
moid functions2 (logistic3, hyperbolic tangent, arc-tangent,
etc...). However with this method, the resulting distributions
are distorded, asymmetric near the support bounds and may
even become bimodal. To avoid such limitations, the inverse
transform method enables the sampling of closed support dis-
tributions such as raised cosine distributions, Kumaraswamy
distributions, etc.

The bounds of the distributions can be inferred by the
encoder, or set by the user. In both cases, it may be convenient
to sample bounded distributions on the interval [0, 1] and then
perform affine scaling to the desired [a, b] interval (see (13)).

z ∈ [0, 1]⇒ (b− a)z + a ∈ [a, b] (13)

While the variational distribution should be chosen with
physical variables meaning in mind, it has to be paired with a
prior distribution that enables computation of the KL loss term.
It may unfortunately be more complicated to find a meaningful
prior whose KL divergence with the variational distribution
admits a closed-form expression.

D. Incorporation of order constraints into latent distributions

In all previous sampling methods, the independence of latent
variables is assumed. However the physical variables of a
model may not be independent, and correlations and statistical
dependence are usually observed between variables. Different
strategies are proposed here to introduce dependence between
latent variables, while still performing independent sampling
as is done with classical VAE. These strategies propose
the ancestral sampling [11] of latent variables whose values
are constrained by an order relation. For instance, physical
models associated to satellite times series usually have input
parameters associated to time, therefore order relationships can
be established.When using such models for VAE decoders,
order constraints must be enforced to prevent the training
from converging to representations that are not physically
plausible. As this is not done by sampling independent latent
distributions, we propose here methods to ensure order of
latent variables.

Let there be n latent variables zi, on intervals [ai, bi] that
must be ordered as follows: zi < zi+1, ∀i ∈ [[1, n−1]]. Two
complementary situations can arise:

(i) ∀i, [ai, bi]∩ [ai+1, bi+1] = ∅. There is no intersection be-
tween the support of each two consecutive latent variable
distribution.

(ii) ∃i such that [ai, bi] ∩ [ai+1, bi+1] 6= ∅. There is some
intersection between the support of two consecutive latent
distributions.

2More generally, composing unbounded samples with a monotonic, smooth
enough, bounded function.

3The composition of Gaussian distribution with logistic function is the logit-
normal distribution.

Fig. 5. Marginal densities q(zi|x) and q(zi+1|x) of latent variables zi and
zi+1 with intersecting support. If sampled independently, there is a non-zero
probability that zi > zi+1.

In the first case, the independent sampling of each zi will
always yield ordered results. In the second case, there is a
non-zero probability of sampling unordered samples zi and
zi+1 from two consecutive latent distributions q(zi|x) and
q(zi+1|x) (see Fig. 5).

To ensure that latent samples are always ordered in this
second case, we identify the three following strategies:

1) Penalizing out-of-order latent samples: Enforcing or-
dered constraints by just penalizing latent samples that are
out of order would decrease the latent distributions widths and
prevent latent distributions from being too close. As a result,
the network would arbitrarily infer disjoint marginal distri-
butions. This solution is not applicable in general, because
it introduces an inductive prior of distribution disjointness
that is not necessarily assumed by the physical-based decoder.
Furthermore it would also hamper training by introducing
noise into the loss.

2) Inferring the distribution of the difference between two
variables: The second way of ensuring the order of samples is
to infer positive support distributions of the difference ∆zi+1

between each pair of consecutive variables (zi+1, zi) in the
ordered sequence (see (14)).

zi+1 = zi + ∆zi+1 , ∀i ∈ J1, n− 1K (14)

However this method increases the variance of the summed
latent variables. Indeed, the density of the sum of random
variables is the convolution of the densities of these variables,
and the convolution of two densities results in a wider density.

3) Infering the distribution of the maximum of two vari-
ables: To overcome previous methods shortcomings, we pro-
pose to use the distribution of the maximum of two consecutive
variables (zi+1, zi) as the distribution of the greater variable
zi+1.

To perform that, for consecutive latent distributions, it is
necessary to ensure that samples are ordered, and that the
expectations of the distributions are ordered. The former
is achieved with the rectification of latent samples, while
the latter is attained with the rectification of the variational



7

parameters and with the use an additional loss term on the
variational parameters. The sampling procedure of ordered
latent variables is illustrated in Fig. 6.

To rectify latent samples, the maximum value between a
sample of consecutive variables (zi, zi+1) is attributed to the
the greater variable zi+1 (see (15)). If the samples are ordered
beforehand, the rectification doesn’t change the value of the
greater variable. If samples were mis-ordered, this sets the
value of the greater variable as equal to that of the lower
variable zi. The resulting rectified samples zi+1 are then used
instead of zi+1 by the user-defined decoder.

zi+1 = max (zi+1, zi) , ∀i ∈ J1, n− 1K (15)

The distribution of each zi is then the distribution of
the maximum of all previous consecutive variables zi =
max
j≤i

(zj), ∀i ∈ [[1, n−1]]. The density (PDF) and cumulative

distribution function (CDF) of rectified latent variables are
available (see appendix D) if the PDF and CDF of all marginal
latent distributions are available (marginal distributions can
even be from different distribution families). Sample recti-
fication is effective when distributions of consecutive latent
variables overlap.

Since the rectification step takes place after the variational
parameters inference, the model may rely solely on the rec-
tification step to produce ordered latent variables. When the
expectations of two consecutive latent distributions q(zi|x) and
q(zi+1|x) are mis-ordered, the rectification step will mostly
make consecutive latent samples identical. The encoder might
converge sub-optimally and even though latent samples would
technically be ordered, they would never be the right value.

To mitigate this,the expectation of consecutive latent distri-
butions must be ordered as well. The two additional proposed
techniques aim at ensuring that the encoder outputs variational
parameters that satisfy this constraint. These methods can be
applied when a latent distribution parameters λi, associated
with zi controls the expectation of the distribution, such as
the mean parameters of Gaussians. In the following, we will
assume that zi are Gaussian-based, and denote µzi their mean.
Similar methods can be designed with other parameters with
other distributions.

The rectification of the mean µzi of Gaussian-based latent
distributions (see (16)) is similar to the rectification of latent
samples.

µ
zi+1

= max
(
µzi+1

, µzi
)
, ∀i ∈ J1, n− 1K (16)

This hard constraint guarantees that the expectation of the
resulting distributions are ordered. However, rectifying latent
distribution parameters can again lead to sub-optimal training.
The encoder may not learn to output µzi+1 > µzi ∀i,
and may always rely on the rectification step to produce
distributions that have ordered expectations, leading to µzi+1

and µzi being always equal.
To ensure proper learning, we add a soft constraint in

the form of a loss term in (17), that penalizes inference of
unordered latent distribution parameters.

Lorder =
1

N

N∑
i=1

µ
zi
− µzi (17)

Fig. 6. Procedure of latent samples zi ordering with maximum of latent
distributions, with latent distribution parameters λi.

The order loss in (17) can be interpreted as an additional prior
on latent distribution that the original KL term doesn’t enforce.

Finally, using the maximum of consecutive variables to
order the lhem does change their distribution (see appendix
D for the density of the maximum of random variables). The
prior distribution and the KL loss term can both be expected
to become harder to derive for such latent distributions. In
such case, we advocate for using the latent distribution without
taking the ordering procedure into account in the computation
of the prior and the KL term.

IV. APPLICATION: INFERRING PHENOLOGICAL
PARAMETERS FROM NDVI TIME SERIES

The interest of the proposed physics-guided representation
learning methodology is illustrated by a well-known remote
sensing inverse problem. Specifically, the goal is to infer the
probability distributions of the intrinsic phenological parame-
ters from NDVI4 times series by considering a vegetation phe-
nological model. Here we present the architecture of pheno-
VAE that integrates this model, and two data-sets that we use
later for training and validation purposes.

A. The phenological model as physics-based decoder

The NDVI quantifies land surface greenness and photosyn-
thetic vegetation vigor [36]. It is derived from Near Infra-
Red (NIR) and Red reflectances (R) of a land surface, and its
expression is:

NDVI =
ρNIR − ρR
ρNIR + ρR

∈ [−1, 1] . (18)

This index is typically close to 1 for high densities of vegeta-
tion, close to 0 for bare soil, and negative for water.

The characterization of the evolution of vegetation phe-
nology using NDVI derived from remote sensing is widely
addressed in the literature [37]–[39]. In general, the annual
evolution of NDVI of some vegetation and crops can be well
fitted with a double-logistic model [40]–[42]. The inversion

4Normalized Difference Vegetation Index.
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TABLE I
PARAMETERS OF THE DOUBLE-LOGISTIC PHENOLOGICAL MODEL.

Variable Description Range [a, b]

M
Maximum of
double logistic [-1, 1]

m
minimum of
double logistic [-1, 1]

sos DOY5 of Start Of Season,
the start of NDVI growth [-45, 410]

mat DOY of Maturity,
the end of NDVI growth [-45, 410]

sen DOY of Senescence,
the start of NDVI decay [-45, 410]

eos DOY of End Of Season,
end of NDVI decay [-45, 410]

of this phenological model from NDVI time series allows
extracting phenological parameters, that typically characterize
phenophases of the observed vegetation. This model uses a
6-variable phenological model to characterize seasonal vege-
tation cycles on yearly time series. The phenological model is
described by the following equations:

Ωz(t) = (M −m) (Ssos,mat(t)− Ssen,eos(t)) +m; (19)

Ssos,mat(t) =

(
1 + exp

(
2

sos + mat− 2t

mat− sos

))−1
; (20a)

Ssen,eos(t) =

(
1 + exp

(
2

sen + eos− 2t

eos− sen

))−1
. (20b)

This model accounts for vegetation annual cycle, with a growth
phase, a stagnation phase and a decay/harvest phase. The 6
phenological parameters z = (M,m, sos,mat, sen, eos) are
described in Table I, and their effects on the model are
shown in Fig. 7. Phenological parameters are all bounded. As
observed, M and m have the same bounds as NDVI itself.

The range of phenological dates (sos, mat, sen, eos) are
the days of a given calendar year, extended by 90 days. The
45 days considered before the 1st January and after the 31st
December allows less restrictive estimations, and takes into
account vegetations whose cycle started or ended outside the
calendar year. This range is a prior knowledge about the data,
like the double-logistic model itself.

Following the architecture depicted in Fig. 3, the proposed
pheno-VAE architecture proposes to use the double-logistic
phenological model as a physical-based decoder. Each variable
zi of its 6-dimensional latent space is semantically bounded to
a phenological parameter. The reconstruction term is computed
as discussed in Section III-B. To take into account that the
phenological parameters are bounded, we choose Truncated
Gaussians T N as latent distributions. The latent sampling
process is performed with the inverse transform method in
(11). The phenological variables are ordered: m < M , and
sos < mat < sen < eos, meaning the associated latent
variables must be ordered in the same way. For that, the
phenological dates are sampled as the maximum of all pre-
vious phenological dates, using the three strategies defined

(a)

(b)

(c)

Fig. 7. Examples of double logistic curves describing different phenology for
different vegetation covers, with different phenological parameters.

in Section III-D3: (i) the rectification of samples zi in (15),
(ii) the rectification of parameters µzi of Truncated Gaussians
in (16), (iii) the incorporation of an order term to the ELBO
loss in (17).

As the latent variables of pheno-VAE are used as pheno-
logical model parameters, their distributions will be referred
to as phenological distributions.
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B. Encoder of Pheno-VAE

Pheno-VAE uses a simple multi-layer perceptron as shown
in Fig. 8 that outputs the parameters of truncated Gaussians
µzi and σzi for each variable zi. The support [ai, bi] of each
truncated Gaussian is set to [0, 1]. Each sample drawn from
these distributions is scaled accordingly to the range described
in Table I, using the procedure described in (13), before being
input to the physics-based decoder.

The neural network is implemented using PyTorch. As there
is no temporal encoding of time series, its input layer of size
73 is presented with annual NDVI time series sampled in a
5-days regular grid.

Fig. 8. Encoder architecture used in pheno-VAE, with 4 fully connected
hidden layers with ReLU activation.

C. Data-sets

Two data-sets are used to evaluate the performances of
pheno-VAE for phenological parameter retrieval. The first
data-set is composed of real satellite observations of annual
NDVI time series and is used for pheno-VAE training and
qualitative validation. The second data set is composed of
simulated crop NDVI profiles. The construction of this data-set
is proposed for three main reasons: (i) to perform a quantitative
evaluation of parameter retrieval on a large scale data-set,
(ii) to assess the robustness of pheno-VAE to the noise of
complex satellite observations, (iii) to compare the results of
pheno-VAE against supervised methods. Examples of NDVI
time series from both of data-sets are illustrated in Fig. 10.

1) S2 data-set: It is composed of 106 annual time series
of pixels from 31TCJ Sentinel-2 tile (Toulouse area in south-
ern France) [43]. The corresponding NDVI time series are
computed from the spectral band 4 (Red) and 8 (Near Infra-
Red). The resulting time series describe different land cover
classes which can be associated to the class legend used on
the OSO land cover map [44]. Accordingly, a large number of
time series do not represent vegetation classes following the
double-logistic phenological model. Despite the availability
of land cover class information, it must be remarked that

such information is only used for validation purposes. The
distribution of the land cover classes in the data-set is detailed
in Table VII of appendix A. The times series are acquired
on irregular time intervals. The two Sentinel-2 satellites have
intersecting ground footprints and some locations get increased
coverage. Cloud cover is the main reason for the inconsistent
temporal sampling and account for the variability in valid
observation number of each pixel on the ground (see Fig. 12 in
appendix A). For each time series, a validity mask is available
to denote the valid satellite observations. This mask is used to
linearly interpolate raw time series to a common regular time
grid for pheno-VAE’s encoder.

2) Simulated data-set: The corresponding data set is com-
posed by a large number of simulations obtained by the
double-logistics model, using a given sampling strategy for
the input parameter ranges. The phenological model is used
to generate time series samples with reference phenological
parameters. This allows to compute metrics on phenological
parameter retrieval experiments to validate our approach.

Since we assume that the double-logistic model is an
approximation of NDVI time series, we model the observations
as a noisy version of such a model. Therefore, we assume
that each NDVI observation follows a normal (Gaussian)
distribution whose mean is the double logistic function:

y(t) ∼ N (µ(t), σn) , (21)

with µ(t) = Ωz(t), and σn the standard deviation of the noise.
To generate synthetic time series, we first sample phenolog-

ical parameters from uniform distributions. The phenological
model is then used to simulate the corresponding NDVI time
series. To account for the uneven temporal sampling of real
time series, we use binary masks of valid dates of real S2
time series, to only simulate the time series at certain dates
t. A Gaussian noise of randomly sampled standard deviation
σn ∼ U(0, 0.1) is added to remaining simulated time series
points. It accounts for epistemic uncertainty, as no real time
series is perfectly described by the phenological model. The
resulting time series are finally interpolated at a regular 5-days
time grid. The data generation procedure is depicted in Fig. 9.

The configuration of the parameter sampling procedure is
detailed in the following. For σ, which represents the standard
deviation of the noise in the observations, we will chose a
maximum value of 0.1 which corresponds to 10% of the
maximum expected range for NDVI values. For the minimum
value of NDVI (m), we define the range between 0 (bare soil)
and 0.4 (presence of vegetation). The maximum value of NDVI
(M ) is defined relative to the minimum value. A crop with a
typical phenology value is assumed to have M at least 0.3
higher than m, and that the highest value will not be higher
than 1.

The 4 dates characterizing the phenological stages are each
defined in terms of the previous as follows. End of season (eos)
is allowed to be right after Senescence and up to 90 days later.
Senescence (sen) is defined in the same way with respect to
maturity (mat) and mat follows the same rationale with respect
to start of season (sos). For sos we would need to give a very
wide prior in order to take into account winter and summer
crops. Instead of doing that, we introduce an additional (latent)
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Fig. 9. Procedure of generation of a data-set of synthetic NDVI Time series.

variable sosi which will model the probability of summer crop.
This probability is used to adjust the starting point of the
interval of prior values for sos. We assume that the earliest
sos for a winter crop is on day 30 (end of January) and that
the earliest summer crop can have an sos of 120 (late April).
sosi and σn are additional variables of the generative process
of synthetic data that will not be inferred during experiments.

Sampling of parameters for synthetic time series generation
is summarized in Table II.

TABLE II
DISTRIBUTIONS OF REFERENCE PHENOLOGICAL PARAMETERS SAMPLED

FOR NDVI TIME SERIES SIMULATION WITH THE DOUBLE-LOGISTIC
MODEL.

Parameter Sampling interval

m U(0, 0.4)
M U(m, 1)
sosi U(30, 120)
sos U(sosi, sosi + 90)
mat U(sos, sos + 90)
sen U(mat,mat + 90)
eos U(sen, sen + 90)
σn U(0, 0.1)

Even though the synthetic data-set is generated to be as
realistic as possible, it is still different from the S2 data-set.
Because of the uniform sampling of phenological dates in the
synthetic data-set, there is more diversity in the phenology than
the S2 data-set. On the one hand, the S2 data-set is biased by
the samples that have been chosen among available real NDVI
time series. All samples belong to the same S2 tile so NDVI
time series of pixels of the same type are highly correlated, and

Fig. 10. NDVI time series of samples of S2 data-set (left) and simulated
data-set (right)

cloud coverage similarly affects all time series. On the other
hand, the synthetic data-set contains samples whose phenology
that may not be frequent in reality, or even phenology types
that don’t exist. These differences will have to be taken into
account in the interpretation of the results.

D. Latent prior distribution and KL term

Because of the variety of training samples in both data-
sets, in terms of phenology or even in terms of aleatoric and
epistemic uncertainty, it is difficult to design a very restrictive
prior. We chose a uniform distribution for all latent variables
over their respective density support. The KL-divergence be-
tween qλ(z|x) ∼ T N (µ, σ, a, b) and p(z) ∼ U(a, b) is given
in (22) (see derivation in appendix E) with η = Ψ(b̃)−Ψ(ã),
ã = a−µ

σ , b̃ = b−µ
σ , and ψ and Ψ are respectively the standard

Gaussian PDF and CDF.
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KL (qλ(z|x)‖p(z)) = −1

2
− ln

(√
2πση

)
− ãψ(ã)− b̃ψ(b̃)

2η
+ ln(b− a)

(22)

In practice, this loss promotes the inference of Truncated
Gaussian posteriors with larger variances, while not penalizing
their locations. Samples of the simulated and S2 data-sets have
a wide variety of potential phenological parameters, and this
loss doesn’t promote any particular value for inference. In the
S2 data-set, many samples don’t have a phenology (buildings,
mineral surfaces). For these time series, the reconstruction
error should be high and variance of phenological parameters
should increase to express epistemic uncertainty.

E. Loss of pheno-VAE

The loss of pheno-VAE for a single NDVI time series x is
the sum of three terms:

Lpheno−V AE = Lrec + βLkl + Lorder. (23)

The loss components are:

• Lrec = 1
2

[
(x− µx̂)

>
Σ−1x̂ (x− µx̂) + ln (|Σx̂|)

]
• Lkl =

∑6
i=1−

1
2 − ln

(√
2πσziηi

)
− ãiψ(ãi)− b̃iψ(b̃i)

2ηi
,

with ãi = −µiσi and b̃i = 1−µi
σi

(as ai = 0 and bi = 1)
• Lorder = 1

6

∑6
i=1 µzi

− µzi .
In practice, Lorder converges to zero very fast, leaving only
the two other terms in most of the training. There is a tension
between the two remaining terms: the reconstruction loss
improves the quality of the reconstructed time series, and the
Kullback-Leibler divergence acts as a regularizer of the latent
space. The balance between these two terms is shifted with
the incorporation of the coefficient β for the KL term, in a
similar manner to that of β-VAE [17]. The influence of this
hyper-parameter is studied in the following results.

V. EXPERIENCES

In this section, we detail our experiments, the evaluation
metrics that quantify the quality of the inferred representations,
and their associated results.

A. Experimental setup

Given our phenological parameter retrieval application, dif-
ferent experiments are carried out to assess the performances
of pheno-VAE. Firstly, we use reconstructions of NDVI time
series from trained pheno-VAE to assess the quality of latent
representations. Secondly, we evaluate metrics on phenological
distributions using a simulated data-set. These metrics are con-
sidered in two sets of experiments. The first is a comparison
between instances of pheno-VAE with different values of β, so
that its influence can be studied and an optimal setting can be
achieved. In the second set of metrics assessment, pheno-VAE
is compared to two classical parameter estimation methods:
a regression neural network and a Bayesian model inversion
method.

TABLE III
CHARACTERISTICS AND HYPER-PARAMETERS OF EACH EXPERIMENTS

INFERENCE METHODS.

Exp. MCMC NN
Regression

pheno-VAE
(Sim)

pheno-VAE
(S2)

Unsupervised X 7 X X

Training None Simulated
Data-set

Simulated
Data-set

S2
Data-set

Optimizer None Adam Adam Adam
Batch size None 2048 2048 2048
Learning rate None 5.10−4 5.10−4 5.10−4

Epochs None 500 200 200
Number of
latent samples K None None 10 10

Point estimate median mode mode mode

The regression neural network is proposed for comparison
with pheno-VAE because parameter retrieval can be considered
as a multi-output regression problem. The supervised train-
ing of this network is performed using the simulated data-
set. The regression network also infers Truncated Gaussian
parameters, so that this method also predicts a distribution for
the phenological parameters. The training loss is the Negative
Log-Likelihood of Ordered Truncated Gaussians (see appendix
D). To ensure that model complexity doesn’t influence com-
parative results, the architecture of the regression network is
identical to that of pheno-VAE (see Fig. 8). This experiment is
proposed to provide a comparison of our unsupervised pheno-
VAE against a supervised model of similar architecture.

There exist many techniques for performing Bayesian infer-
ence, that is, obtaining the posterior distributions of the model
parameters given the observations. Describing them is out of
the scope of this paper. For our work, we will use Markov
Chain Monte Carlo (MCMC) in order to obtain samples from
the posterior distributions of the phenological parameters. Fol-
lowing the methodology of [45], we use Hamiltonian Monte
Carlo as per the NUTS algorithm [46] as implemented in the
NumPyro library [47], [48].

To implement Bayesian inference through MCMC we need
to define the likelihood for the observed data. Here, we use a
Gaussian likelihood with the double-logistic function as its
mean (see (21)). This model is the same as the one used
to generate time series, (see Fig. 9), except that there is no
interpolation step involved. At inference, MCMC takes as
input uninterpolated time series with the temporal position of
each data point. As prior distributions, we choose the same
uniform distributions than those in Table II to simulate the
NDVI time series data-set.

Finally, two instances of pheno-VAE are considered, one
trained with the S2 data-set, and the other with the synthetic
data-set, to evaluate the influence of the training data-set. The
four experimental setups are summarized in Table III.

B. Evaluation metrics

The three metrics described in the following are used to
evaluate the accuracy of the retrieved parameters and their
corresponding uncertainties. They are evaluated on a validation
data-set of N = 10000 samples.
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1) Point estimate inference error: The Mean Absolute Error
(MAE) from a distribution point estimate:

MAE(i) =
1

N

N∑
j=1

∣∣z∗i,j − ẑi,j∣∣ (24)

With z∗i,j the reference value of the phenological parameters
i for the time series j in the simulated data-set, and ẑi,j a
point estimate of the predicted distribution associated with
zi,j . We chose the point estimator that gave the best MAE
with each setup: the mode of the distributions for the Neural
Network Regression, pheno-VAE (S2 & sim), and the median
for MCMC.

2) Prediction interval metrics: Prediction intervals are at
the core of uncertainty quantification [49]. A prediction inter-
val of a predicted variable Z with a confidence level 1−α is
the smallest range [l, u] that satisfies:

P (Z ∈ [l, u]) ≥ 1− α. (25)

In this work, we estimate the prediction intervals [li,j , ui,j ]
of latent variables zi for each data sample xj , from the
inferred latent distributions. Specifically, li,j is taken as the
α/2 quantile of the corresponding latent distribution, and ui,j
as the (1− α)/2 quantile.

In practice, we select α = 0.1 for 5th-95th centile intervals,
in results pertaining to prediction intervals presented below.
Results obtained with different confidence levels are shown in
appendix C. We detail in the following two prediction intervals
metrics widely used in the literature [50], [51].
• The Mean Prediction Interval Width (MPIW) is the

average length of the prediction intervals [li,j , ui,j ] de-
rived from the predicted distributions. The narrower the
interval length is, the more confident we can be about the
prediction.

MPIW(i, α) =

∑N
j=1 ui,j − li,j

N
(26)

• The Prediction Interval Coverage Probability (PICP) mea-
sures the frequency of the model parameters true value
being inside the prediction interval:

PICP(i, α) =
#
{
j s.t. z∗i,j ∈ [li,j , ui,j ]

}
N

(27)

This metric is an estimate of the probability of time
series of a data-set having their true parameters inside the
prediction interval. Note that this metric doesn’t quantify
the probability of a single time series’ true parameter of
being inside a prediction interval. This probability cannot
be accessed, because assessing belonging for a given time
series is a binary experience.
This metric should be as close to α than possible. When
the inferred phenological distribution matches perfectly
the density of the true phenological parameters, then
PICP = α, ∀α.

The three evaluation metrics are computed by using a K-fold
cross-validation procedure, in which the data-set is divided
into K folds. In each round, a model is trained using K −
1 of the folds as training data and tested on the remaining

set. Metrics are then measured by averaging the performance
values computed on each subset (K models). This strategy
is applied to validate deep learning approaches. For MCMC,
metrics are independently obtained on K subsets of the total
data-set. The averages and standard deviations of the results
on those subsets are computed. In the following, K is equal
to 6.

C. Evaluation of the reconstruction results

To assess the performances of pheno-VAE, a visual evalua-
tion is presented in Fig. 11. This figure shows S2 NDVI time
series samples with their reconstruction by pheno-VAE trained
on S2 data, with their corresponding phenological distribu-
tions. In most cases shown here, the setting β = 0 imposes that
no prior information from the dataset is incorporated. This is
different from our uniform prior that assumes that phenological
variables are evenly distributed over their possible range.

Fig. 11a shows NDVI time series of a pixel of corn, the
inferred phenological distribution and the reconstruction of
its mode. The reconstruction curve is observed to accurately
match the original time series. The distributions of pheno-
logical dates characterize well the growth and decay phases
of this summer crop. The reconstruction error and variance
of reconstructions are both low. The estimated phenological
distributions seem well centered on likely phenological pa-
rameters.

The influence of β can be evaluated by comparing the results
observed on Fig. 11(a) and 11(b). The same NDVI time series
of a corn pixel is taken as input by two pheno-VAE models
with different values of β. The modal reconstructions are
very similar. With increasing β, the phenological distributions
widen, and the variance of reconstructions increases. This
is coherent with the influence of the KL loss terms, that
discourages narrow latent densities. With both results well
matching the original NDVI time series, the choice of β is
to be made considering the prediction interval metrics.

On Fig. 11(c), a protein crop time series shows how the
presence of data gaps can lead to bad phenological parameter
estimation. In this figure, the phenological cycle is easily
identifiable. However, bad weather in winter led to a lack
of data points for the first two months, and the backward
extrapolation of points at pre-processing has kept the NDVI
artificially constant, at a higher value than after harvest. As the
encoder of pheno-VAE doesn’t take into account the temporal
information, here reconstruction is disrupted by the gapfilling
step. This extrapolation artifact made the input time series not
well described by the phenological model at the beginning
of the year. The start of season estimate is inaccurate, yet
the distribution large spread indicates greater uncertainty. This
bad inference of the start of season seems to have prevented
a good estimation of the maturity date as well, with this time
a narrow distribution. Nonetheless the senescence and end
of season seem well inferred. Similarly with a broad-leaved
forest time series (Fig. 11(d)), senescence and end of season
distributions are not well positioned due to interpolated data
points at the end of year. These results show that the gapfilling
pre-processing task can lead to wrong parameter estimations
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when long data gaps include key phenological dates. This
highlights the need for encoders that don’t rely on interpolated
inputs. However, that would be out of the scope of our current
contribution.

In Fig. 11(e), there are several crops in the pixel, and the
NDVI time series shows several phenological cycles. As the
model can only take one cycle into account, it only fits the
largest, and takes the average of the remaining signal. The
distribution of the minimum of NDVI is very large, indicating
uncertainty.

In Fig. 11(f), the phenological model doesn’t suit at all
the NDVI time series of a dense building pixel. Therefore,
reconstruction errors are high. However phenological distribu-
tion variances increase to take this epistemic uncertainty into
account.

The results show that large uncertainties could be associated
to the model discrepancy with the data.

Another remark is that, inferred marginal phenological dis-
tributions sometimes show significant overlap. This highlights
the interest of the proposed order constraints on the latent
distributions, as reconstructions are consistent with the pheno-
logical model, and variables constraints are always respected.

More reconstruction examples are available in appendix B.

D. Influence of the KL loss term on pheno-VAE performances

The impact of the KL term is studied by comparing results
obtained by using different β values. In this experiment,
pheno-VAE model is trained with samples from the S2 data-
set. The prediction interval metrics presented here are derived
for a confidence level of 1− α = 0.9.

As previously observed, the KL term tends to increase the
dispersion of latent distributions. The MPIW (Table IV(c))
increases for all phenological parameters along with β and
consequently the PICP (Table IV(b)) also increases.

The MAE results (Table IV(a)) tend to increase along
with β, decreasing performance. These results corroborate
that the hyper-parameter β must be selected by using an
independent validation data-set. For the prediction intervals to
be informative, the KL term needs to be high enough, while
keeping it below a certain threshold ensures that precision is
acceptable.

Also, different performances are obtained for the different
phenological parameters. The minimum of NDVI m is the best
estimated parameter, as with simulated time series, a large part
of available data points are around the value of the minimum
— although, it is so well estimated that its prediction interval
almost always contains it, overshooting the PICP = 1 − α
target. The parameter M is more challenging to estimate than
m. The value of the true maximum of the phenological model
can differ from the parameter M when mat and sen are close.
The highest errors are obtained on phenological dates, most
certainly because of the gapfilling problem highlighted with
reconstruction results (such as with Fig. 11(c) and 11(d)). This
limitation is more visible in MPIW values obtained for sos
and eos than mat and sen. This is because the pheno-VAE is
confronted with more severe extrapolation aberrations at both
ends of the time series than in the middle, where interpolation

TABLE IV
EVALUATION PERFORMANCES OBTAINED ON A SIMULATED DATA-SET FOR

DIFFERENT PHENO-VAE MODELS TRAINED ON THE S2 DATA-SET, AND
FOR VARIOUS KL LOSS COEFFICIENTS β . PREDICTION INTERVALS ARE
DERIVED FROM PHENOLOGICAL DISTRIBUTIONS WITH A CONFIDENCE

LEVEL 1− α = 0.9.

Exp pheno-VAE
(S2, β = 0)

pheno-VAE
(S2, β = 1)

pheno-VAE
(S2, β = 2)

pheno-VAE
(S2, β = 5)

M 0.05± 0.00 0.05± 0.00 0.05± 0.00 0.07± 0.00
m 0.02± 0.00 0.02± 0.00 0.02± 0.00 0.02± 0.00
sos 11.13± 0.46 11.82± 0.27 11.93± 0.60 14.87± 0.21
mat 10.22± 0.08 10.38± 0.33 10.58± 0.25 14.37± 0.61
sen 11.01± 0.47 11.61± 0.65 12.15± 0.60 18.37± 0.75
eos 13.35± 0.52 13.48± 0.69 14.75± 0.97 18.69± 0.47

(a) Mean Average Error (mode of phenological distributions)

Exp pheno-VAE
(S2, β = 0)

pheno-VAE
(S2, β = 1)

pheno-VAE
(S2, β = 2)

pheno-VAE
(S2, β = 5)

M 0.67± 0.01 0.60± 0.01 0.61± 0.02 0.63± 0.03
m 0.95± 0.01 0.95± 0.01 0.94± 0.01 0.92± 0.01
sos 0.34± 0.05 0.53± 0.02 0.64± 0.02 0.77± 0.01
mat 0.25± 0.03 0.48± 0.02 0.56± 0.01 0.69± 0.02
sen 0.34± 0.04 0.55± 0.01 0.64± 0.01 0.69± 0.02
eos 0.58± 0.02 0.71± 0.02 0.76± 0.03 0.83± 0.01

(b) Prediction Interval Coverage Probability

Exp pheno-VAE
(S2, β = 0)

pheno-VAE
(S2, β = 1)

pheno-VAE
(S2, β = 2)

pheno-VAE
(S2, β = 5)

M 0.12± 0.01 0.11± 0.00 0.11± 0.00 0.16± 0.00
m 0.13± 0.00 0.12± 0.00 0.12± 0.00 0.12± 0.00
sos 14.69± 2.85 22.97± 1.38 27.93± 1.54 41.79± 1.64
mat 8.81± 1.11 18.24± 1.05 22.81± 0.75 38.24± 1.65
sen 13.75± 1.01 23.35± 1.18 28.43± 1.53 42.18± 1.36
eos 30.60± 1.83 36.60± 2.38 43.30± 3.10 59.64± 2.30

(c) Mean Prediction Interval Width

is better, with higher temporal availability in the original time
series.

In the following, the setting β = 2 will be used, as it
increases the PICP without degrading too much the MPIW
and the MAE.

E. Comparing pheno-VAE to other inversion methods and
influence of training data-set

The performances of inference of phenological distributions
on a simulated validation data-set are compared between
pheno-VAE trained on S2 data-set, pheno-VAE trained on the
synthetic data-set, MCMC and Neural Network regression.
The results are presented in Table V.

The experiment with the best overall performances is the
Neural Network regression, which has the lowest MAE (Table
V(a)), the PICP (Table V(b)) closest to α = 0.9, with
consistent MPIW (Table V(c)) on phenological dates. This
is expected considering that it is a supervised method, with
the training data-set being very similar to the testing data-
set. Furthermore its loss doesn’t rely on reconstruction, and
therfore isn’t affected the same way than pheno-VAE by
interpolation.

MCMC has performances that are a little worse than
regression, with a little higher error, and it compensates
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(a) Corn pixel (β = 0) (b) Corn pixel (β = 5)

(c) Protein crops pixel (β = 0) (d) Broad-leaved forest pixel (β = 0)

(e) Rapeseed pixel (β = 0) (f) Dense building pixel (β = 0)

Fig. 11. Reconstruction and latent distributions from the encoding of the NDVI time series by pheno-VAE trained on S2 data-set. Central quadrants, S2 NDVI
time series (black), reconstructions from the modes of latent distributions (red), and reconstruction 5th-95th prediction interval - Upper quadrants: Truncated
Gaussian distributions of the 4 phenological dates, sos (blue), mat (red), sen (dark green), eos (magenta) - Right quadrants: Truncated Gaussian distributions
of M (orange), and m (light green) - Upper and right quadrants: distribution densities are in solid lines, distribution modes are in dashed lines.

smaller prediction intervals with lower PICPs. Phenological
distribution inference is not limited by a distribution family
prior and directly samples phenological distributions, contrary
to the other methods studied here. It is also not affected by
gapfilling problems because MCMC do not require regularly
temporal input data. The results of MCMC could be improved

by increasing the number of distribution samples and steps, at
the expense of greater computation costs.

Besides, the computing time required to perform inference
is orders of magnitude larger for MCMC than deep learning
methods (see Table VI), justifying the use of the latter for
large scale problems.
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TABLE V
EVALUATION PERFORMANCES OBTAINED ON A SIMULATED DATA-SET FOR

DIFFERENT EXPERIENCES INVERSION OF THE PHENOLOGICAL MODEL.
PREDICTION INTERVALS ARE DERIVED FROM PHENOLOGICAL

DISTRIBUTIONS WITH A CONFIDENCE LEVEL 1− α = 0.9.

Exp. MCMC NN
Regression

pheno-VAE
(Sim, β = 2)

pheno-VAE
(S2, β = 2)

M 0.03± 0.00 0.04± 0.00 0.06± 0.00 0.05± 0.00
m 0.02± 0.00 0.01± 0.00 0.02± 0.00 0.02± 0.00
sos 7.18± 0.70 6.69± 0.03 8.89± 0.53 11.93± 0.60
mat 9.57± 0.95 7.54± 0.05 10.51± 0.49 10.58± 0.25
sen 9.93± 1.00 6.91± 0.05 10.59± 0.52 12.15± 0.60
eos 10.42± 1.18 6.70± 0.07 9.23± 0.26 14.75± 0.97

(a) Mean Absolute Error (mode of phenological distributions)

Exp. MCMC NN
Regression

pheno-VAE
(Sim, β = 2)

pheno-VAE
(S2, β = 2)

M 0.89± 0.01 0.90± 0.01 0.67± 0.01 0.61± 0.02
m 0.86± 0.01 0.90± 0.01 0.99± 0.00 0.94± 0.01
sos 0.84± 0.01 0.89± 0.00 0.67± 0.05 0.64± 0.02
mat 0.85± 0.01 0.89± 0.00 0.60± 0.01 0.56± 0.01
sen 0.83± 0.01 0.89± 0.01 0.66± 0.01 0.64± 0.01
eos 0.83± 0.01 0.88± 0.00 0.77± 0.02 0.76± 0.03

(b) Prediction Interval Coverage Probability

Exp. MCMC NN
Regression

pheno-VAE
(Sim, β = 2)

pheno-VAE
(S2, β = 2)

M 0.13± 0.01 0.16± 0.00 0.14± 0.01 0.11± 0.00
m 0.05± 0.00 0.06± 0.00 0.14± 0.00 0.12± 0.00
sos 22.13± 1.75 27.70± 0.30 21.02± 0.76 27.93± 1.54
mat 25.03± 1.94 29.91± 0.25 23.25± 1.32 22.81± 0.75
sen 22.74± 1.79 27.81± 0.43 27.09± 1.16 28.43± 1.53
eos 21.50± 2.29 26.36± 0.40 25.23± 0.80 43.30± 3.10

(c) Mean Prediction Interval Width

The worst results are shown by pheno-VAE. It has higher
MAE, and despite similar prediction interval sizes, it un-
derestimates uncertainty with lower PICP. Results also show
different behaviors for the two pheno-VAE trained on different
data-sets. As expected, slightly better results are obtained
when pheno-VAE is trained on simulated data. A greater
performance drop is observed for eos. This is because of a
discrepancy between both data-sets. In the simulated data-set,
there is more diversity in the phenological parameters, because
of the uniform sampling to generate it. Even if real validity
masks from the S2 data-set are used, they are not correlated
to phenology, as it is the case for real data. In the S2 data-set,
a smaller diversity of combinations of phenological variables
is available. In this data-set, the end of season of real crops
can happen when there are clouds, more than in the simulated
data-set.

The drop in performances is much less significant compared
to regression and MCMC, despite training on samples that
don’t follow the phenological model. The pheno-VAE trained
on the synthetic data-set benefits from being evaluated on
a similar simulated data-set. This unfair advantage could be
mitigated by evluating performances of pheno-VAE on real
Sentinel-2 NDVI time series data-set, with available ground
truth of phenological stages. Unfortunately, such a data-set

TABLE VI
APPROXIMATE TRAINING AND INFERENCE TIME FOR EACH SETUP, ON

GPU (TESLA V100-SXM2-32GB)

Exp. MCMC NN
Regression

pheno-VAE
(Sim)

pheno-VAE
(S2)

Training - 15 min 15 min 15 min

Inference
per time series 10 s 10−5 s 10−5 s 10−5 s

was not available to us at the time of this study.
MCMC and NN regression show similar performances,

despite being very different methods. This hints that given
the simulated data-set and the double-logistic model, there
is not much performance improvement to expect from the
inference experiment, even with other setups. The regression
yields on phenological dates 7-day MAE, with 90% PICP and
28 days MPIW. These are good results considering irregularly
sampled time series that are interpolated to a 5-day grid. For
pheno-VAE to get performances closer to this, there is a need
to improve on the ability of the network to take temporal
structure of time series into account. To minimize the impact
of the gapfilling pre-processing step, different solutions could
be considered. For instance, the reconstruction loss could be
modified to only take valid observations into account. The
encoder network architecture could be replaced to allow to
learn from irregularly sampled times series such as with
transformers or recurrent networks. However selecting the best
architecture to get state-of-the art performances on this limited
experiment is beyond the scope of this study.

F. Ablation study of the latent distribution maximum sampling
techniques

An ablation study for the method of ordering latent variables
is performed with pheno-VAE, with the µ-rectification in (16),
latent samples rectification in (15), and the order loss in (17).
When any of these steps is removed, we observe that training
convergence takes longer. It also often leads to sub-optimal
models that only order distributions by making them identical.
Moreover, simply removing the latent sample rectification
leads the pheno-VAE to infer latent representations that fit the
data but no longer have physical meaning (with for instance
the sos date being after the eos date).

VI. CONCLUSION

The work presented here has proposed a new physics-
guided methodology to learn probabilistic interpretable rep-
resentations of satellite image time series. Different strategies
are presented to incorporate physical knowledge in VAE by
considering physical-based decoders.

Semantic latent variables bound to physical model param-
eters are learnt by incorporating prior knowledge and order
constraints in the learning process. Monte Carlo sampling of
the latent space was introduced to generate a reconstruction
distribution from deterministic decoders. The classical pair
of prior and posterior distributions was changed. Order con-
straints were added to better model the properties of physical
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variables in a semantic latent space. A new KL loss term
was calculated, whose weight in the loss enable to adjust the
performance of the model. The training wasn’t hampered by
noisy Sentinel-2 data, with some of it not fitting the model.
The feasibility and the interest of the proposed methodology
are corroborated through a well-known remote sensing inverse
problem, the phenological parameter retrieval from Sentinel-2
NDVI time series. This physics-guided representation learn-
ing approach can be applied to large scale remote sensing
problems where reference data is scarce. Applying these
methodologies to different models of more complex data will
be the focus of future research efforts. These physics-guided
learning methods are an important step toward the large scale
production of interpretable representations of data, which is of
great interest in remote sensing, where a wealth of literature
on modeling of the observed processes is available. Despite
using a simple neural network architecture, preliminary results
are encouraging. Enhancing the encoder architecture with
inductive biases taking into account the temporal structure of
the data (attention mechanisms, recurrent architectures) can
improve the inference error and predicted prediction intervals
that fall behind other methods in the current configuration.

In an attempt to enable reproducible research, our im-
plementation of the methods developped in this paper are
available at the following: https://gitlab.cesbio.omp.eu/zerahy/
pheno-VAE.git.
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APPENDIX A
S2 DATA-SET

Label Percentage in data-set

Continuous Urban Fabric 0.6%
Discontinuous Urban Fabric 4.1%
Industrial and Commercial Units 3.1%
Road Surfaces 0.3%
Rapeseed 4.5%
Straw Cereals 9.9%
Protein Crops 2.5%
Soy 7.2%
Sunflower 33.0%
Corn 5.8%
Roots 0.2%
Intensive Grasslands 3.4%
Orchards 0.6%
Vineyards 1.8%
Broad-leaved Forests 6.7%
Coniferous Forests 5.5%
Grasslands 5.5%
Woody Moorlands 2.3%
Bare Rock 0.1%
Water Bodies 2.8%

TABLE VII
DISTRIBUTION OF THE LAND COVER CLASSES COMPOSING THE SENTINEL-2 TIME SERIES DATA-SET. THE CLASS LEGEND IS TAKEN FROM THE OSO

[44] LAND COVER MAP PRODUCT.

Fig. 12. Distribution of the temporal acquisitions composing the Sentinel-2 time series data-set.
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APPENDIX B
RECONSTRUCTION OF S2 TIME SERIES

Fig. 13. Examples of reconstructions of Sentinel-2 NDVI time series with pheno-VAE trained on S2 data-set. Blue: 5-days interpolated S2 time series. Red:
Reconstruction of the mode of phenological distribution. Orange: 5-95th centile interval.
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APPENDIX C
PREDICTION INTERVAL PERFORMANCES

Fig. 14. PICP vs 1 − α for pheno-VAE trained on S2 Data-set, with various settings of the coefficient β of the KL loss term. The more β increases, the
more the PICP increases at constant confidence level 1− α.

Fig. 15. PICP vs 1 − α for MCMC, Neural Network regression and pheno-VAE (with β = 2, trained on the S2 or simulated data-set.) The PICP curves
of Neural Network regression and MCMC are very close to PICP=α for all α, while pheno-VAE underestimates uncertainty for all confidence levels, for all
phenological variables, except for m where uncertainty is overestimated.
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Fig. 16. MPIW vs 1− α for pheno-VAE trained on S2 Data-set, with various settings of the coefficient β of the KL loss term. The more β increases, the
more the MPIW increases at constant confidence level 1− α.

Fig. 17. MPIW vs 1− α for MCMC, Neural Network regression and pheno-VAE (with β = 2, trained on the S2 or simulated data-set.) prediction interval
sizes are similar for all methods, except for m, where prediction intervals are larger for pheno-VAE, and for the eos of pheno − V AE trained on the S2
data-set, that also has larger prediction intervals.
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Fig. 18. MCWI vs PICP for pheno-VAE trained on S2 Data-set, with various settings of the coefficient β of the KL loss term. The larger β is, the closer to
1 the PICP is able to get, but also the larger the MCWI is getting at constant PICP.

Fig. 19. MCWI vs PICP for MCMC, Neural Network regression and pheno-VAE (with β = 2, trained on the S2 or simulated data-set.). MCMC and Neural
Network regression have a PICP that can be almost all possible values possible, between 0 and 1. Pheno-VAE for both data-sets cannot have high PICP for
most phenological variables, and have higher MCWI than MCMC and Neural Network regression at similar PICP.
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APPENDIX D
DENSITY OF MAXIMUM OF CONTINUOUS DISTRIBUTIONS

Let Y be the maximum of n independent continuous random variables Xi. The CDF of Y is:

FY (y) = P (Y < y)

= P

(
max
i∈[[1,n]]

Xi < y

)
= P

(
n⋂
i=1

(Xi < y)

)

=

n∏
i=1

P (Xi < y)

=

n∏
i=1

FXi(y)

(28)

The log-derivative of the CDF of Y yields:

d lnFY
dy

(y) =
d

dy
ln

(
n∏
i=1

FXi(y)

)

=
d

dy

n∑
i=1

ln (FXi(y))

=

n∑
i=1

d

dy
ln (FXi(y))

=

n∑
i=1

dFXi(y)

dy

1

FXi(y)

=

n∑
i=1

fXi(y)
1

FXi(y)

(29)

Finally, using the log-derivative of the CDF of Y enables deriving its PDF as a function of the PDFs and CDFs of Xi:

fY (y) =
dFY
dy

(y)

= FY (y)
d lnFY
dy

(y)

=

n∏
i=1

FXi(y)

n∑
i=1

fXi(y)
1

FXi(y)

(30)

Fig. 20. Examples of distribution of the maximum Y of two Gaussian variables X1 and X2.
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APPENDIX E
KL-DIVERGENCE OF TRUNCATED GAUSSIANS AND UNIFORM DISTRIBUTIONS

Let:
p ∼ T N (µ, σ, a, b) , q ∼ U (a, b) (31)

with the truncated Gaussian density:

p(x) =
ψ(x−µσ )

ση
, ψ(x) =

e−
x2

2

√
2π

with
η = Ψ(b̃)−Ψ(ã), ã =

a− µ
σ

, b̃ =
b− µ
σ

and standard Gaussian CDF:
Ψ(x) =

1

2

(
1 + erf

(
x√
2

))
KL divergence is then:

KL (p(x)‖q(x)) =

∫ b

a

p(x) ln
p(x)

q(x)
dx

=

∫ b

a

p(x) ln p(x)dx−
∫ b

a

p(x) ln q(x)dx

(32)

Its second term is: ∫ b

a

p(x) ln q(x)dx =

∫ b

a

p(x) ln
1[a,b]

b− a
dx

= − ln (b− a)

∫ b

a

p(x)dx

= − ln (b− a)

(33)

The first term is: ∫ b

a

p(x) ln p(x)dx =

∫ b

a

p(x) ln
ψ(x−µσ )

ση
dx

= − ln (ση)

∫ b

a

p(x)dx+

∫ b

a

p(x) lnψ

(
x− µ
σ

)
dx

= − ln (ση) +

∫ b

a

p(x) ln
e−

(x−µ)2

2σ2

√
2π

dx

= − ln (ση)− 1

2
ln (2π)−

∫ b

a

p(x)
(x− µ)

2

2σ2
dx

= − ln (ση)− 1

2
ln (2π)− 1

2σ2

∫ b

a

p(x)
(
x2 − 2µx+ µ2

)
dx

= − ln (ση)− 1

2
ln (2π)− µ2

2σ2
− 1

2σ2

∫ b

a

x2p(x)dx+
µ

σ2

∫ b

a

xp(x)dx

= − ln (ση)− 1

2
ln (2π)− µ2

2σ2
− 1

2σ2

〈
p2
〉

+
µ

σ2
〈p〉

(34)

with truncated Gaussian moments:〈
p2
〉

= σ2 +
σ2

η

(
ãψ(ã)− b̃ψ(b̃)

)
+ µ2 +

2µσ

η

(
ψ(ã)− ψ(b̃)

)
〈p〉 = µ+

σ

η

(
ψ(ã)− ψ(b̃)

)
Finally:

KL (p(x)‖q(x)) = −1

2
− 1

2
ln (2π)− ln (ση)− ãψ(ã)− b̃ψ(β)

2η
+ ln(b− a)
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APPENDIX F
NOTATIONS

A. Variables notations

Bold font denotes a vector or a matrix variable. Variables with a hat denote an estimated quantity. Underlined variables
are rectified variables. Indexing with i denotes a dimension of latent variables, and indexing with j denotes an element of a
data-set.

Notation Definition

x Observation, input data
x̂ Reconstruction of input data
z Latent variable
z Rectified latent variable
λ Parameter of variational distribution
φ Parameters of encoder’s neural network
θ Parameters of decoder’s neural network
1− α Confidence level
β Coefficient on the KL term in the ELBO used in β-VAE
µz Mean parameter of Gaussian latent space
µ
zi

Rectified mean of Gaussian latent distribution
Σz Covariance matrix of Gaussian latent space
µx̂ Mean parameter of Gaussian decoder distribution
Σx̂ Covariance matrix of Gaussian decoder distribution
K Number of latent samples drawn to estimate the decoder’s output distribution parameters
∆z difference between two consecutive latent variables
ρ Reflectance
F General notation for user defined decoder
Ωz Double-sigmoid function parametrized by z
a, b Bounds of a variational distribution support
l, u prediction interval bounds
N Number of samples in test data-set
S Sigmoid function
ψ Gaussian PDF
Ψ Gaussian CDF
U Uniform distribution
N Gaussian distribution
T N Truncated Gaussian distribution
KL Kullback-Leibler divergence
E Expectation
# Cardinality
∅ Empty set

B. Acronyms

Acronym Definition

ELBO Evidence Lower BOund
KL Kullback-Leibler (Divergence)
VAE Variational Autoencoder
PDF Probability Density Function
CDF Cumulative Density Function
NDVI Normalized Difference Vegetation Index
MAE Mean Average Error
MPIW Mean Prediction Interval Width
PICP Prediction Interval Coverage Probability
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