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Physics-guided interpretable probabilistic
representation learning for high resolution image

time series
Yoël Zérah, Silvia Valero, Jordi Inglada

Abstract—Learning representations that capture meaningful
underlying information of data is a promising solution to reduce
the reliance on labeled data for downstream applications. With
the advent of the big remote sensing data era, self-supervised
deep learning methods have become a valuable tool to ex-
tract high-level, complex abstractions and representations from
large volumes of data. However, classical methodologies such
as Variational Autoencoders are focused on imposing statistical
constraints on the latent space and they do not learn generic and
interpretable representations of the data.

To address such limitation, this work presents a generic
physics-guided representation learning methodology to discover
semantic representations. To address it,the proposed approach
constrains the learning process with the incorporation of prior
physical knowledge. This study shows through an example how
the methodology can be used to solve remote sensing inverse
problems. Specifically, the inversion of a crop phenology model
derived from NDVI time series is proposed. As a result, the prob-
ability distributions of the intrinsic physical model parameters
are inferred. The feasibility of the method is evaluated on both
simulated and real Sentinel-2 data and compared with different
standard algorithms.

Index Terms—Generative Models, Autoencoders, Satellite
Image Time Series, Self-Supervised Representation Learning,
Bayesian physics-guided learning, Inverse problems, Phenology
Monitoring, Large Scale.

I. INTRODUCTION

NOWADAYS, vast amount of data are acquired by
satellite-borne sensors for Earth Observation. In the last

decade, the Sentinel-2 (S2) satellites of EU’s Copernicus pro-
gram have been acquiring optical Satellite Image Time Series
(SITS), with high spatial, spectral and temporal resolutions.
These data enable large scale applications of Earth monitoring
with stunning precision, such as urban sprawl, agricultural
cycles, fast disaster analysis and response, climate change
impact evaluation, etc. [1], [2].

While remote sensing provides very rich data about Earth’s
surface state, actual extraction of useful information is not
straightforward. Satellite data is complex, with wide variability
and information redundancy among its several dimensions.
Besides, cloud coverage and sensor overpass (e.g. S2 swath
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intersections) lead to an irregular temporal and spatial sam-
pling. Traditional statistical methods typically struggle to cope
with the huge dimensionality of satellite data. Therefore, there
is a need to produce reduced representations that capture the
important aspects of the data.

Deep representation learning [3] aims at transforming data
into more useful representations and is especially suited to
large data volumes. Such a representation should identify the
most informative components of input data for downstream
applications. Because producing annotated data-sets for satel-
lite data is costly and difficult, self-supervised representation
learning presents a promising solution.

Generative models are well suited to unsupervised represen-
tation learning, in that they learn to generate data from input
parameters. These parameters constitute a de facto generative
representation of data and capture enough information to be
able to synthesize data. Representation learning performs then
the inverse task by finding the representation that matches data
with regards to a given generative model.

Because models are never perfect (epistemic uncertainty)
and data may be subject to noise (aleatoric uncertainty),
representations derived from generative models should be
described with uncertainties. In generative models, Bayesian
inference theory enables inferring probabilistic latent represen-
tations capturing these uncertainties. Nonetheless, separating
aleatoric and epistemic uncertainties may be intractable: only
a predictive uncertainty that combines both can be usually
quantified [4].

Uncertainty quantification in representations can be per-
formed with Variational Autoencoders (VAE) [5], that are a
type of generative model that combines Bayesian theory with
deep learning for probabilistic latent representation learning
[6], [7]. VAE are successfully used to capture generative
factors of data as inferred representations, yet they face several
challenges for producing meaningful representations. They
cannot embed a too powerful generative model, for they
tend in such cases to reconstruct data while ignoring the
latent representation [8]. Furthermore, produced representa-
tions aren’t interpretable, in the sense that they don’t match
with human-defined concepts [9]. Interpretable representations
would ensure that downstream applications are explainable and
justifiable.

Because remote sensing deals with physical data, such as
reflectances for Sentinel-2 optical images, there is a large
quantity of scientific knowledge about those measurements and
the physical processes that they are tied to. There are priors
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and models for physical data derived from human expertise,
geographical and natural sciences. Integrating prior knowledge
into representation learning has been of great interest recently,
with gray-box approaches [10].

In this paper, we aim at developing novel approaches
to integrate physical knowledge to learn interpretable repre-
sentations. For instance, variables involved in physical pro-
cesses, such as moisture, temperature and solar irradiance for
vegetation growth, phenological phases dates in vegetation
monitoring, etc., are interpretable representations of physical
data. More generally, when latent variables are the parameters
of physical, or user-defined models used to guide training, they
are directly interpretable. To learn such representations, we
semantically bind VAE latent variables to user-defined physical
model parameters.

The remainder of this article is organized as follows. Section
II introduces current approaches for learning interpretable rep-
resentations of data with VAE frameworks. Section III presents
how physical priors can be incorporated into representations in
different ways to make them interpretable. Section IV defines
a temporal model for satellite optical time series and the
methods developed in this paper are applied in Section V with
this model for phenology monitoring using Sentinel-2 image
time series.

II. RELATED WORKS

A. Representation learning with Variational Autoencoders

Autoencoders (AE) are self-supervised neural networks that
learn low dimensional representations from unlabeled data.
An encoder reduces the dimension of the input data into
deterministic latent variables that are used by the decoder to
produce a reconstruction of the input data. Both the encoder
and the decoder are neural networks that are trained simulta-
neously to optimize compression of the input data. The loss is
usually a mean squared error (MSE) of the reconstruction.
A Variational Autoencoder (VAE, see Fig. 1) embeds the

Fig. 1. Classical Variational Autoencoder

representation in the latent space, as random variables [6].
Specifically, the encoder outputs the parameters λ of a so-
called variational distribution. The variational distribution
belongs to a parametric distribution family, usually a Gaussian
distribution. The VAE latent space being a distribution, it
fosters regular and continuous representations, making it more
suitable to represent high level features. Then the realizations
z of this distribution are taken as input to the decoder.
The decoder’s output are also distribution parameters, from

which reconstructions x̂ are sampled. This is sometimes called
ancestral sampling [11].

A well-known problem of VAEs is the over-pruning of
latent variables [12], [13]. When the decoder is a too powerful
generative model, it is able to reconstruct the input while
ignoring some latent variables. In this case, latent variables can
become redundant, and their distributions collapse. Another
challenge of representation learning with VAE is the model
identification issue related to the classical standard Gaussian
prior. Despite the existence of many distribution families, most
works only consider Gaussian latent spaces. This can limit the
ability of VAE to infer meaningful representations. Finally, the
latent distributions learned by traditional VAE architectures
aren’t easily interpretable because associated latent variables
are the generative factors of an unknown generative model.

B. Disentanglement

There is a significant amount of research that attempts
to improve the interpretability and meaningfulness of latent
representations learned by VAE, with disentanglement [14].
Disentanglement is a meta-prior about data, that assumes the
existence of independent factors of variation that generate the
data [3], [15]. A disentangled representation should capture
these factors into different independent variables. Disentan-
glement introduces some form of separation so that each
component of the representation may encode uncorrelated
features at various abstraction levels.

To learn disentangled representations most approaches rely
on a regularization of the latent space to enforce the same
properties (closeness to the prior, independence between latent
variables, etc.) [16]. Traditionally, a supplementary regular-
izing term is added to the Evidence Lower BOund (ELBO)
objective function to penalize the variational distribution. β-
VAE [17] adds a tunable hyper-parameter to the ELBO loss to
control the balance between the reconstruction ability and the
regularization of the latent space. Factor-VAE [18] enforces
latent variable independence by encouraging the aggregated
latent distribution qλ(z) to be factorial, by penalizing the total
correlations qλ(z). In [19], disentanglement is promoted by
matching the covariance of the joint latent distribution to that
of the prior. While many advances have been made to learn
disentangled representations, it is difficult to compare and
evaluate results obtained by different representation learning
methodologies. The main problem is that, although several
metrics exist, it is still unclear how to quantify disentanglement
[16].

Furthermore, it is shown theoretically in [20] that there are
no disentangled representations without inductive priors. It is
underlined that increased disentanglement does not seem to
provide better performances on downstream tasks. Besides,
existing disentanglement approaches focus on separating in-
dependent factors of variations despite the fact that real-
world observations are often not structured into meaningful
independent causal variables to begin with [21].

In particular, there is often significant correlation between
factors of variations in physical data. Semantics of physics-
based latent variables should correspond to some properties of
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Fig. 2. Incorporation of physical priors in machine learning models.

the observations, that are not necessarily independent. There-
fore, disentanglement may not be the best approach to find
interpretable representations of such data. Interpretability (the
correspondence to human-defined concepts) and explainability
(the ability of predictions and decisions to be understood
by humans) are mostly secondary in disentanglement studies,
behind informativeness and independence criteria [9], [22].

C. Physics-based generative models

Imposing statistical structures with disentanglement latent
representations in VAE doesn’t ensure which particular prop-
erties are uncovered in representations. Abundant literature and
models are available to describe and explain the observations
of various physical systems. Instead of seeking disentangle-
ment, it can be preferable to make use of scientific knowledge
about the observed processes or about the physics of the
sensor, to enforce specific priors.

Integrating physical priors into the learning process has
recently been the motivation for many works proposing hybrid
methods.

Three types of priors can be introduced to guide learning
toward physically consistent predictions [23] (see Fig. 2): “ob-
servational biases”, “inductive biases” and “learning biases”.
Observational biases are brought through the choice of data
that capture the physical properties of interest. Inductive biases
are incorporated by tailoring of models so that predictions are
guaranteed to follow specified physical behaviors. Learning
biases are enforced through the choice of loss functions.
Several recent methods based on generative models integrate
physics with learning biases, and induction biases by specifi-
cally tweaking the generative processes (e.g. the decoders in
AE) [24]–[26]. For instance, in [27], observational knowledge
of galaxy images (point spread function and noise level of
images), is used in the decoding process and in the loss
function of a VAE. This method can also be used to denoise
images, because physical-based latent parameters generate
noiseless reconstructions from input images.

Sometimes, knowledge about the physics of the data is
available in the form of a parametric physical model, whose
parameters are physical variables. In AE’s framework, this is
performed by replacing the neural network decoder by a user-
defined decoder (see Fig. 3), with the code/latent variables
being semantically tied to its parameters [28]. In this setup,
the latent representations become interpretable because they
are the parameters of a known generative model.

In [29], a model of elliptic galaxy images replaces the clas-
sical AE’s decoder. In [30], different methodologies present
the replacement of the decoder by user-defined models F , to
learn probabilistic representations with VAE. It is proposed
to infer representations that are partially interpretable. Such a
latent space has an interpretable part bound to a user-defined
decoder, and a non interpretable part bound to a neural network
decoder.

Fig. 3. VAE with user-defined decoder

When replacing the decoder with a user-defined function,
all latent variables are forced to be taken into account for the
reconstruction, as long as they have impact in the function
output. Therefore, it effectively avoids the over-pruning of
latent variables. Furthermore in this setup, only the encoder
is trained and actually solves the inverse problem associated
with the user-defined model.

We propose in this article to perform integration of a user-
defined function in the decoder, beyond what is depicted in
[30]. We further incorporate inductive and learning biases for
representation learning of physical data. We also propose a
novel training procedure based on the sampling of the latent
distribution.

III. METHODOLOGY

The theoretical basis of VAE is firstly introduced through
the perspective of variational inference (VI) before presenting
the proposed physics-guided methodology. Secondly, differ-
ent methodological contributions are proposed to incorporate
physical priors through inductive and learning biases: (i) the
incorporation of physical models in VAE decoders by propos-
ing a new Monte-Carlo reconstruction loss strategy, (ii) the
possibility and benefit of using variational distributions other
than Gaussian to better model physical quantities, (iii) the
incorporation of physical priors by imposing complementary
relationship constraints on latent distributions.

A. Amortized variational inference with VAE
Let there be a probabilistic model that has observations x

and latent variables z, with its joint density:

p(x, z) = p(x|z)p(z) (1)
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with p(z) the prior over the latent distribution and p(x|z)
the likelihood. It should be noted that p(x, z) is a generative
model of observations from latent variables, and z is then a
generative factor, and a representation of x. Computing the
posterior p(z|x) is known as the inference problem. Although
Bayes theorem,

p(z|x) =
p(x|z)p(z)

p(x)
=
p(x|z)p(z)∫
p(x, z)dz

, (2)

defines a rigorous mathematical formulation for any infer-
ence problem, it is not directly applicable. This is because∫
p(x, z)dz can become intractable due to the large dimension-

ality of z. To overcome this issue, instead of calculating the
exact posterior, approximation methods are commonly used.

To ensure that qλ(z|x) is the best approximation of the pos-
terior among Qλ, inference methods minimize the Kullback-
Leibler (KL) divergence between the posterior and its approx-
imation:

q∗λ(z) = arg min
qλ∈Qλ

KL (qλ(z|x)‖p(z|x)) . (3)

As observed in Equation (3), the KL-divergence is also
untractable because of the evidence term, log p(x) =
log
∫
p(x, z)dz.

KL (qλ(z|x)‖p(z|x)) = E [log qλ(z|x)]

− E [log p(x, z)]

+ log p(x)

(4)

The optimization problem can be solved by using the ELBO
denoted in Equation (5), by considering a prior distribution
p(z) over the variational distribution.

ELBO (qλ) = −KL (qλ(z|x)‖p(z|x)) + log p(x)

= E [log p(x, z)]− E [log qλ(z|x)]

= E [log p(x|z)]−KL (qλ(z|x)‖p(z))

(5)

Because the evidence is constant with respect to λ, maxi-
mizing the ELBO leads to minimizing the KL divergence term
in Equation (3).

In VAE, the likelihood p(x|z, θ) is embedded in the decoder,
and the posterior distribution qλ(z|x, φ) in the encoder, with θ
and φ the respective networks’ parameters. The encoder infers
the variational parameters λ. The variational distribution is
typically chosen to be Gaussian: qλ(z|x, φ) = N (z|λ) with
λ = [µz(x, φ),Σz(x, φ)], with µz and Σz the mean vector
and covariance matrix of the latent variables. This choice
enables the explicit computation of the KL loss term with
a standard Gaussian prior, and differentiable sampling 1 of the
latent variables using the reparameterization trick (see Equa-
tion (6)). In practice, Σz is assumed to be a diagonal matrix,
because it prevents having to ensure definite positiveness and
it reduces the number of inferred latent parameters.

z = µz + Σ1/2
z ε, ε ∼ N (0, I) ⇒ z ∼ N (µz,Σz)

(6)
The decoder infers the parameters of the distribution of

the reconstructions selected among a chosen parametric dis-
tribution family — although this aspect is often overlooked

1with respect to variational parameters

in the literature. In this work, the distribution of the decoder
is chosen as Gaussian: p(x̂|z, θ) = N (x̂|µx̂(z, θ),Σx̂(z, θ)),
with µx̂ and Σx̂ the mean vector and covariance matrix of
the decoder output distribution. The covariance matrix Σx̂ is
however commonly just set as a hyper-parameter (often set
to identity matrix), a trainable parameter, or estimated from
input’s distribution [31].

The negative ELBO (Equation (5)) is the loss function mini-
mized during the VAE training process. It has two terms : L =
Lrec +LKL. The reconstruction term Lrec = −E [log p(x|z)]
is the expectation of the Negative Log Likelihood (NLL). It
forces decoded samples to match the initial input data. This
term depends on the distribution chosen in the decoder, most
commonly a Bernoulli or a Gaussian distribution. Using a
MSE loss instead would be equivalent to minimizing the NLL
of a unit-variance Gaussian. However this would assume con-
stant variance of the reconstruction, and would not effectively
represent the uncertainty of the prediction. Using MSE as
a reconstruction loss results in VAE being over-regularized
[32]. Lrec can be approximated as the average NLL over a
number L of Monte-Carlo samples of the latent distribution
(see Equation (7)). However in practice with a batch size large
enough, z is typically only sampled once per iteration [6].

E [log p(x|z)] ≈ 1

L

L∑
i=1

log p(x|z(i)) (7)

The second term of the ELBO LKL = KL (qλ(z|x)‖p(z)),
is a regularization term that penalizes the mismatch of the
variational distributions to the prior p(z). This term has a
closed form with Gaussian latent spaces and the usual prior
N (0, I).

Because VAE use the ELBO to optimize neural network
weights θ and φ instead of the variational parameters λ, it is
an amortized variational inference approach — VAE learn a
function that maps x to variational distribution parameters λ.

B. Monte Carlo reconstruction loss for deterministic decoders

As shown in Fig. 3, the physics-guided learning method-
ology presented in this work proposes the use of physical-
based decoders. The outputs of a deterministic user-defined
decoder F can no longer be distribution parameters, but
transformations of latent distribution samples. This means
p(x|z) is no longer available for computing the reconstruction
loss term, but only samples of this distribution. Therefore,
we propose to approximate p(x|z) as a Gaussian distribution
and to evaluate its mean µx (Equation (8)) and covariance
matrix Σx (Equation (9)) from reconstructions obtained by
Monte-Carlo sampling the latent distribution and decoding the
samples (see Equations (8) and (9) and Fig. 4).

µx̂(z) ≈ 1

K

K∑
i=1

F(z(i)) (8)

Σx̂(z) ≈ 1

K − 1

K∑
i=1

(
F(z(i))− µx̂

)(
F(z(i))− µx̂

)>
(9)
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Fig. 4. Predicting parameters of a Gaussian decoder. Left: original Gaussian
decoder, with both the mean and the covariance being output by a trained
neural network. Right: a non-trainable decoder, where the mean and variance
are estimated from a set of K reconstructed samples x̂ obtained by decoding
K Monte Carlo samples z.

The Monte-Carlo sampling of latent space brings up a new
hyper-parameter K: the number of latent samples drawn from
the latent distribution inferred from each input sample x. In
particular, the latent distribution sampling involved is used to
approximate the NLL, and not the expectation of the NLL.
The total number of latent samples drawn should be L ×K,
but we still set L = 1. The choice of K is a trade-off
between accuracy of µx̂ and Σx̂, and training time, because
latent distribution sample requires a forward pass through the
decoder. Finally, the reconstruction loss term for a Gaussian
decoder is described in Equation (10).

Lrec(x) =
1

2

[
(x− µx̂)

>
Σ−1x̂ (x− µx̂) + ln (|Σx̂|)

]
(10)

Σx̂ is approximated as a diagonal covariance matrix by as-
suming independence of reconstruction components. Diagonal
terms are empirically estimated as the variances of recon-
struction components. Not assuming diagonality of covariance
matrix could improve reconstruction quality, and add structure
to residuals [33]. However, covariance matrix inversion and de-
terminant computation would become prohibitively expensive
during training for any large dimensional data.

Even if the distribution of reconstructions is not Gaussian —
in fact due to the latent samples being possibly bounded, the
reconstruction may be bounded as well — the Gaussian NLL
encourages both the reconstruction error of each sample to be
small, and the reconstruction variance to model uncertainty.
If the error isn’t small, the variance can be increased to still
minimize the loss (e.g. when the error cannot be minimized,
uncertainty is increased). The ln (|Σx̂|) term prevents the vari-
ance from arbitrarily increasing as a trivial way of minimizing
the loss.

C. The variational distribution as an inductive bias

To learn latent semantic representations, the incorporation
of inductive biases is essential. The use of a physical-based

decoder implies that latent variables are tied to physical
measurements. Therefore, knowledge about the probability
distribution characterizing these measurements can be used to
discard the classical prior and posterior Gaussian assumption.
We advocate for choosing a variational distribution family
that matches assumptions about each semantic latent variables
instead of the conventional Gaussian, and a prior that accounts
for knowledge about the data-set, instead of the standard
Gaussian prior.

The choice of the variational distribution is limited to dis-
tributions that can be sampled in a differentiable way, so that
gradients can be propagated through. Three different sampling
techniques can be considered to enable various distribution
choices [6]:

1) A reparameterization trick to sample location-scale fam-
ily distributions [34], such as the usual Gaussian distri-
bution (see Equation (6)).

2) Composition of auxiliary random variables. For instance,
log-normal, logit-normal, Dirichlet, exponential distribu-
tion samples may be generated by transforming “elemen-
tary” distributions (respectively by composing Gaussian
with logarithm, Gaussian with sigmoid, Gaussian with
softmax [35] and uniform with logarithm).

3) The inverse transform sampling method described in
Equation (11), that can be used to sample any continuous
random variable z ∼ A. This technique can be used pro-
vided its inverse cumulative distribution function (ICDF)
F−1A is differentiable, by propagating a sample from a
uniform distribution U(0, 1).

z = F−1A (u) , u ∼ U (0, 1) ⇒ z ∼ A (11)

In practice, the gradient of the ICDF computed during
training may diverge. In intervals of zero density, the
CDF is constant at y = c and its reciprocal has infinite
derivative at x = c. Therefore uniform sampling of
u must be done inside an interval I where the CDF
is strictly monotonous. In fact, due to the numerical
precision ε, the interval I has to be restricted even further
(see Equation (12)).

I = FA (X) , X = {x ∈ [0, 1] s.t. dFA (x) ≥ ε}
(12)

As mentioned above, latent variables are semantically re-
lated to the prior knowledge of the physical model. Therefore,
the physical measurement, corresponding to the parameters
may be bounded. If parameters to be estimated are known
to belong to a certain bounded interval, their corresponding
variational distributions should have closed-support. Using
the above-mentioned sampling techniques, two strategies can
be used to sample bounded distributions. (i) Composing un-
bounded distribution samples, such as Gaussian samples drawn
from the reparameterization trick, with sigmoid functions
(logistic2, hyperbolic tangent, arc-tangent, etc...). This enables
simple sampling of bounded distributions but, the obtained dis-
tributions are deformed, asymmetric near the support bounds

2The composition of Gaussian distribution with logistic function is the logit-
normal distribution.
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and may even become bimodal. (ii) The inverse transform
method enables direct sampling of closed support distributions
such as raised cosine distributions, Kumaraswamy distribu-
tions, etc.

The bounds of the distribution supports can be inferred by
the encoder, or set by the user. In both cases, it may be
convenient to sample bounded distributions on the interval
[0, 1] and then perform affine scaling to the desired [a, b]
interval (see Equation (13)).

z ∈ [0, 1]⇒ (b− a)z + a ∈ [a, b] (13)

It is important to enforce boundaries of models in latent
distributions. Physical models can be mathematically defined
even with out-of-bounds parameters, but samples generated
with these parameters would not be realistic. Such recon-
structions could still minimize the reconstruction loss, and
hamper training while the encoder learns to infer wrong latent
representations. This can be especially detrimental when some
training samples are not well described by the physical model.
The VAE would then bend the model instead of increasing
latent uncertainty.

While the variational distribution should be chosen with
physical variables meaning in mind, it has to be paired with a
prior distribution that enables computation of the KL loss term.
It may unfortunately be more complicated to find a meaningful
prior whose KL divergence with the variational distribution
admits a closed-form expression.

D. Incorporation of order constraints into latent distributions

In all previous sampling methods, the independence of
latent variables is assumed. However the physical variables
of a model may not be independent, and correlations and
statistical dependence can be observed between variables in
observations. We detail here methods to introduce dependence
between latent variables, while still performing independent
sampling that is compatible with VAE. These techniques are
instances of ancestral sampling [11]. We consider the case
of model variables that are ordered. For instance, physical
models associated to satellite times series usually have input
parameters associated to time, therefore order relationship can
be established.When using such models for VAE decoders,
order constraints must be enforced to prevent the training
from converging to representations that are not physically
plausible. As this is not done by sampling independent latent
distributions, we propose here methods to ensure order of
latent variables.

Let there be n latent variables zi, on intervals [ai, bi] that
must be ordered as follows: zi < zi+1, ∀i ∈ [[1, n−1]]. Two
complementary situations can arise:

(i) ∀i, [ai, bi]∩ [ai+1, bi+1] = ∅. There is no intersection be-
tween the support of each two consecutive latent variable
distribution.

(ii) ∃i such that [ai, bi] ∩ [ai+1, bi+1] 6= ∅. There is some
intersection between the support of two consecutive latent
distributions.

In the first case, the independent sampling of each zi will
always yield ordered results. In the second case, there is a

Fig. 5. Marginal densities q(zi|x) and q(zi+1|x) of latent variables zi and
zi+1 with intersecting support. If sampled independently, there is a non-zero
probability that zi > zi+1.

non-zero probability of sampling unordered samples zi and
zi+1 from two consecutive latent distributions q(zi|x) and
q(zi+1|x) (see Fig. 5).

To ensure that latent samples are always ordered in this
second case, we identify three strategies, detailed in the
following.

1) Penalizing out-of-order latent samples: Enforcing or-
dered constraints by just penalizing latent samples that are
out of order would decrease the latent distributions widths and
prevent latent distributions from being too close. As a result,
the network would arbitrarily infer disjoint marginal distri-
butions. This solution is not applicable in general, because
it introduces an inductive prior of distribution disjointness
that is not necessarily assumed by the physical-based decoder.
Furthermore it would also hamper training by introducing
noise into the loss.

2) Inferring the distribution of the difference between two
variables: The second way of ensuring the order of samples is
to infer positive support distributions of the difference ∆zi+1

between each pair of consecutive variables (zi+1, zi) in the
ordered sequence (see Equation (14)).

zi+1 = zi + ∆zi+1
, ∀i ∈ J1, n− 1K (14)

However this method increases the variance of the summed
latent variables. Indeed, the density of the sum of random
variables is the convolution of the densities of these variables,
and the convolution of two densities results in a wider density.

3) Infering the distribution of the maximum of two vari-
ables: To overcome previous latent order enforcement meth-
ods shortcomings, we propose to use the distribution of
the maximum of two consecutive variables (zi+1, zi) as the
distribution of the greater variable zi+1.

We use a set of three techniques to sample the distribution of
the maximum between two consecutive latent variables: (i) a
rectification of latent samples (ii) a rectification of variational
parameters (iii) a loss term that penalizes inferred variational
parameters.

To rectify latent samples, the maximum value between a
sample of consecutive variables (zi, zi+1) is attributed to the
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the greater variable zi+1 (see Equation (15)). If the samples are
ordered beforehand, the rectification doesn’t change the value
of the greater variable. If samples were mis-ordered, this sets
the value of the greater variable as equal to that of the lower
variable zi. The resulting rectified samples zi+1 are then used
instead of zi+1 by the user-defined decoder.

zi+1 = max (zi+1, zi) , ∀i ∈ J1, n− 1K (15)

The distribution of each zi is then the distribution of
the maximum of all previous consecutive variables zi =
max
j≤i

(zj), ∀i ∈ [[1, n−1]]. The density (PDF) and cumulative

distribution function (CDF) of rectified latent variables are
available (see appendix D) if the PDF and CDF of all marginal
latent distributions are available (marginal distributions can
even be from different distribution families). Sample recti-
fication is effective when distributions of consecutive latent
variables overlap.

Since the rectification step takes place after the variational
parameters inference, the model may rely solely on the recti-
fication step to produce ordered latent variables. When the
expectations of two consecutive latent distributions q(zi|x)
and q(zi+1|x) and are mis-ordered, the rectification step will
mostly make consecutive latent samples identical. The encoder
might converge sub-optimally and even though latent samples
would technically be ordered, they would never have the
proper value for the underlying physical parameter.

To mitigate this, the two additional proposed techniques
aim at forcing the encoder to output variational parameters,
such that the expectation of consecutive latent distributions are
ordered as well. These methods can be applied when a latent
distribution parameters λi, associated with zi controls the
expectation of the distribution, such as the mean parameters
of Gaussians. In the following, we will assume that zi are
Gaussian-based, and denote µzi their mean. Similar methods
can be designed with other parameters with other distributions.

The rectification of the mean µzi of Gaussian-based latent
distributions (see Equation (16)) is similar to the rectification
of latent samples.

µ
zi+1

= max
(
µzi+1 , µzi

)
, ∀i ∈ J1, n− 1K (16)

This hard constraint guarantees that the expectation of the
latent distributions are ordered. However, rectifying latent
distribution parameters can again lead to sub-optimal training.
The encoder may not learn to output µzi+1 > µzi ∀i,
and may always rely on the rectification step to produce
distributions that with ordered expectations, leading to µzi+1

and µzi being always equal.
To ensure proper learning, we add a softer constraint in the

form of a loss term in Equation (17), that penalizes inference
of unordered latent distribution parameters.

Lorder =
1

N

N∑
i=1

µ
zi
− µzi (17)

The order loss in Equation (17) can be interpreted as an
additional prior on latent distribution that the original KL term
doesn’t enforce.

Fig. 6. Procedure of latent samples zi ordering with maximum of latent
distributions, with latent distribution parameters λi.

Finally, rectifying latent distributions’ samples does change
their distribution (see appendix D for the density of the
maximum of random variables). The KL loss term and a
prior distribution can be expected to become harder to derive
for rectified latent distributions. In such case, we advocate
for using the latent distribution before rectification for this
computation.

IV. APPLICATION: INFERRING PHENOLOGICAL
PARAMETERS FROM NDVI TIME SERIES

The interest of the proposed physics-guided representation
learning methodology is illustrated by a well-known remote
sensing inverse problem. Specifically, the goal is to infer the
probability distributions of the intrinsic phenological param-
eters from NDVI3 times series by considering a vegetation
phenological model. Here we present the architecture of the
physics-guided VAE that will integrate this model and two
data-sets that we later use for training and validation.

A. The phenological model as physics-based decoder

The NDVI quantifies land surface greenness and photosyn-
thetic vegetation vigor [36]. It is derived from Near Infra-
Red (NIR) and Red reflectances (R) of a land surface, and its
expression is:

NDVI =
ρNIR − ρR
ρNIR + ρR

∈ [−1, 1] . (18)

This index is typically close to 1 for high densities of vegeta-
tion, close to 0 for bare soil, and negative for water.

The characterization of the evolution of vegetation phe-
nology using NDVI derived from remote sensing is widely
addressed in the literature [37]–[39]. In general, the annual
evolution of NDVI of some vegetation and crops can be well
fitted with a double-logistic model [40]–[42]. The inversion
of this phenological model from NDVI time series allows
extracting phenological parameters, that typically characterize

3Normalized Difference Vegetation Index.
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TABLE I
PARAMETERS OF THE DOUBLE-LOGISTIC PHENOLOGICAL MODEL.

Variable Description Range [a, b]

M
Maximum of
double logistic [-1, 1]

m
minimum of
double logistic [-1, 1]

sos DOY4 of Start Of Season,
the start of NDVI growth [-45, 410]

mat DOY of Maturity,
the end of NDVI growth [-45, 410]

sen DOY of Senescence,
the start of NDVI decay [-45, 410]

eos DOY of End Of Season,
end of NDVI decay [-45, 410]

phenophases of observed vegetation. This model uses a 6-
variable phenological model to characterize seasonal vegeta-
tion cycles on yearly time series. The phenological model is
described by the following equations:

Ωz(t) = (M −m) (Ssos,mat(t)− Ssen,eos(t)) +m; (19)

Ssos,mat(t) =

(
1 + exp

(
2

sos + mat− 2t

mat− sos

))−1
; (20a)

Ssen,eos(t) =

(
1 + exp

(
2

sen + eos− 2t

eos− sen

))−1
. (20b)

This model accounts for vegetation annual cycle, with a growth
phase, a stagnation phase and a decay/harvest phase. The 6
phenological parameters z = (M,m, sos,mat, sen, eos) are
described in Table I, and their effect on the model is shown in
Fig. 7. Phenological parameters are all bounded. As observed,
the parameters min and max of NDVI have the same bounds
as NDVI itself.

The range of Phenological dates (sos, mat, sen, eos) are
the days of a given calendar year, extended by 90 days. The
45 days considered before the 1st January and after the 31st
December allows less restrictive estimations, and takes into
account vegetations whose cycle started or ended outside the
calendar year. This range is a prior knowledge about the data,
like the double-logistic model itself.

Following the architecture depicted in Fig. 3, the proposed
pheno-VAE architecture proposes to use the double-logistic
phenological model as a physical-based decoder. Each variable
zi of its 6-dimensional latent space is semantically bound to a
phenological parameter. The reconstruction term is computed
as discussed in Section III-B. To take into account that the
phenological parameters are bounded, we choose Truncated
Gaussians T N as latent distributions. The latent sampling
process is performed with the inverse transform method (Equa-
tion (11)). The phenological variables are ordered: m < M ,
and sos < mat < sen < eos, meaning the associated latent
variables must be ordered in the same way. For that, the
maximum of the latent variables are sampled, using the three
strategies defined in Section III-D3: (i) the rectification of
parameters µzi of Truncated Gaussians (see Equation (16)),

(a)

(b)

(c)

Fig. 7. Examples of double logistic curves describing different phenology for
different vegetation covers, with different phenological parameters.

(ii) the rectification of samples (see Equation (15)), (iii) the
incorporation of an order term to the ELBO loss (see Equation
(17)).

As the latent variables of pheno-VAE are used as parameters
for the phenological model, their distributions will be referred
to as phenological distributions.

B. Encoder of Pheno-VAE

Pheno-VAE uses a simple multi-layer perceptron as shown
in Fig. 8 that outputs the parameters of truncated Gaussians
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µzi and σzi for each variable zi. The support [ai, bi] of each
truncated Gaussian is set to [0, 1]. Each sample drawn from
these distributions is scaled accordingly to the range described
in Table I, using the procedure described in Equation (13),
before being input to the physics-based decoder.

The neural network is implemented using PyTorch. As there
is no temporal encoding of time series, its input layer of size
73 is presented with annual NDVI time series sampled in a
5-days regular grid.

Fig. 8. Encoder architecture used in pheno-VAE, with 4 fully connected
hidden layers with ReLU activation.

C. Data-sets

Two data-sets are used to evaluate the performances of
pheno-VAE for phenological parameter retrieval. The first
data-set is composed of real satellite observations of annual
NDVI time series and is used for pheno-VAE training and
qualitative validation. The second data set is composed of
simulated crop NDVI profiles. The construction of this data-set
is proposed for three main reasons. It allows: (i) to perform a
quantitative evaluation of parameter retrieval on a large scale
data-set, (ii) to assess the robustness of pheno-VAE to the
noise of complex satellite observations, (iii) to compare the
results of pheno-VAE against supervised methods. Examples
of NDVI time series from both of data-sets are illustrated in
Fig. 10.

1) S2 Data-set: It is composed of 106 annual time series
of pixels from 31TCJ Sentinel-2 tile (Toulouse area in south-
ern France) [43]. The corresponding NDVI time series are
computed from the spectral band 4 (Red) and 8 (Near Infra-
Red). The resulting time series describe different land cover
classes which can be associated to the class legend used on
the OSO land cover map [44]. Accordingly, a large number of
time series do not represent vegetation classes following the
double-logistic phenological model. Despite the availability
of land cover class information, it must be remarked that
such information is only used for validation purposes. The
distribution of the land cover classes in the data-set is detailed
in Table VII of appendix A. The times series are acquired

on irregular time intervals. The two Sentinel-2 satellites have
intersecting ground footprints and some locations get increased
coverage. Cloud cover is the main reason for the inconsistent
temporal sampling and account for the variability in valid
observation number of each pixel on the ground (see Fig. 12 in
appendix A). For each time series, a validity mask is available
to denote the valid satellite observations. This mask is used to
linearly interpolate raw time series to a common regular time
grid for pheno-VAE’s encoder.

2) Simulated Data-set: The corresponding data set is com-
posed by a large number of simulations obtained by the
double-logistics model, using a given sampling strategy for
the input parameter ranges. To validate our approach, the
phenological model is used to generate time series samples
with reference phenological parameters.

Since we assume that the double-logistic model is an
approximation of NDVI time series, we model the observations
as a noisy version of such a model. Therefore, we assume
that each NDVI observation follows a normal (Gaussian)
distribution whose mean is the double logistic function:

y(t) ∼ N (µ(t), σn) , (21)

with µ(t) = Ωz(t), and σn the standard deviation of the noise.
To generate synthetic time series, we first sample phenolog-

ical parameters from uniform distributions. The phenological
model is then used to simulate the corresponding NDVI time
series. To account for the uneven temporal sampling of real
time series, we use binary masks of valid dates of real S2
time series, to only simulate the time series at certain dates
t. A Gaussian noise of randomly sampled standard deviation
σn ∼ U(0, 0.1) is added to remaining simulated time series
points. It accounts for epistemic uncertainty, as no real time
series is perfectly described by the phenological model. The
resulting time series are finally interpolated at a regular 5-days
time grid. The data generation procedure is depicted in Fig. 9.

The configurations of the parameter sampling procedure
are detailed in the following. For σ, which represents the
standard deviation of the noise in the observations, we will
chose a maximum value of 0.1 which corresponds to 10%
of the maximum expected range for NDVI values. For the
minimum value of NDVI (m), we define the range between
0 (bare soil) and 0.4 (presence of vegetation). The maximum
value of NDVI (M ) is defined relative to the minimum value.
A crop with a typical phenology value is assumed to have M
at least 0.3 higher than m, and that the highest value will not
be higher than 1.

The 4 dates characterizing the phenological stages are each
defined in terms of the previous as follows. End of season (eos)
is allowed to be right after Senescence and up to 90 days later.
Senescence (sen) is defined in the same way with respect to
maturity (mat) and mat follows the same rationale with respect
to start of season (sos). For sos we would need to give a very
wide prior in order to take into account winter and summer
crops. Instead of doing that, we introduce an additional (latent)
variable sosi which will model the probability of summer crop.
This probability is used to adjust the starting point of the
interval of prior values for sos. We assume that the earliest
sos for a winter crop is on day 30 (end of January) and that
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Fig. 9. NDVI Time series simulated data-set generation procedure.

the earliest summer crop can have an sos of 120 (late April).
sosi and σn are additional variables of the generative process
of synthetic data that will not be inferred during experiments.

Sampling of parameters for synthetic time series generation
is summarized in Table II.

TABLE II
PHENOLOGICAL PARAMETER DISTRIBUTIONS USED FOR SAMPLING IN

TIME SERIES SYNTHESIS PROCEDURE

Parameter Sampling interval

m U(0, 0.4)
M U(m, 1)
sosi U(30, 120)
sos U(sosi, sosi + 90)
mat U(sos, sos + 90)
sen U(mat,mat + 90)
eos U(sen, sen + 90)
σn U(0, 0.1)

Even though the synthetic data-set is generated to be as
realistic as possible, it remains different from the S2 data-set.
Because of the uniform sampling of phenological dates in the
synthetic data-set, there is more diversity in the phenology than
the S2 data-set. On the one hand, the S2 data-set is biased by
the samples that have been chosen among available real NDVI
time series. All samples belong to the same S2 tile so NDVI
time series of pixels of the same type are highly correlated, and
cloud coverage similarly affects all time series. On the other
hand, the synthetic data-set contains samples whose phenology
that may not be frequent in reality, or even phenology types
that don’t exist. These differences will have to be taken into

Fig. 10. NDVI time series of samples of S2 data-set (left) and simulated
data-set (right)

account in the interpretation of the results.

D. Latent prior distribution and KL term
Because of the variety of training samples in both data-

sets, in terms of phenology or even in terms of aleatoric and
epistemic uncertainty, it is difficult to design a very restrictive
prior. We chose a uniform distribution for all latent vari-
ables over their respective density support. The KL-divergence
between qλ(z|x) ∼ T N (µ, σ, a, b) and p(z) ∼ U(a, b) is
given in Equation (22) (see derivation in appendix E) with
η = Ψ(b̃) − Ψ(ã), ã = a−µ

σ , b̃ = b−µ
σ , and ψ and Ψ are

respectively the standard Gaussian PDF and CDF.

KL (qλ(z|x)‖p(z)) = −1

2
− ln

(√
2πση

)
− ãψ(ã)− b̃ψ(b̃)

2η
+ ln(b− a)

(22)

In practice, this loss promotes the inference of Truncated
Gaussian posteriors with larger variances, while not penalizing
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their locations. Samples of the simulated and S2 data-sets have
a wide variety of potential phenological parameters, and this
loss doesn’t promote any particular value for inference. In the
S2 data-set, many samples don’t have a phenology (buildings,
mineral surfaces), and should get increased variances in in-
ferred parameters, as the model cannot get a low reconstruction
loss.

E. Loss of pheno-VAE

The loss of pheno-VAE for a single NDVI time series x is
the sum of three terms:

Lpheno−V AE = Lrec + βLkl + Lorder. (23)

The loss components are:

• Lrec = 1
2

[
(x− µx̂)

>
Σ−1x̂ (x− µx̂) + ln (|Σx̂|)

]
• Lkl =

∑6
i=1−

1
2 − ln

(√
2πσziηi

)
− ãiψ(ãi)− b̃iψ(b̃i)

2ηi
,

with ãi = −µiσi and b̃i = 1−µi
σi

(as ai = 0 and bi = 1)
• Lorder = 1

6

∑6
i=1 µzi

− µzi .
In practice, Lorder converges to zero very fast, leaving only
the two other terms in most of the training. There is a tension
between the two remaining terms: the reconstruction loss
improves the quality of the reconstructed time series, and the
Kullback-Leibler divergence acts as a regularizer of the latent
space. The balance between these two terms is shifted with
the incorporation of the coefficient β for the KL term, in a
similar manner to that of β-VAE [17]. The influence of this
hyper-parameter is studied in the following results.

V. EXPERIENCES

In this section, we detail our experiments, their evaluation
metrics that quantify the quality of the inferred representations,
and the associated results.

A. Experimental setup

Given our phenological parameter retrieval application, dif-
ferent experiments are carried out to assess the performances
of pheno-VAE. Firstly, we use reconstructions of NDVI time
series from trained pheno-VAE to assess the quality of latent
representations. Secondly, we evaluate metrics on phenological
distributions using a simulated data-set. These metrics are con-
sidered in two sets of experiments. The first is a comparison
between instances of pheno-VAE with different values of β,
so that its influence can be studied and an optimal setting
can be achieved. In the second set of metrics assessment,
four setups are considered. Two of these setups are instances
of pheno-VAE, one trained with the S2 data-set, and the
other with the synthetic data-set, to evaluate the influence of
the training data-set on pheno-VAE. The last two setups are
two other methods of parameter estimation. Three setups are
deep learning approaches that share the same neural network
architecture as the encoder of pheno-VAE (see Fig. 8). This
is so that the model complexity doesn’t influence comparative
results. The last setup is a Bayesian model inversion method.

The parameter retrieval can be considered as a multi-output
regression problem. As such, the third deep learning approach

TABLE III
CHARACTERISTICS AND HYPER-PARAMETERS OF EACH EXPERIMENTS

INFERENCE METHODS.

Exp. MCMC NN
Regression

pheno-VAE
(Sim)

pheno-VAE
(S2)

Unsupervised X 7 X X

Training None Simulated
Data-set

Simulated
Data-set

S2
Data-set

Optimizer None Adam Adam Adam
Batch size None 2048 2048 2048
Learning rate None 5.10−4 5.10−4 5.10−4

Epochs None 500 200 200
Number of
latent samples K None None 10 10

Point estimate median mode mode mode

is a regression neural network. Its supervised training is per-
formed using the simulated data-set. The regression network
also infers Truncated Gaussian parameters, so that this method
also predicts a distribution for the phenological parameters.
The training loss is the Negative Log-Likelihood of Ordered
Truncated Gaussians (see appendix D). This experiment is
proposed to provide a comparison of our unsupervised pheno-
VAE against a supervised model of similar architecture.

There exist many techniques for performing Bayesian infer-
ence, that is, obtaining the posterior distributions of the model
parameters given the observations. Describing them is out of
the scope of this paper. For our work, we will use Markov
Chain Monte Carlo (MCMC) in order to obtain samples from
the posterior distributions of the phenological parameters. Fol-
lowing the methodology of [45], we use Hamiltonian Monte
Carlo as per the NUTS algorithm [46] as implemented in the
NumPyro library [47], [48].

To implement Bayesian inference through MCMC we need
to define the likelihood for the observed data. Here, we use
a Gaussian likelihood with the double-logistic function as its
mean (see Equation (21)). This model is the same as the one
used to generate time series, (see Fig. 9), except that there is
no interpolation step involved. At inference, MCMC takes as
input uninterpolated time series with the temporal position of
each data point. As prior distributions, we choose the same
uniform distributions than those in Table II to simulate the
NDVI time series data-set.

The four experimental setups are summarized in Table III.

B. Evaluation metrics

The three metrics described in the following are used to
evaluate the accuracy of the retrieved parameters and their
corresponding uncertainties. They are evaluated on a validation
data-set of N = 10000 samples.

1) Point estimate inference error: The Mean Absolute Error
(MAE) from a distribution point estimate:

MAE(i) =
1

N

N∑
j=1

∣∣z∗i,j − ẑi,j∣∣ (24)

With z∗i,j the reference value of the phenological parameters
i for the time series j in the simulated data-set, and ẑi,j a
point estimate of the predicted distribution associated with
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zi,j . We chose the point estimator that gave the best MAE
with each setup: the mode of the distributions for the Neural
Network Regression, pheno-VAE (S2 & sim), and the median
for MCMC.

2) Prediction interval metrics: Prediction intervals are at
the core of uncertainty quantification [49]. A prediction inter-
val of a predicted variable Z with a confidence level 1−α is
the smallest range [l, u] that satisfies:

P (Z ∈ [l, u]) ≥ 1− α. (25)

In this work, we estimate the prediction intervals [li,j , ui,j ]
of latent variables zi for each data sample xj , from the
inferred latent distributions. Specifically, li,j is taken as the
α/2 quantile of the corresponding latent distribution, and ui,j
as the (1− α)/2 quantile.

In practice, we select α = 0.1 for 5th-95th centile intervals,
in results pertaining to prediction intervals presented below.
Results obtained with different confidence levels are shown in
appendix C. We detail in the following two prediction intervals
metrics widely used in the literature [50], [51].

• The Mean Prediction Interval Width (MPIW) is the
average length of the prediction intervals [li,j , ui,j ] de-
rived from the predicted distributions. The narrower the
interval length is, the more confident we can be about the
prediction.

MPIW(i, α) =

∑N
j=1 ui,j − li,j

N
(26)

• The Prediction Interval Coverage Probability (PICP) mea-
sures the frequency of the model parameters true value
being inside the prediction interval:

PICP(i, α) =
#
{
j s.t. z∗i,j ∈ [li,j , ui,j ]

}
N

(27)

This metric is an estimate of the probability of time
series of a data-set having their true parameters inside the
prediction interval. Note that this metric doesn’t quantify
the probability of a single time series’ true parameter of
being inside a prediction interval. This probability cannot
be accessed, because assessing belonging for a given time
series is a binary experience.
This metric should be as close to α than possible. When
the inferred phenological distribution matches perfectly
the density of the true phenological parameters, then
PICP = α, ∀α.

The three evaluation metrics are computed by using a K-
fold cross-validation procedure where we iterate over a data-
set set K times. In each round, a model is trained using K−
1 of the folds as training data and tested on the remaining
set. Metrics are then measured by averaging the performance
values computed on each subset (K models). This strategy
is applied to validate deep learning approaches. For MCMC,
metrics are independently obtained on K subsets of the total
data-set. The average and standard deviation of the results on
those subsets are computed. In the following, K is equal to 6.

C. Evaluation of the reconstruction results

To assess the performances of pheno-VAE, a visual evalua-
tion is presented in Fig. 11. This figure shows S2 NDVI time
series samples with their reconstruction by pheno-VAE trained
on S2 data, with their corresponding phenological distribu-
tions. In most cases shown here, the setting β = 0 imposes that
no prior information from the dataset is incorporated. This is
different from our uniform prior that assumes that phenological
variables are evenly distributed over their possible range.

Fig. 11a shows NDVI time series of a pixel of corn, the
inferred phenological distribution and the reconstruction of
its mode. The reconstruction curve is observed to accurately
match the original time series. The distributions of pheno-
logical dates characterize well the growth and decay phases
of this summer crop. The reconstruction error and variance
of reconstructions are both low. The estimated phenological
distributions seem well centered on likely phenological pa-
rameters.

The influence of β can be evaluated by comparing the results
observed on Fig. 11(a) and 11(b). The same NDVI time series
of a corn pixel is taken as input by two pheno-VAE models
with different values of β. The modal reconstructions are
very similar. With increasing β, the phenological distributions
widen, and the variance of reconstructions increases. This
is coherent with the influence of the KL loss terms, that
discourages narrow latent densities. With both results well
matching the original NDVI time series, the choice of β is
to be made considering the prediction interval metrics.

On Fig. 11(c), a protein crop time series shows how the
presence of data gaps can lead to bad phenological parameter
estimation. In this figure, the phenological cycle is easily
identifiable. However, bad weather in winter led to a lack
of data points for the first two months, and the backward
extrapolation of points at pre-processing has kept the NDVI
artificially constant, at a higher value than after harvest. As the
encoder of pheno-VAE doesn’t take into account the temporal
information, here reconstruction is disrupted by the gapfilling
step. This extrapolation artifact made the input time series not
well described by the phenological model at the beginning
of the year. The start of season estimate is inaccurate, yet
the distribution large spread indicates greater uncertainty. This
bad inference of the start of season seems to have prevented
a good estimation of the maturity date as well, with this time
a narrow distribution. Nonetheless the senescence and end
of season seem well inferred. Similarly with a broad-leaved
forest time series (Fig. 11(d)), senescence and end of season
distributions are not well positioned due to interpolated data
points at the end of year. These results shows that the gapfilling
pre-processing task can lead to wrong parameter estimations
when long data gaps include key phenological dates. This
highlights the need for encoders that don’t rely on interpolated
inputs. However, that would be out of the scope of our current
contribution.

In Fig. 11(e), there are several crops in the pixel, and the
NDVI time series shows several phenological cycles. As the
model can only take one cycle into account, it only fits the
largest, and takes the average of the remaining signal. The
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TABLE IV
EVALUATION PERFORMANCES OBTAINED ON A SIMULATED DATA-SET FOR

DIFFERENT PHENO-VAE MODELS TRAINED ON THE S2 DATA-SET, AND
FOR VARIOUS KL LOSS COEFFICIENTS β . PREDICTION INTERVALS ARE
DERIVED FROM PHENOLOGICAL DISTRIBUTIONS WITH A CONFIDENCE

LEVEL 1− α = 0.9.

Exp pheno-VAE
(S2, β = 0)

pheno-VAE
(S2, β = 1)

pheno-VAE
(S2, β = 2)

pheno-VAE
(S2, β = 5)

M 0.05± 0.00 0.05± 0.00 0.05± 0.00 0.07± 0.00
m 0.02± 0.00 0.02± 0.00 0.02± 0.00 0.02± 0.00
sos 11.13± 0.46 11.82± 0.27 11.93± 0.60 14.87± 0.21
mat 10.22± 0.08 10.38± 0.33 10.58± 0.25 14.37± 0.61
sen 11.01± 0.47 11.61± 0.65 12.15± 0.60 18.37± 0.75
eos 13.35± 0.52 13.48± 0.69 14.75± 0.97 18.69± 0.47

(a) Mean Average Error (mode of phenological distributions)

Exp pheno-VAE
(S2, β = 0)

pheno-VAE
(S2, β = 1)

pheno-VAE
(S2, β = 2)

pheno-VAE
(S2, β = 5)

M 0.67± 0.01 0.60± 0.01 0.61± 0.02 0.63± 0.03
m 0.95± 0.01 0.95± 0.01 0.94± 0.01 0.92± 0.01
sos 0.34± 0.05 0.53± 0.02 0.64± 0.02 0.77± 0.01
mat 0.25± 0.03 0.48± 0.02 0.56± 0.01 0.69± 0.02
sen 0.34± 0.04 0.55± 0.01 0.64± 0.01 0.69± 0.02
eos 0.58± 0.02 0.71± 0.02 0.76± 0.03 0.83± 0.01

(b) Prediction Interval Coverage Probability

Exp pheno-VAE
(S2, β = 0)

pheno-VAE
(S2, β = 1)

pheno-VAE
(S2, β = 2)

pheno-VAE
(S2, β = 5)

M 0.12± 0.01 0.11± 0.00 0.11± 0.00 0.16± 0.00
m 0.13± 0.00 0.12± 0.00 0.12± 0.00 0.12± 0.00
sos 14.69± 2.85 22.97± 1.38 27.93± 1.54 41.79± 1.64
mat 8.81± 1.11 18.24± 1.05 22.81± 0.75 38.24± 1.65
sen 13.75± 1.01 23.35± 1.18 28.43± 1.53 42.18± 1.36
eos 30.60± 1.83 36.60± 2.38 43.30± 3.10 59.64± 2.30

(c) Mean Prediction Interval Width

distribution of the minimum of NDVI is very large, indicating
uncertainty.

In Fig. 11(f), the phenological model doesn’t suit at all
the NDVI time series of a dense building pixel. Therefore,
reconstruction errors are high. However phenological distribu-
tion variances increase to take this epistemic uncertainty into
account.

The results show that large uncertainties could be associated
to the model discrepancy with the data.

Another remark is that, inferred marginal phenological dis-
tributions sometimes show significant overlap. This highlights
the interest of the proposed order constraints on the latent
distributions, as reconstructions are consistent with the pheno-
logical model, and variables constraints are always respected.

More reconstruction examples are available in appendix B.

D. Influence of the KL loss term on pheno-VAE performances

The impact of the KL term is studied by comparing results
obtained by using different β values. In this experiment,
pheno-VAE model is trained with samples from the S2 data-
set. The prediction interval metrics presented here are derived
for a confidence level of 1− α = 0.9.

As previously observed, the KL term tends to increase the
dispersion of latent distributions. The MPIW (Table IV(c))

increases for all phenological parameters along with β and
consequently the PICP (Table IV(b)) also increases.

The MAE results (Table IV(a)) tend to increase along
with β, decreasing performance. These results corroborate
that the hyper-parameter β must be selected by using an
independent validation data-set. For the prediction intervals to
be informative, the KL term needs to be high enough, while
keeping it below a certain threshold ensures that precision is
acceptable.

Also, different performances are obtained for the different
phenological parameters. The minimum of NDVI m is the best
estimated parameter, as with simulated time series, a large part
of available data points are around the value of the minimum
— although, it is so well estimated that its prediction interval
almost always contains it, overshooting the PICP = 1 − α
target. The parameter M is more challenging to estimate
than m. The value of the true maximum of the phenological
model can differ from the parameter M when mat and sen are
close. The highest errors are obtained on phenological dates,
most certainly because of the gapfilling problem highlighted
with reconstruction results. This limitation is more visible in
MPIW values obtained for sos and eos than mat and sen.
This is because the pheno-VAE is confronted with more severe
extrapolation aberration at both ends of the time series than in
the middle, where interpolation is better, with higher temporal
availability in the original time series.

In the following, the setting β = 2 will be used, as it
increases the PICP without degrading too much the MPIW
and the MAE.

E. Comparing pheno-VAE to other inversion methods and
influence of training data-set

The performances of inference of phenological distributions
on a simulated validation data-set are compared between
pheno-VAE trained on S2 data-set, pheno-VAE trained the
synthetic data-set, MCMC and Neural Network regression.
The results are presented in Table V.

The experiment with the best overall performances is the
Neural Network regression, which has the lowest MAE (Table
V(a)), the PICP (Table V(b)) closest to α = 0.9, with
consistent MPIW (Table V(c)) on phenological dates. This
is expected considering that it is a supervised method, with
the training data-set being very similar to the testing data-
set. Furthermore its loss doesn’t rely on reconstruction, and
therfore isn’t affected the same way than pheno-VAE by
interpolation.

MCMC has performances that are a little worse than
regression, with a little higher error, and it compensates
smaller prediction intervals with lower PICPs. Phenological
distribution inference is not bound by a distribution family
prior and directly samples phenological distributions, contrary
to the other methods studied here. It is also not affected by
gapfilling problems because MCMC do not require regularly
temporal input data. The results of MCMC could be improved
by increasing the number of distribution samples and steps, at
the expense of greater computation costs.

Besides, the computing time required to perform inference
is orders of magnitude larger for MCMC than deep learning
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(a) Corn pixel (β = 0) (b) Corn pixel (β = 5)

(c) Protein crops pixel (β = 0) (d) Broad-leaved forest pixel (β = 0)

(e) Rapeseed pixel (β = 0) (f) Dense building pixel (β = 0)

Fig. 11. Reconstruction and latent distributions from the encoding of the NDVI time series by pheno-VAE trained on S2 data-set. Central quadrants, S2 NDVI
time series (black), reconstructions from the modes of latent distributions (red), and reconstruction 5th-95th prediction interval - Upper quadrants: Truncated
Gaussian distributions of the 4 phenological dates, sos (blue), mat (red), sen (dark green), eos (magenta) - Right quadrants: Truncated Gaussian distributions
of M (orange), and m (light green) - Upper and right quadrants: distribution densities are in solid lines, distribution modes are in dashed lines.

methods (see Table VI), justifying the use of the latter for
large scale problems.

The worst results are shown by pheno-VAE. It has higher
MAE, and despite similar prediction interval sizes, it un-
derestimates uncertainty with lower PICP. Results also show
different behaviors for the two pheno-VAE trained on different

data-sets. As expected, slightly better results are obtained
when pheno-VAE is trained on simulated data. A greater
performance drop is observed for eos. This is because of a
discrepancy between both data-sets. In the simulated data-set,
there is more diversity in the phenological parameters, because
of the uniform sampling to generate it. Even if real validity
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TABLE V
EVALUATION PERFORMANCES OBTAINED ON A SIMULATED DATA-SET FOR

DIFFERENT EXPERIENCES INVERSION OF THE PHENOLOGICAL MODEL.
PREDICTION INTERVALS ARE DERIVED FROM PHENOLOGICAL

DISTRIBUTIONS WITH A CONFIDENCE LEVEL 1− α = 0.9.

Exp. MCMC NN
Regression

pheno-VAE
(Sim, β = 2)

pheno-VAE
(S2, β = 2)

M 0.03± 0.00 0.04± 0.00 0.06± 0.00 0.05± 0.00
m 0.02± 0.00 0.01± 0.00 0.02± 0.00 0.02± 0.00
sos 7.18± 0.70 6.69± 0.03 8.89± 0.53 11.93± 0.60
mat 9.57± 0.95 7.54± 0.05 10.51± 0.49 10.58± 0.25
sen 9.93± 1.00 6.91± 0.05 10.59± 0.52 12.15± 0.60
eos 10.42± 1.18 6.70± 0.07 9.23± 0.26 14.75± 0.97

(a) Mean Absolute Error (mode of phenological distributions)

Exp. MCMC NN
Regression

pheno-VAE
(Sim, β = 2)

pheno-VAE
(S2, β = 2)

M 0.89± 0.01 0.90± 0.01 0.67± 0.01 0.61± 0.02
m 0.86± 0.01 0.90± 0.01 0.99± 0.00 0.94± 0.01
sos 0.84± 0.01 0.89± 0.00 0.67± 0.05 0.64± 0.02
mat 0.85± 0.01 0.89± 0.00 0.60± 0.01 0.56± 0.01
sen 0.83± 0.01 0.89± 0.01 0.66± 0.01 0.64± 0.01
eos 0.83± 0.01 0.88± 0.00 0.77± 0.02 0.76± 0.03

(b) Prediction Interval Coverage Probability

Exp. MCMC NN
Regression

pheno-VAE
(Sim, β = 2)

pheno-VAE
(S2, β = 2)

M 0.13± 0.01 0.16± 0.00 0.14± 0.01 0.11± 0.00
m 0.05± 0.00 0.06± 0.00 0.14± 0.00 0.12± 0.00
sos 22.13± 1.75 27.70± 0.30 21.02± 0.76 27.93± 1.54
mat 25.03± 1.94 29.91± 0.25 23.25± 1.32 22.81± 0.75
sen 22.74± 1.79 27.81± 0.43 27.09± 1.16 28.43± 1.53
eos 21.50± 2.29 26.36± 0.40 25.23± 0.80 43.30± 3.10

(c) Mean Prediction Interval Width

masks from the S2 data-set are used, they are not correlated
to phenology, as it is the case for real data. In the S2 data-set,
a smaller diversity of combinations of phenological variables
is available. In this data-set, the end of season of real crops
can happen when there are clouds, more than in the simulated
data-set.

The drop in performances is much less significant compared
to regression and MCMC, despite training on samples that
don’t follow the phenological model. The pheno-VAE trained
on the synthetic data-set benefits from being evaluated on
a similar simulated data-set. This unfair advantage could be
mitigated by evluating performances of pheno-VAE on real
Sentienl-2 NDVI time series data-set, with available ground
truth of phenological stages. Unfortunately, such a data-set
was not available to us at the time of this study.

MCMC and NN regression show similar performances,
despite being very different methods. This hints that given
the simulated data-set and the double-logistic model, there
is not much performance improvement to expect from the
inference experiment, even with other setups. The regression
yields on phenological dates 7-day MAE, with 90% PICP and
28 days MPIW. These are good results considering irregularly
sampled time series that are interpolated to a 5-day grid. For
pheno-VAE to get performances closer to this, there is a need

TABLE VI
APPROXIMATE TRAINING AND INFERENCE TIME FOR EACH SETUP, ON

GPU (TESLA V100-SXM2-32GB)

Exp. MCMC NN
Regression

pheno-VAE
(Sim)

pheno-VAE
(S2)

Training - 15 min 15 min 15 min

Inference
per time series 10 s 10−5 s 10−5 s 10−5 s

to improve on the ability of the network to take temporal
structure of time series into account. To minimize the impact
of the gapfilling pre-processing step, different solutions could
be considered. For instance, the reconstruction loss could be
modified to only take valid observations into account. The
encoder network architecture could be replaced to allow to
learn from irregularly sampled times series such as with
transformers or recurrent networks. However selecting the best
architecture to get state-of-the art performances on this limited
experiment is beyond the scope of this study.

F. Ablation study of the latent distribution maximum sampling
techniques

An ablation study for the method of ordering latent vari-
ables is performed with pheno-VAE, with the µ-rectification
(Equation (16)), latent samples rectification (Equation (15)),
and the order loss (Equation (17)). When any of these steps is
removed, we observe that training convergence takes longer.
It also often leads to sub-optimal models that only order
distributions by making them identical. Moreover, simply
removing the latent sample rectification leads the pheno-VAE
to infer latent representations that fit the data but no longer
have physical meaning (with for instance the sos date being
after the eos date).

VI. CONCLUSION

The work presented here has proposed a new physics-
guided methodology to learn probabilistic interpretable rep-
resentations of satellite image time series. Different strategies
are presented to incorporate physical knowledge in VAE by
considering physical-based decoders.

Semantic latent variables bound to physical model param-
eters are learnt by incorporating prior knowledge and order
constraints in the learning process. Monte Carlo sampling
of the latent space was introduced to generate a reconstruc-
tion distribution from deterministic decoders. The classical
pair of prior and posterior distributions was changed. Order
constraints were added to better model the properties of
physical variables in a semantic latent space. A new KL
loss term was calculated, whose weight in the loss enable
to adjust the performance of the model. The training wasn’t
hampered by noisy Sentinel-2 data, with some of it not
fitting the model. The feasibility and the interest of the
proposed methodology is corroborated through a well-known
remote sensing inverse problem, the phenological parameter
retrieval from Sentinel-2 NDVI time series. This physics-
guided representation learning approach can be applied to
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large scale remote sensing problems where reference data is
scarce. Applying these methodologies to different models of
more complex data will be the focus of future research efforts.
These methods are an important step toward the large scale
production of interpretable representations of data, which is of
great interest in remote sensing, where a wealth of literature
on modeling of the observed processes is available. Despite
using a simple neural network architecture, preliminary results
are encouraging. Enhancing the encoder architecture with
inductive biases taking into account the temporal structure of
the data (attention mechanisms, recurrent architectures) can
improve the inference error and predicted prediction intervals
that fall behind other methods in the current configuration.

In an attempt to enable reproducible research, our im-
plementation of the methods developped in this paper are
available at the following: https://gitlab.cesbio.omp.eu/zerahy/
pheno-VAE.git.
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APPENDIX A
S2 DATA-SET

Label Percentage in data-set

Continuous Urban Fabric 0.6%
Discontinuous Urban Fabric 4.1%
Industrial and Commercial Units 3.1%
Road Surfaces 0.3%
Rapeseed 4.5%
Straw Cereals 9.9%
Protein Crops 2.5%
Soy 7.2%
Sunflower 33.0%
Corn 5.8%
Roots 0.2%
Intensive Grasslands 3.4%
Orchards 0.6%
Vineyards 1.8%
Broad-leaved Forests 6.7%
Coniferous Forests 5.5%
Grasslands 5.5%
Woody Moorlands 2.3%
Bare Rock 0.1%
Water Bodies 2.8%

TABLE VII
DISTRIBUTION OF THE LAND COVER CLASSES COMPOSING THE SENTINEL-2 TIME SERIES DATA-SET. THE CLASS LEGEND IS TAKEN FROM THE OSO

[44] LAND COVER MAP PRODUCT.

Fig. 12. Distribution of the temporal acquisitions composing the Sentinel-2 time series data-set.
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APPENDIX B
RECONSTRUCTION OF S2 TIME SERIES

Fig. 13. Examples of reconstructions of Sentinel-2 NDVI time series with pheno-VAE trained on S2 data-set. Blue: 5-days interpolated S2 time series. Red:
Reconstruction of the mode of phenological distribution. Orange: 5-95th centile interval.
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APPENDIX C
PREDICTION INTERVAL PERFORMANCES

Fig. 14. PICP vs 1 − α for pheno-VAE trained on S2 Data-set, with various settings of the coefficient β of the KL loss term. The more β increases, the
more the PICP increases at constant confidence level 1− α.

Fig. 15. PICP vs 1 − α for MCMC, Neural Network regression and pheno-VAE (with β = 2, trained on the S2 or simulated data-set.) The PICP curves
of Neural Network regression and MCMC are very close to PICP=α for all α, while pheno-VAE underestimates uncertainty for all confidence levels, for all
phenological variables, except for m where uncertainty is overestimated.
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Fig. 16. MPIW vs 1− α for pheno-VAE trained on S2 Data-set, with various settings of the coefficient β of the KL loss term. The more β increases, the
more the MPIW increases at constant confidence level 1− α.

Fig. 17. MPIW vs 1− α for MCMC, Neural Network regression and pheno-VAE (with β = 2, trained on the S2 or simulated data-set.) prediction interval
sizes are similar for all methods, except for m, where prediction intervals are larger for pheno-VAE, and for the eos of pheno − V AE trained on the S2
data-set, that also has larger prediction intervals.
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Fig. 18. MCWI vs PICP for pheno-VAE trained on S2 Data-set, with various settings of the coefficient β of the KL loss term. The larger β is, the closer to
1 the PICP is able to get, but also the larger the MCWI is getting at constant PICP.

Fig. 19. MCWI vs PICP for MCMC, Neural Network regression and pheno-VAE (with β = 2, trained on the S2 or simulated data-set.). MCMC and Neural
Network regression have a PICP that can be almost all possible values possible, between 0 and 1. Pheno-VAE for both data-sets cannot have high PICP for
most phenological variables, and have higher MCWI than MCMC and Neural Network regression at similar PICP.
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APPENDIX D
DENSITY OF MAXIMUM OF CONTINUOUS DISTRIBUTIONS

Let Y be the maximum of n independent continuous random variables Xi. The CDF of Y is:

FY (y) = P (Y < y)

= P

(
max
i∈[[1,n]]

Xi < y

)
= P

(
n⋂
i=1

(Xi < y)

)

=

n∏
i=1

P (Xi < y)

=

n∏
i=1

FXi(y)

(28)

The log-derivative of the CDF of Y yields:

d lnFY
dy

(y) =
d

dy
ln

(
n∏
i=1

FXi(y)

)

=
d

dy

n∑
i=1

ln (FXi(y))

=

n∑
i=1

d

dy
ln (FXi(y))

=

n∑
i=1

dFXi(y)

dy

1

FXi(y)

=

n∑
i=1

fXi(y)
1

FXi(y)

(29)

Finally, using the log-derivative of the CDF of Y enables deriving its PDF as a function of the PDFs and CDFs of Xi:

fY (y) =
dFY
dy

(y)

= FY (y)
d lnFY
dy

(y)

=

n∏
i=1

FXi(y)

n∑
i=1

fXi(y)
1

FXi(y)

(30)

Fig. 20. Examples of distribution of the maximum Y of two Gaussian variables X1 and X2.
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APPENDIX E
KL-DIVERGENCE OF TRUNCATED GAUSSIANS AND UNIFORM DISTRIBUTIONS

Let:
p ∼ T N (µ, σ, a, b) , q ∼ U (a, b) (31)

with the truncated Gaussian density:

p(x) =
ψ(x−µσ )

ση
, ψ(x) =

e−
x2

2

√
2π

with
η = Ψ(b̃)−Ψ(ã), ã =

a− µ
σ

, b̃ =
b− µ
σ

and standard Gaussian CDF:
Ψ(x) =

1

2

(
1 + erf

(
x√
2

))
KL divergence is then:

KL (p(x)‖q(x)) =

∫ b

a

p(x) ln
p(x)

q(x)
dx

=

∫ b

a

p(x) ln p(x)dx−
∫ b

a

p(x) ln q(x)dx

(32)

Its second term is: ∫ b

a

p(x) ln q(x)dx =

∫ b

a

p(x) ln
1[a,b]

b− a
dx

= − ln (b− a)

∫ b

a

p(x)dx

= − ln (b− a)

(33)

The first term is: ∫ b

a

p(x) ln p(x)dx =

∫ b

a

p(x) ln
ψ(x−µσ )

ση
dx

= − ln (ση)

∫ b

a

p(x)dx+

∫ b

a

p(x) lnψ

(
x− µ
σ

)
dx

= − ln (ση) +

∫ b

a

p(x) ln
e−

(x−µ)2

2σ2

√
2π

dx

= − ln (ση)− 1

2
ln (2π)−

∫ b

a

p(x)
(x− µ)

2

2σ2
dx

= − ln (ση)− 1

2
ln (2π)− 1

2σ2

∫ b

a

p(x)
(
x2 − 2µx+ µ2

)
dx

= − ln (ση)− 1

2
ln (2π)− µ2

2σ2
− 1

2σ2

∫ b

a

x2p(x)dx+
µ

σ2

∫ b

a

xp(x)dx

= − ln (ση)− 1

2
ln (2π)− µ2

2σ2
− 1

2σ2

〈
p2
〉

+
µ

σ2
〈p〉

(34)

with truncated Gaussian moments:〈
p2
〉

= σ2 +
σ2

η

(
ãψ(ã)− b̃ψ(b̃)

)
+ µ2 +

2µσ

η

(
ψ(ã)− ψ(b̃)

)
〈p〉 = µ+

σ

η

(
ψ(ã)− ψ(b̃)

)
Finally:

KL (p(x)‖q(x)) = −1

2
− 1

2
ln (2π)− ln (ση)− ãψ(ã)− b̃ψ(β)

2η
+ ln(b− a)
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APPENDIX F
NOTATIONS

A. Variables notations

Notation Definition

x Observation, input data
x̂ Reconstruction of input data
z Latent variable
z Rectified latent variable
λ Parameter of variational distribution
φ Parameters of encoder’s neural network
θ Parameters of decoder’s neural network
1− α Confidence level
β Coefficient on the KL term in the ELBO used in β-VAE
µz Mean parameter of Gaussian latent space
µ
zi

Rectified mean of Gaussian latent distribution
Σz Covariance matrix of Gaussian latent space
µx̂ Mean parameter of Gaussian decoder distribution
Σx̂ Covariance matrix of Gaussian decoder distribution
K Number of latent samples drawn to estimate the decoder’s output distribution parameters
∆z difference between two consecutive latent variables
ρ Reflectance
F General notation for user defined decoder
Ωz Double-sigmoid function parametrized by z
a, b Bounds of a variational distribution support
l, u prediction interval bounds
N Number of samples in test data-set
S Sigmoid function
ψ Gaussian PDF
Ψ Gaussian CDF
U Uniform distribution
N Gaussian distribution
T N Truncated Gaussian distribution
KL Kullback-Leibler divergence
E Expectation
# Cardinality
∅ Empty set

B. Variables typesetting

We use bold font to denote a vector or a matrix variable. Variables with a hat denote an estimated quantity. Underlined
variables are rectified variables.

C. Variable Indexing

i denotes a dimension of latent variables. j denotes an element of a data-set.

D. Acronyms

Acronym Definition

ELBO Evidence Lower BOund
KL Kullback-Leibler (Divergence)
VAE Variational Autoencoder
PDF Probability Density Function
CDF Cumulative Density Function
NDVI Normalized Difference Vegetation Index
MAE Mean Average Error
MPIW Mean Prediction Interval Width
PICP Prediction Interval Coverage Probability
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