
HAL Id: hal-03837715
https://hal.science/hal-03837715v1

Preprint submitted on 16 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scheduling coupled tasks with time windows: a
parameterized complexity analysis

Maher Mallem, Claire C. Hanen, Alix Munier-Kordon

To cite this version:
Maher Mallem, Claire C. Hanen, Alix Munier-Kordon. Scheduling coupled tasks with time windows:
a parameterized complexity analysis. 2022. �hal-03837715�

https://hal.science/hal-03837715v1
https://hal.archives-ouvertes.fr

Scheduling coupled tasks with time windows: a
parameterized complexity analysis

Maher Mallem1[0000−0001−5654−1090], Claire Hanen1,2[0000−0003−2482−5042], and
Alix Munier Kordon1[0000−0002−2170−6366]

1 Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
{Maher.Mallem,Claire.Hanen,Alix.Munier}@lip6.fr

http://www.lip6.fr
2 UPL, Université Paris Nanterre, F-92000 Nanterre,France

Abstract. This paper studies the parameterized complexity of coupled
tasks scheduling problems with time windows considering two param-
eters: the pathwidth and the slack. Three types of precedence delays
are studied: minimum, maximum and exact. For all cases we prove that
these problems are para-NP-hard parameterized by the slack even for
unit processing time jobs. We exhibit a relation between the slack and
the pathwidth that allows us to extend these results for the pathwidth
parameter. Lastly a polynomial procedure is provided in the special case
where the slack is equal to one.

Keywords: parameterized complexity · scheduling · coupled tasks

1 Introduction

Since the seventies many studies have been devoted to scheduling problems on
a single processor with different settings and optimization criteria. If we just
consider decision problems only few problems can be solved in polynomial time
- like scheduling unit execution time jobs with time windows [17] or scheduling
jobs with precedence constraints and deadlines [14]. On the other hand many
sequencing problems with simple settings are NP-hard in the strong sense, espe-
cially when time windows are considered [15].

This paper addresses a single machine problem with time windows and prece-
dence constraints with delays. We are given a set of jobs T . Each job J ∈ T
is characterized by a processing time p(J) = 1 and a time window [r(J), d(J))
in which it should be scheduled. A non negative delay ℓa is attached to each
precedence constraint a between two jobs J and J ′. Three types of delays are
considered. In the case of minimum delays, the difference between the starting
time of J ′ and the completion time of J must not be less than ℓa; in the case of
maximum delays, this difference must be not greater than ℓa; for exact delays
this difference must be exactly equal to ℓa.

We study an interesting special case called coupled tasks where the prece-
dence graph is just a set of disjoint arcs. They have been studied for many years
due to their many applications. Scheduling jobs on single machine assuming unit

2 M. Mallem et al.

processing times and coupled tasks has been proven NP-hard by Yu [20] for ex-
act and minimum delays. See [5, 13] for a survey of complexity results of coupled
tasks with exact delays.

In order to go beyond these results parameterized complexity gives us tools
to refine the analysis and understand deeper on which parameter of the instances
the problem complexity relies. Given a parameter k and denoting n the input size,
a problem is called fixed-parameter tractable (FPT) with respect to parameter k
if it can be solved in time poly(n)× f(k) with f an arbitrary function [6].

When the studied problem is believed to not be FPT, the para-NP class is
used as a parameterized version of NP: a problem is in para-NP with respect
to parameter k if there is a non-deterministic algorithm that solves it in time
poly(n)× f(k) with f an arbitrary function. In order to prove that a problem is
para-NP-hard with respect to k, it is enough to prove that the un-parameterized
problem is NP-hard for some fixed value of k [8]. The W-hierarchy defined in [7]
is an additional widely used tool in parameterized complexity. It is a sequence
of intermediate complexity classes between FPT and para-NP, which allows us
to further investigate the time complexity of a parameterized problem.

Several parameters have been considered for the analysis of the parameterized
complexity of scheduling problems, like the maximum processing time pmax [18]
or the width of the precedence graph [3]. Considering precedence delays we can
first mention the work of Bessy et al. [2] about coupled tasks with due dates,
a compatibility graph and a common deadline on a single machine. Their pa-
rameter was the number of jobs ending before their due date. They established
W[1]-hardness for this problem and developed a FPT algorithm when the max-
imum duration of a job (i.e. the processing time of the two tasks plus their
delay) is bounded. Van Bevern et al. [3] proved that the problem of scheduling
a precedence graph on two machines with processing times in {1, 2} is W[2]-
hard with respect to the width. In the same paper they introduced an additional
parameter λ that measures the maximum allowed lag of a job with respect
to its earliest start time (ignoring resource constraints). They proved that the
Resource-Constrained Project Scheduling Problem (RCPSP) is FPT parameter-
ized by both the allowed lag and the width.

In the presence of time windows, several authors considered parameters tak-
ing into account their maximum overlapping number. Bodlaender and van der
Wegen [4] addressed the single-machine scheduling of a set of chain like prece-
dence constraints with delays where the time windows are expressed on chains
and not on individual jobs. Their parameter - called the thickness - corresponds
to the maximum number of overlapping chains. They proved that the problem
with minimum delays given in unary is W[2]-hard with respect to the thickness.

Similarly the pathwidth µ is the maximum number of overlapping time win-
dows minus one. Munier-Kordon [19] developed a FPT algorithm for the decision
problem of scheduling unit execution time jobs with precedence constraints and
time windows of jobs parameterized by µ. In [16] scheduling chains of unit exe-
cution time jobs with minimum or exact delays on a single processor was proved
to be para-NP-hard with parameter µ, whereas it was proved to be FPT if no

Parameterized complexity of scheduling coupled tasks with time windows 3

precedence delays are assumed in [10]. In addition to pathwidth µ the slack σ
was considered by several authors as an extra property around time windows.
The slack corresponds to the maximum number of starting times for a job minus
one. A FPT with the tuple of parameters ”slack and pathwidth” (or ”maximum
processing time and pathwidth”) was proposed in [11] for a parallel machine
scheduling problem with precedence and time windows. For a single machine
problem with job rejection criteria a FPT with parameters slack and pathwidth
has also been proposed [1].

The aim of this paper is to analyze the parameterized complexity of a single
machine scheduling unit execution time jobs with precedence delays and time
windows parameterized by the slack alone. To the best of our knowledge this
parameter has not been investigated for this problem yet. In fact our goal is to
establish as accurately as possible the boundary between the FPT problems and
the others. Moreover we include the case of maximum delays in our study, which
is usually less studied than minimum and exact delays.

Our contribution first establishes a relation between the slack and the path-
width, leading to the following property: if a problem is FPT parameterized by
the pathwidth then it is also FPT for the slack. Conversely if it appears to be
NP-hard for a bounded slack, then it is for a bounded pathwidth. This implies
that results already known for the pathwidth can be transferred to the slack.
In Section 2 we present our notations, the parameters and the relation between
slack and pathwidth.

Then we show in Section 3 that scheduling coupled tasks with unit execution
time on a single machine with minimum, maximum or exact delays is para-NP-
hard with respect to the slack by establishing the NP-hardness of these problems
with slack value σ = 2. In Section 4 we provide a polynomial algorithm for
the problem with general precedence graph and slack value bounded by 1 by
showing an equivalence to the 2-sat problem. Finally in Section 5 we draw
some perspectives.

2 Definitions and parameters

2.1 Preliminary definitions

In this paper we study the problem denoted by 1|prec(ℓi,j), pj = 1, rj , dj |⋆ in the
standard notation of Graham [9]. An instance of this problem is characterized
by a set T of n unit execution time jobs. Each job J in T has a processing
time p(J) = 1, a release date r(J) and a deadline d(J). Moreover we consider
an acyclic precedence graph prec representing precedence relations between the
jobs in T . Each arc a = (J, J ′) in prec is valued by a nonnegative integer ℓa. A
schedule s defines for each job J a starting time s(J) so that r(J) ≤ s(J) < d(J)
and for any arc a = (J, J ′) in prec:

minimum delays: s(J ′) ≥ s(J) + 1 + ℓa
maximum delays: s(J ′) ≤ s(J) + 1 + ℓa
exact delays: s(J ′) = s(J) + 1 + ℓa

4 M. Mallem et al.

Definition 1 (Proper delay). Given an arc a = (J, J ′) the delay ℓa is called
proper when ℓ = r(J ′)− r(J)− 1.

Lemma 1. In any feasible schedule if a job J is scheduled at time r(J)+k, k ≥ 0
and there is a proper delay ℓ between J and another job J ′, then J ′ must be
scheduled at time:

1. r(J ′) + k or later if ℓ is a minimum delay,
2. r(J ′) + k or earlier if ℓ is a maximum delay,
3. exactly r(J ′) + k if ℓ is an exact delay.

Proof. Let s be a feasible schedule.

1. With minimum delays we have: s(J ′) ≥ s(J) + 1 + ℓ.
With s(J) = r(J) + k and ℓ = r(J ′)− r(J)− 1 we have:
s(J ′) ≥ [r(J) + k] + 1 + [r(J ′)− r(J)− 1] = r(J ′) + k.

2. and 3. are proved the same way. ⊓⊔

A large part of this paper is devoted to the special case of coupled tasks.
A coupled task is a set of two unit execution time jobs linked by an arc of the
precedence graph. So a coupled task can be described by a triplet (J1, ℓ, J2). In
scheduling problems with coupled tasks we assume that each job has its time
window and that no precedence constraint exists between different coupled tasks.

Definition 2 (Properly coupled task). A coupled task (J1, ℓ, J2) with the
same time window length α = d(J1) − r(J1) = d(J2) − r(J2) is called properly
coupled if the delay ℓ between both jobs is proper. Then this coupled task can be
represented by the triple ⟨r(J1), r(J2), α⟩.

We now introduce a notion that will be used in the complexity reductions.

Definition 3 (Loop of properly coupled tasks). A loop of properly coupled
tasks for minimum delays (resp. maximum delays) is composed by two set of
properly coupled tasks with time windows of length 2; set F with f coupled task
is called the forward phase of the loop, and set B with b coupled tasks its backward
phase. F = {⟨r(F (i)), r(F ′(i)), 2⟩, i ∈ {1, . . . , f}} B = {⟨r(B(i)), r(B′(i)), 2⟩, i ∈
{1, . . . , b}}. The sets have the following properties:

– Time windows of two consecutive forward tasks intersect: ∀i ∈ {1, . . . , f−1},
r(F (i+ 1)) = r(F ′(i)) + 1 (resp. r(F (i+ 1)) = r(F ′(i))− 1);

– Similarly, ∀i ∈ {1, . . . , b−1}, r(B(i+1)) = r(B′(i))+1 (resp. r(B(i+1)) =
r(B′(i))− 1);

– The first and the last time windows of forward and backward phase coincide:
r(F (1)) = r(B(1)) and r(F ′(f)) = r(B′(b)).

Now looking at Figure 1 which depicts a loop with two forward tasks and one
backward task, the scheduled time of F (1) is accurately propagated throughout
the whole loop with minimum delays no matter if it is scheduled left or right.
Thus a loop can be seen as an on/off switch which can be set by any job in the
loop. This property is extended to any loop in Lemma 2.

Parameterized complexity of scheduling coupled tasks with time windows 5

Forward

Backward

Fig. 1. A loop of properly coupled tasks for minimum delays.

Lemma 2. A loop of coupled tasks with minimum (resp. maximum) delays has
exactly two feasible schedules. The first one is the schedule where every job of
F is scheduled to the right (resp. the left) of its time window while every job of
coupled tasks of B is scheduled to the left (resp. the right) of its time window.
Then we say that the loop is ON. The second one is where all jobs in and F and
B are scheduled the other way around. Then we say that the loop is OFF.

Proof. We prove the lemma in the minimum delays case (similar arguments hold
for the maximum/exact delays case). Notice that for any coupled task of F if
the second job of the coupled task is performed to the right of its time window
at r(F ′(i))+ 1 then the first job of the next coupled task can only be performed
at r(F (i+ 1)) + 1. So this ”right-shift” information is propagated along F until
the last forward job, which is also executed at the right of its time window.
Similarly if the second job is performed to the left of its time window at r(F ′(i))
then the first job of the same coupled tasks is performed to the left of its interval
at r(F (i)). Now this implies that the previous coupled task is also performed
to the left, at r(F ′(i − 1)), and this can be propagated to the left. The same
argument holds for B.

Now since the first time window of length 2 is common to the first job of
both F and B, there can be only two possibilities: either the first job of B starts
first and then the first job of F is scheduled, or the reverse case. In the first case,
since we have minimum delays, this implies that all jobs of F are scheduled to
the right of their time window. Now in the last time window of both chains, if the
job F ′(f) of F is scheduled to the right, the job B′(b) of B that shares the same
interval is scheduled to the left of its time window, and so are all the coupled
tasks of B. Hence we are in the ON state of the loop. A symmetric argument
holds for the OFF state. ⊓⊔

2.2 Slack vs pathwidth

Let us now recall the definition of the two parameters we use in this paper for
our parameterized complexity analysis:

– pathwidth: at most µ+ 1 job time windows intersect at each time t.

6 M. Mallem et al.

– slack: for all jobs J ∈ T the number of starting times minus one is given by
d(J)− p(J)− r(J), so we have: d(J)− p(J)− r(J) ≤ σ.

By using these definitions a relation between both parameters in feasible
schedules can be established.

Theorem 1. If a single machine scheduling instance with time windows is fea-
sible, then µ ≤ 2σ.

Proof. By the definition of slack σ:{
r(J) ≥ d(J)− p(J)− σ

d(J) ≤ r(J) + p(J) + σ
(1)

Let J be a job and t be a time slot. If t is part of interval [r(J), d(J)) then:{
t < d(J)

t ≥ r(J)
(2)

Then by using both inequalities on the definition of slack σ we get:{
r(J) > t− p(J)− σ

d(J) ≤ t+ p(J) + σ
(3)

This means that whenever job J is scheduled, p(J) consecutive time slots
will be taken by J in time interval [t− σ− p(J) + 1, t+ σ+ p(J)). Thus at least
one time unit will be taken by J in time interval [t− σ, t+ σ+1). Since we only
have one machine, this means that at most 2σ + 1 jobs can have t be a part
of their time window [r(J), d(J)) in any feasible schedule of this instance. This
yields the wanted inequality: µ ≤ 2σ. ⊓⊔

3 Hardness reductions with with σ = 2

In this section we prove para-NP-completeness of our three single machine schedul-
ing problems parameterized by slack σ. Then we infer para-NP-completeness of
the variants with pathwidth µ as the parameter.

We use the following result from Flum and Grohe’s book [8]: if a (nontrivial)
problem P is NP-complete with a fixed value of some parameter k, then the
parameterized problem (P, k) is para-NP-complete. For all three delay types X ∈
{min,max, ex} we prove the scheduling problem 1|(1, ℓX , 1), rj , dj |⋆ to be NP-
complete with σ = 2.

The three problems are all trivially in NP by guessing the starting time of
each job then checking if this leads to a feasible schedule. For the hardness proofs
all reductions will start from the (strongly) NP-hard 3-Coloring graph prob-
lem [12]. Let G = (V,E) be the input graph (with no self-loops). Let v0, . . . , vn−1

be the vertices in V and e0, . . . , em−1 be the edges in E. Let n = |V | andm = |E|.
The colors will be named 0, 1 and 2.

Parameterized complexity of scheduling coupled tasks with time windows 7

25i 25i+ 9 25(i+ 1)

(. . .)

(. . .)

(. . .)

0 1 2
(. . .)

(. . .)

(. . .)

Color loop Li,0

(forward)

Color loop Li,1

(forward)

Color loop Li,2

(forward)

Color choice
tasks

(0)

(1)

(2)

(3)

Color loops
Li,0, Li,1, Li,2

(backward)

Fig. 2. The color choice segment corresponding to node vi in the reduction with min-
imum delays. Color loop Li,1 is ON and the other two are OFF.

3.1 Outline of the reductions

For every delay type X ∈ {min,max, ex} an instance of 1|(1, ℓX , 1), rj , dj |⋆ is
built. The goal is to represent the color choice of each node vi in graph G and
check that there is no edge ej in E where both nodes of the edge choose the
same color.

Time segments: We segment time into (m + 2) segments: a color choice
segment [0, 25n), m edge check segments along [25n, 25(n + m)) and a closing
segment [25(n+m), 25(n+2m)]. Each node vi has a time segment [25i, 25(i+1))
dedicated to its color choice - see Figure 2 - while each edge ej is represented by
time segment [25(n+ j), 25(n+ j + 1)) - see Figure 3.

Color loops: Color choices will be propagated to edge check segments using
loops of properly coupled tasks. We define for each node vi of G and each color
k ∈ {0, 1, 2} a color loop Li,k. The first time window of the loop is in the
beginning of the color choice segment and the last time window is in the closing
segment. This loop being ON corresponds to node vi choosing color k. This is
what will be used to connect color choices with our edge checks. The different
parts of color loops Li,0, Li,1 and Li,2 can be seen in Figures 2, 3 and 4.

8 M. Mallem et al.

25(n+ j) 25(n+ j) + 8 25(n+ j) + 16 25(n+ j + 1)

(. . .)

(. . .)

(. . .)

(. . .)

(. . .)

(. . .)

(. . .)

(. . .)

(. . .)

(. . .)

(. . .)

(. . .)

Color loop Li1,0

(forward)

Color loop Li1,1

(forward)

Color loop Li1,2

(forward)

Edge check tasks

Color loop Li2,0

(backward)

Color loop Li2,1

(backward)

Color loop Li2,2

(backward)

Checking that nodes vi1 and
vi2 do not choose color 0 at
the same time

Checking that nodes vi1 and
vi2 do not choose color 1 at
the same time

Checking that nodes vi1 and
vi2 do not choose color 2 at
the same time

Fig. 3. The edge check segment corresponding to edge ej = {vi1 , vi2} with i1 < i2 in
the reduction with minimum delays. Here color loops Li1,0 and Li2,2 are ON and the
other four are OFF.

Color choice tasks: For each node vi a color choice is represented by a
properly coupled task (Ci(3), ℓ

X , C ′
i(3)) of time window length 3. Then this

coupled task is connected to the three corresponding color loops Li,k using a
few extra properly coupled tasks of time window length 2. The color choice is
propagated the same way as in the color loops, i.e. with an alternation of proper
delays and time windows overlaps. The goal is that if job Ci(3) is scheduled at
r(Ci(3)) + k in a feasible schedule (with k ∈ {0, 1, 2}), then color loop Li,k has
to be in its ON state.

Figure 2 shows the color choice tasks and their interactions with the color
loops in the minimum delays case. In this figure color task Ci(3) starts at time
r(Ci(3)) + 1, which indeed forces color loop Li,1 to be ON if we want a feasible
schedule.

Parameterized complexity of scheduling coupled tasks with time windows 9

25(n+m+ i) 25(n+m+ i+ 1)

(. . .)

(. . .)

(. . .)

(. . .)

(. . .)

(. . .)

Color loops
Li,0, Li,1, Li,2

(forward)

Color loops
Li,0, Li,1, Li,2

(backward)

Fig. 4. The closing segment corresponding to node vi in the reduction with minimum
delays. Here color loop Li,1 is ON and the other two are OFF.

Edge check tasks: Recall that for each color k ∈ {0, 1, 2} and each edge
of G we defined a time segment where we check that both nodes of the edge
do not have the same color k. For each edge ej = {vi1 , vi2} with i1 < i2, an
edge check for a given color k ∈ {0, 1, 2} is represented by a properly coupled
task (Ej(k), ℓ

X , E′
j(k)) of time window length 2. This coupled task will overlap

with the forward phase of loop Li1,k and the backward phase of loop Li2,k. An
example with minimum delays is given in Figure 3. Color loop Li1,k in its ON
state forces coupled task (Ej(k), ℓ

X , E′
j(k)) into one configuration, while color

loop Li2,k in its ON state forces it into another configuration. This way having
both loops ON makes it impossible to schedule these edge check tasks while at
most one of them being ON is allowed.

For example in Figure 3 color loop Li1,0 is ON and one of its forward tasks
forces coupled task (Ej(0), ℓ

min, E′
j(0)) to be scheduled at their release date

plus one. This forces color loop Li2,0 to be OFF in a feasible schedule - which
it is in the figure. Similarly color loop Li2,2 is ON and this time it is one of its
backward tasks which forces coupled task (Ej(2), ℓ

min, E′
j(2)) to be scheduled at

their release date. This forces color loop Li1,2 to be OFF in a feasible schedule
- which it is in the figure.

3.2 NP-hardness of 1|(1, ℓmin, 1), rj, dj|⋆ with σ = 2

We build an instance of 1|(1, ℓmin, 1), rj , dj |⋆ with σ = 2. See Figures 2, 3 and
4 for an illustration of the color choice segment, an edge check segment and the
closing segment respectively.
Forward phase Fi,k: According to Definition 3 we define Fi,k a set of properly
coupled tasks representing the forward phase of loop Li,k. Its purpose is to
propagate the color choice of node vi to the edge check segments of edges e =
{vi, vj} such that i < j.

10 M. Mallem et al.

Definition 4 (Forward phase Fi,k). Let i ∈ [0, n− 1] and k ∈ {0, 1, 2}. Fi,k

contains the following properly coupled tasks:

– in the color choice segment: a properly coupled task (Fi,k(0), ℓ
min, F ′

i,k(0)):
• case Fi,0: ⟨25i, 25i+ 9, 2⟩,
• case Fi,1: ⟨25i+ 2, 25i+ 17, 2⟩,
• case Fi,2: ⟨25i+ 4, 25i+ 22, 2⟩.

– If there is no edge e = {vi, vj} such that i < j:
• between the color choice segment and the the closing segment:
a properly coupled task (Fi,k(1), ℓ

min, F ′
i,k(1))

= ⟨r(F ′
i,k(0)) + 1, 25(n+m+ i) + 2k, 2⟩

– Else: let j1 < . . . < jr be the indices of the edges ejq = {vi, vj} such that
i < j.
• between the color choice segment and the edge check segment of edge ej1 :
a properly coupled task (Fi,k(1), ℓ

min, F ′
i,k(1))

= ⟨r(F ′
i,k(0)) + 1, 25(n+ j1) + 8k, 2⟩

• for each q ∈ [1, r − 1], between the edge check segments of edges ejq and
ejq+1

:
a properly coupled task (Fi,k(q + 1), ℓmin, F ′

i,k(q + 1))
= ⟨r(F ′

i,k(q)) + 1, 25(n+ jq+1) + 8k, 2⟩.
• between the edge check segment of edge ejr and the closing segment:
a properly coupled task (Fi,k(r + 1), ℓmin, F ′

i,k(r + 1))
= ⟨r(F ′

i,k(r)) + 1, 25(n+m+ i) + 2k, 2⟩.

Backward task set Bi,k: According to Definition 3 we define Bi,k a set of prop-
erly coupled tasks representing the backward phase of loop Li,k. Its purpose is
to propagate the color choice of node vi to the edge check segments of edges
e = {vi, vj} such that i > j.

Definition 5 (Backward task set Bi,k). Let i ∈ [0, n − 1] and k ∈ {0, 1, 2}.
Bi,k contains the following properly coupled tasks:

– If there is no edge e = {vi, vj} such that i > j:
• between the color choice segment and the the closing segment:
a properly coupled task (Bi,k(0), ℓ

min, B′
i,k(0))

= ⟨25i+ 2k, 25(n+m+ i) + 2k, 2⟩.
– Else: let j1 < . . . < jr be the indices of the edges ejq = {vi, vj} such that

i > j.
• between the color choice segment and the edge check segment of edge ej1 :
a properly coupled task (Bi,k(0), ℓ

min, B′
i,k(0))

= ⟨25i+ 2k, 25(n+ j0) + 8k + 5, 2⟩,
• for each q ∈ [1, r − 1], between the edge check segments of edges ejq and
ejq+1 :
a properly coupled task (Bi,k(q), ℓ

min, B′
i,k(q))

= ⟨r(B′
i,k(q − 1)) + 1, 25(n+ jq) + 8k + 5, 2⟩.

• between the edge check segment of edge ejr and the closing segment:
a properly coupled task (Bi,k(r), ℓ

min, B′
i,k(r))

= ⟨r(B′
i,k(r − 1)) + 1, 25(n+m+ i) + 2k, 2⟩.

Parameterized complexity of scheduling coupled tasks with time windows 11

Definition 6 (Color loop Li,k). Let i ∈ [0, n−1] and k ∈ {0, 1, 2}. Color loop
Li,k is the combination of properly coupled task sets Fi,k and Bi,k.

According to Lemma 2 we define the only two ways this loop can be scheduled:

1. the ON state:
(a) all tasks F in Fi,k are scheduled at time r(F) + 1,
(b) all tasks B in Bi,k are scheduled at time r(B),

2. the OFF state:
(a) all tasks F in Fi,k are scheduled at time r(F),
(b) all tasks B in Bi,k are scheduled at time r(B) + 1.

Definition 7 (Color choice task set Ci). Let i ∈ [0, n− 1]. Ci is a set of four
properly coupled tasks:

– a properly coupled task (Ci(0), ℓ
min, C ′

i(0)) = ⟨25i+ 6, 25i+ 8, 2⟩,
– a properly coupled task (Ci(1), ℓ

min, C ′
i(1)) = ⟨25i+ 6, 25i+ 12, 2⟩,

– a properly coupled task (Ci(2), ℓ
min, C ′

i(2)) = ⟨25i+ 14, 25i+ 16, 2⟩,
– a properly coupled task (Ci(3), ℓ

min, C ′
i(3)) = ⟨25i+ 13, 25i+ 20, 3⟩.

Lemma 3. Let k ∈ {0, 1, 2}. In any feasible schedule if color choice task Ci(3)
starts at time r(Ci(3)) + k then color loop Li,k must be ON.

Proof. We show that if color choice task Ci(3) starts at time r(Ci(3)) + k then
forward task F ′

i,k(0) must start at time r(F ′
i,k(1))+1. Then Lemma 2 will imply

that the whole loop Li,k is ON.

– Case k = 2 : by the proper delay and the time window of length 3 job C ′
i(3)

must be scheduled at time r(C ′
i(3)) + 2 = 25i+22. However by Definition 4

this corresponds to r(F ′
i,2(0)), with this task having a time window of length

2. Thus forward task F ′
i,2(0) must start at time r(F ′

i,2(0)) + 1.
– Case k = 1 : color choice task Ci(3) starts at time r(Ci(3)) + 1 = 25i + 14

which corresponds to the release date of color choice task Ci(2). Then with
its time window of length 2 this task must be scheduled at time r(Ci(2))+1.
By the proper delay and the time window of length 2 task C ′

i(2) must be
scheduled at time r(C ′

i(2)) + 1 = 25i + 17. By Definition 4 corresponds to
r(F ′

i,1(0)). With this forward task having a time window of length 2 it must
start at time r(F ′

i,1(0)) + 1.
– Case k = 0 : color choice task Ci(3) starts at time r(Ci(3)) = 25i + 13

which corresponds to r(C ′
i(1)). Then with its time window of length 2 this

task must be scheduled at its release date. By the proper delay the other
end Ci(1) of this properly coupled task must also be scheduled at its release
date. Then task Ci(0), which has the same time window of length 2 as task
Ci(1), must be scheduled at its release date plus one. By the proper delay
and the time window of length 2 the other end C ′

i(0) must be scheduled at
time r(C ′

i(0)) + 1 = 25i + 9. By Definition 4 this corresponds to r(F ′
i,0(0)).

With this forward task having a time window of length 2 it must start at
time r(F ′

i,0(0)) + 1.

12 M. Mallem et al.

This concludes the proof of this lemma.

Definition 8 (Edge check task set Ej). Let j ∈ [0,m − 1]. Ej is a set of
three properly coupled tasks: for each k ∈ {0, 1, 2} we have a properly coupled
task (Ej(k), ℓ

min, E′
j(k)) = ⟨25(n+ j) + 8k + 2, 25(n+ j) + 8k + 4, 2⟩.

Remark 1. This scheduling instance indeed has slack 2: there are n properly
coupled tasks (Ci(3), ℓ

min, C ′
i(3)) with a time window length of 3 and all the

other tasks have a time window length of 2.

Proposition 1. G is 3-colorable if and only if there exists a feasible schedule
for this instance of 1(1, ℓmin, 1), rj , dj |⋆.

Proof. (=⇒) Suppose we have (c0, . . . , cn−1) ∈ {0, 1, 2}n a 3-coloring of G
where vertex vi has color ci. We propose the following schedule:

– color loops Li,ci are ON while all the others are OFF
– color choice coupled task (Ci(3), ℓ

min, C ′
i(3)) are scheduled at their release

date plus ci. The other three are scheduled so that they do not interfere with
the OFF color loops:
• case ci = 0: (Ci(1), ℓ

min, C ′
i(1)) and (Ci(2), ℓ

min, C ′
i(2)) at their release

date, (Ci(0), ℓ
min, C ′

i(0)) at their release date plus one,
• case ci = 1: (Ci(0), ℓ

min, C ′
i(0)) at their release date, (Ci(1), ℓ

min, C ′
i(1))

and (Ci(2), ℓ
min, C ′

i(2)) at their release date plus one,
• case ci = 2: (Ci(0), ℓ

min, C ′
i(0)) and (Ci(2), ℓ

min, C ′
i(2)) at their release

date, (Ci(1), ℓ
min, C ′

i(1)) at their release date plus one.
– given an edge ej = {vi1 , vi2} with i1 < i2:

• schedule edge check coupled task (Ej(ci1), ℓ
min, E′

j(ci1)) at their release
date plus one,

• schedule edge check coupled task (Ej(ci2), ℓ
min, E′

j(ci2)) at their release
date,

• schedule the remaining edge check coupled task of this edge check seg-
ment at their release date.

We show that this schedule is feasible. First we check the color choice seg-
ment. Let i ∈ [0, n − 1]. For all three possible color choices ci only one color
choice task might interfere with a color loop: this task is scheduled at the release
date of task F ′

i,k(0). However color loop Li,ci is ON, so F ′
i,k(0) is scheduled at

its release date plus one and the machine constraint is fulfilled in this segment
of the schedule. Now let j ∈ [0,m− 1]. Let edge ej = {vi1 , vi2} with i1 < i2. In
the corresponding edge check segment only two color loops are ON: Li1,ci1

the
forward way and Li2,ci2

the backward way. Thus in this edge check segment only
two tasks from the color loops might interfere with an edge check task. Since
(c0, . . . , cn−1) is a 3-coloring we have ci1 ̸= ci2 and so two different edge check
coupled tasks are involved. On the one hand let qF be the index such that ej
is the qthF edge in the definition of the forward tasks. Then task Fi,ci1

(qF + 1)
is scheduled at the release date of edge check task Ej(ci1) while the latter is
scheduled at its release date plus one, so no interference there. On the other

Parameterized complexity of scheduling coupled tasks with time windows 13

hand let qB be the index such that ej is the qthB edge in the definition of the
backward tasks. Then task F ′

i,ci2
(qB) is scheduled at the release date of edge

check task E′
j(ci2) plus one while the latter is scheduled at its release date, so

no interference there either. Thus the machine constraint is fulfilled in all edge
check segments of the schedule. Finally all color loops are either ON or OFF so
the machine constraint is also fulfilled in the closing segment. Thus the proposed
schedule is feasible.

(⇐=) Suppose we have a feasible schedule. For all i ∈ [0, n − 1] let si ∈
{0, 1, 2} be such that r(Ci(3))+si is the starting time of color choice task Ci(3).
We show that (s0, . . . , sn−1) is a 3-coloring of G. By contradiction suppose there
is an edge ej = {ei1 , ei2} such that si1 = si2 . Let k = si1 = si2 . Then by Lemma
3 both color loops Li1,k and Li2,k must be ON. Then all configurations of edge
check task (Ej(k), ℓ

min, E′
j(k)) are blocked: task Ej(k) can only be scheduled at

its release date plus one while task E′
j(k) can only be scheduled at its release

date. Then the proper minimum delay cannot be abided by. Thus the schedule
is not feasible, which leads to a contradiction. Thus (s0, . . . , sn−1) is indeed a
3-coloring of G.

This proves that 1|(1, ℓmin, 1), rj , dj |⋆ with σ = 2 is NP-hard, which concludes
the para-NP-completeness proof of the corresponding parameterized problem.

Theorem 2. 1|(1, ℓmin, 1), rj , dj |⋆ is para-NP-complete parameterized by slack
σ.

3.3 NP-hardness of 1|(1, ℓmax, 1), rj, dj|⋆ with σ = 2

We build an instance of 1|(1, ℓmax, 1), rj , dj |⋆ with σ = 2. See Figures 5, 6 and
7 for an illustration of the color choice segment, an edge check segment and the
closing segment respectively. The reduction is very similar to the minimum delays
case, except most jobs have their window slightly shifted in order to propagate
color choices with maximum delays instead of minimum ones.

Definition 9 (Forward task set Fi,k). Let i ∈ [0, n − 1] and k ∈ {0, 1, 2}.
Fi,k contains the following properly coupled tasks:

– in the color choice segment: a properly coupled task (Fi,k(0), ℓ
max, F ′

i,k(0)):
• case Fi,0: ⟨25i, 25i+ 13, 2⟩,
• case Fi,1: ⟨25i+ 2, 25i+ 18, 2⟩,
• case Fi,2: ⟨25i+ 4, 25i+ 22, 2⟩.

– If there is no edge e = {vi, vj} such that i < j:
• between the color choice segment and the the closing segment:
a properly coupled task (Fi,k(1), ℓ

max, F ′
i,k(1))

= ⟨r(F ′
i,k(0))− 1, 25(n+m+ i), 2⟩

– Else: let j1 < . . . < jr be the indices of the edges ejq = {vi, vj} such that
i < j.
• between the color choice segment and the edge check segment of edge ej1 :
a properly coupled task (Fi,k(1), ℓ

max, F ′
i,k(1))

= ⟨r(F ′
i,k(0))− 1, 25(n+ j1) + 8k + 2, 2⟩

14 M. Mallem et al.

25i 25i+ 12 25(i+ 1)

(. . .)

(. . .)

(. . .)

0 1 2

(. . .)

(. . .)

(. . .)

Color loop Li,0

(forward)

Color loop Li,1

(forward)

Color loop Li,2

(forward)

Color choice
tasks

(0)

(1)

(2)

(3)

Color loops
Li,0, Li,1, Li,2

(backward)

Fig. 5. The color choice segment corresponding to node vi in the reduction with max-
imum delays. Color loop Li,1 is ON and the other two are OFF.

• for each q ∈ [1, r − 1], between the edge check segments of edges ejq and
ejq+1 :
a properly coupled task (Fi,k(q + 1), ℓmax, F ′

i,k(q + 1))
= ⟨r(F ′

i,k(q))− 1, 25(n+ jq+1) + 8k + 2, 2⟩
• between the edge check segment of edge ejr and the closing segment:
a properly coupled task (Fi,k(r + 1), ℓmax, F ′

i,k(r + 1))
= ⟨r(F ′

i,k(r))− 1, 25(n+m+ i) + 2k, 2⟩.

Definition 10 (Backward task set Bi,k). Let i ∈ [0, n− 1] and k ∈ {0, 1, 2}.
Bi,k contains the following properly coupled tasks:

– If there is no edge e = {vi, vj} such that i > j:
• between the color choice segment and the the closing segment:
a properly coupled task (Bi,k(0), ℓ

max, B′
i,k(0))

= ⟨25i+ 2k, 25(n+m+ i) + 2k, 2⟩.
– Else: let j1 < . . . < jr be the indices of the edges ejq = {vi, vj} such that

i > j.

Parameterized complexity of scheduling coupled tasks with time windows 15

25(n+ j) 25(n+ j) + 8 25(n+ j) + 16 25(n+ j + 1)

(. . .)

(. . .)

(. . .)

(. . .)

(. . .)

(. . .)

(. . .)

(. . .)

(. . .)

(. . .)

(. . .)

(. . .)

Color loop Li1,0

(forward)

Color loop Li1,1

(forward)

Color loop Li1,2

(forward)

Edge check tasks

Color loop Li2,0

(backward)

Color loop Li2,1

(backward)

Color loop Li2,2

(backward)

Checking that nodes vi1 and
vi2 do not choose color 0 at
the same time

Checking that nodes vi1 and
vi2 do not choose color 1 at
the same time

Checking that nodes vi1 and
vi2 do not choose color 2 at
the same time

Fig. 6. The edge check segment corresponding to edge ej = {vi1 , vi2} with i1 < i2 in
the reduction with maximum delays. Here color loops Li1,1 and Li2,0 are ON and the
other four are OFF.

• between the color choice segment and the edge check segment of edge ej1 :
a properly coupled task (Bi,k(0), ℓ

max, B′
i,k(0))

= ⟨25i+ 2k, 25(n+ j1) + 8k + 5, 2⟩,
• for each q ∈ [1, r − 1], between the edge check segments of edges ejq and
ejq+1 :
a properly coupled task (Bi,k(q), ℓ

max, B′
i,k(q))

= ⟨r(B′
i,k(q − 1))− 1, 25(n+ js+1) + 8k + 5, 2⟩.

• between the edge check segment of edge ejr and the closing segment:
a properly coupled task (Bi,k(r), ℓ

max, B′
i,k(r))

= ⟨r(B′
i,k(r − 1))− 1, 25(n+m+ i) + 2k, 2⟩.

Definition 11 (Color loop Li,k). Let i ∈ [0, n − 1] and k ∈ {0, 1, 2}. Color
loop Li,k is the combination of properly coupled task sets Fi,k and Bi,k.

16 M. Mallem et al.

We define the following states:

1. the ON state:
(a) all tasks F in Fi,k are scheduled at time r(F),
(b) all tasks B in Bi,k are scheduled at time r(B) + 1,

2. the OFF state:
(a) all tasks F in Fi,k are scheduled at time r(F) + 1,
(b) all tasks B in Bi,k are scheduled at time r(B).

Definition 12 (Color choice task set Ci). Let i ∈ [0, n − 1]. Ci is a set of
four properly coupled tasks:

– a properly coupled task (Ci(0), ℓ
max, C ′

i(0)) = ⟨25i+ 8, 25i+ 14, 3⟩,
– a properly coupled task (Ci(1), ℓ

max, C ′
i(1)) = ⟨25i+ 8, 25i+ 19, 2⟩,

– a properly coupled task (Ci(2), ℓ
max, C ′

i(2)) = ⟨25i+ 6, 25i+ 23, 2⟩,
– a properly coupled task (Ci(3), ℓ

max, C ′
i(3)) = ⟨25i+ 6, 25i+ 10, 2⟩.

Lemma 4. Let k ∈ {0, 1, 2}. In any feasible schedule if color choice task Ci(0)
starts at time r(Ci(0)) + k then color loop Li,k must be ON.

Proof. This is proved in the same fashion as Lemma 3.

Definition 13 (Edge check task set Ej). Let j ∈ [0,m − 1]. Ej is a set of
three properly coupled tasks: for each k ∈ {0, 1, 2} we have a properly coupled
task (Ej(k), ℓ

max, E′
j(k)) = ⟨25(n+ j) + 8k, 25(n+ j) + 8k + 6, 2⟩.

Remark 2. This scheduling instance indeed has slack 2: there are n properly
coupled tasks (Ci(0), ℓ

max, C ′
i(0)) with a time window length of 3 and all the

other tasks have a time window length of 2.

Proposition 2. G is 3-colorable if and only if there exists a feasible schedule
for this instance of 1|(1, ℓmax, 1), rj , dj |⋆.
Proof. This is proved in the same fashion as Lemma 1.

This proves that 1|(1, ℓmax, 1), rj , dj |⋆ with σ = 2 is NP-hard, which con-
cludes the para-NP-completeness proof of the corresponding parameterized prob-
lem.

Theorem 3. 1|(1, ℓmax, 1), rj , dj |⋆ is para-NP-complete parameterized by slack
σ.

3.4 NP-hardness of 1|(1, ℓex, 1), rj, dj|⋆ with σ = 2

We build an instance of 1|(1, ℓex, 1), rj , dj |⋆ with σ = 2. One can simply take
the reduction with minimum delays and replace the minimum delays with exact
ones. Then the whole reduction works the same way: color loops still have the
same two possible schedules, each color choice is propagated through color choice
tasks and color loops the exact same way, and the ON color loops force the edge
check tasks to be scheduled at the exact same configurations.

This proves that 1|(1, ℓex, 1), rj , dj |⋆ with σ = 2 is NP-hard, which concludes
the para-NP-completeness proof of the corresponding parameterized problem.

Corollary 1. 1|(1, ℓex, 1), rj , dj |⋆ is para-NP-complete parameterized by slack σ.

Parameterized complexity of scheduling coupled tasks with time windows 17

25(n+m+ i) 25(n+m+ i+ 1)

(. . .)

(. . .)

(. . .)

(. . .)

(. . .)

(. . .)

Color loops
Li,0, Li,1, Li,2

(forward)

Color loops
Li,0, Li,1, Li,2

(backward)

Fig. 7. The closing segment corresponding to node vi in the reduction with maximum
delays. Here color loop Li,1 is OFF and the other two are ON.

3.5 Implications to parameter µ

With Theorem 1 we know that our three results of para-NP-completeness with
slack σ imply para-NP-completeness with pathwidth as the parameter instead.
In fact upon closer inspection of our reductions, there were never more than two
time windows overlapping at any time. This leads to the following result:

Corollary 2. The problems 1|(1, ℓX , 1), rj , dj |⋆ with X ∈ {min,max, ex} and
µ = 1 are (strongly) NP-hard. As a consequence they are all para-NP-complete
parameterized by µ.

4 Polynomial-time solvability with σ = 1

In this section delays can be exact, minimum or maximum. We prove polynomial-
time solvability of the scheduling problem 1|prec, pi = 1, ℓij , ri, di, σ = 1|⋆ by
reducing it to 2-SAT. We achieve this in two steps: first we reduce from a slightly
more restricted scheduling problem with proper delays and all time windows of
length 2, with a straightforward reduction to 2-SAT. Then we show how to
convert a general instance of this problem into a restricted one equivalent to it
in terms of feasibility.

4.1 Reduction with time windows of length exactly 2 and proper
delays

Let us consider an instance of our restricted problem. The set of n jobs is denoted
by T . Each job J must be performed in a time window of length 2 [r(J), r(J)+2).
We consider an acyclic graph G of precedence constraints with proper delays, so
that for each arc a = (Ji, Jj) in G, its delay ℓa = r(Jj)− r(Ji)− 1.

18 M. Mallem et al.

We build a boolean formula in conjunctive normal form with only clauses of
two literals. This formula will encode our scheduling instance and we want it to
be satisfiable if and only if the scheduling instance is feasible.

We have n boolean variables xi, one per job in the scheduling instance.
All jobs have exactly two possible starting times, which correspond to the two
possible values of each boolean variable. In particular we want to have:

xi =

{
0 if job Ji is scheduled at time r(Ji)

1 if job Ji is scheduled at time r(Ji) + 1
(4)

We now describe the clauses in our boolean formula. For the sake of better
understanding clauses will be presented as implications of the form (x =⇒ y)
which are indeed equivalent to clauses of two literals (¬x ∨ y) in classical logic.
We distinguish two types of clauses: clauses from machine constraints and clauses
from precedence constraints. The former will depend on the length of the overlap
of time windows while the latter will take into account the nature of the delay
(exact, minimum or maximum).

Machine constraints: There are two possibilities, which are described be-
low. Consider two jobs Ji, Jj ∈ T and without loss of generality assume that
r(Ji) ≥ r(Jj). If their two time windows are disjoint, no constraint is needed.
Otherwise, there may be two cases:

1. The two jobs have the same time windows, so r(Ji) = r(Jj). Two symmetric
clauses are then added (xi =⇒ ¬xj) and (xj =⇒ ¬xi) in order to
ensure that if Ji is scheduled at r(Ji) then Jj is scheduled at r(Ji) + 1, and
conversely.

2. The jobs time windows overlap on one time unit, so r(Ji) = r(Jj) + 1. We
must ensure that if Jj is scheduled at r(Jj) + 1 Ji is not scheduled at the
same time: (xj =⇒ xi).

Precedence constraints : Consider a precedence constraint a = (Ji, Jj)
with proper delay ℓa = r(Jj) − r(Ji) − 1. The clauses depend on the nature of
the delay (minimum, maximum or exact).

– In case of a minimum delay: xi =⇒ xj (if Ji is right shifted in its time
window, so is Jj)

– In case of a maximum delay: ¬xi =⇒ ¬xj (if Ji is left shifted in its time
window, so is Jj)

– In case of an exact delay, the two clauses associated to minimum and maxi-
mum delays are added.

If I is an instance of the scheduling problem, we denote by SAT (I) the
2− SAT associated instance as described above.

We can now state our lemma:

Lemma 5. An instance I of the one machine scheduling problem with prece-
dence constraints, proper delays and time windows of length 2 is feasible if and
only if SAT (I) is satisfiable.

Parameterized complexity of scheduling coupled tasks with time windows 19

Proof. (=⇒) Let us consider a feasible schedule for the instance I and the
instantiation of variables described in Equation (4). As the machine constraint
is satisfied, no two jobs are scheduled at the same time. So if r(Ji) = r(Jj) and
Ji is scheduled at r(Ji), then Jj is scheduled at r(Ji)+1 (and symmetrically). So
we cannot have xi∧xj or ¬xi∧¬xj . Similarly if r(Jj) = r(Ji)+1, then Ji and Jj
are not scheduled both at r(Ji)+1 so xi ∧¬xj is false (and thus the implication
is true). Now for a precedence constraint a with a proper delay, depending on the
kind of delay, all the implications are true with similar arguments. For example
for a minimum delay, if Ji is scheduled at r(Ji) + 1 then Jj is scheduled at
r(Ji) + 1 + 1 + ℓa = r(Jj) + 1, so xi =⇒ xj is true.

(⇐=) Let us consider a feasible instantiation of variables fo SAT (I). We
schedule the jobs according to Equation (4). Let us verify that the precedence
constraints are satisfied. Let a = (Ji, Jj) be a precedence constraint. Assume
first that this is a minimum delay. Then if xi = 0, Jj can be scheduled in both
positions. Otherwise, if xi = 1 then we know by the corresponding clause that
xj = 1, so that Jj is scheduled at r(Jj)+1 = r(Ji)+1+1+ℓa, and the precedence
constraint is satisfied. Similar arguments hold for maximum and exact delays.
Now assume that there would be two jobs Ji, Jj scheduled at the same time.
These two jobs would have overlapping intervals, and assume that r(Ji) ≥ r(Jj).
Assume that both jobs are scheduled at r(Ji). Then if r(Jj) = r(Jj) we would
have xi = xj = 0 which is impossible since xj ∨ ¬xi, so that ¬xj ∨ xi = 1.
Similarly if r(Ji) = r(Jj) + 1 then xi = 0, xj = 1 which is impossible since the
clause (xj =⇒ xi) is satisfied. Similar arguments hold assuming the two jobs
are performed at r(Ji) + 1.

4.2 Preprocessing from time windows of length at most 2 and
general delays

Starting from a scheduling instance of 1|prec(ℓi,j), pj = 1, rj , dj ≤ rj +2|⋆ there
are two missions in this preprocessing step:

1. dealing with non-proper delays.
2. removing jobs with a time window of length 1,

1. Dealing with non-proper delays: Consider a precedence relation a =
(Ji, Jj) with delay ℓa. Let us consider the case of minimum delays first.

If r(Jj) + 1 < r(Ji) + 1 + ℓa then no feasible schedule exist: even if Ji is
scheduled as early as possible, the completion time of Ji plus the minimum
delay is greater than all possible execution times for Jj . Let us assume that
r(Jj) − r(Ji) ≥ ℓa. If r(Jj) − r(Ji) = ℓa then there is only one possibility to
fulfill the precedence constraint: Ji should be scheduled at r(Ji) and job Jj at
r(Jj) + 1. So the time windows of both jobs can be reduced to time windows
of length 1: d(Ji) = r(Ji) + 1, r(Jj) = d(Jj) − 1. The precedence constraint is
then useless. Now assume that r(Jj)− r(Ji)− 1 ≥ ℓa. If the inequality is strict,
then in any schedule fulfilling the time windows, this constraint will be satisfied:
indeed if Ji is scheduled at r(Ji) + 1, then Jj can be scheduled at rj and the

20 M. Mallem et al.

precedence constraint still holds. Hence in this case, the precedence constraint
can be removed without loss of generality. This proves that in case of minimum
non proper delays, either we can conclude of infeasibility, or reduce the time
windows, or remove the precedence constraint.

Let us now consider the case of maximum delays. Symmetrically, If r(Jj) >
r(Ji) + 2 + ℓa then no feasible schedule exist. If r(Jj) = r(Ji) + 2 + ℓa, then Ji
must be scheduled at r(Ji) + 1 while Jj must be scheduled at r(Jj), so the time
windows of the two jobs can be reduced and the precedence constraint removed.
If r(Jj) < r(Ji) + 1+ ℓa the precedence constraint can be removed: it is fulfilled
even if Ji is scheduled at r(Ji) and Jj at r(Jj)+1. Hence only proper delays are
of interest here.

Finally, in the case of exact delays, which combine the constraints of both
minmum and maximum delays, the same property holds. Given an instance I of
1|prec(ℓi,j), pj = 1, rj , dj ≤ rj + 2|⋆, either we can conclude of infeasibility, or
there is an equivalent instance prop(I) of the problem with proper delays.

2. Removing jobs with a time window of length 1: such a job Jj
has no other option and books an entire time position for itself since there
is a single machine. Thus other jobs will never been scheduled at that time
and this time position can be removed in the time windows of the other jobs.
If some time window becomes empty, the instance is unfeasible. The iterative
application of such transformation of the instance I is called Prune(I). Each
time such a transformation is made an equivalent instance with proper delays
Prop(Prune(I)) can be computed.

Consider now a precedence constraint a = (Ji, Jj) with delay ℓa = r(Jj) −
r(Ji)− 1 as we assumed proper delays.

If the time window of both jobs Ji, Jj is of length 1, the precedence constraint
is always satisfied, so it can be removed from the instance.

If the time window of Ji is of length 2 and the other of Jj is of length 1,
then in the case of a minimum delay or exact delay, the only valid position for
Ji is left shifted, so that its interval can be reduced to [r(Ji), r(Ji) + 1) and the
precedence constraint removed. In the case of a maximum delay, both positions
for Ji will satisfy the constraint, so the precedence constraint can be removed.

Symmetrically, if the time window of Ji is of length 1 and the other of Jj is of
length 2, then similar arguments lead to either reduce the time window of Jj in
the case of maximum or exact delays, and in any case to remove the precedence
constraint.

Such a transformation of instance I based on the precedence constraints is
called Prec(I)

We can then iteratively apply the operations Prune, Prop and Prec either
to detect unfeasibility, or to generate an instance such that:

– All delays are proper delays

– No time window of length 1 is included in another time window

– No job with time window of length 1 has a predecessor nor a successor in
the precedence graph.

Parameterized complexity of scheduling coupled tasks with time windows 21

Such transformation can be done in polynomial time (at each step at least
one time window is reduced or one arc is removed) Then, the jobs with time
window of length 1 can be removed from the instance, because the feasibility
does not rely on them anymore.

This leads to our result:

Lemma 6. Considering an instance I of 1|prec(ℓi,j), pj = 1, rj , dj ≤ rj + 2|⋆
there is a polynomial algorithm that either indicates that instance I is unfeasible,
or computes an instance I ′ in which all delays are proper delays and all time
windows are of length 2.

From Lemma 6 we deduce the main result of this section:

Theorem 4. 1|prec(ℓi,j), pj = 1, rj , dj ≤ rj + 2|⋆ is polynomially solvable

Proof. By applying the transformation described in Lemma 6 we can either
detect unfeasibility or generate an equivalent instance with proper delays and
time windows of length 2. By Lemma 5, the problem is polynomially solvable.

5 Conclusion

In this paper we established a relation between the pathwidth and the slack,
which are two parameters commonly considered to analyze the parameterized
complexity of scheduling problems with time windows. This relation leads to
new complexity results: FPT with the slack and para-NP-completeness proofs
with the pathwidth. We also proved that scheduling coupled tasks on a single
machine with time windows is para-NP-hard parameterized by the slack for
either minimum, maximum or exact precedence delays. Lastly we established
that the problem with time windows of length at most 2 and precedence delays
- minimum, maximum or exact - can be solved in polynomial time.

Looking ahead, we believe that the relations between the parameters usually
considered for scheduling problems should be further investigated. In fact the
objective would be to replicate the method used in this paper - where a neg-
ative complexity result for the slack induced a negative one for the pathwidth
- for other existing scheduling parameters. We also feel that the slack should
be investigated beyond feasibility. It is likely that some of the existing FPT re-
sults could be extended to several optimization criteria. Finally finding a frontier
subproblem with a FPT algorithm for the slack while hard when parameterized
by the pathwidth would complete the analysis of the relation between the two
parameters.

References

1. Baart, R., de Weerdt, M., He, L.: Single-machine scheduling with release times,
deadlines, setup times, and rejection. European Journal of Operational Research
291(2), 629–639 (2021), number: 2 Publisher: Elsevier

22 M. Mallem et al.

2. Bessy, S., Giroudeau, R.: Parameterized complexity of a coupled-task
scheduling problem. Journal of Scheduling 22(3), 305–313 (Jun 2019).
https://doi.org/10.1007/s10951-018-0581-1, https://doi.org/10.1007/s10951-018-
0581-1

3. van Bevern, R., Bredereck, R., Bulteau, L., Komusiewicz, C., Talmon, N., Woeg-
inger, G.J.: Precedence-constrained scheduling problems parameterized by partial
order width. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos,
P. (eds.) Discrete Optimization and Operations Research. pp. 105–120. Springer
International Publishing, Cham (2016)

4. Bodlaender, H.L., van der Wegen, M.: Parameterized complexity of scheduling
chains of jobs with delays. In: 15th International Symposium on Parameterized
and Exact Computation (IPEC) (2020)

5. Chen, B., Zhang, X.: Scheduling coupled tasks with exact delays for
minimum total job completion time. J. Sched. 24(2), 209–221 (2021).
https://doi.org/10.1007/s10951-020-00668-1, https://doi.org/10.1007/s10951-020-
00668-1

6. Downey, R., Fellows, M.: Parameterized complexity. Springer (1999)
7. Downey, R.G., Fellows, M.R., Regan, K.W.: Descriptive complexity and the W

hierarchy. In: Proof Complexity and Feasible Arithmetics. pp. 119–134 (1996)
8. Flum, J., Grohe, M.: Parameterized complexity theory. Springer (1998)
9. Graham, R.L., Lawler, E.L., Lenstra, J.K., Kan, A.R.: Optimization and approxi-

mation in deterministic sequencing and scheduling: a survey. In: Annals of discrete
mathematics, vol. 5, pp. 287–326. Elsevier (1979)

10. Hanen, C., Mallem, M., Munier-Kordon, A.: Parameterized complexity of single-
machine scheduling with precedence, release dates and deadlines. In: 15th Work-
shop on Models and Algorithms for Planning and Scheduling Problems (MAPSP)
(2022)

11. Hanen, C., Munier-Kordon, A.: Fixed-Parameter tractability of scheduling depen-
dent typed tasks subject to release times and deadlines. Submitted (2021)

12. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of com-
puter computations, pp. 85–103. Springer (1972)

13. Khatami, M., Salehipour, A., Cheng, T.: Coupled task scheduling with exact de-
lays: Literature review and models. European Journal of Operational Research
282(1), 19–39 (2020). https://doi.org/https://doi.org/10.1016/j.ejor.2019.08.045,
https://www.sciencedirect.com/science/article/pii/S0377221719307155

14. Lawler, E.: Optimal sequencing of a single machine subject to precedence con-
straints. Management Sci. 19, 544–546 (1973)

15. Lenstra, J., Rinnooy Kan, A., Brucker, P.: Complexity of machine scheduling prob-
lems. Ann. of Discrete Math. 1, 343–362 (1977)

16. Mallem, M., Hanen, C., Munier-Kordon, A.: Parameterized complexity of a parallel
machine scheduling problem. In: 17th International Symposium on Parameterized
and Exact Computation (IPEC) (2022)

17. Martel, C.U.: Preemptive scheduling with release times, deadlines, and due
times. J. ACM 29(3), 812–829 (1982). https://doi.org/10.1145/322326.322337,
https://doi.org/10.1145/322326.322337

18. Mnich, M., Wiese, A.: Scheduling and fixed-parameter tractability. Mathematical
Programming 154(1-2), 533–562 (Dec 2015). https://doi.org/10.1007/s10107-014-
0830-9, http://link.springer.com/10.1007/s10107-014-0830-9

19. Munier Kordon, A.: A fixed-parameter algorithm for scheduling unit dependent
tasks on parallel machines with time windows. Discrete Applied Mathematics 290,
1–6 (2021)

Parameterized complexity of scheduling coupled tasks with time windows 23

20. Yu, W., Hoogeveen, H., Lenstra, J.K.: Minimizing Makespan
in a Two-Machine Flow Shop with Delays and Unit-Time Op-
erations is NP-Hard. Journal of Scheduling 7(5), 333–348
(Sep 2004). https://doi.org/10.1023/B:JOSH.0000036858.59787.c2,
https://doi.org/10.1023/B:JOSH.0000036858.59787.c2

