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Physics-driven probabilistic deep learning for the
inversion of physical models with application to
phenological parameter retrieval from satellite times
series

Yoél Zérah

Abstract—Recent Sentinel satellite constellations and deep
learning methods offer great possibilities for estimating the states
and dynamics of physical parameters on a global scale. Such
parameters and their corresponding uncertainties can be re-
trieved by machine learning methods solving probabilistic inverse
problems. Nevertheless, the scarcity of reference data to train
supervised methodologies is a well-known constraint for remote
sensing applications. To address such limitations, this work
presents a new generic physics-guided probabilistic deep learning
methodology to invert physical models. The presented method-
ology proposes a new strategy to combine probabilistic deep
learning methods and physical models avoiding simulation-driven
machine learning. The inverse problem is addressed through a
Bayesian inference framework by proposing a new physically-
constrained self-supervised representation learning methodology.
To show the interest of the proposed strategy, the methodology
is applied to the retrieval of phenological parameters from
NDVI time series. As a result, the probability distributions of
the intrinsic phenological model parameters are inferred. The
feasibility of the method is evaluated on both simulated and real
Sentinel-2 data and compared with different standard algorithms.
Promising results show satisfactory accuracy predictions and low
inference times for real applications.

Index Terms—Generative Models, Autoencoders, Satellite
Image Time Series, Self-Supervised Representation Learning,
Bayesian physics-guided learning, Inverse problems, Phenology
Monitoring, Large Scale.

I. INTRODUCTION

OWADAYS, vast amounts of data are acquired by

satellite-borne sensors for Earth Observation. In the last
decade, the Sentinel-2 (S2) satellites of EU’s Copernicus pro-
gram have been acquiring optical Satellite Image Time Series
(SITS), with high spatial, spectral and temporal resolutions.
These data enable large scale applications involving Earth
monitoring with stunning precision. In particular, S2 images
provide a valuable source of information to retrieve parameters
which have physical meaning related to properties of land
surface.
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Vegetation parameters estimated through remote-sensing are
essential to understand the ecosystems on earth. For instance,
biophysical parameters are highlighted as essential climate
variables (ECVs) supporting numerous applications in agricul-
ture, forestry and climate change. Phenological indicators have
also a great relevance for studying plant diversity, vegetation
structure and ecosystem change. The common agricultural
policy (CAP) supporting farmers has recently highlighted
the important role of crop phenology directly controlling
productivity [/1]].

Physical models describing the interaction between the
observed satellite data and the parameter under observation
play a key role for parameter estimation. The inversion of
physical models is usually proposed to infer the values of
the parameters characterizing the physical equations [2], [3]].
For instance, the well-known double-logistic phenological
model is considered for phenological parameter retrieval. The
inversion of this model is traditionally applied on Normalized
Difference Vegetation Index (NDVI) times series which quan-
tify vegetation dynamics [4]-[7].

Inversion methods in remote sensing have to face two major
challenges: (i) the diversity and complexity of landscape to
be studied and (ii) the scarcity of labeled data — although
this issue also plagues many remote sensing applications,
triggering the need to develop unsupervised methods [J].
Traditionally, the lack of human annotations is mitigated by
generating simulations from the physical model considering a
high number of combinations of input parameter values.

Inversion methods for parameter retrieval have exploited
in different ways the input-output simulation data pairs. For
methods based on look-up tables (LUT), the inversion problem
is reduced to the identification of the simulation set that
resembles most closely the measured one. As large tables
are required to simulate Earth observation scenarios, these
spectrum-matching techniques are highly inefficient and ex-
tremely slow [9].

Recently, some methods have proposed the combination of
traditional physics-based modeling approaches with state-of-
the-art machine learning techniques [10]-[12]. To solve the
inverse problem, these hybrid methods propose to train sta-
tistical regression algorithms with physics-based simulations.
One of the main advantages of using machine learning is that
these supervised models can find structure and patterns in
complex satellite data where physical processes are not fully
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understood. Therefore, informed machine learning methods
offer the combination of trainability and generalization of
machine learning while respecting the physical equations [/13]].

Despite being a very promising solution, these simulation-
driven regression methods involve important limitations for
large scale parameter retrieval applications. The main draw-
back is that simulations can not be always realistic and the
reality gap with the the real-world behavior might be large. In
this situation, machine learning models are not able to capture
relationships for unavailable training data situations, and thus
cannot generalize to out-of-sample scenarios. To overcome
these limitations, these simulated assisted methods require
large fine-tuning process to simulate training data sets that
can generalize (or be transferred) [14]. Another drawback of
these hybrid approaches is that simulations can be hindered
by uncertainties of real satellite data or unaccounted physical
phenomena which can introduce additional bias.

Probabilistic methods, such as Monte Carlo approaches,
provide a potential model inversion solution to avoid the
generation of synthetic training data scenarios. In remote sens-
ing, good performances are obtained by sampling intensive
approaches such as the Markov Chain Monte Carlo (MCMC)
[15]). Besides, these methodologies provide a reliable approach
to quantify the uncertainty of the retrieved parameters. Unfor-
tunately, these strategies can not be applied on large scale
inference problems because of its high computational cost.

To overcome the above mentioned drawbacks, this work
presents a new generic physics-guided probabilistic deep learn-
ing methodology to invert physical models. The inverse prob-
lem is addressed through a Bayesian framework by proposing
a new physically-constrained self-supervised representation
learning methodology. The proposed approach is based on
Variational Autoencoders (VAE), which combine Bayesian
theory with deep learning [16], [[17]. The main idea is to
consider that input parameters of a physical model are a
generative representation of data. Assuming that, the proposed
self-supervised methodology learns to infer latent variables
corresponding to the probability distributions of the intrinsic
physical model parameters, without relying on scarce reference
data or simulated data-sets.

To corroborate the potential of the proposed method, the in-
version of the above mentioned phenological vegetation model
is presented as an example. The presented pheno-VAE strategy
shows how physical priors can be incorporated into the self-
supervised learning process. As a result, probabilistic latent
distributions semantically bound to input model parameters
can be retrieved.

The remainder of this article is organized as follows. Section
[Mintroduces how self-supervised representation learning based
on VAE can be used to solve inverse problems. Section
presents how physical priors can be incorporated into
the learning process to estimate physical model parameters
as latent variables. Section describes pheno-VAE where
the proposed methodology is applied to invert a classical
vegetation phenological model on satellite optical time series.
Finally, experimental results shown in Section |V| corroborate
the interest of the presented model inversion strategy.

II. RELATED WORKS
A. Representation learning with Variational Autoencoders

Autoencoders (AE) are self-supervised neural networks that
learn low dimensional representations from unlabeled data.
An encoder reduces the dimension of the input data into
deterministic latent variables that are used by the decoder
to reconstruct the input data. Both the encoder and the
decoder are neural networks that are trained simultaneously
to optimize the compression of the input data. The loss is
usually a mean squared error (MSE) of the reconstruction.
VAE (see Fig. [T) embed the representation in the latent space,
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Fig. 1. Classical Variational Autoencoder

as random variables [|16]. Specifically, the encoder outputs the
parameters A of a so-called variational distribution. The vari-
ational distribution belongs to a parametric distribution family,
usually a Gaussian distribution. The VAE latent space being a
distribution, it fosters regular and continuous representations,
making it more suitable to represent high level features. Then
the realizations z of this distribution are taken as input to the
decoder. The decoder’s output are also distribution parameters,
from which reconstructions X are sampled. This is sometimes
called ancestral sampling [18]].

A well-known problem of VAE is the collapse of latent
variables [[19]], [20]. When the decoder is a too powerful gener-
ative model, it is able to reconstruct the input while ignoring a
subset of the latent variables. In this case, latent variables can
become redundant, and their distributions collapse. Another
challenge of representation learning with VAE is the model
identification issue related to the classical standard Gaussian
prior. Despite the existence of many distribution families, most
works only consider Gaussian latent spaces. This can limit the
ability of VAE to infer meaningful representations. In fact, the
latent distributions learned by traditional VAE architectures
aren’t easily interpretable because associated latent variables
are the generative factors of an unknown generative model.

B. Solving inverse problems with representation learning

Hybrid methods combining physics with deep learning offer
a new approach for solving remote sensing problems [13]].
The integration of physical priors into representation learning
methods is a promising solution to discover semantic latent
variables tied to the parameters of a generative physical model
[21], [22]].

Theoretically, three types of priors can be introduced to
guide learning toward physically consistent predictions [23|]
(see Fig. : “observational biases”, “inductive biases” and
“learning biases”. Observational biases are brought through
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Fig. 2. Incorporation of physical priors in machine learning models.

the choice of data that capture the physical properties of
interest. Inductive biases are incorporated by the tailoring of
models so that predictions are guaranteed to follow specified
physical behaviors. Learning biases are enforced through the
choice of loss functions. Several recent methods based on
generative models integrate physics with learning and induc-
tion biases by specifically tweaking the generative processes
[24], [25]. In [26], spectral unmixing, which is a common
remote sensing inverse problem, is performed by enforcing
specific constraints between the latent variables of a VAE.
Some strategies propose the incorporation of inductive bias
by integrating parametric physical models into representation
learning methodologies. These methods, which are based on
encoder-decoder architectures, consider physical equations as
a known generative model. Considering that, these strategies
replace the classical neural network decoder by a user-defined
model. As a result, the learned variables are semantically
tied to the model parameters and the encoder is trained
to approximate the inverse model. This solution performs
parameter inference with a simple forward pass of the input
data [27][28]]. From the representation learning perspective,
variables predicted from an inverted model can be thought of
as an interpretable representation.

As physical models are not perfect, some works such as [[27]
propose to infer representations that are partially interpretable.
For these strategies latent space has: (i) an interpretable part
bound to a user-defined decoder and (ii) a non interpretable
part bound to a neural network decoder.

The above described hybrid strategy is proposed in this
work to solve remote sensing problems. Beside proposing
the integration of a physical decoder, different strategies to
incorporate inductive and learning biases from physical data
are presented. To retrieve accurate uncertainties derived from
probabilistic latent variables, a novel training procedure based
on the sampling of the latent distribution is also proposed.
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Fig. 3. VAE with user-defined decoder

III. METHODOLOGY

The theoretical basis of VAE is firstly introduced through
the perspective of variational inference. Secondly, different
methodological contributions are presented to incorporate
physical priors through inductive and learning biases: (i) a new
Monte-Carlo reconstruction loss strategy for the incorporation
of physical models in VAE decoders, (ii) the possibility and
benefit of using variational distributions other than Gaussian
to better model physical quantities, (iii) the incorporation
of physical priors by imposing complementary relationship
constraints on latent distributions.

A. Amortized variational inference with VAE

Let there be a probabilistic model that has observations x
and latent variables z, with its joint density:

p(x,2) = p(x|z)p(z) ¢))

with p(z) the prior over the latent distribution and p(x|z)
the likelihood. Tt should be noted that p(x,z) is a generative
model of observations from latent variables, and z is then a
generative factor, and a representation of x. Computing the
posterior p(z|x) is known as the inference problem. Although
Bayes theorem,

p(x|z)p(z) _ p(x|z)p(2)

p(x) S p(x,z)dz’
defines a rigorous mathematical formulation for any infer-
ence problem, it is not directly applicable. This is because
| p(x,z)dz can become intractable due to the large dimension-
ality of z. To overcome this issue, instead of calculating the
exact posterior, approximation methods are commonly used.
In particular, variational inference methods approximate the
posterior with a so-called variational distribution qx(z|x), that
is restricted to belong to a A-parameterized distribution family
Ox.

To ensure that ¢ (z|x) is the best approximation of the pos-
terior among Q,, inference methods minimize the Kullback-
Leibler (KL) divergence between the posterior and its approx-
imation:

p(z|x) = 2)

gx(z) = argmin KL (ga(2z]x)||p(z]x)) . 3)

gx€Q
The KL-divergence is also untractable here because of the
evidence term, log p(x) = log [ p(x,z)dz.
KL (gx(z[x) [[p(2]x)) = E [log gx(z[x)]
— E[log p(x, z)] €
+ log p(x)



The optimization problem can be solved by using the ELBO
denoted in (3, by considering a prior distribution p(z) over
the variational distribution.

ELBO (¢x) = E [log p(x|z)] — KL (gx(2[x)[lp(z))  (5)

Because the evidence is constant with respect to A, maxi-

mizing the ELBO leads to minimizing the KL divergence term
in (3.
In VAE, the likelihood p(x|z, §) is embedded in the decoder,
and the posterior distribution gx(z|x, ¢) in the encoder, with
0 and ¢ the respective networks’ parameters. The encoder
infers the variational parameters A. The variational distribution
is typically chosen to be Gaussian: gy (z|x,¢) = N(z|\)
with A = [p,(x,¢), (%X, ¢)], with p, and X, being the
mean vector and the covariance matrix of the latent variables.
This choice enables the explicit computation of the KL loss
term with a standard Gaussian prior, and a differentiable
sampling strategyﬂ using the reparameterization trick (see (6)).
In practice, 3, is assumed to be a diagonal matrix, because it
prevents having to ensure definite positiveness and it reduces
the number of inferred latent parameters.

z=p,+3 % e~NOI = z~N(p,,%,) (6

The decoder infers the parameters of the distribution of
the reconstructions selected among a chosen parametric dis-
tribution family — although this aspect is often overlooked
in the literature. In this work, the distribution of the decoder
is chosen as Gaussian: p(x|z,0) = N (%x|uy(z,0), Xx(z,0)),
with py and 34 the corresponding mean vector and covari-
ance matrix. The covariance matrix ¥4 is commonly set as a
hyper-parameter (often set to identity matrix). It can also be
considered a trainable parameter or estimated from the input’s
distribution [29].

Traditionally, the negative ELBO (B) is the loss func-
tion minimized during the VAE training process. It has
two terms : L = L,.. + Lxr. The reconstruction term
Lree = —Ellogp(x|z)] is the expectation of the Negative
Log Likelihood (NLL). It forces decoded samples to match
the initial input data. £,... can be approximated as the average
NLL over a number L of Monte-Carlo samples of the latent
distribution (see (7). However in practice with a batch size
large enough, z is typically only sampled once per iteration
[16].

L
E [logp(x|z)] = — Z og p(x|z") (7
Typically, this reconstruction loss term corresponds to the
MSE assuming classical a unit-variance Gaussian decoder
distribution. Unfortunately, this assumption tends to over-
regularized VAE not allowing accurate uncertainty predictions.

The second term of the ELBO L = KL (ga(z|x)||p(2)),
is a regularization term that penalizes the mismatch of the
variational distributions to the prior p(z). This term has a
closed form with Gaussian latent spaces and the usual prior

N(0,1).

Iwith respect to variational parameters

B. Monte Carlo reconstruction loss for deterministic decoders

The informed deep learning methodology presented in this
work proposes the use of physical-based decoders F as shown
in Fig. 3] It implies that decoder outputs can no longer be
distribution parameters since only samples from p(x|z) are
available for reconstruction loss computation. Therefore, we
propose to approximate p(x|z) as a Gaussian distribution by
estimating its means and covariance parameters (Eq.(8) and
Eq.(9)). For each sample, both parameters are estimated by
considering several reconstructions obtained by applying a
Monte-Carlo sampling strategy on the corresponding latent
distributions. The difference between a classical Gaussian
decoder and our proposed approach is depicted in Fig. [).

1=
72 FE) ®)
i=1

K T
Sk(z) & > (R ) () ) )
The Monte-Carlo sampling of latent space brings up a new
hyper-parameter K : the number of latent samples drawn from
the latent distribution inferred from each input sample x. The
choice of K is a trade-off between accuracy of p, and 3,
and training time, because latent distribution sample requires
a forward pass through the decoder. Considering this, the
reconstruction loss term for the proposed Gaussian decoder
can be computed as

Lreelx) = 5 [0 = )T 35 (x = ax) + (2] (10

Y4 is approximated as a diagonal covariance matrix by
assuming the independence of reconstruction components.
Discarding the assumption of the covariance matrix diagonal-
ity could improve reconstruction quality, and add structure to
residuals [30]. However, covariance matrix inversion and de-
terminant computation would become prohibitively expensive
for any large dimensional data.

The Gaussian NLL encourages both the reconstruction error
of each sample to be small, and the reconstruction variance to
model uncertainty, even if the distribution of reconstructions
is not Gaussian. If the error isn’t small, the variance can be
increased to still minimize the loss (e.g. when the error cannot
be minimized, uncertainty is increased). The In (|]Xz|) term
prevents the variance from arbitrarily increasing as a trivial
way of minimizing the loss.

C. The variational distribution as an inductive bias

The use of a physical-based decoder implies that latent
variables are tied to physical measurements. Therefore, knowl-
edge about the probability distribution characterizing these
measurements can be used to discard the classical prior and
posterior Gaussian assumption. We advocate for choosing a
variational distribution family that matches assumptions about
each semantic latent variables, and a prior that accounts for
knowledge about the data-set.
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Fig. 4. Predicting parameters of a Gaussian decoder. Left: original Gaussian
decoder, with both the mean and the covariance being output by a trained
neural network. Right: a non-trainable decoder, where the mean and variance
are estimated from a set of K reconstructed samples X obtained by the Monte-
Carlo sampling strategy.

The choice of the variational distribution is limited to dis-
tributions that can be sampled in a differentiable way, so that
gradients can be propagated through. Three different sampling
techniques can be considered to enable various distribution
choices [16]:

1) A reparameterization trick to sample location-scale fam-
ily distributions [31]], such as the usual Gaussian distri-
bution (see (6)).

2) The composition of random variables by non-linear func-
tions enables to transform ‘“‘elementary” distributions into
others. For instance, log-normal, logit-normal, Dirichlet,
exponential distribution samples can be generated respec-
tively by composing Gaussian with logarithm, Gaussian
with sigmoid, Gaussian with softmax [32]] and uniform
with logarithm.

3) The inverse transform sampling method described in (T1))
can be used to sample any continuous random variable
z ~ A. This technique can be used since its inverse
cumulative distribution function (ICDF) F;l is is dif-
ferentiable almost everywhere. It entails sampling u from
U(0,1) (the uniform distribution), and then calculating
the desired z as:.

z=F;'(u), u~U0,1) = z~A (11

In practice, the gradient of the ICDF computed during
training may diverge. In intervals of zero density, the
CDF is constant at y = ¢ and its reciprocal has infinite
derivative at x = c¢. Therefore uniform sampling of
u must be done inside an interval I where the CDF
is strictly monotonous. In fact, due to the numerical
precision e, the interval I has to be restricted even further

(see (12)).
[=F4(X), X ={ze[0,1] st dF4(z) > ¢} (12)

As mentioned above, learned latent variables correspond to
physical measures being them typically bounded. If parameters

to be estimated are known to belong to a certain bounded
interval, their corresponding variational distributions should
have closed-support. Physical models can be mathematically
defined even with out-of-bounds parameters, but samples
generated with these parameters would not be realistic. Such
reconstructions could still minimize the reconstruction loss,
and hamper training while the encoder learns to infer wrong
models parameters. This can be especially detrimental when
some training samples are not well described by the physical
model. The VAE would then bend the model instead of
increasing latent uncertainty.

The above-described sampling techniques can be used to
sample bounded distributions. This can be achieved by com-
posing unbounded distribution samples, such as Gaussian
samples drawn from the reparameterization trick, with sig-
moid function (logisti hyperbolic tangent, arc-tangent,
etc...). However with this method, the resulting distributions
are distorted, asymmetric near the support bounds and may
even become bimodal. To avoid such limitations, the inverse
transform method enables the sampling of closed support dis-
tributions such as raised cosine distributions, Kumaraswamy
distributions, etc.

The bounds of the distributions can be inferred by the
encoder, or set by the user. In both cases, it may be convenient
to sample bounded distributions on the interval [0, 1] and then
perform affine scaling to the desired [a, b] interval (see (13)).

z€[0,1] = (b—a)z+a € [a,b] (13)

While the variational distribution should be chosen with
physical variables meaning in mind, it has to be paired with a
prior distribution that enables computation of the KL loss term.
It may unfortunately be more complicated to find a meaningful
prior whose KL divergence with the variational distribution
admits a closed-form expression.

D. Incorporation of order constraints into latent distributions

The presented sampling methods assume the independence
of latent variables which could not be true when imposing
interpretability in the encoded space. Physical variables of a
model may not be independent, and correlations and statistical
dependence can be typically observed between variables. For
instance, physical models associated to satellite time series
usually have input parameters associated to time, therefore
order relationships can be established. Different strategies
are proposed here to introduce dependence between latent
variables, while still performing independent sampling as is
done with classical VAE. By considering ancestral sampling
[18], we propose to constraint latent variables by an order re-
lation. Furthermore, to prevent the training from converging to
model parameters that are not physically plausible, additional
constraints are enforced.

Let there be n latent variables z;, on intervals [a;, b;] that
must be ordered as follows: z; < z;41, Vi€ [1,n—1]. Two
complementary situations can arise:

2More generally, composing unbounded samples with a monotonic, smooth
enough, bounded function.

3The composition of Gaussian distribution with logistic function is the logit-
normal distribution.
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Fig. 5. Marginal densities g(z;|x) and g(z;+1|x) of latent variables z; and
zi4+1 with intersecting support. If sampled independently, there is a non-zero
probability that z; > z;41.

(i) Vi, |as, bi)N]ait1,bir1] = 0. There is no intersection be-
tween the support of each two consecutive latent variable
distribution.

(ii) 3 such that [a;,b;] N [a;11,bi41] # 0. There is some
intersection between the support of two consecutive latent
distributions.

In the first case, the independent sampling of each z; will
always yield ordered results. In the second case, there is a
non-zero probability of sampling disordered samples z; and
z;+1 from two consecutive latent distributions ¢(z;|x) and
q(zi41x) (see Fig.[3). To ensure that latent samples are always
ordered in this second situation, we identify the three following
strategies:

1) Penalizing out-of-order latent samples: Enforcing or-
dered constraints by just penalizing latent samples that are
out of order would decrease the latent distributions widths
and prevent latent distributions from being too close. As a
result, the encoder would arbitrarily infer disjoint marginal dis-
tributions. This solution is not applicable in general, because
it introduces an inductive prior of distribution disjointedness
that is not necessarily assumed by the physical-based decoder.
Furthermore it would also hamper training by introducing
noise into the loss.

2) Inferring the distribution of the difference between two
variables: The second way of ensuring the order of samples is
to infer positive support distributions of the difference A, ,
between each pair of consecutive variables (z;11,z;) in the
ordered sequence (see (T4)).

Ziv1 = % + Azi+17 Vi € [[1,71 — 1H (14)

However this method increases the variance of the summed
latent variables. In fact, the density of the sum of random
variables is the convolution of the densities of these variables,
and the convolution of two densities results in a wider density.

3) Inferring the distribution of the maximum of two vari-
ables: To overcome previous methods shortcomings, we pro-
pose to use the distribution of the maximum of two consecutive
variables (z;4+1,2;) as the distribution of the greater variable

Zi+1-

To perform that, for consecutive latent distributions, it is
necessary to ensure that samples are ordered, and that the
expectations of the distributions are ordered. The former
is achieved with the rectification of latent samples, while
the latter is attained with the rectification of the variational
parameters and with the use an additional loss term on the
variational parameters. The sampling procedure of ordered
latent variables is illustrated in Fig. [

To rectify latent samples, the maximum value between a
sample of consecutive variables (z;, z;+1) is attributed to the
the greater variable z;41 (see (I9)). If the samples are ordered
beforehand, the rectification doesn’t change the value of the
greater variable. If samples were disordered, this sets the value
of the greater variable as equal to that of the lower variable
z;. The resulting rectified samples 2, , are then used instead
of z;+1 by the user-defined decoder.

Vi e [1,n —1] (15)

Zip1 = max (zi41, %) ,

The distribution of each z; is then the distribution of
the maximum of all previous consecutive variables z; =
mgx(zj)v Vi € [1,n—1]. The density (PDF) and cumulative
ISt

distribution function (CDF) of rectified latent variables are
available (see appendix [D) if the PDF and CDF of all marginal
latent distributions are available (marginal distributions can
even be from different distribution families). Sample recti-
fication is effective when distributions of consecutive latent
variables overlap.

Since the rectification step takes place after the variational
parameters inference, the model may rely solely on the recti-
fication step to produce ordered latent variables. When the
expectations of two consecutive latent distributions ¢(z;|x)
and ¢(z;41|x) are disordered, the rectification step will mostly
make consecutive latent samples identical. The encoder might
converge sub-optimally and even though latent samples would
technically be ordered, they would never be the right value.

To mitigate this, the expectation of consecutive latent distri-
butions must be ordered as well. The two additional proposed
techniques aim at ensuring that the encoder outputs variational
parameters satisfy this constraint. These methods can be
applied when a latent distribution parameters \;, associated
with z; controls the expectation of the distribution, such as the
mean Gaussian parameters. In the following, we will assume
that z; are Gaussian-based, and denote 1., their mean. Similar
methods can be designed with other parameters with other
distributions.

The rectification of the mean p,, of Gaussian-based latent
distributions (see (16)) is similar to the rectification of latent
samples.

M, = max (uziﬂ,uzi) , Vie[l,n—1] (16)

This hard constraint guarantees that the expectation of the
resulting distributions are ordered. However, rectifying latent
distribution parameters can again lead to sub-optimal training.
The encoder may not learn to output g, , > p,, Vi,
and may always rely on the rectification step to produce
distributions that have ordered expectations, leading to pi, .,
and p,, being always equal.
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Fig. 6. Procedure of latent samples z; ordering with maximum of latent
distributions, with latent distribution parameters \;.

To ensure proper learning, we add a soft constraint in
the form of a loss term in (17), that penalizes inference of
disordered latent distribution parameters.

N
Lorder = % Zﬁzl — Mz (17)
i=1
The order loss in can be interpreted as an additional prior
on latent distribution that the original KL term doesn’t enforce.
Finally, using the maximum of consecutive variables to
order the them does change their distribution (see appendix
D] for the density of the maximum of random variables). The
prior distribution and the KL loss term can both be expected
to become harder to derive for such latent distributions. In
such case, we advocate for using the latent distribution without
taking the ordering procedure into account in the computation
of the prior and the KL term.

IV. APPLICATION: INFERRING PHENOLOGICAL
PARAMETERS FROM NDVI TIME SERIES

The interest of the proposed model inversion methodology
is illustrated by a well-known parameter retrieval application.
Specifically, the goal is to infer the probability distributions
of the intrinsic phenological parameters from NDVI time
series by considering a vegetation phenological model. This
section presents the application of the proposed informed
deep learning method in this specific application, which is
denoted by pheno-VAE. The two data-sets used for training
and validation purposes are also described here.

A. The phenological model as physics-based decoder

The NDVI quantifies land surface greenness and photosyn-
thetic vegetation vigor [33[]. It is derived from Near Infra-
Red (NIR) and Red reflectances (R) of a land surface, and its
expression is:

NDVI = EMIRZ PR g 9y,
PNIR + PR

This index is typically close to 1 for high densities of vegeta-
tion, close to O for bare soil, and negative for water.

(18)

TABLE I
PARAMETERS OF THE DOUBLE-LOGISTIC PHENOLOGICAL MODEL.

Variable | Description Range [a, ]

Maximum of
M double logistic -1, 1]
Minimum of

double logistic

DOY][*| of Start Of Season,
the start of NDVI growth

DOY of Maturity,
the end of NDVI growth

DOY of Senescence,
the start of NDVI decay

DOY of End Of Season,
end of NDVI decay

[-1, 1]
S0S [-45, 410]

mat [-45, 410]

sen [-45, 410]

[-45, 410]

eos

The characterization of the evolution of vegetation phe-
nology using NDVI derived from remote sensing is widely
addressed in the literature [34]-[36]. In general, the annual
evolution of NDVI of some vegetation and crops can be well
fitted with a double-logistic model [6], [37]], [38]. The inver-
sion of this phenological model from NDVI time series allows
extracting phenological parameters, that typically characterize
phenophases of the observed vegetation. The model we use
here to characterize seasonal vegetation cycles on yearly time
series is a 6-variable phenological model. This phenological
model is described by the following equations:

QZ (t) = (M - m) (Ssos,mat(t) - Ssen,eos(t)) +m; (19)

-1
Swoma(t) = (1 +exp (QM)) . 200

mat — sos
—1
— 2t
Ssen,eos(t) = (1 + exp <2M>> . (20b)
eos — sen

This model accounts for vegetation annual cycle, with a growth
phase, a stagnation phase and a decay/harvest phase. The 6
phenological parameters z = (M, m,sos, mat, sen,eos) are
described in Table [, and their effects on the model are
shown in Fig. [/| Phenological parameters are all bounded. As
observed, M and m have the same bounds as NDVI itself.

The range of phenological dates (sos, mat, sen, eos) are
the days of a given calendar year, extended by 90 days. The
45 days considered before the 1st January and after the 31st
December allows less restrictive estimations, and takes into
account vegetation whose cycle started or ended outside the
calendar year. This range is a prior knowledge about the data,
like the double-logistic model itself.

Following the architecture depicted in Fig. |3 the proposed
pheno-VAE architecture proposes to use the double-logistic
phenological model as an untrained, physical-based decoder.
Each variable z; of its 6-dimensional latent space is semanti-
cally bounded to a phenological parameter. The reconstruction
term is computed as discussed in Section [[IlI-B] To take into
account that phenological parameters are bounded, we propose
Truncated Gaussians 7N as latent distributions. The latent
sampling process is performed with the inverse transform
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Fig. 7. Examples of double logistic curves simulating different phenology
for different vegetation covers, with different phenological parameters.

method described in (T1). The phenological variables are
ordered: m < M, and sos < mat < sen < eos, meaning the
associated latent variables must be ordered in the same way.
For that, the phenological dates are sampled as the maximum
of all previous phenological dates, using the three strategies
defined in Section [[lI-D3} (i) the rectification of samples z;
in (T3), (ii) the rectification of parameters p,, of Truncated

Gaussians in (T6), (iii) the incorporation of an order term to
the ELBO loss in (17).

As the latent variables of pheno-VAE are used as pheno-
logical model parameters, their distributions will be referred
to as phenological distributions.

B. Data-sets

Two data-sets are used to evaluate the performances of
pheno-VAE for phenological parameter retrieval. The first
data-set is composed of real satellite observations of annual
NDVI time series and is used for pheno-VAE training and
qualitative validation. The second data set is composed of
simulated crop NDVI profiles. The construction of this data-set
is proposed for three main reasons: (i) to perform a quantitative
evaluation of parameter retrieval on a large scale data-set,
(i1) to assess the robustness of pheno-VAE to the noise of
complex satellite observations, (iii) to compare the results of
pheno-VAE against supervised methods. Examples of NDVI
time series from both of data-sets are illustrated in Fig. [0]

1) S2 data-set: It is composed of 10° annual time series of
pixels from 31TCJ Sentinel-2 tileE| (Toulouse area in southern
France) and it is available in [39]. The corresponding NDVI
time series are computed from the spectral band 4 (Red)
and 8 (Near Infra-Red). The resulting time series describe
different land cover classes which can be associated to the
class legend used in the CES OSCﬂ land cover map [40].
Accordingly, a large number of time series do not represent
vegetation classes following the double-logistic phenological
model. Despite the availability of land cover class information,
it must be remarked that such information is only used for
validation purposes. Land cover classes do not intervene in
the training procedure of pheno-VAE, and all samples are
taken into account within a single training. The distribution
of the land cover classes in the data-set is detailed in Table
[VIIT of appendix [A] The time series are acquired on irregular
time intervals for two main reasons. Firstly, the two Sentinel-
2 satellites have intersecting ground footprints and some
locations get increased coverage. Secondly, cloud cover leads
to inconsistent temporal sampling for each pixel on the ground
(see Fig. [I2] in appendix [A). For each time series, a validity
mask is available to denote the valid satellite observations. As
pheno-VAE encoder learns from regular sampled time series,
this mask is used to linearly interpolate raw time series to a
common regular temporal grid.

2) Simulated data-set: The corresponding data set is com-
posed by a large number of simulations obtained by the
double-logistics model. A high number of combinations of
input parameter values are generated by considering the input
parameter ranges of Table[[l] As input parameters from simula-
tions are known, this data-set allows us to compute quantitative
metrics to validate the performances of pheno-VAE.

5Sentinel-2 images are projected onto 110 km x 110 km overlapping tiles
aligned with NATO’s Military Grid Reference System. The tile naming con-
ventions indicates its position across the Earth. For more information, please
see https://labo.obs-mip.fr/multitemp/the-sentinel- 2- tiles-how- they-work/,

SFrom the french Centre d’Expertise Scientifique sur I'Occupation des Sols,
meaning scientific expertise centre for land cover. It brings inter-laboratory
teams under the Theia Data and Services centre for continental surfaces. https:
/Iwww.theia-land.fr/en/homepage-en/


https://labo.obs-mip.fr/multitemp/the-sentinel-2-tiles-how-they-work/
https://www.theia-land.fr/en/homepage-en/
https://www.theia-land.fr/en/homepage-en/

To generate synthetic time series, phenological parameters
are firstly sampled from uniform distributions. The double-
logistic model is then used to produce the corresponding NDVI
temporal profiles. To simulate the irregular temporal sampling,
binary validity masks of real S2 time series are considered.
These masks are applied on simulated time series to select
time series values at certain dates. To generate more realistic
time series simulations, a Gaussian noise of randomly sampled
standard deviation o, ~ 1(0,0.1) is added to the NDVI
profile. It accounts for epistemic uncertainty, as no real time
series is perfectly described by the phenological model. The
resulting time series are finally interpolated at a regular 5-days
time grid. The data generation procedure is depicted in Fig.

The configuration of the parameter sampling procedure is
detailed in the following. For o, which represents the standard
deviation of the noise in the observations, we will chose a
maximum value of 0.1 which corresponds to 10% of the
maximum expected range for NDVI values. For the minimum
value of NDVI (m), we define the range between 0 (bare soil)
and 0.4 (presence of vegetation). The maximum value of NDVI
(M) is defined relative to the minimum value. In general, it
can be considered that M is at least 0.3 higher than m for
crop classes, and M can not be higher than 1.

A strategy is proposed to enforce the temporal order of
the 4 dates characterizing the phenological stages. The idea is
to consider that a the temporal parameter can be defined by
its previous one. End of season (eos) is allowed to be right
after Senescence and up to 90 days later. Senescence (sen) is
defined in the same way with respect to maturity (mar) and
mat follows the same rationale with respect to start of season
(sos). For sos we would need to give a very wide prior in
order to take into account winter and summer crops. Instead
of doing that, we introduce an additional variable sos; which
will model the probability of summer crop. This probability is
used to adjust the starting point of the interval of prior values
for sos. We assume that the earliest sos for a winter crop is
on day 30 (end of January) and that the earliest summer crop
can have an sos of 120 (late April). sos; and o,, are additional
variables of the generative process of synthetic data that will
not be inferred during experiments.

Sampling of parameters for synthetic time series generation
is summarized in Table [

TABLE I
DISTRIBUTIONS OF REFERENCE PHENOLOGICAL PARAMETERS SAMPLED
FOR NDVI TIME SERIES SIMULATION WITH THE DOUBLE-LOGISTIC
MODEL.

Parameter | Sampling interval | Parameter | Sampling interval

m U(0,0.4) M U(m, 1)

5084 U(30,120) sos U(sos;, sos; + 90)
mat U(sos,sos +90) | sen U (mat, mat + 90)
eos U(sen,sen + 90) | on 4(0,0.1)

Fig. 0 shows some simulated NDVI time series obtained by
the proposed generation process. In it, the synthetic NDVI
profiles are compared with real S2 time series describing
three crop classes. As it can be observed, realistic simulated
time series composed the synthetic data set. Even though the

Double-logistic
model
Double-logistic time series
\ Date masking
Valid dates mask
Masked time series
Noise addition
Gaussian noise Noisy masked time series
| Interpolation
Regular dates grid

Interpolated noisy time series

Fig. 8. Procedure of generation of a data-set of synthetic NDVI Time series.

synthetic data-set is generated to be as realistic as possible, it
is still different from the S2 data-set. Because of the uniform
sampling of phenological dates in the synthetic data-set, there
is more diversity in the phenology than the S2 data-set. On
the one hand, the S2 data-set is biased by the samples that
have been chosen among available real NDVI time series.
All samples belong to the same S2 tile so NDVI time series
of pixels of the same type are highly correlated, and cloud
coverage similarly affects all time series. On the other hand,
the synthetic data-set contains samples whose phenology that
may not be frequent in reality, or even phenology types that
don’t exist. These differences will have to be taken into
account in the interpretation of the results.

C. Encoder of pheno-VAE

Pheno-VAE uses the encoder described in Fig. corre-
sponding to a multi-layer perceptron requiring regular (tem-
poral sampled) NDVI time series of single pixels. This encoder
architecture was chosen simple to show that satisfactory results
can be obtained without using a complex encoder. Pheno-
VAE’s encoder outputs the parameters of truncated Gaussians
iz, and o, for each variable z;. The support [a;, b;] of each
truncated Gaussian is set to [0, 1]. Each sample drawn from
these distributions is scaled accordingly to the range described
in Table [} using the procedure described in (I3), before being
transferred to the physics-based decoder.

The neural network is implemented using PyTorch. As there
is no temporal encoding of time series, its input layer of size
73 is presented with annual NDVI time series sampled in a
5-days regular grid.
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Fig. 9. NDVI time series of samples of S2 data-set (left) and simulated data-
set (right)

D. Latent prior distribution and KL term in pheno-VAE

Because of the variety of training samples in both data-
sets, in terms of phenology or even in terms of aleatoric and
epistemic uncertainty, it is difficult to design a very restrictive
prior. We chose a uniform distribution for all latent variables
over their respective density support. The expression and
derivation of the KL divergence between Truncated Gaussian
and uniform distribution is provided in appendix [E|

In practice, this loss promotes the inference of Truncated
Gaussian posteriors with larger variances, while not penalizing
their locations. Samples of the simulated and S2 data-sets have
a wide variety of potential phenological parameters, and this
loss doesn’t promote any particular value for inference. In the
S2 data-set, many samples don’t have a phenology (buildings,
mineral surfaces). For these time series, the reconstruction
error should be high and variance of phenological parameters
should increase to express epistemic uncertainty.

Neural Network

NDVI Time Series

Latent distribution

parameters

H=lzhE

73

300 2%x6

400

500

‘:] Fully connected layer ‘:l ReLU activation El Sigmoid activation

Fig. 10. Encoder architecture used in pheno-VAE, with 4 fully connected
hidden layers with ReLU activation.

E. Loss of pheno-VAE
The loss functions minimized during the pheno-VAE train-
ing is composed by the next three terms :

Epheno—VAE = L:rec + 5£kl + ﬁorder“ 21D

The loss components are:

e L,.. the Gaussian NLL reconstruction loss,

o L the KL divergence between the Truncated Gaussian
latent variables and the uniform prior.

o L,rder term to promote ordered latent variables.

In practice, L,rq4e converges to zero very fast, leaving only
the two other terms in most of the training process. There is a
tension between the two remaining terms: the reconstruction
loss improves the quality of the reconstructed time series, and
the Kullback-Leibler divergence acts as a regularizer of the
latent space. The balance between these two terms is adjusted
by coefficient S for the KL term as proposed in [5-VAE
[41]]. The influence of the hyper-parameter 3 is studied in the
following section.

V. EXPERIMENTS

In this section, the experimental setup and the evaluation
metrics used to evaluate the quality of the inferred phenolog-
ical parameters are described, then the obtained results are
presented.

A. Computing Environment

All computations performed for this work were executed
using the CNES’s High Performance Computing Center in-
frastructure. Specifically, we used the following hardware to
run our experiments :

e CPU model: Intel(R) Xeon(R) CPU E5-2698 v4
o GPU model: NVIDIA Tesla V100-SXM2-32GB
« RAM: 64 GB.



B. Experimental setup

Different experiments are carried out to assess the perfor-
mances of pheno-VAE. Firstly, the reconstructions of NDVI
time series obtained by pheno-VAE trained on S2 data-set
are visually evaluated. Secondly, a quantitative assessment
of pheno-VAE is performed by inferring the phenological
parameters of the simulated data-set. The statistical assessment
is carried out through two experiments : (i) a first experiment
to evaluate the influence of 8 and (ii) a second evaluation
to compare pheno-VAE with different standard parameter
retrieval algorithms. For the comparison, a Neural Network
Regression (NNR) method, a Curve Fitting (CF) algorithm and
a Markov chain Monte Carlo (MCMC) algorithm and allowing
the estimation of parameter uncertainties are considered. All
these methods perform the inversion of the phenological model
on the NDVI time series of single pixels.

The NNR method is proposed as a hybrid physics-assisted
machine-learning solution for the output regression problem.
The supervised training of this network is performed using the
simulated data-set in order to estimate the mean and variance
of the Truncated Gaussian distributions associated to the 6
phenological parameters. The training of the supervised re-
gression algorithm is performed by applying the Negative Log-
Likelihood of Ordered Truncated Gaussians (see appendix [D).
Knowing the phenological parameter values of the synthetic
data sets, the NLL compares the phenological distributions
estimated from the regression algorithm against the known
phenological parameters. To ensure that model complexity
doesn’t influence comparative results, the architecture of the
regression network is identical to that of pheno-VAE (see Fig.
10).

Concerning the MCMC, this algorithm is typically used to
sample from a probability distribution. The main advantage of
this method is that it allows to draw samples where the next
sample is dependent on the existing sample, called a Markov
Chain. MCMC can be used in Bayesian inference by using it to
sample the intractable posterior distribution, i.e. the parameters
of the model to invert. Following the methodology of [[15]], we
use Hamiltonian Monte Carlo as per the NUTS algorithm [42]]
as implemented in the NumPyro library [43], [44].

To implement Bayesian inference through MCMC we need
to define the likelihood for the observed data. To measure
the goodness of the model fit to the data, the double-logistic
function is used. At inference, NDVI time series irregularly
sampled are injected into MCMC algorithm. As prior distri-
butions, we choose the same uniform distributions described
in Table

The CF algorithm solves a non linear least squares problem
for each NDVI time series, with a trust region reflective
algorithm [45]]. This method can take the boundaries of the pa-
rameters into account. Although it is not a Bayesian approach,
the CF algorithm outputs along with the predicted parameters,
a covariance matrix that can be used to estimate prediction
intervals. Unfortunately, as the inversion is frequently ill-
conditioned, the estimated parameters covariances often di-
verge. Thus we discard confidence intervals estimation with
this method. Contrary to other inversion methods presented

here, the CF requires an initial guess zp on the parameters
(i.e. it requires more prior information). The initial guess we
used to fit the phenological model on NDVI time series is
detailed in Table This method was implemented by using
the curve_fit function of python’s scipy.optimize library.

TABLE III
INITIAL GUESS OF THE PHENOLOGICAL PARAMETERS FOR THE CURVE
FITTING ALGORITHM.

Parameter | Initial guess | Parameter |

M
mat
eos

Initial guess

max (y;)
argmax (y;) — 15
arg max (y;) + 30

max (y;)
arg max (y;) — 30
arg max (y;) + 15

K

It should be noted that CF, MCMC and NNR perfor-
mances are provided as an upper bound for parameter retrieval
performances. The limitations of both strategies for large-
scale parameter retrieval applications have been previously
described in the introduction section. Besides NNR and MCC
methodologies, two training pheno-VAE scenarios are con-
sidered to evaluate the influence of the training data-set.
The two trained pheno-VAE configurations are trained on the
S2 data-set, and the other with the synthetic data-set. The
characteristics of the different methods used for the qualitative
assessment experiment are summarized in Table

C. Evaluation metrics

The three metrics described in the following are used to
evaluate the accuracy of the retrieved parameters and their
corresponding uncertainties. The synthetic validation data-set
is composed of 10000 samples.

1) Point estimate inference error: The Mean Absolute
Error (MAE) between the known parameter value and the
obtained prediction is computed. As proposed methods predict
probabilistic outputs, the prediction value obtaining the best
MAE is considered. The distribution mode is proposed for the
NNR, pheno-VAE (S2 & sim), and the median for MCMC. As
MAE is sensitive to outliers, box-plots of the absolute errors
are provided in appendix

2) Prediction interval metrics: Prediction intervals are at
the core of uncertainty quantification [46], [47]]. In this work,
we estimate the prediction intervals of phenological variables
from the inferred distributions (i.e. the distribution approxi-
mate for MCMC, the truncated Gaussian distribution inferred
with NNR and in the latent space of pheno-VAE). To assess
the quality of these intervals, two prediction intervals metrics
widely used in the literature are considered [48]], [49]:

e The Mean Prediction Interval Width (MPIW). Because it
is sensitive to outliers, box-plots of the prediction interval
widths are provided in appendix

o The Prediction Interval Coverage Probability (PICP). It
measures the frequency of the model parameters true
value being inside the prediction interval, and its value
should be as close to the confidence level as possible.

In the following, these metrics are computed for prediction
intervals with a selected 90% confidence level, by using the
595 percentile intervals. Results obtained with different



TABLE IV
CHARACTERISTICS AND HYPER-PARAMETERS OF EACH EXPERIMENTS INFERENCE METHODS.

. .. . . . . . Parameter
Method Supervised Training Optimizer  Batch size  Learning Rate  Epochs  Latent samples  Point estimate distribution
CF X X X X X X X Deterministic X
. Full posterior
MCMC X X X X X X X Median approximate
NNR v Simulated 5 dam 2048 51074 500 x Mode Truncated
ata-set Gaussian
pheno-VAE Simulated _4 Truncated
(Sim) X Data-set Adam 2048 5.10 200 10 Mode Gaussian
pheno-VAE x S2 Data-set  Adam 2048 5104 200 10 Mode Truncated
(S2) Gaussian

confidence levels are shown in appendix and [C-C] The
equations of these metrics are provided in appendix.

The three evaluation metrics are computed by using a K-fold
cross-validation procedure, in which the data-set is divided
into K folds. In each round, a model is trained using K —
1 of the folds as training data and tested on the remaining
set. Metrics are then measured by averaging the performance
values computed on each subset (K models). This strategy
is applied to validate deep learning approaches. For MCMC,
metrics are independently obtained on K subsets of the total
data-set. The averages and standard deviations of the results
on those subsets are computed. In the following, K is equal
to 6.

D. Evaluation of the reconstruction results

To assess the performances of pheno-VAE, a visual evalua-
tion is presented in Fig. [IT] This figure shows the reconstruc-
tion of different S2 NDVI time series obtained by the pheno-
VAE model trained on S2 data. For each example, the esti-
mated phenological parameter distributions are also illustrated.
In most cases shown here, the setting 8 = 0 imposes that
no prior information from the data-set is incorporated. This is
different from our uniform prior that assumes that phenological
variables are evenly distributed over their possible range.

In general, the error and variance of reconstructions are
both low for temporal profiles well-characterized by the
phenological model. The estimated phenological distributions
seem well centered on likely phenological parameters. Fig.
@] shows NDVI time series of a pixel of corn, the inferred
phenological distributions and the reconstruction of its mode.
The reconstruction curve is observed to accurately match the
original time series. The distributions of phenological dates
characterize well the growth and decay phases of this summer
crop.

The influence of 8 can be evaluated by comparing the results
observed on Fig. and [TT[b)] The same NDVI time series
of a corn pixel is taken as input by two pheno-VAE models
with different values of 3. The modal reconstructions are
very similar. With increasing 3, the phenological distributions
widen, and the variance of reconstructions increases. This
is coherent with the influence of the KL loss terms, that
discourages narrow latent densities. With both results well
matching the original NDVI time series, the choice of 3 is
to be made considering the prediction interval metrics.

On Fig. a protein crop time series shows how the
presence of data gaps can lead to bad phenological parameter
estimation. In this figure, the phenological cycle is easily
identifiable. However, bad weather in winter led to a lack
of data points for the first two months, and the backward
extrapolation of points at pre-processing has kept the NDVI
artificially constant, at a higher value than after harvest. As the
encoder of pheno-VAE doesn’t take into account the temporal
information, here reconstruction is disrupted by the gap-filling
step. This extrapolation artifact made the input time series not
well described by the phenological model at the beginning
of the year. The start of season estimate is inaccurate, yet
the distribution large spread indicates greater uncertainty. This
bad inference of the start of season seems to have prevented
a good estimation of the maturity date as well, with this time
a narrow distribution. Nonetheless the senescence and end
of season seem well inferred. Similarly with a broad-leaved
forest time series (Fig. [T[d)), senescence and end of season
distributions are not well positioned due to interpolated data
points at the end of year. These results show that the gap-filling
pre-processing task can lead to wrong parameter estimations
when long data gaps include key phenological dates. This
highlights the need for encoders that don’t rely on interpolated
inputs. However, that would be out of the scope of our current
contribution.

In Fig. there are several crops in the pixel, and the
NDVI time series shows several phenological cycles. As the
model can only take one cycle into account, it only fits the
largest, and takes the average of the remaining signal. The
distribution of the minimum of NDVI is very large, indicating
uncertainty.

In Fig. the phenological model doesn’t suit at all
the NDVI time series of a dense building pixel. Therefore,
reconstruction errors are high. However phenological distribu-
tion variances increase to take this epistemic uncertainty into
account. These results show that large uncertainties could be
associated to the model discrepancy with the data.

Another remark is that, inferred marginal phenological dis-
tributions sometimes show significant overlap. This highlights
the interest of the proposed order constraints on the latent
distributions, as reconstructions are consistent with the pheno-
logical model, and variables constraints are always respected.

More reconstruction examples are available in appendix
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Fig. 11. Reconstruction and phenological parameters distributions from the encoding of the NDVI time series by pheno-VAE trained on S2 data-set. Central
quadrants, S2 NDVI time series (black), reconstructions from the modes of phenological parameters distributions (red), and reconstruction 5"-95™ prediction
interval - Upper quadrants: Truncated Gaussian distributions of the 4 phenological dates, sos (blue), mat (red), sen (dark green), eos (magenta) - Right quadrants:
Truncated Gaussian distributions of M (orange), and m (light green) - Upper and right quadrants: distribution densities are in solid lines, distribution modes

are in dashed lines.

E. Influence of the KL loss term on pheno-VAE performances

The impact of the KL term is studied by comparing results
obtained by using different S values. In this experiment,
pheno-VAE model is trained with samples from the S2 data-
set. The prediction interval metrics presented here are derived
for a confidence level of 1 — o = 0.9.

As previously observed, the KL term tends to increase the

dispersion of the phenological parameters distributions. The
MPIW (Table and PIW (Fig. 20)) increases for the

phenological dates along with 8 and consequently the PICP
(Table also increases.

The MAE results (Table tend to increase along with
B, decreasing performance, although the distributions of the
absolute errors (Fig. [[4) only worsen significantly above a
certain threshold of 3. These results corroborate that the hyper-
parameter S must be selected by using an independent vali-
dation data-set. For the prediction intervals to be informative,
the KL term needs to be high enough, while keeping it below
a certain threshold ensures that precision is acceptable.



TABLE V
EVALUATION PERFORMANCES OBTAINED ON A SIMULATED DATA-SET FOR DIFFERENT PHENO-VAE MODELS TRAINED ON THE S2 DATA-SET, AND FOR
VARIOUS KL LOSS COEFFICIENTS 3. PREDICTION INTERVALS ARE DERIVED FROM PHENOLOGICAL DISTRIBUTIONS WITH A CONFIDENCE LEVEL

1—a=009.
Exp. | M m 5058 mat sen eos
pheno-VAE (S2, 5 = 0) 0.05+£0.00 0.02+£0.00 11.13+046 10.22+0.08 11.01+0.47 13.35+0.52
pheno-VAE (S2, 5 = 1) 0.05 1 0.00 0.02+0.00 11.824+027 10.38+0.33 11.61+£0.65 13.48+0.69
pheno-VAE (S2, 5 = 2) 0.05£0.00 0.02+£0.00 11.934+0.60 10.58+0.25 12.15£0.60 14.754+0.97
pheno-VAE (S2, 5 = 5) 0.07 £0.00 0.02+£0.00 14.874+0.21 1437+0.61 1837£0.75 18.69+0.47
(a) Mean Absolute Error
Exp. | M m sos mat sen eos
pheno-VAE (S2, 5 = 0) 0.67 +0.01 0.95+0.01 0.34+0.05 0.254+0.03 0.34+0.04 0.58 +0.02
pheno-VAE (S2, 8 =1) 0.60 +0.01 0.954+0.01 0.53£0.02 0.48 £0.02 0.55+0.01 0.71£0.02
pheno-VAE (S2, 5 = 2) 0.61+£0.02 0.94+£0.01 0.64£0.02 0.56 £0.01 0.64+0.01 0.76 £0.03
pheno-VAE (S2, 5 = 5) 0.63+0.03 0.92 +0.01 0.77 +0.01 0.69 + 0.02 0.69 +0.02 0.83+0.01
(b) Prediction Interval Coverage Probability
Exp. | M m sos mat sen eos
pheno-VAE (S2, 8 = 0) 0.124+0.01 0.13+0.00 14.69 +-2.85 881+1.11 13.754+1.01 30.60+1.83
pheno-VAE (S2, 5 =1) 0.11 4+ 0.00 0.12£0.00 22974138 1824+1.05 2335£1.18 36.60+2.38
pheno-VAE (S2, 5 = 2) 0.11+£0.00 0.12+0.00 2793+1.54 22814075 2843+1.53 43.30£3.10
pheno-VAE (S2, 8 = 5) 0.16 +0.00 0.124+0.00 41.79+1.64 38244165 42.18+1.36 59.64+2.30

(c) Mean Prediction Interval Width

Also, different performances are obtained for the different
phenological parameters. The minimum of NDVI m is the best
estimated parameter, as with simulated time series, a large part
of available data points are around the value of the minimum
— although, it is so well estimated that its prediction interval
almost always contains it, overshooting the PICP = 1 — «
target. The parameter M is more challenging to estimate than
m. The value of the true maximum of the phenological model
can differ from the parameter M when mat and sen are close.
The highest errors are obtained on phenological dates, most
certainly because of the gap-filling problem highlighted with
reconstruction results (such as with Fig. and[TI[d)). This
limitation is more visible in MPIW values obtained for sos
and eos than mat and sen. This is because the pheno-VAE is
confronted with more severe extrapolation aberrations at both
ends of the time series than in the middle, where interpolation
is better, with higher temporal availability in the original time
series.

In the following, the setting 8 = 2 will be used, as it
increases the PICP without degrading too much the MPIW
and the MAE.

F. Quantitative assessment of pheno-VAE

Quantitative results obtained by pheno-VAE trained on S2
data-set, pheno-VAE trained on the synthetic data-set, MCMC
and NNR by inferencing the phenological distributions of the
simulated data-set are compared here. Obtained results are
presented in Table

Best overall performances are obtained by the MCMC, for
which the distribution of absolute errors is the lowest (Fig.
[I4), despite having a little higher MAE (Table than
NNR. MCMC also attains PICP that is close to the confidence
level o (Table and Fig. [T7), with prediction intervals

significantly narrower than other presented methods. Pheno-
logical distribution inference is not limited by a distribution
family prior and directly samples phenological distributions,
contrary to the other methods studied here. It is also not
affected by missing data gaps because MCMC do not require
regularly temporal input data. The results of MCMC could
be improved by increasing the number of distribution samples
and steps, at the expense of greater computation costs. Despite
the promising MCMC results, its computing time required
is much longer for MCMC than deep learning methods (see
Table [VII). It justifies why such approach can not be applied
on operational parameter retrieval applications.

NNR, has absolute errors that are a little higher and larger
prediction intervals, however it has the best PICP, that is
the closest to the confidence level « for all phenological
variables. Those good results are expected, considering that it
is a supervised method, with the training data-set being very
similar to the testing data-set. Furthermore its loss doesn’t rely
on reconstruction, and therefore isn’t affected by the irregular
temporal sampling of real S2 time series.

The CF approach predicts phenological parameters with
a MAE between that of MCMC and NNR, except for mat
and sen which are on par with the inference of pheno-VAE.
However we observed that this method was less reliable than
the other presented here, as it didn’t converge to a solution
for about 5% of the time series (the results presented in Table
IVI(a)| excluded those failed predictions).

The results of pheno-VAE are less good than MCMC and
NNR. It has higher MAE, and despite similar prediction
interval sizes, it underestimates uncertainty with lower PICP.
Results also show different behaviors for the two pheno-
VAE trained on different data-sets. As expected, slightly better
results are obtained when pheno-VAE is trained on simulated



TABLE VI
EVALUATION PERFORMANCES OBTAINED ON A SIMULATED DATA-SET FOR DIFFERENT EXPERIMENTS OF INVERSION OF THE PHENOLOGICAL MODEL.
PREDICTION INTERVALS ARE DERIVED FROM PHENOLOGICAL DISTRIBUTIONS WITH A CONFIDENCE LEVEL 1 — a = 0.9.

Exp. | M m 5058 mat sen eos
pheno-VAE (S2, 8 = 2) 0.05 £ 0.00 0.02+0.00 11.93+£0.60 10.584+0.25 12.15+£0.60 14.754+0.97
pheno-VAE (Sim, 8 = 2) 0.06 £ 0.00 0.02 +0.00 8.894+0.53 1051+£049 10.59+0.52 9.23+0.26
MCMC 0.03 +0.00 0.02+0.00 7.18+£0.70 9.574+0.95 993+1.00 1042+1.18
NNR 0.04 £0.00 0.01+0.00 6.69 +0.03 7.54+0.05 6.91+0.05 6.70 + 0.07
CF 0.07 £0.00 0.01 +0.00 758+1.07 11.74+120 10.754+1.20 7.37+1.25
(a) Mean Absolute Error
Exp. | M m sos mat sen eos
pheno-VAE (S2, 8 = 2) 0.61+0.02 0.94+0.01 0.64 +0.02 0.56 +0.01 0.64 +0.01 0.76 +0.03
pheno-VAE (Sim, 8 = 2) 0.67£0.01 0.99 £ 0.00 0.67+0.05 0.60+0.01 0.66 +0.01 0.77+£0.02
MCMC 0.89+0.01 0.86+0.01 0.84+0.01 0.85+0.01 0.83+0.01 0.83+£0.01
NNR 0.90 + 0.01 0.90 + 0.01 0.89 + 0.00 0.89 +0.00 0.89 +0.01 0.88 + 0.00
(b) Prediction Interval Coverage Probability
Exp. | M m sos mat sen eos
pheno-VAE (S2, 3 = 2) 0.11+0.00 0.12+0.00 27.93+1.54 22.81+0.75 2843+153 43.30%3.10
pheno-VAE (Sim, 8 = 2) 0.14+£0.01 0.14+£0.00 21.024+0.76 23.25+132 27.09+1.16 25.23+0.80
MCMC 0.13+0.01 0.05+0.00 22.134+1.75 25.03+1.94 22.74+1.79 21.50+2.29
NNR 0.16 £ 0.00 0.06+£0.00 27.70£0.30 29.914+0.25 27.81+£043 26.36+0.40
(c) Mean Prediction Interval Width
data. A greater performance drop is observed for eos. This TABLE VII

is because of a discrepancy between both data-sets. In the
simulated data-set, there is more diversity in the phenological
parameters, because of the uniform sampling to generate it.
Even if real validity masks from the S2 data-set are used,
they are not correlated to phenology, as it is the case for real
data. In the S2 data-set, a smaller diversity of combinations of
phenological variables is available. In this data-set, the end of
season of real crops can happen when there are clouds, more
than in the simulated data-set.

The drop in performances is much less significant compared
to regression and MCMC, despite training on samples that
don’t follow the phenological model. The pheno-VAE trained
on the synthetic data-set benefits from being evaluated on
a similar simulated data-set. This unfair advantage could
be mitigated by evaluating the performances of pheno-VAE
on real Sentinel-2 NDVI time series data-set, with available
ground truth of phenological stages. Unfortunately, such a
data-set was not available to us at the time of this study.

MCMC and NNR show similar performances, despite being
very different methods. This hints that given the simulated
data-set and the double-logistic model, there is not much
performance improvement to expect from the inference ex-
periment, even with other setups. The regression yields on
phenological dates 7-day MAE, with 90% PICP and 28 days
MPIW. These are good results considering irregularly sampled
time series that are interpolated to a 5-day grid. For pheno-
VAE to get performances closer to this, there is a need to
improve on the ability of the encoder neural network to take
temporal structure of time series into account. To minimize
the impact of the gap-filling pre-processing step, different
solutions could be considered. For instance, the reconstruction
loss could be modified to only take valid observations into

APPROXIMATE TRAINING AND INFERENCE TIME FOR EACH SETUP ON
COMPUTING ENVIRONMENT DESCRIBED IN SECTION [V-A]

Method CF  MCMC NNR phe(ré?;IXAE Ph""(‘é’gAE
GPU

usage X X v v v
Training X X 15 min 15 min 15 min
Inference

per time | 1074 s 10's 1075 s 107% s 1075 s
series

account. The encoder network architecture could be replaced
to allow to learn from irregularly sampled time series such as
with transformers.

G. Ablation study of the latent distribution maximum sampling
techniques

An ablation study for the strategy presented to incorporate
temporal structure in latent variables is performed with pheno-
VAE. The three proposed sub-tasks are evaluated : the pu-
rectification in , latent samples rectification in (I5)), and
the order loss in (I7). When any of these steps is removed,
we observe that training convergence takes longer time. It also
often leads to sub-optimal models that only order distributions
by making them identical. Moreover, simply removing the
latent sample rectification leads the pheno-VAE to infer latent
model parameters that fit the data but no longer have physical
meaning (with for instance the sos date being after the eos
date).



VI. CONCLUSION

In this paper, we have proposed a new physics-guided deep
learning probabilistic methodology to invert physical mod-
els. Different strategies are presented to incorporate physical
knowledge in VAE by considering physical-based decoders.
Semantic latent variables bound to physical model parameters
have been learned by incorporating prior knowledge and order
constraints in the learning process. Monte Carlo sampling of
the latent space was introduced to generate a reconstruction
distribution from deterministic decoders. The classical pair
of prior and posterior distributions was modified to better
represent the physics of the problem. Order constraints were
added to better model the properties of physical variables in
a semantic latent space. A new KL loss term was proposed,
whose weight in the loss enable to adjust the performance of
the model. The training is robust to samples which do not
correspond to the physical model (pixels without vegetation).
The feasibility and the interest of the proposed methodology
has been corroborated through a well-known remote sensing
inverse problem, the phenological parameter retrieval from
Sentinel-2 NDVI time series.

Despite using a simple neural network architecture, pre-
liminary results are encouraging. Enhancing the encoder ar-
chitecture with inductive biases taking into account the tem-
poral structure of the data (attention mechanisms, recurrent
architectures) could improve the inference error and predicted
prediction intervals that fall behind other methods in the
current configuration. Furthermore, the exploitation of the
spatial context of satellite data may improve parameter re-
trieval on individual pixels. As designing models that can
simulate complete landscapes is challenging, this could be
performed by using dedicated deep learning architectures, such
as convolutional neural networks. Applying the methodologies
to different models of more complex data will be the focus
of future research efforts. The presented informative deep
learning strategy could be an important step toward the large
scale production of vegetation status indicators.

In an attempt to enable reproducible research, our im-
plementation of the methods developed in this paper are
available at the following: https://gitlab.cesbio.omp.eu/zerahy/
pheno- VAE.git.
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APPENDIX A
S2 DATA-SET

TABLE VIII
DISTRIBUTION OF THE LAND COVER CLASSES COMPOSING THE SENTINEL-2 TIME SERIES DATA-SET. THE CLASS LEGEND IS TAKEN FROM THE OSO
[40] LAND COVER MAP PRODUCT.

Label Percentage in data-set
Continuous Urban Fabric 0.6%
Discontinuous Urban Fabric 4.1%
Industrial and Commercial Units 3.1%
Road Surfaces 0.3%
Rapeseed 4.5%
Straw Cereals 9.9%
Protein Crops 2.5%
Soy 7.2%
Sunflower 33.0%
Corn 5.8%
Roots 0.2%
Intensive Grasslands 3.4%
Orchards 0.6%
Vineyards 1.8%
Broad-leaved Forests 6.7%
Coniferous Forests 5.5%
Grasslands 5.5%
‘Woody Moorlands 2.3%
Bare Rock 0.1%
Water Bodies 2.8%
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Fig. 12. Distribution of the temporal acquisitions composing the Sentinel-2 time series data-set.
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APPENDIX B
RECONSTRUCTION OF S2 TIME SERIES
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Fig. 13. Examples of reconstructions of Sentinel-2 NDVI time series with pheno-VAE trained on S2 data-set. Blue: 5-days interpolated S2 time series. Red:
Reconstruction of the mode of phenological distribution. Orange: 5"-95% percentile interval.



APPENDIX C
INFERENCE PERFORMANCES

A. Metrics
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In the following formulas for the metrics used in this article, z* denotes a reference parameter, Z the point estimate of the
inferred distribution of a parameter, u and [ are respectively the upper and lower bound of the inferred parameter distribution

with a confidence level of 1 — a%. i denotes a sample number in the data-set of size N.
1) Mean Absolute Error:

1 N
MAE:N;M(—;EA.

2) Mean Prediction Interval Width: N
iz uwila) — li(@)
N

MPIW (a) =

3) Prediction Interval Coverage Probability:

_ #{i st 2F € [l;(a), ui ()]}
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Fig. 14. Box-plot of the absolute error of inference of the 6 phenological parameters for pheno-VAE trained on S2 Data-set, with various settings of the
coefficient 3 of the KL loss term. Box-plots are drawn from the results of the best fold of each method, in terms of the eos MAE. The white square for each

box plot is the MAE. Absolute errors are comparable, except with 8 = 5, with a higher error.
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Fig. 15. Box-plot of the absolute error of inference of the 6 phenological parameters for MCMC, NNR, CF and pheno-VAE (with 8 = 2, trained on the S2
or simulated data-set). Box-plots are drawn from the results of the best fold of each method, in terms of the eos MAE. The white square for each box plot

is the MAE. Absolute errors are the lowest for MCMC and Neural Network regression, and comparable for both pheno-VAE.



C. PICP as a function of the confidence level
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Fig. 16. PICP vs 1 — « for pheno-VAE trained on S2 Data-set, with various settings of the coefficient 8 of the KL loss term. The more /3 increases, the

more the PICP increases at constant confidence level 1 — a.
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Fig. 17. PICP vs 1 — o for MCMC, Neural Network regression and pheno-VAE (with 8 = 2, trained on the S2 or simulated data-set). The PICP curves
of Neural Network regression and MCMC are very close to PICP=« for all o, while pheno-VAE underestimates uncertainty for all confidence levels, for all

phenological variables, except for m where uncertainty is overestimated.

D. MPIW as a function of the confidence level
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Fig. 18. MPIW vs 1 — « for pheno-VAE trained on S2 Data-set, with various settings of the coefficient 8 of the KL loss term. The more /3 increases, the
more the MPIW increases at constant confidence level 1 — a.
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E. Box-plots of the prediction interval width
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Fig. 19. MPIW vs 1 — a for MCMC, Neural Network regression and pheno-VAE (with 3 = 2, trained on the S2 or simulated data-set). prediction interval
sizes are similar for all methods, except for m, where prediction intervals are larger for pheno-VAE, and for the eos of pheno — V AFE trained on the S2
data-set, that also has larger prediction intervals.
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Fig. 20. Box-plot of the Prediction Interval Width (PIW) with a confidence level 1 — a = 0.90 for pheno-VAE trained on S2 Data-set, with various settings
of the coefficient 5 of the KL loss term. Box-plots are drawn fro the results of the best fold of each method, in terms of the eos MAE. The white square for
each box plot is the MPIW. For phenological dates the PIW increases with 3.
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Fig. 21. Box-plot of the Prediction Interval Width (PIW) with a confidence level 1 — o = 0.90 for the 6 phenological parameters for MCMC, Neural Network
regression and pheno-VAE (with 8 = 2, trained on the S2 or simulated data-set). Box-plots are drawn from the results of the best fold of each method, in
terms of the eos MAE. The white square for each box plot is the MPIW. MCMC infers significantly smaller PIW than the other methods that are comparable
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APPENDIX D
DENSITY OF MAXIMUM OF CONTINUOUS DISTRIBUTIONS

Let Y be the maximum of n independent continuous random variables X;. The CDF of Y is:

Fy(y) = P(Y <y)

=P < max X; < y)
i€[[1,n]]

P ((n] (X, < y)>

i=1

(25)
= H P(X; <y)

The log-derivative of the CDF of Y yields:

=3 (P ) 26)
d

- 1
:;fxi(y)m

Finally, using the log-derivative of the CDF of Y enables deriving its PDF as a function of the PDFs and CDFs of X;:

= Fy(y) & ) 27)

) o) Ply)

Fig. 22. Examples of distribution of the maximum Y of two Gaussian variables X1 and Xs.



APPENDIX E

KL-DIVERGENCE OF TRUNCATED GAUSSIANS AND UNIFORM DISTRIBUTIONS

Let:

with the truncated Gaussian

with

and standard Gaussian CDF:

KL divergence is then:

Its second term is:

The first term is:
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density: )
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b
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b b
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NOTATIONS
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Bold font denotes a vector or a matrix variable. Variables with a hat denote an estimated quantity. Underlined variables
are rectified variables. Indexing with ¢ denotes a dimension of latent variables, and indexing with j denotes an element of a

data-set.

B. Acronyms

Notation

Definition

T @D RN R

DN DX

8
e =N

o~

S%EEQZ\SE@C&Z

Observation, input data

Reconstruction of input data

Latent variable

Rectified latent variable

Parameter of variational distribution
Parameters of encoder’s neural network
Parameters of decoder’s neural network
Confidence level

Coefficient on the KL term in the ELBO used in S-VAE
Mean parameter of Gaussian latent space
Rectified mean of Gaussian latent distribution

Covariance matrix of Gaussian latent space

Mean parameter of Gaussian decoder distribution
Covariance matrix of Gaussian decoder distribution
Number of latent samples drawn to estimate the decoder’s output distribution parameters
difference between two consecutive latent variables
Reflectance

General notation for user defined decoder
Double-sigmoid function parametrized by z
Bounds of a variational distribution support
prediction interval bounds

Number of samples in test data-set

Sigmoid function

Gaussian PDF

Gaussian CDF

Uniform distribution

Gaussian distribution

Truncated Gaussian distribution

Kullback-Leibler divergence

Expectation

Cardinality

Empty set

Acronym Definition

ELBO Evidence Lower BOund

KL Kullback-Leibler (Divergence)

VAE Variational Autoencoder

NLL Negative Log-Likelihood

NNR Neural Network Regression

MCMC Markov Chain Monte Carlo

CF Curve-Fitting

PDF Probability Density Function

CDF Cumulative Distribution Function
NDVI Normalized Difference Vegetation Index
MAE Mean Absolute Error

MPIW Mean Prediction Interval Width

PICP Prediction Interval Coverage Probability
CES OSO  Centre d’Expertise Scientifique sur 1’Occupation des Sols
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