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Developed spatial turbulent channel flow simulation for acoustic wave propagation †

When an acoustical object is tested in a duct, very often it is located downstream of a long rigid duct which creates a developed turbulent flow. This paper presents a strategy to reproduce the same situation numerically, in the subsonic case. The direct numerical simulation of a periodic precursor simulation is done, a plane of which is used to feed the spatial simulation where a developed flow is desired. The turbulence in the spatial channel is developed only if the correct source term is used in the precursor simulation, which has been discussed by Brun et al. (Theor. Comput. Fluid Dyn. 32, pp 189-212, 2008). The inflow/outflow section of the spatial channel are managed with the methods of characteristics including plane wave masking and relaxation terms. As a result plane acoustic waves are introduced with no distortion of the injected flow, and their propagation in the developed flow is computed and compared to predictions made by modal analysis. Some low frequencies are included, for which the damping rate is affected by turbulence.

Introduction

In many situations, it is of interest to study the acoustical behavior of an object placed in a duct, either from an experimental or numerical perspective [START_REF] Sovardi | Parametric LES/SI Based Aeroacoustic Characterization of Tandem Orifices in Low Mach Number Flows[END_REF]. The particular situation which motivated the present study is the simulation of the turbulent flow in a channel, one section of which contains an impedance wall or an acoustic liner [START_REF] Marx | Spatial Numerical Simulation of a Turbulent Plane Channel Flow with an Impedance Wall[END_REF][START_REF] Sebastian | Numerical simulation of a turbulent channel flow with an acoustic liner[END_REF]. When this situation is considered experimentally, a long section of the channel usually precedes the test section containing the acoustical object, so that the flow arriving in the test section is developed. In this paper, the objective is to arrive at the same situation numerically. We focus on the part of the channel located upstream of the test section. The flow is subsonic and compressible equations are used to compute this flow as well as acoustic waves travelling in it.

Developed channel flows are commonly simulated in domains periodic in the streamwise direction, either in the incompressible [START_REF] Kim | Turbulence statistics in fully developed channel flow at low Reynolds number[END_REF][START_REF] Hoyas | Scaling of the velocity fluctuations in turbulent channels up to Re τ =2003[END_REF] or compressible case [START_REF] Coleman | A numerical study of turbulent supersonic isothermal-wall channel flow[END_REF][START_REF] Lechner | Turbulent supersonic channel flow[END_REF][START_REF] Morinishi | Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls[END_REF][START_REF] Brun | Large eddy simulation of compressible channel flow : arguments in favour of universality of compressible turbulent wall bounded flows[END_REF][START_REF] Kremer | Semi-implicit Runge-Kutta Schemes: development and application to compressible channel flow[END_REF]. Incompressible channels are driven by a pressure gradient source term in the axial momentum equation and following Coleman et al. [START_REF] Coleman | A numerical study of turbulent supersonic isothermal-wall channel flow[END_REF] a similar strategy is used in most of the compressible channel flow simulations. However, Brun et al. [START_REF] Brun | Large eddy simulation of compressible channel flow : arguments in favour of universality of compressible turbulent wall bounded flows[END_REF] have shown that the driving of a periodic compressible channel flow would be closer to a true spatially developping flow if some forcing in introduced in the energy equation as well. There are less works concerning developed turbulence in non-periodic channels. For spatially evolving turbulence, a natural idea is to compute a periodic precursor simulation with a forcing term in the momentum equation (assumed to be developed by nature) and to inject it (or a model of it) into the spatial simulation, in which the turbulence will not evolve until the test section, with quantities such as the mean flow and turbulence statistics being streamwise independent. This idea works well for incompressible or compressible flows at very low Mach number (0.1 say). However, in our early attempt to use this method at a moderate subsonic Mach numbers (0.5, say), this method was not satisfying since the flow injected in the spatial channel was evolving, and quantities such as the friction Reynolds number changed with streamwise distance. The reason for this was the one advanced by Brun [START_REF] Brun | Large eddy simulation of compressible channel flow : arguments in favour of universality of compressible turbulent wall bounded flows[END_REF]: the flow in the precursor channel needs to be driven by a force but also an energy term. The essence of the method putting this in practice for computing a spatial channel flow has been presented in Brun et al. [START_REF] Brun | LES of the turbulent compressible flow spatially developing in a plane channel, 27ème Congrès Francais de Mécanique[END_REF] and will be re-explored in the first part of the present paper. Compared to Brun et al. we present more comprehensively the equations, adress some limitations, and consider the streamwise evolution of turbulent quantities. Also, since we want to inject acoustic waves without disturbing the injected flow too much, the method to deal with the boundary conditions differs slightly.

A good acoustic test case for testing a developed flow in a channel is to compute sound propagation in this channel. Acoustic propagation in a duct with flow has received much attention. The effect of a mean flow is to cause convection and refraction of the sound waves [START_REF] Davies | Measurement of plane wave acoustic fields in flow ducts[END_REF][START_REF] Agarwal | Acoustic wave propagation in a pipe with fully developed turbulent flow[END_REF][START_REF] Dokumaci | Sound transmission in narrow pipes with superimposed uniform mean flow and acoustic modelling of automobile catalytic converters[END_REF]. Turbulence itself has an effect at low frequency, characterized by an increased damping of the sound wave, and by the occurence of a phase angle between the strain rate and the shear stress of the wave, as demonstrated by early experiments [START_REF] Ronneberger | Wall shear stress caused by small amplitude perturbations of turbulent boundary-layer flow: an experimental investigation[END_REF][START_REF] Peters | Damping and reflection coefficient measurements for an open pipe at low Mach and low Helmholtz numbers[END_REF]. These were used by Howe [START_REF] Howe | The damping of sound by wall turbulent shear layers[END_REF] to build models and some more recent acoustical experiments by Allam et al. [START_REF] Allam | Investigation of damping and radiation using full plane wave decomposition in ducts[END_REF] have also shown a good agreement with the theory of Howe. Some alternative models have also appeared [START_REF] Weng | The attenuation of sound by turbulence in internal flows[END_REF], as well as new experiments [START_REF] Sundstrom | Characteristics of the wall shear stress in pulsating wall-bounded turbulent flows[END_REF]. The effect of turbulence on the wave is mainly explained by incompressible physics and can be investigated in the frame of pulsating incompressible pipe flows, either experimentally [START_REF] Tu | Fully developed periodic turbulent pipe flow. Part 1. Main experimental results and comparison with predictions[END_REF][START_REF] Mao | Studies of the wall shear stress in a turbulent pulsating pipe flow[END_REF] or numerically [START_REF] Scotti | Numerical simulation of pulsating turbulent channel flow[END_REF][START_REF] Weng | Numerical and theoretical investigation of pulsatile turbulent channel flows[END_REF]. In this case, the wall friction of the oscillating perturbation is measured, since it can be connected to damping of the wave. In acoustical experiments [START_REF] Allam | Investigation of damping and radiation using full plane wave decomposition in ducts[END_REF], damping is measured directly from the measured waves. As this requires long ducts in order to measure the slow spatial decay of large wavelengths associated with low frequencies, this has not been done numerically in compressible simulations. This is done in the present work. We compute the propagation of high frequency waves that are mostly affected by convection and refraction by the mean flow, and are damped by laminar processes. We also include some low frequency waves that should be affected by turbulence.

The organization of the paper is as follows. In section 2 we present the method to couple a compressible subsonic spatial channel flow to a precursor periodic channel flow, in the framework of a direct numerical simulation (DNS). In section 3, results concerning a developed channel flow simulation are presented, without any wave excitation. In section 4, a series of acoustic wave is sent into the domain, and the attenuation of these waves is computed and compared to a model. The latter is presented in C. Finally, conclusions are given.

Method for obtaining a developed spatial channel flow

In this section we explain how to conduct the simulation of a subsonic developed spatial channel flow by using inflow data obtained from a precursor channel flow simulation. The setup is summarized in Fig. 1. Both channels have a square geometry and are periodic in the spanwise direction, z. For Figure 1: Dual plane channel flow simulation setup with a precursor simulation (bi-periodic in the streamwise and spanwise direction) feeding a spatial simulation (periodic in the spanwise direction).

the precursor simulation, periodic boundary conditions are also imposed in the streamwise direction, x, and the flow is maintained using some volumic forcing. This flow has to be injected in the spatial channel, together with acoustic waves. Hereafter, spatial will be used to denote a channel with no periodicity in the streamwise direction. There are mainly two points to pay attention to. First, the flow in the precursor simulation is in any case forced to be developed in the sense that its statistics have to be independent of the streamwise direction. However, once introduced in the spatial simulation, it will not necessarily lead to a developed flow there, depending on which source term is used to drive the precursor channel. Second, the precursor flow needs to be injected in the spatial simulation with as little distorsion as possible, so as not to spoil the price that has been paid to perform a precursor simulation. Hence, for example, we would like the friction Reynolds number in the spatial simulation to reach its nominal value as quickly as possible while not comprimising the non-reflecting character of the inflow. These points are addressed in the following, where we discuss the governing equations, the source term, the treatment of the inflow/outflow boundary conditions, and also say a word about the numerical method.

Governing equations

The compressible Navier-Stokes equations are used:

∂ρ ∂t + ∂ρu j ∂x j = 0 ( 1 
)
∂ρu i ∂t + ∂ρu i u j ∂x j + ∂P ∂x i = ∂τ ij ∂x j + f x δ i1 (2) 
∂ρE t ∂t + ∂(ρE t u j + P u j ) ∂x j = ∂τ ij u i ∂x j - ∂q j ∂x j + S e (3) 
where u j for j = 1, 2, 3 are the components of the velocity vector u = [u v w], ρ is the density, P is pressure. We denote by E t the total energy and E the internal energy, with E t = E + u 2 i /2. τ ij are the components of the shear stress tensor τ , with

τ ij = µ (∂u i /∂x j + ∂u j /∂x i ) -2 3 µ (∂u k /∂x k ) δ ij .
We have neglected bulk viscosity, and a power law

µ(T ) = µ ref • (T /T ref ) 0.7
is taken for shear viscosity [START_REF] Schlichting | Boundary-layer theory[END_REF], where T is the temperature, and µ ref is a reference viscosity at reference temperature T ref . q j are the components of the heat flux q = -K∇T . K is the heat conductivity related to viscosity by K = c p µ/P r where P r = 0.75 is the Prandtl number and c p is the heat capacity. The total energy equation is convenient for the discussion below, but in our numerical solver it is replaced with the entropy equation:

∂ρs ∂t + ∂ρsu j ∂x j = 1 T (Φ -∇ • q + S s ) ( 4 
)
where s is the entropy, and Φ = τ ij (∂u i /∂x j ) is the viscous dissipation function. Equations (1-4) contain source terms f x , S e , S s used to drive the precursor channel (they are null in the spatial simulation). Their expression is given in the next subsection. To close the equations, we consider a thermodynamic ideal gas for which the equation of state is

P = ρrT (5) 
where r = 287JK -1 kg -1 is the ideal gas constant. The internal energy verifies: (γ -1)ρE = P (6) γ = c p /c v is the heat capacity ratio and γ = 1.4 for air. The speed of sound is c = √ γrT . The boundary condition for the above equations are that:

u = v = w = 0 y = ±H, ∀x, z, t (7) 
at the walls, and that the temperature is imposed at the walls. For the precursor channel simulation, the wall temperature is uniform and given by:

T (x, y, z, t) = T w,0 y = ±H, ∀x, z, t (8) 
where T w,0 is a prescribed value. This also determines the viscosity µ w,0 = µ(T w,0 ) and the speed of sound c w,0 = γrT w,0 at the wall in the precursor simulation. For the spatial channel, the boundary condition for temperature will be specified below.

Two non-dimensional numbers govern the channel flow, the Mach number and the Reynolds number [START_REF] Coleman | A numerical study of turbulent supersonic isothermal-wall channel flow[END_REF]. They are defined with averaged quantities. Hence, we denote by < g > x the average over x of a quantity g, and similar averages are defined over y, z, and t. Averages can be computed over several variables, as for example in < g > xyz which represents an average of g over x, y, and z. In the precursor channel, we define the bulk density and bulk velocity by ρ b =< ρ > xyz and u b =< ρu > xyz /ρ b , respectively. ρ b is constant and we will see that u b is maintained at a fixed value, so that it is meaningful to define the Mach number and bulk Reynolds number by:

M = u b /c w,0 Re b = ρ b u b H µ w,0 (9) 
ρ b and u b being constant in time, we also have ρ b =< ρ > xyzt and u b =< ρu > xyzt / < ρ > xyzt , as introduced originally in [START_REF] Coleman | A numerical study of turbulent supersonic isothermal-wall channel flow[END_REF]. In addition, x being a homogeneous direction in the precursor channel, we have ρ b =< ρ > yzt and u b =< ρu > yzt / < ρ > yzt , computed from any x-position. Since a plane of the flow of the precursor simulation is passed to the inflow of the spatial simulation, the Mach and Reynolds numbers defined in Eq. ( 9) are relevant for the inflow section of the spatial simulation. Two non-dimensional numbers that will also be used in the following are the friction Reynolds number and the non-dimensional wall heat flux, defined by [START_REF] Coleman | A numerical study of turbulent supersonic isothermal-wall channel flow[END_REF]:

Re τ = ρ w Hu τ µ w ; Bq = q w ρ w c p u τ T w ( 10 
)
where T w and ρ w are the wall mean temperature and density, µ w the wall viscosity, u τ the wall friction velocity defined from the wall friction τ w by u 2 τ = τ w /ρ w , and q w is the wall heat flux. All these quantities result from an average over z and t (for example, T w (x) =< T (x, ±H, z, t) > zt ), they possibly depend on x for the spatial channel but not for the precursor one. For the precursor channel, we have for example T w (x) = T w,0 imposed by the boundary condition, Eq. ( 8), and this is independent of x. Ideally, Re τ and Bq should be streamwise independent in the spatial channel, and equal to their value in the precursor channel.

Driving of the precursor simulation

The governing equations Eqs. (1-3) can be used both for the periodic precursor simulation and for the spatial simulation. However, while in the spatial simulation the variables describe the whole flow field, in the precursor simulation they account only for the homogeneous (ie streamwise independent) part of the flow and the inhomogeneous part has to be replaced by a forcing term in the right hand side of the equations. As pointed out by Brun et al. [START_REF] Brun | Large eddy simulation of compressible channel flow : arguments in favour of universality of compressible turbulent wall bounded flows[END_REF] the forcing in the energy equation is important. This is summarized in the present subsection. In the following, starting from Eqs. (1-3), variables are split into homogeneous and inhomogeneous components, and the inhomogeneous part provides the forcing term to be used in the precursor simulation. To separate inhomogeneous and homogeneous contributions, any quantity G can be decomposed as:

G(x, y, z, t) = g 0 (x) + g(x, y, z, t) (11) 
where g 0 (x) is the inhomogeneous part, and g(x, y, z, t) is the homogenous one satisfying the homogeneity condition in the x-direction: ∂ ∂x < g > t = 0.

According to Brun et al. [START_REF] Brun | Large eddy simulation of compressible channel flow : arguments in favour of universality of compressible turbulent wall bounded flows[END_REF] u and ρ are homogeneous, whereas P is not. Hence, we have:

u i (x, y, z, t) = 0 + u i (x, y, z, t) (12) 
ρ(x, y, z, t) = 0 + ρ(x, y, z, t)

P (x, y, z, t) = p 0 (x) + p(x, y, z, t) (13) 
From the state equation, temperature, and thus energy, are expected to have a inhomogeneous contribution as well. However, it is not possible to write such a relation as T (x, y, z, t) = T 0 (x) + T (x, y, z, t), since introducing this into Eq. ( 5) would lead to an unvalid relation p 0 (x) = ρ(x, y, z, t)rT 0 (x). It is preferable to write:

ρT (x, y, z, t) = {ρT } 0 (x) + ρT (x, y, z, t) (15) 
ρE(x, y, z, t) = {ρe} 0 (x) + ρe(x, y, z, t)

)

ρE t (x, y, z, t) = {ρe t } 0 (x) + ρe t (x, y, z, t) (17) 
where a term like {ρT } 0 (x) depends on x only. Since ρ is homogeneous, we may write: {ρT } 0 (x) ∼ ρ 0 (y)T 0 (x, y) where ρ 0 (y) is the mean density profile. The subscript 0 in T 0 (x, y) is used with a slight abuse of notation, since the quantity depends on y. Substituting this into Eq. ( 5) and identifying homogenous/non-homogeneous terms provides:

p 0 (x) = rρ 0 (y)T 0 (x, y) (18) 
Denoting by ρ w the value of the density ρ 0 (±H) at the wall (independent of x), and by T w (x) = T 0 (x, ±H) the temperature at the wall, we see that:

p 0 (x) = rρ w T w (x) (19) 
and

T 0 (x, y) = ρ w T w (x) ρ 0 (y) (20) 
In particular from Eq. [START_REF] Weng | The attenuation of sound by turbulence in internal flows[END_REF] we see that the wall temperature and the mean pressure drop need to be consistent. Similarly, using Eq. ( 6), and velocity being homogenous, we have:

{ρe t } 0 (x) = {ρe} 0 (x) = p 0 (x) (γ -1) (21) 
This splitting is valid if it can satisfy Eqs. (1-3) and homogeneity condition. To verify this, we first consider the momentum equation in the x-direction for the spatial channel. By substituting Eq. ( 14) into Eq. ( 2) we obtain:

∂ρu ∂t + ∂ρuu j ∂x j + ∂p ∂x = ∂τ 1j ∂x j - dp 0 dx ( 22 
)
For the precursor simulation, no inhomogeneous term can be included, and we will have instead:

∂ρu ∂t + ∂ρuu j ∂x j + ∂p ∂x = ∂τ 1j ∂x j + f x (23) 
Thus the forcing f x in the precursor channel is connected to -dp 0 dx which need to be speficied. By applying the average < • > yzt and accounting for homogeneity in the x and z-direction as well as the no-slip boundary condition at the wall, we obtain:

0 = ∂ ∂x < τ xx > tyz + ∂ ∂y < τ xy > tyz - dp 0 dx (24) 
This is approximately:

dp 0 dx (x) = - 1 H < µ(x) ∂u ∂y w (x) > tz (25) 
where the subscript w indicates that the derivative is taken at the bottom wall. This balance is satisfied in a developed spatial channel flow, and an equivalent balance should ideally by obtained in the precursor channel. However, this can only be approximately the case, since viscosity µ depends on T and thus on x since T is not homogeneous, meaning the balance depends on x which is not possible in the precursor channel. Nevertheless, a realistic choice for the x-independent forcing in the precursor channel is f x = τ w /H where τ w is the average friction at the walls of the precursor channel computed as τ w =< τ xy > xzt,w . This force plays the role of -dp 0 dx and counterbalances viscous losses at the wall to maintain the flow in the periodic channel. Such a term is classically imposed in incompressible simulations [START_REF] Kim | Turbulence statistics in fully developed channel flow at low Reynolds number[END_REF]. It has been used in compressible simulations by Coleman [START_REF] Coleman | A numerical study of turbulent supersonic isothermal-wall channel flow[END_REF], albeit in the slightly different form f x = ρF , where F is a uniform volumic force varied so that the bulk velocity in the channel is maintained constant.

Here also, as introduced in the end of the previous subsection, at any time step f x in the precursor simulation is varied so that u b , and thus M , take the target nominal value. This is indeed equivalent to f x = τ w /H.

Consider now the total energy equation. By substituting Eq. ( 17) into Eq. ( 3) we obtain for the spatial channel:

∂ρe t ∂t + ∂(ρe t u j + pu j ) ∂x j = ∂τ ij u i ∂x j - ∂q j ∂x j - ∂(ρe t,0 u j + p 0 u j ) ∂x j (26) 
For the precursor simulation, this should be replaced by:

∂ρe t ∂t + ∂(ρe t u j + pu j ) ∂x j = ∂τ ij u i ∂x j - ∂q j ∂x j + S e (27) 
Thus S e is connected to the inhomogeneous part -∂(ρe t,0 u j + p 0 u j ))/∂x j , made up of two terms. The term ∂p 0 u j /∂x j is related to the work of the pressure gradient appearing in the momentum equation, that is, the work of f x . Very often, only this term is included in simulation of periodic compressible channel flows. However, Brun et al. [START_REF] Brun | Large eddy simulation of compressible channel flow : arguments in favour of universality of compressible turbulent wall bounded flows[END_REF] have pointed out that the second term, ∂ρe t,0 u j /∂x j should be kept so that the periodic simulation mimicks in a better way a developed channel flow. By using Eq. ( 21) the total homogeneous term is -γ γ-1 ∂(p 0 u j )/∂x j and by taking the average < • > yzt of the energy equation, with the same reasoning as for the momentum equation, one obtains:

0 = q w H (x) - γ γ -1 dp 0 dx < u > yzt
where q w =< K(∂T /∂y) w > tz is the averaged heat flux at the wall. Again this balance should be reproduced as closely as possible in the precursor channel but this cannot be exactly the case since K depends on x through T . With f x equivalent to -dp 0 /dx Brun et al. [START_REF] Brun | Large eddy simulation of compressible channel flow : arguments in favour of universality of compressible turbulent wall bounded flows[END_REF] have used S e = γ γ-1 uf x , and here we will take S e = γ γ-1 < u > xz f x . However, we have verified that this makes no difference. An equivalent force in the entropy equation is

S s = 1 (γ-1) < u > xz f x .
In summary, Eqs. (1-2), and Eq. ( 4) are used to compute the precursor channel flow and the spatial simulation. For the spatial simulation, there is no source term since the variables include both the homogeneous and inhomogeneous parts. For the precursor simulation, a source term is necessary to replace the inhomogeneous terms which cannot be included due to the streamwise periodicity. One option is to choose:

f x = ρF, S s = 0 (that is, S e ∼ uf x ) (28) 
This was first introduced in Coleman et al. [START_REF] Coleman | A numerical study of turbulent supersonic isothermal-wall channel flow[END_REF]. However, such a source term does not fully account for the actual inhomogeneous flow, meaning the resulting computed flow is not really developed and, once injected in the spatial channel, would evolve to a different state. The second option is to choose:

f x = -τ w /H, S s = 1 γ -1 < u > xz f x (that is, S e = γ γ-1 < u > xz f x ) (29 
) as advocated by Brun et al. [START_REF] Brun | Large eddy simulation of compressible channel flow : arguments in favour of universality of compressible turbulent wall bounded flows[END_REF], which is more likely to provide developed inlet conditions for the spatial channel. We will use this second option to obtain a developed flow for acoustic propagation, but an example of using the first option will be given as well.

Inflow and outflow conditions

Once the correct flow is computed in the precursor channel, it needs to be introduced in the spatial channel at the inflow. For problems in acoustics, in addition to turbulence, we also need to inject acoustic waves into the domain and eventually let them leave the domain with or without reflection. In the present work, the inflow and outflow of the spatial simulation are managed with the method of characteristics [START_REF] Thompson | Time dependent boundary conditions for hyperbolic systems[END_REF][START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF]. This method is applied in the x-direction and allows to identify waves moving toward x < 0 and waves moving toward x > 0. This is useful since the waves entering the domain at the boundaries should be specified for the problem to be well-posed. Classically, quantities associated with the waves are denoted by L i and are defined by [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF]:

L 1 = (u -c) ∂p ∂x -ρc ∂u ∂x (30) 
L 2 = u c 2 ∂ρ ∂x - ∂p ∂x (31) 
L 3 = u ∂v ∂x (32) 
L 4 = u ∂w ∂x (33) 
L 5 = (u + c) ∂p ∂x + ρc ∂u ∂x (34) 
The wave associated with L 1 travels at speed u -c, the waves L 2 , L 3 , L 4 travel at speed u, and the wave L 5 travels at u+c. Thus, for a subsonic flow, four waves travel toward x > 0 (L 2 , L 3 , L 4 , L 5 ) and should be imposed at the inflow at x = 0, and one wave (L 1 ) travel toward x < 0 and should be imposed at the outflow at x = L x . The different variables may be advanced in time at the boundaries when the waves are known, since the Navier-Stokes equation can be rewritten in terms of these waves [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF]:

∂ρ ∂t + d 1 + TT = 0 ( 35 
)
∂ρu ∂t + ud 1 + ρd 3 + TT = 0 ( 36 
)
∂ρv ∂t + vd 1 + ρd 4 + TT = 0 ( 37 
)
∂ρw ∂t + wd 1 + ρd 5 + TT = 0 ( 38 
)
∂ρs ∂t + sd 1 + ρd 6 + TT = 0 ( 39 
)
where

d 1 = 1 c 2 L 2 + 1 2 (L 1 + L 5 ) (40) 
d 3 = 1 2ρc (L 5 -L 1 ) (41) 
d 4 = L 3 ( 42 
)
d 5 = L 4 ( 43 
)
d 6 = - c v p L 2 (44) 
Quantity d 6 is not defined in [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF] and is introduced here in connection with the equation for entropy (a quantity d 2 is defined in [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF] for use in the equation of total energy, it is not listed here since it is not needed in the equation for entropy). In Eqs. [START_REF] Bogey | A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations[END_REF][START_REF] Iwamoto | Reynolds Number Effect on Wall Turbulence: Toward Effective Feedback Control[END_REF][START_REF] Weng | On the calculation of the complex wavenumber of plane waves in rigid-walled low-Mach-number turbulent pipe flows[END_REF][START_REF] Reynolds | The mechanics of an organized wave in turbulent shear flow. Part 3: theoretical models and comparisons with experiments[END_REF][START_REF] Marx | Effect of turbulent eddy viscosity on the unstable surface mode above an acoustic liner[END_REF], transverse terms with y-and z-derivatives as well as viscous terms are not specified and replaced with TT since only the splitting in the x-direction is important. The important question is how to impose the entering characteristics L i in the spatial simulation. In first approximation, they may be fixed by inviscid relations [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF], but in many cases this is not robust as drift due to transerve terms [START_REF] Yoo | Characteristic boundary conditions for direct simulations of turbulent counterflow flames[END_REF] may occur, or non-reflecting boundary conditions may be poor [START_REF] Selle | Actual impedance of nonreflecting boundary conditions: implications for computation of resonators[END_REF]. Also, often L 1 and L 5 are tagged as acoustic waves but the reality is more complex [START_REF] Prosser | Improved boundary conditions for the direct numerical simulation of turbulent subsonic flows. I. Inviscid flows[END_REF]. All these issues are summarized in Daviller et al. [START_REF] Daviller | A generalized non-reflecting inlet boundary condition for steady and forced compressible flows with injection of vortical and acoustic waves[END_REF] who provide a pratical formulation for L 5 which sorts most of these problems. This formulation incorporates the plane wave masking proposed by Polifke et al. [START_REF] Polifke | Partially reflecting and non-reflecting boundary conditions for simulation of compressible viscous flow[END_REF] which is efficient at making the inflow non-reflecting to plane acoustic waves, and is valid at low enough frequencies. In [START_REF] Daviller | A generalized non-reflecting inlet boundary condition for steady and forced compressible flows with injection of vortical and acoustic waves[END_REF] the formulation assumes a given target turbulent flow field, which here is known from the precursor simulation. The characteristics in a given transverse plane of the precursor simulation are computed and directly passed to the spatial simulation. Thus, at the subsonic inflow at x = 0 of the spatial simulation, L 5 may be prescribed as [START_REF] Daviller | A generalized non-reflecting inlet boundary condition for steady and forced compressible flows with injection of vortical and acoustic waves[END_REF]:

L 5 = L t 5 -2ρc du + a dt + 2ρcK in u -u - a -u + a -u t (45) 
The term L t 5 is the entering characteristics computed from the precursor simulation using Eq. ( 34). -2ρcdu + a /dt is the contribution to the entering characteristic of the acoustic wave one wishes to introduce, u + a being the velocity associated with this wave. The relaxation term, that is the term containing the relaxation factor K in , sorts the several issues mentioned above. It relaxes the velocity u computed at the boundary to the sum of: the turbulent flow target velocity, u t , computed in the precursor simulation (and passed from the same location where L t 5 is computed); the known entering acoustic wave velocity, u + a ; and the outgoing plane acoustic wave velocity, u - a . The latter is computed from the numerical simulation by spatial averaging as discussed in [START_REF] Polifke | Partially reflecting and non-reflecting boundary conditions for simulation of compressible viscous flow[END_REF]. The choice of the relaxation factor, often given in normalized form K in L x /c w,0 , is discussed in [START_REF] Daviller | A generalized non-reflecting inlet boundary condition for steady and forced compressible flows with injection of vortical and acoustic waves[END_REF]. A large value allows to impose the target field more closely, at the cost of making the inlet more reflective. However, using plane wave masking avoids this inconvenience at low frequencies [START_REF] Daviller | A generalized non-reflecting inlet boundary condition for steady and forced compressible flows with injection of vortical and acoustic waves[END_REF]. The other entering characteristics at inflow are prescribed as:

L 3 = L t 3 + K in (v -v t ) (46) 
L 4 = L t 4 + K in (w -w t ) (47) 
L 2 = L t 2 - p c v K in (s -s t ) (48) 
Again, L t 3 , L t 4 , and L t 2 are target characteristics computed from the precursor simulation using Eqs. [START_REF] Daviller | A generalized non-reflecting inlet boundary condition for steady and forced compressible flows with injection of vortical and acoustic waves[END_REF][START_REF] Polifke | Partially reflecting and non-reflecting boundary conditions for simulation of compressible viscous flow[END_REF][START_REF] Honein | Higher entropy conservation and numerical stability of compressible turbulence simulations[END_REF], and the target velocities v t , w t , and entropy s t for the relaxation term come from the precursor simulation. At the subsonic outflow at x = L x , only one characteristic needs to be imposed. It is computed according to:

L 1 = σ out c L x (p -p ∞ -p + a,out ) (49) 
Here, σ out is a dimensionless relaxation factor and p is relaxed to the sum of an imposed mean pressure p ∞ [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF], and eventually an ougoing acoustic wave for plane wave masking. This latter term is used to obtain non-reflecting outlet for plane acoustic waves and p + a,out is an outcome of the simulation computed by spatial averaging [START_REF] Polifke | Partially reflecting and non-reflecting boundary conditions for simulation of compressible viscous flow[END_REF]. The value of p ∞ is decided in the following manner. The pressure drop in the spatial channel is expected to be dp 0 dx ∼ -τ w /H where τ w is computed from the precursor channel. Hence, we impose:

p ∞ = p prec -τ w L x /H (50)
where p prec is the mean pressure in the precursor channel, so that the inlet pressure in the spatial simulation is expected to be about the same as in the precursor channel, and the mean pressure in the spatial channel is expected to be p 0 (x) = p prec -τ w x/H. In addition, Eq. ( 19) shows that the pressure drop and the wall temperature need to be consistent. Hence, in the spatial channel, the wall temperature T w (x) is imposed as:

T w (x) = p 0 (x) rρ w = p prec -τ w x/H rρ w at y = ±H, ∀x (51) 
where ρ w is the mean density at the wall. Like p prec and τ w , it is obtained from the precursor simulation. Equation (51) specifies the thermal boundary condition at the wall in the spatial simulation.

Numerical Schemes

Equations (1-2) and Eq. ( 4) are the equations that are solved for. For the precursor channel, a nonzero source term such as Eq. ( 29) is used. Following Honein et al. [START_REF] Honein | Higher entropy conservation and numerical stability of compressible turbulence simulations[END_REF], the convective terms in both the momentum and the entropy equation are written in skew-symmetric form. The non-slip boundary condition at the walls is Eq. [START_REF] Lechner | Turbulent supersonic channel flow[END_REF]. The temperature at the walls satisfies Eq. ( 8) in the precursor simulation, and Eq. (51) in the spatial simulation. As temperature is not a variable that can be controlled directly, these are enforced by using the isothermal relation: ∂s/∂t = -(r/ρ)∂ρ/∂t. The equations are discretized in a collocated manner using a finite difference method. The first derivatives are computed with a 6th order compact scheme for the central points, a centered 4th order compact scheme for the grid point next to the boundary, and a 3rd order compact upwind scheme at the boundary point. A similar pattern is followed for the second derivative. All these schemes are from [START_REF] Lele | Compact finite difference schemes with spectral-like resolution[END_REF]. Since the centered scheme is non-dissipative, a selective filter taken from [START_REF] Kremer | Semi-implicit Runge-Kutta Schemes: development and application to compressible channel flow[END_REF][START_REF] Bogey | A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations[END_REF] is used in general to avoid grid-to-grid oscillations. This is a 11-point 6th-order filter (given in Table 1 of [START_REF] Bogey | A shock-capturing methodology based on adaptative spatial filtering for high-order non-linear computations[END_REF]) which is applied whenever the number of neighboring points is sufficiently large. It is included here even if it is hardly necessary for a direct numerical simulation since the mesh is fine. Finally, the time-advancement relies on a classical fourth-order four-step Runge-Kutta method.

3 Simulation of a developed channel flow

Non-developed spatial channel flow

Before adressing a correctly developed channel flow simulation, and in order to put things in perspective, a naive way of simulating a spatial channel flow is first presented. In this naive way, the precursor temporal simulation is performed with the source term in Eq. ( 28), meaning the periodic channel is driven in the same way as used by Coleman et al. [START_REF] Coleman | A numerical study of turbulent supersonic isothermal-wall channel flow[END_REF]. The wall temperature in the spatial channel is uniform and equal to that of the precursor channel (hence, boundary condition in Eq. ( 8) is used here in both the precursor and spatial simulations). Doing this would indeed lead to well developed channel flows at low Mach numbers (less than 0.1, say) in which there is no large temperature differences between the core of the flow and the channel walls. As the Mach number increases, the temperature difference between the center and the wall increases, and the spatial channel flow is not well developed using this method. To demonstrate this, the DNS of a spatial channel flow simulation is conducted, which is fed by the DNS of a precursor channel simulation at Re b = 2293 and M = 0.6. This corresponds to Re τ ∼ 153. The streamwise length of the spatial channel is L x = 62.8H, about 5 times larger than 4πH, the typical length of a periodic channel flow [START_REF] Kim | Turbulence statistics in fully developed channel flow at low Reynolds number[END_REF] without large-scale structures, and the spanwise length is L z = 4.2H. The latter is close to 4πH/3, slightly more than πH which is enough for the spanwise correlations to vanish. The number of points is n x ×n y ×n z = 835×131×101. A stretching is used in the y-direction, which places the first point at y + ∼ 1 and the ninth point at about y + = 10 (y denotes the distance to the wall when no confusion is possible). The mesh at the center of the channel is ∆y + ∼ 5. In the other directions, we have ∆x + ∼ 11.5 and ∆z + ∼ 5. After a steady state is reached, the simulation is run for a duration T simu c w,0 /H ∼ 3750 (or T + simu = 20000 in wall units) in order to compute the statistics. This corresponds to 750000 iterations with time step ∆tc w,0 /H = 0.005. The total number of time steps including transient is about 1.5 millions, which represents a CPU cost of 150000 hours using about 800 CPUs. Note that here and in the following, the precursor and spatial simulations correspond the same domain size and grid, for ease of programmation. However, ideally, the precursor would be run on a mimimal domain length of, say, 4πH, which would reduce the computing cost. The relaxation factors for the method of characteristics are K in L x /c w,0 = 1884 and σ out = 19. Guidelines for selecting these values are given in A. The large value at inlet corresponds to a small relaxation time, which allows to correctly introduce most of the scales of the flow. This requires using plane wave masking (u - a included in Eq. ( 45)).

The averaged streamwise velocity and density in the spatial channel are shown in Fig. 2. Both of them are x-dependent. The mean velocity profiles at different streamwise positions are shown in Fig. 3(a). The maximum of the mean velocity increases with x and makes up for the decrease of the mean density, so that the flow rate at the outflow remains the same as at the inflow. The mean temperature profiles normalized with the wall temperature are given in Fig. 3(b) and they also depend on the streamwise location. As an example of evolution of turbulent fluctuations, rms temperature profiles are shown in Fig. 3(c). A streamwise evolution is noticed here also. The streamwise evolution of Re τ and Bq in the spatial channel are shown in Fig. 4, where they are compared to the constant value associated with the precursor channel. It is seen that Re τ depends on x and varies by 7%, with a value always exceeding the precursor channel value. Bq varies by more than 40% along the channel. Hence, the flow in the spatial simulation is not developed, and the objective of the next subsection is to improve this situation. 

x = 0, x = L x /2, • • • x = L x , precursor channel.

Developed spatial channel flow

In order to obtain a well developed channel flow, the DNS of the same nominal configuration (Re b = 2293 and M = 0.6) is performed, but the source term in the precursor channel is now given by Eq. ( 29) and the wall temperature in the spatial channel is imposed according to Eq. (51). Due to the changed source term, the friction Reynolds number in the precursor channel is now Re τ ∼ 179. The corresponding friction τ w is used to enforce p ∞ and T w in the spatial channel by using Eqs. (50-51). The domain size and the grid are the same as in section 3.1, but due to the modified friction number, the mesh size in wall units is now: ∆x + = 13.4, ∆z + = 7.2, ∆y + min = 1.2, ∆y + max = 6.3. The duration and cost of the simulation are the same as in section 3.1 The averaged flow field in the spatial channel is given in Fig. 5, where averages are computed over time and the z-direction. According to the analysis in section 2.2, ρ and u should be homogeneous, and this is indeed observed in this figure since the mean velocity and density do not depend on x anymore, which is an improvement compared with the situation in the previous subsection. This is also confirmed in Fig. 6(a-b) where the mean velocity and density profiles at several streamwise locations collapse and match the profiles in the precursor simulation. The inset in Fig. 6(a) is a zoom in on the wall region showing that the slope of the velocity actually depends slightly on the streamwise position, as will be discussed below. The mean pressure in Fig. 5(c) corresponds to the inhomogeneous pressure p 0 (x) and as expected it depends only on x, approximately. The mean temperature in Fig. 5(d) depends on both x and y. It should approach T 0 given by Eq. ( 20). In particular < T > zt (x, y)/T w (x) is expected to match ρ w /ρ 0 (y) which is independent of x. That this is the case is verified in Fig. 6(c) (where ρ w /ρ 0 (y) is not shown in the figure but would collapse on the other curves).

The rms of streamwise velocity, Reynolds stress, and temperature in the spatial simulation are given in Fig. 7. They are mostly streamwise 

x = 0, x = L x /2, • • • x = L x , periodic channel.
independent and match with the one in the precursor channel. 

x = 0, x = L x /2, • • • x = L x , periodic channel.
Finally, the evolution in the streamwise direction of Re τ and Bq for the spatial channel are shown in Fig. 8(a-b). Both quantities are almost streamwise independent and equal to their corresponding value in the precursor channel, even if Bq tends to increase slightly with streamwise distance. Specifically the variations of Re τ are about 0.8%. Those of Bq are larger with an increase of 2.4% along the channel. As discussed following Eq. ( 25) the viscosity µ w at the wall of the spatial channel depends on x via temperature. Since the wall temperature drops by 10%, µ w decreases by about 7% as shown in Fig. 8(c geneous as shown in Fig. 6(a) but the inset in the same figure shows that the gradient at the wall does have small variations and it turns out that the velocity gradient at the wall increases by 6% along the domain as shown in Fig. 8(d). Re τ depends on < µ(x) ∂u ∂y w (x) > tz , and as a result of cancellation, it remains almost constant. The same kind of cancellation occurs for temperature gradient and thermal conduction at the wall, leading to the moderate increase of Bq. To see what would happen if the viscosity was taken uniform (the dependence of µ with temperature is then ignored in both the precursor and spatial channels) the same simulation was repeated with µ = µ w,0 . In that case, µ w , being uniform, does not decrease along the channel. However, it turns out that the increase in the velocity gradient at the wall of the spatial channel is much smaller than in the regular case, leading to the same kind of evolution for Re τ and Bq as observed in Fig. 8.

To conclude, for a channel of length L x ∼ 60H, a nearly developed flow with almost constant values of Re τ and Bq in the streamwise direction can be maintained. However, generally speaking we have observed that the longer the channel, the larger the change in Re τ and especially Bq will be. Note that the forcing used in this section (Eq. (29) + Eq. ( 51)) is especially useful at large (but subsonic) Mach numbers, here M = 0.6. However, it can be used also at low Mach numbers. At low Mach numbers, M = 0.1 or less, this forcing or the one in the previous section both work, and the mean temperature in the spatial channel does not depend on the streamwise location.

Application to acoustic wave propagation

To demonstrate the suitability of the developed spatial channel flow for computing acoustic wave propagation, we verify how much control we have on sound waves injected into the domain by comparing their characteristics to those obtained from modal analysis (the model for mode computation is presented in C). Acoustic waves of high enough frequency are almost not influenced by turbulence, and if the channel flow is sufficiently well developed, as targeted in this work, a local mode analysis should predict reasonably well their wavenumber and modal shape, despite the axial temperature dependence. By contrast, for sufficiently low frequencies, turbulence has an effect on the acoustic waves. The precise definition of low frequency is specified at the end of section 4.2.1 below. This situation becomes costly to simulate because of the scale difference between the large wavelengths of acoustic waves and the small scales of turbulence. This is the reason why simulations for low frequency oscillating waves are usually limited to the incompressible regime and acoustic waves are replaced by a pulsating flow.

Here, we will include some low frequency acoustic waves in the compressible simulation and verify their damping rate. A long computational domain is needed to measure the decay rate of these waves, we take L x = 200H (this is much longer than a typical length of 20H which would be used for a periodic pulsating flow). The cost of computing a spatial channel flow with a certain number of wavelengths and a certain number of periods, accounting for the CFL (Courant-Friedrichs-Lewy) constraint on the time step, is inversely proportionnal to the square of the Mach number. Hence, taking a Mach number of 0.5 reduces significantly the computational cost compared to a simulation that would be done at a lower Mach number (of 0.1, say). On the other hand, this generates mean density variations but the present method of generating the inflow will insure the existence of a developed flow despite this. So the situation fits the objective of this work. In the following, the mean flow used is specified, and the characteristics of acoustic waves introduced in the domain are measured and compared to a model.

Mean flow

In the streamwise direction, the spatial channel has dimension

L x × L y × L z = 200H × 2H × 4.
19H. The number of grid points is n x × n y × n z = 1601 × 141 × 101. The spatial channel is fed with a precursor simulation at Re b = 2293 and M = 0.5. In both the precursor and spatial simulations, the dependence of viscosity on temperature is ignored. This has been done to avoid the dependence of the acoustic boundary layer thickness with streamwise distance. The resulting friction Reynolds number is Re τ = 173. The uniform mesh size is ∆x + = 21.6 and ∆z + = 7.1, which again corresponds to a DNS, with a rather coarse grid. The mesh size at the wall is ∆y + w = ∆y w Re τ = 0.57. The eigth grid point off the wall is at about y + = 4. The mesh size at the wall also verifies ∆y = 0.0033H, and the time step verifies ∆tc w,0 /H = 0.003, which a represents a CFL number of 0.9. The simulation, once it has reached a steady state, is run for about 3.9 millions of iterations, which correspond to a simulated duration T simu c w,0 /H ∼ 11700. The simulation is run on 1848 CPUs, and the CPU cost is about 1.2 million of hours for the steady state with acoustic waves sent (about 1.5 million iterations are required to reach the steady state, which represents an extra CPU cost of 450000 hours). The computed mean density at the wall is ρ w /ρ b = 1.26.

In the spatial simulation, plane wave masking is used at inlet, so that the inflow is non-reflecting to plane waves, and the relaxation factor has been chosen so that most of the scales in the flow are passed from the precursor to the spatial simulation: K in L x /c w,0 = 6000. For reasons explained below the outlet is taken to be partially reflecting, meaning plane wave masking is not active at outflow (p + a,out = 0 is enforced in Eq. ( 49)), and the relaxation factor is σ out = 300 (discussed below).

The mean flow in the precursor channel is now validated. Profiles of the mean flow, rms streamwise velocity, and Reynolds stress are given in Fig. 9(a)-(c). There is no compressible reference data against which to compare. However, the computed Re τ = 173 corresponds to a transformed friction number of Re * τ ∼ 151 (the expression of Re * τ can be found in [START_REF] Trettel | Mean velocity scaling for compressible wall turbulence with heat transfer[END_REF]) and the statistics, after an appropriate rescaling, can be compared to those of an incompressible channel operated at this value. At Re τ = 150 incompressible data by Iwamoto et al. [START_REF] Iwamoto | Reynolds Number Effect on Wall Turbulence: Toward Effective Feedback Control[END_REF] are available. It is therefore possible to rescale our data using transformations by Trettel et al. [START_REF] Trettel | Mean velocity scaling for compressible wall turbulence with heat transfer[END_REF] for the mean velocity, or the semi-local scaling of Huang et al. (see [START_REF] Coleman | A numerical study of turbulent supersonic isothermal-wall channel flow[END_REF]) for the rms quanti- the gray line shows the profiles in the middle section of the spatial channel (x = 100H). ties. In Fig. 9 we denote by y * the semi-local coordinate, which is a rescaled version of y accounting for mean density variations in y. The statistics in the present simulation, once rescaled, agree well with the incompressible data. There is a slight overshoot in the peak of axial rms velocity in Fig. 9(b) but this is generally observed with the semi-local scaling [START_REF] Modesti | Reynolds and Mach number effects in compressible turbulent channel flow[END_REF]. Hence, the mean flow corresponds to an incompressible flow at Re τ ∼ 150 and is correctly computed. The rms pressure is given in Fig. 9(d). It also differs from the incompressible curve, but contrary to the other statistics, to the author's knowledge, no scaling exists that would collapse the rescaled and incompressible data (hence, there is no * variable in this subplot). The flow in the spatial channel at x = 100H is shown by thick gray lines in Fig. 9(a-d), before acoustic waves are injected. It matches the one in the precursor channel, as in section 3.2, even if the collapse of the curve is not as perfect as a result of the increased length of the domain. In particular the rms pressure in the spatial channel differs slightly from the one in the precursor channel. Once the acoustics wave are sent, they will also contribute to the rms pressure.

Acoustic wave propagation

In this section, acoustic waves are injected in the domain, and the characteristics of their propagation, including the damping rate, is computed and compared to a model.

Injected waves

A set of right-travelling waves is injected at the inflow of the spatial channel by imposing the excitation u + a = 11 m=1 A 0 c w,0 f (y) cos(ω m t) in Eq. ( 45), where the different values for the angular frequencies ω m are provided in the first column of Table 1. A 0 is a normalized amplitude, the same for all the waves. The wave profile is arbitrarily imposed to be f (y) = 1 -(y/H) 4 so that it is flat in the channel center and the non-slip boundary condition is respected at the walls. As f (y) is not an eigenfunction of the linearized problem, the amplitude of the excited acoustic plane waves will differ from the imposed value A 0 . In fact, the velocity amplitude, a u , of the right-going plane wave in the channel is obtained by projecting the excitation waveform onto the plane wave:

a u = 1 2H H -H A 0 (1-(y/H) 4 )•1dy = 4
5 A 0 where 1 in the integrand corresponds to the uniform amplitude of the plane wave (note that it would have been possible to use a more flat profile, such as (1 -(y/H) 24 ), in which case a u would have been 24 25 A 0 ∼ A 0 ). The normalized value of a u obtained in the simulation is given in Fig. 10(a). Its value is about 0.0027, which is very close to 4 5 A 0 = 0.0028 imposed in the code. The corresponding normalized pressure amplitude is a p /(ρ b c 2 w,0 ) ∼ 0.0027, which gives a sound pressure level of L ∼ 144dB. In the next section, we extract the acoustic wave characteristics based on measurements made at some probes, and it ωH/c w,0 is important to quantify the signal-to-noise ratio (SNR), which here is the acoustics-to-turbulence ratio. This is done in B, where it is observed that the acoustic peaks emerge in the pressure spectrum by 20dB, without any section-averaging. However, concerning acoustic velocity, its magnitude is smaller than the turbulent one, and section-averaging needs to be used, in the z-direction at least. An extra averaging in the y-direction can be performed, and in this case, the acoustic peaks also stand 20 dB above the noise level.

ω + δ + ν λ + x /H λ - x /
In the simulation we wish to have both right-and left-travelling acoustic waves. This is the reason why we do not use plane wave masking at the outflow, so that left-travelling waves are generated from the reflection of right travelling waves at the outflow. In that case, the reflection of plane waves is known to be [START_REF] Selle | Actual impedance of nonreflecting boundary conditions: implications for computation of resonators[END_REF][START_REF] Polifke | Partially reflecting and non-reflecting boundary conditions for simulation of compressible viscous flow[END_REF]:

R(ω) = -1 1 + iωτ where τ = 2L x /(σ out c) ( 52 
)
where c is the section averaged sound-speed at the outflow. We target a value of about 0.8 at the highest-frequency for the reflection coefficient, so that right and left-travelling waves have amplitudes of the same order of magnitude. This is ensured by taking σ out = 300. Figure 10(b) compares the reflection coefficient obtained in the numerical simulation with that predicted from Eq. ( 52), which shows that the behavior is the one expected.

Finally, the frequency range in Table 1 of the injected waves is discussed. It is chosen so that: 1) the wave profile is correctly discretized spatially; 2) frequencies for which turbulence is affecting or not wave propagation are included. Both these points involve the viscous acoustic boundary layer thickness (Stokes layer thickness), δ ν , which is an important characteristics of the acoustic waves, defined by:

δ ν = 2µ w ωρ w (53) 
In wall units this is δ + ν = Re τ δ ν . Since a Stokes layer of size δ ν can be resolved numerically with 8 grid points, the simulation can resolve acoustic boundary layers corresponding to δ + ν ≥ 4, that is, having ωH/c w,0 ≤ 0.635. This fixes an upper limit for our frequency range. Concerning the effect of turbulence on wave propagation, it is known that high frequency waves having δ + ν ≤ 10 are not affected by turbulence, whereas low-frequency waves having δ + ν ≥ 10 are affected by turbulence. The classical explanation for this is that the viscous boundary layer, δ ν , is the only region where the wave profile contains large shear, and this region will see the turbulence only if it extends beyond the viscous sublayer, whose thickness is about 10 wall units. Hence, the frequencies in Table 1 have been chosen to cover this range.

In theory, there is no lower limit for the frequency, but small frequencies correspond to large wavelengths, for which it will be difficult to measure the damping rate of the waves. In Table 1 we denote by λ +

x (λ - x ) an estimate of the wavelength for the right-(left-) going wave. For the lowest frequency considered in the table, ωH/c w,0 = 0.013, λ +

x is about 727H which is more than three time the computational domain length.

Extraction of the wave characteristics

To measure the acoustic waves, a series of probes is used in the computational domain. In the x-direction one point in three is recorded, which represents 534 equispaced recording stations between x = 0 and x = L x = 200H with a probe spacing δx = 0.375H. In the y-direction, all n y positions are recorded. In order to increase the signal to noise ratio, at every recorded location (x, y), an average of the fields over the z-direction is performed prior to recording, a point discussed in B (Fig. 17). The time step for recording is δt = 0.246H/c w,0 . There are about 47500 recordings, and 40 recordings per period are available for the highest acoustic frequency, ωH/c w,0 = 0.635, and more recordings are available for the other frequencies. The number of computed periods of the waves, N per , is specified in Table 1. The measured data are denoted by q rec (x, y, t) where q is any of the variables (pressure, velocity).

As explained in C, it is reasonable to write the plane propagating acoustic waves present in the simulation in the form:

û± (y)e i(k ± x (ω)x-ωt) ; p± (y)e i(k ± x (ω)x-ωt) (54) 
where û+ and p+ (û -and p-) are the mode shape of velocity and pressure for the right-going (left-going) waves, and

k + x = k + x,r +ik + x,i (k - x = k - x,r +ik - x,i
) is the complex wave number for the right-going (left-going) wave. With the chosen convention, the waves being damped, k +

x,r and k + x,i (k - x,r and k - x,i ) are both positive (negative). The objective is to compute these quantities from the probe recordings.

The first quantities to be computed are the wavenumbers. This is the most critical step, especially at low frequency for the imaginary part connected to damping. This is the case because we have to measure the slow spatial decay rate of an exponential enveloppe affected by noise, and the decay can be observed only over a short distance, since there is less than a wavelength in the domain for the right going-wave at low frequency. To compute the wavenumber, the general method is to move from the time to the frequency domain by using Fourier transform in order to obtain, for each frequency, the amplitude of any field at all spatial locations. Then, for every frequency, the exponential components in the x-direction are computed, which provides the wavenumbers k ±

x (ω). The Fourier transform of a quantity q rec (x, y, t) is noted Q rec (x, y, ω), where q rec (x, y, t) already includes an average over z. When an extra average is performed over y the Fourier transform of < q rec (x, y, t) > y is noted Q rec (x, ω). The combined y and z averaging are such that the acoustic signal is more than 7 times the turbulent one, which means a signal to noise ratio of about 18 dB. Fourier transforms are computed from the cross-spectrum between the probes and the driving signal, and a Welch method with block averaging is used to compute the spectrum. For each of the frequencies considered, the block size is varied so that there is negligible leakage from the neighbouring frequency (the block size is inversely proportional to the distance to the closest frequency), and a Hanning window is used. The counterpart is that there are very few blocks at low frequencies, meaning we rely mainly on cross section averaging to increase the signal to noise ratio at these frequencies. The number of blocks used, N blk , is specified in Table 1. After the Fourier transform, the pressure amplitude for the propagating waves varies like (similar expressions are obtained for the velocity U ): P (x, y, ω) = p+ (y, ω)e ik + x (ω)x + p-(y, ω)e ik - x (ω)x (55)

P (x, ω) = p+ (ω)e ik + x (ω)x + p-(ω)e ik - x (ω)x (56) 
The second line is for the y-averaged form. At any y it is ideally possible to make a Prony-like decomposition [START_REF] Zielinski | Frequency and damping estimation methodsan overview[END_REF] of P (x, y, ω) or P (x, ω) to decompose it into exponentials and obtain directly the wave numbers. The Matrix Pencil decomposition [START_REF] Sarkar | Using the matrix pencil method to estimate the parameters of a sum of complex exponentials[END_REF] has been tried, in which the number of exponentials present in the signal is predicted using SAMOS [START_REF] Papy | A shift invariance-based order-selection technique for exponential data modelling[END_REF]. Such an extraction has not been efficient in the sense that the computed wave number as a function of frequency was a bit erratic, even for the y-averaged signal. Hence, instead of considering pressure and velocity separately, we have considered the quantities:

F ± (x, ω) = P (x, ω)± < ρ > yzt < c > yzt U (x, ω) (57) 
which correspond respectively to right and left travelling waves, averaged over the channel cross-section. We expect that F ± contains a single exponential term with

F ± (x, ω) = F ± (ω)e ik ± x (ω)x
This is confirmed by the SAMOS algorithm which indicates that the order of the signals F ± are both 1. Unfortunately, while applying the Matrix Pencil method to F ± does improves the situation, the wavenumber evolution remains noisy at low frequency. This is the reason why, given that F ± (x, ω) contain single exponential terms, a least square fit is used on these quantities to obtain the wavenumbers. An example of fit is shown in Fig. 11( are considered, and one sees that the fit is more precise at high frequency. Also the damping rate may be small, meaning the exponential decreasing of | F + | at both frequencies and the one at of | F -| at small frequency is almost linear. The fit is then performed over most of the domain extent. For | F -| at ω = 0.41 the damping rate is larger, resulting in a more obvious exponential decay. In this case, when the exponential has decreased sufficiently, the left-going wave is affected by noise, the amplitude tends to stagnate or may even re-increase. In these cases, the fit is performed only over the relevant region, as in Fig. 11(b) for ωHc w,0 = 0.41, where the fit is performed on the downstream half of the channel (the dashed line stops at x/H = 100).

The wavenumbers of the simulated acoustic waves in the spatial channel are obtained from such fits. Their real and imaginary parts are shown in Fig. 12(a) and (b), respectively. Figure 12(c) is a zoom in of the imaginary part for the right-going mode. In these figures, the wavenumbers extracted from the simulation are compared to those predicted by a mode solver. The linearized equations for this solver are presented in C, which gives some details about the mean flow used for the linearization, especially the mean temperature profile, and indicates in which frequency range turbulence has an effect on the acoustic waves. In Fig. 12(a in the simulation matches the mode solver prediction. k - x,r also matches the solver result, but somewhat less perfectly, probably due to the sensitivity to the mean temperature profile (see C). The computed imaginary part k -

x,i
is also in agreement with the solver, even if some extra damping seems to be present in the simulation at low frequency. Compared to the left-going mode, the right going-mode is much less damped, with lower values of |k +

x,i |, as seen in Fig. 12(b). The overall level agrees with the mode solver, but the zoom in Fig. 12(c) reveals some differences. For ωH/c w,0 > 0.1, k +

x,i is essentially governed by laminar processes and the extracted wavenumber agrees with the mode solver to within 10%. At low frequency, k +

x,i increases, so that the simulation captures the effect of turbulence on acoustic waves, but the increase in damping is larger than predicted by the mode solver. At low frequency, the number of blocks for Fourier processing is reduced and there are less wavelengths in the channel (see Table 1), so statistical errors are larger, but they do not explain the observed differences. The explanation is more likely that the model has been constructed for a single frequency, while several frequencies co-exist in the simulation, with in addition rightand left-travelling components at each frequency. We will discuss this point in more detail in a section below.

Finally, once the wavenumber is known, the complex amplitudes of the acoustic waves can be computed. For example, the velocity, expressed in the way of Eq. ( 55), written at each of the axial recording stations x j is:

U (x j , y, ω) = û+ (y, ω)e ik + x (ω)x j + û-(y, ω)e ik - x (ω)x j (58) 
For any given ω and y, we have as many equations as recording stations, and only two unknowns, û+ (y, ω) and û-(y, ω), which are found by a least square approach. This is the standard procedure for Prony-like methods [START_REF] Zielinski | Frequency and damping estimation methodsan overview[END_REF]. The velocity eigenfunctions so obtained are compared to the ones given by the mode analysis in Fig. 13 and Fig. 14 for the right-and left-going waves, respectively.

Several frequencies are shown. For ωH/c w,0 = 0.635 and 0.18, eigenfunctions match in amplitude and phase, the latter frequency being at the limit of when turbulence plays a role. At low frequency, ωH/c w,0 = 0.0519 and 0.013, when turbulence affects the waves, differences are seen on the eigenfunctions for the right-going wave. Again, the differences are probably partly due to the existence of several waves, which is not taken into account by the mode solver, as will be discussed in the next section. Some differences on the left going wave eigenfunction exist too, mostly on the phase (Fig. 14(c')-(d')), but they are smaller, because the relative effect of turbulence on this wave is smaller. In this low frequency range, and at this Mach number, damping due to molecular viscosity is about 4 times bigger for the left going wave, compared to the right-going one, so that any deviation of the damping rate due to turbulence is more obvious on the right-going wave than on the left-going one.

The pressure eigenfunction is almost plane in any case, so it is not considered in detail. However, Fig. 15 gives the pressure amplitude for the right and left going wave at high frequency, that is, when refraction effects are the more important. In this case, we see that the pressure tends to be maximal at the wall (resp., at the center of the channel) for the right-going (resp, left-going) wave, since refraction by the mean flow is not acting in the same way for the two waves. The simulation reproduces correctly the mode solver predictions.

Effect of turbulence at low frequency

We have seen that the damping of the right-going wave increases due to turbulence at low frequency, as expected, but by an amount larger than predicted by the mode solver. This is seen in the value of k +

x,i in Fig. 12(c) being larger than predicted by the mode solver. The explanation we proposed is the existence of more than one wave in the simulation, a situation not taken into account in the mode solver. On one hand, at a given frequency, there are both right and left-travelling waves. On the other hand, there are waves of different frequencies, which should not have an effect ideally, but which may have one due to a restricted duration of the simulation. These points are discussed in the present section.

The effect of turbulence on the acoustic wave is mostly included in the terms ∂ ũωm /∂t = ... -∂ rωm /∂y of the momentum equation for the wave [START_REF] Reynolds | The mechanics of an organized wave in turbulent shear flow. Part 3: theoretical models and comparisons with experiments[END_REF][START_REF] Weng | The attenuation of sound by turbulence in internal flows[END_REF]. Here, the tilda indicates the acoustic wave component, as in C, and the subscript ω m is a remainder that this wave is at angular frequency ω m . rωm =< u ′ v ′ > ωm -< u ′ v ′ > t represents the Reynolds stress seen by an acoustic wave at frequency ω m , where a prime denotes a turbulent fluctuation, and < • > ωm is the phase average. The phase average is computed from all the samples that are a period of the wave apart, and the period depends on the frequency, which is the reason why ω m appears as a subscript in the definition of the phase average. Generally speaking, the stress rωm needs to be modeled, and the model corresponding to the mode solver is rωm = µ t (y, ω m ) ∂ ũωm ∂y where µ t (y, ω m ) is given by Eq. (67). This model applies to the particular wave under consideration, for example, the right-going wave at frequency ω m :

∂ ũ+ ωm ∂t = ... + µ t (y, ω m ) ∂ ũ+ ωm ∂y (59) 
The definition of µ t (y, ω m ) was established in an incompressible frame in which there is no notion of wave direction, ũ+ ωm being identical to ũωm , and ω m being the only frequency present. In the multi-frequency, multi-direction case, ũω + m is rather governed by:

∂ ũ+ ωm ∂t = ...+µ t (y, ω m )   ∂ ∂y ũ+ ωm + ∂ ∂y ũ- ωm + j̸ =m ∂ ∂y < ũ+ ω j > ωm + ∂ ∂y < ũ- ω j > ωm   (60) 
Compared to Eq. ( 59) the time change of ũ+ ωm involves the phase average of all the wave gradients, including that of ũ+ ωm , but also ũωm , and all the other waves at other frequencies (note that ũ+ ωm and ũωm are their own phase average). Equation (60) has been computed from a quasi-steady assumption and is assumed to hold true in general. In Eq. ( 60), when frequencies ω j are not multiple from one another < ũω j > ωm should be 0 for j ̸ = m, if the phase average is computed over a sufficient duration. The frequencies sent into the simulation in Table 1 were not supposed to be multiple of one another, but by mistake this is violated once, as detailed below. In any case, the term ∂ ũωm /∂y has an effect if its magnitude cannot be neglected in comparison with ∂ ũ+ ωm /∂y.

In order to check which terms are negligible or not, different quantities involved in Eq. ( 60) are plotted in Fig. 16. These are ∂ ∂y ũ+ ωm (dashed line), 0 2 0 2 0 2 0 2 

ũ+ ωm + ∂ ∂y ũ- ωm + j̸ =m ∂ ∂y < ũ+ ω j > ωm + ∂ ∂y < ũ- ω j > ωm (dotted
lines with open circles). These are shown for each the four smallest values of the acoustic frequency, ω m . They are computed by differentiating the wave amplitudes û± (y, ω) obtained from the simulation in the previous section. For instance, one has ũ+ ωm (x, y, t) = û+ (y, ω m )e i(k + x (ωm)x-ωmt) . The quantities depend on x, meaning the effect on one wave of the other waves depends on x as well. Here, a bit arbitrarily, they have been computed and are plotted in the middle of the downstream section of the channel (x = 150H). In particular, the amplitude ratio of the right-going wave to the left-going wave may vary importantly if the waves are highly damped, but the results retained below will concern only the least damped waves, whose amplitude ratio remains acceptably constant over the domain in first approximation (Fig. 11 gives an idea of how these amplitudes change in x for ωH/c w,0 = 0.024). The phase average in Fig. 16 is computed over the same duration as the simulation, by simply creating a time signal from the computed amplitudes, and computing a phase average numerically by creating 20 phase bins.

Figure 16 shows that for ωH/c w,0 = 0.0519 and ωH/c w,0 = 0.024, the phase-averaged full (open symbols) coincide with the sum of the right and left-going waves (plain line), meaning the phase average has removed the contribution of the waves at other frequencies, that is, j̸ =m ∂ ∂y < ũ+ ω j > ωm + ∂ ∂y < ũω j > ωm = 0. This is not the case for ωH/c w,0 = 0.013 and 0.0352. The reason is that (see Table 1) there is close to an integer ratio of 4 between the excited frequencies ωH/c w,0 = 0.013 and ωH/c w,0 = 0.0519 (this is the reason why in Fig. 16(d) the phase average contains an oscillation at a frequency four time larger than the considered component). Similarly, ωH/c w,0 = 0.706 and ωH/c w,0 = 0.141 are close to twice and four times ωH/c w,0 = 0.0352, respectively. These ratio are not exact multiples, and if the simulation had been longer (which we cannot afford), no problem of convergence would have occured. Such close to integer ratios should ideally not have been present, but are simply a mistake in the design of the simulation. Hence, at ωH/c w,0 = 0.013 and 0.0352, the strain, phase-averaged over the simulation, contains the effect of other frequencies, and in this case it is even difficult to predict how k +

x,i should compare to the mode solver, and we will not discuss these frequencies anymore. For ωH/c w,0 = 0.024 and 0.0519 on the other hand, other frequencies do not play a role, the only difference with the model is that ũωm adds to ũ+ ωm , so that the mode solver uses Eq. (59) while in reality the simulation corresponds to: 16(a), Fig. 16(c)), it is possible to define a complex transfer function T (ω, y) of their ratio, in the frequency domain, at the frequencies ωH/c w,0 = 0.024 and 0.0519 only. This transfer function can then be introduced in the mode solver (µ t (ω m , y) is replaced by µ t (ω m , y)T (ω m , y)), and be used to compute a corrected value of k +

∂ ũ+ ωm ∂t = ...
x,i . These corrected values at ωH/c w,0 = 0.024 and 0.0519 are shown as ▽ symbols in Fig. 12(c). They agree rather well with the values educed from the simulation. This shows that the numerical result is probably correct, but the configuration is such that a straightforward comparison with the mode solver is simply not relevant.

In conclusion, despite the approximations involved, there is evidence that the over-damping in the simulation at low frequency is due to the presence of waves travelling in both directions, when phase average is converged and no other frequency is playing a role. When the phase average at one frequency includes contributions of other frequencies, due to unsufficient integration time or wrong choice of the frequency values, it is difficult to provide any clear conclusion. In order to send multiple waves in the simulation with a realistic computation time, and yet measure the damping rate and compare it directly to the mode solver without any correction, it is important that the phase average at one frequency converges rapidly to eliminate the effect of other frequencies, and that the right-going and left-going waves do not interfere. Retrospectively, it is thought that maybe a tailored choice of the excited frequencies could speed up the convergence of the phase average. Also, instead of generating the left-going waves from the reflection of rightgoing ones, it may have been preferable to inject left-going waves at the outflow at frequencies different from the right-going ones, so that these waves do not interfere. In that case, the damping could be compared directly to the mode solver results. There is no such problem at high frequency when turbulence does not affect the wave.

Conclusion

In this paper a methodology has been assessed to compute a spatially developed turbulent flow in a subsonic channel, with in mind the objective of sending a developed flow and acoustic waves into an acoustic test section in a duct. Only plane channels and direct numerical simulations were considered, but the method should work just as well for large eddy simulations and pipe flows. The spatial simulation is fed with a precursor simulation, in which a driving term is used in both the momentum and the energy equation, as advocated originally by Brun et al. [START_REF] Brun | Large eddy simulation of compressible channel flow : arguments in favour of universality of compressible turbulent wall bounded flows[END_REF]. If this is not done the flow out of the precursor simulation, once injected in the spatial domain, has a tendency to face a transition region. It has been shown that with the present method it is possible to obtain a spatial flow that is almost developed for domain length up to 200H, with quantities such as friction Reynolds number, Reynolds stress, and temperature rms being constant along the domain. An inconvenience is that the mean temperature is decreasing linearly in the domain, which seems to be the condition under which the flow is developed in the absence of volumic forcing. Even under this condition, strictly speaking, the flow is developed only approximately, since viscosity, and thus friction, depend on temperature. A simple configuration to assess the suitability of the method was to compute acoustic wave propagation in the developed flow and compare it to predictions made with modal analysis. A local modal analysis has been performed, eventhough there is a streamwise dependence of the temperature. For high enough frequency, the wave does not see any effect of turbulence and its propagation is almost laminar and affected by convection and refraction by the mean flow. An accurate eduction of the waves in this case is made difficult mainly due to a low signal to noise ratio. The complex wavenumber and modal shapes educed from the simulation agree well with those predicted by modal analysis. This shows the interest of having a controllet developed flow in the channel. Some low-frequency acoustic waves have been introduced in the domain as well, which are influenced by turbulence. In this case, the situation is less ideal, particularly because the wavelength associated with low frequency is large, which makes it more difficult to educe the spatial decay of these waves. In addition, several acoustic wave frequencies are sent simultaneously since only a single simulation is performed in order to keep the computational cost reasonable. In these conditions, an increased damping of the wave is observed at low frequency, as expected. However, this increased damping is larger than the one computed by a modal analysis taking into account a frequency-dependent eddy viscosity model. This, however, can be explained at some frequencies by the existence of both right-and left-going waves. At some other frequencies, the fact that the phase average at one frequency of a wave at another frequency is not converged to zero is another reason. Retrospectively, in this low frequency range, a separate simulation with only right-going (or left-going) waves should have been performed, with some control on the frequency spacing warranting a fast convergence of the phase averages.

A Choice of relaxation constant for characteristics

In this appendix, we discuss the choice of the relaxation constants K in and σ out appearing in Eqs. (45-48) and Eq. (49). At inflow, any quantity (u, v, w, s) is relaxed according to ∂u ∂t = -K in (u -u target ), where u target includes the target turbulent field and eventually acoustic waves. The relaxation time 1/K in should be smaller, let's say by a factor of 5, than the period of the highest frequency in the flow, and in this work the highest frequency is decided by turbulence. It can simply be obtained from the spectrum in the precursor simulation, or be estimated by using f turb ∼ 3u b 4∆x corresponding to the convection of the smallest scales in the streamwise direction (∼ 2∆x) at the highest streamwise velocity (∼ 3 2 u b ). Hence, we should have K in > 5f turb , which leads to K in Lx c w,0 ≥ 5 3 4 M Lx ∆x ∼ 15 4 M n x . For the simulation in section 3 (M = 0.6, n x = 835) this gives a value close to the value quoted there, K in Lx c w,0 = 1884. At outflow, p is relaxed according to ∂p ∂t = -σoutc 2Lx (p -p target ) and Ref. [START_REF] Poinsot | Boundary conditions for direct simulations of compressible viscous flows[END_REF] gives an optimal value σ out ∼ 0.5(1 -M 2 ). This value maintains the target pressure while being not too much reflective. With plane wave masking, we can possibly increase this value in order to impose the target pressure more tightly without compromising the non-reflective character, that is, we can take: σ out >> 0.5(1 -M 2 ). However, there is no need for the relaxation time to match the highest frequency in the flow (which would probably introduce unnecessary perturbations), so that we can keep σoutc 2Lx << 5f turb . In section 3, the value σ out = 19 has been retained, which respects these bounds.

B Signal-to-noise ratio

The sound pressure level of the acoustic waves sent into the domain is 144 dB (see section 4.2.1), with velocity and pressure amplitudes verifying a u /c w,0 ∼ a p /(ρ b c 2 w,0 ) ∼ 0.0027 for each wave. Since velocity and pressure signals are used to compute the acoustic wave characteristics, it is useful to assess how well the acoustic tones emerge out of the background turbulence. Using classical orders of magnitude in a channel flow, turbulent fluctuations verify u + ∼ p + ∼ 2 (see for example Fig. 9(b)(d)), where u + = u ′ /u w and p + = p ′ /(ρ b u 2 w ). The friction velocity u w is in general about 6% of the bulk velocity u b , and we have enforced the Mach number M = u b /c w,0 = 0.5. Hence, the typical turbulent fluctuations are u ′ /c w,0 ∼ 2 × 0.06 × 0.5 ∼ 0.06 and p ′ /(ρ b c 2 w,0 ) ∼ 2 × 0.06 2 × 0.5 2 ∼ 0.0018. These values result from all possible frequencies whereas the acoustic amplitudes given above are per wave. Since there are about 10 acoustic waves, which approximately span the flat part of the turbulent spectrum (as confirmed by Fig. 17(a)), we estimate that each of these waves, in its spectral band, sees a typical turbulent fluctuation u ′ /c w,0 ∼ 0.006 and p ′ /(ρ b c 2 w,0 ) ∼ 0.00018 (one tenth of the total fluctuation). By comparing these values to that associated with acoustic waves (0.0027), we see that the acoustic-to-turbulence pressure ratio is large, with a p /p ′ ∼ 0.0027/0.00018 ∼ 15 (23 dB). By contrast, the acoustic velocity perturbations are smaller than their turbulent counterpart, with a u /u ′ ∼ 0.0027/0.006 ∼ 0.5 (-6 dB). To verify this, Fig. 17(a-b) show the pressure and velocity spectra obtained in the middle of the spatial channel (x = 100H, y = 0, z = L z /2). Reference spectra computed in the precursor channel without waves are included for comparison (they are averaged over the periodic directions and are smoother as a result). It is confirmed that the acoustic peaks emerge from turbulence in the pressure spectrum, by about 20 to 25 dB. In the velocity spectrum, no peak is visible, as expected from the discussion above. Since velocity will be used as part of wave characterization, and acoustic velocity waveforms need to be computed, it is desirable to improve this situation. The SNR is increased by averaging the time signals over the channel cross section prior to applying the Fourier transform on the averaged signal, which is legitimate for plane waves. One can approximately predict the effect of averaging: assuming the turbulent signals at different points of the channel cross section are independent random variables (which is not the case since turbulence has some coherence length), averaging over n av points should reduce the variance of the turbulent signal by n av , which expressed in dB is 10 log 10 (n av ). The average can be done in the z-direction only, with n av = n z = 100, or in both the y-and z-directions, with n av = n y n z = 14000. This increases the SNR by 20dB or 40dB, respectively. Note that these are upper limits, and that peak emergence would be limited by the first side lobe of the Hanning window (30dB below the main lobe). For the pressure spectrum, which already contains marked peaks without averaging (first side lobe floor attained), averaging has little effect (not shown). For the velocity spectrum, averaging decreases the turbulent part of the spectrum, making room for acoustic peaks. This is shown in Fig. 17(c) obtained with averaging in z only, and in Fig. 17(d) with averaging in both z and y. The acoustic peaks emerge by about 10dB in the first case, and by 20 to 25dB in the second case. This is not as much as the ideal prediction above, but is sufficient to exploit the signals. In particular, z-averaging is always ). The vertical dotted lines indicate the excitation frequencies listed in Table 1.

performed.

C Linearized model for computing the modes

To predict the behavior of the acoustic perturbations in the channel, we start with the two-dimensional linearized Navier-Stokes equations. For the linearization all variables are written as a sum of a base flow and a perturbation. That is, any quantity q is written as q(x, y, t) = q 0 (x, y) + q(x, y, t). In this appendix, the subscript 0 indicates the base flow computed by averaging the flow in the spatial simulation, that is, q 0 (x, y) =< q > zt or q 0 (y) =< q > xzt depending on which variable is considered. With all nonlinear terms neglected, the equations for the acoustic perturbations q are:

∂ ρ ∂t + U 0 ∂ ρ ∂x + ρ 0 ∂ ũ ∂x + ∂ṽ ∂y + ṽ ∂ρ 0 ∂y = 0 (62) ρ 0 ∂ ũ ∂t + ρ 0 U 0 ∂ ũ ∂x + ρ 0 ṽ dU 0 dy + ∂ p ∂x = 1 Re µ T ∆ũ + µ T 3 ∂ ∂x ∂ ũ ∂x + ∂ṽ ∂y • • • + ∂µ T ∂y ∂ ũ ∂y + ∂ṽ ∂x (63) 
ρ 0 ∂ṽ ∂t + ρ 0 U 0 ∂ṽ ∂x + ∂ p ∂y = 1 Re µ T ∆ṽ + µ T 3 ∂ ∂y ∂ ũ ∂x + ∂ṽ ∂y • • • + ∂µ T ∂y 4 3 ∂ṽ ∂y - 2 3 ∂ ũ ∂x (64) ∂ p ∂t + U 0 ∂ p ∂x + ũ ∂p 0 ∂x + γp 0 ∂ ũ ∂x + ∂ṽ ∂y = 2(γ -1)µ Re dU 0 dy ∂ ũ ∂y + ∂ṽ ∂x • • • + 1 RePr K + µ t Pr Pr t ∆ T + Pr Pr t ∂µ t ∂y + ∂K ∂y ∂ T ∂y (65) 
γ p = ρ 0 T + T 0 ρ (66)

These equations are normalized with the half channel height, the speed of sound at the wall in the precursor channel, the wall temperature in the precursor channel, and the bulk density in the precursor channel. By construction, the base velocity field has only a streamwise component U 0 (y), which depends on y. The base density ρ 0 (y) depends only on y as well. Both of them are the same as in the precursor simulation. However, eventhough the spatial flow is developed, both the mean pressure P 0 (x) and the mean temperature T 0 (x, y) depend on x. Strictly speaking, this streamwise dependence makes it difficult to compute acoustic modes. Ideally, either a biglobal analysis should be done, or a WKB method applied. Here, we will perform a local mode analysis by ignoring the x-dependence in T 0 and P 0 . This leaves the question of which location to choose to extract these profiles. This is discussed at the end of this appendix.

In Eqs. (63-65), a turbulent eddy viscosity µ t (y) is included, so that the effect of turbulence on acoustic propagation is included. The total viscosity (molecular + turbulent) is denoted by µ T (y) = µ+µ t (y, ω). It is known that a quasi-steady model for the turbulent viscosity is insufficient [START_REF] Tu | Fully developed periodic turbulent pipe flow. Part 1. Main experimental results and comparison with predictions[END_REF] and that a relaxation model is required [START_REF] Mao | Studies of the wall shear stress in a turbulent pulsating pipe flow[END_REF]. Here, the relaxation model proposed by Weng et al. [START_REF] Weng | The attenuation of sound by turbulence in internal flows[END_REF][START_REF] Weng | On the calculation of the complex wavenumber of plane waves in rigid-walled low-Mach-number turbulent pipe flows[END_REF][START_REF] Weng | Numerical and theoretical investigation of pulsatile turbulent channel flows[END_REF] is used. This model is formulated in the frequency domain and gives:

µ t (y, ω) = 2µ t (y) 1 -i300/δ + ν (ω) (67) 
In this equation μt (y) is the traditional, static, eddy viscosity used to compute the Reynolds stress acting on the mean flow. This is computed from the simulation by: μt (y) = ρ 0 (y)<u ′ v ′ >xzt(y)

dU 0 /dy
, where < u ′ v ′ > xzt is the Reynolds stress. All the quantities involved depend on y only and for convenience they are obtained from the precursor simulation. Equation (67) says that at very low frequency (δ + ν (ω) ∼ ∞) the eddy viscosity is twice the static one, that at very large frequency (δ + ν (ω) ∼ 0) the eddy viscosity is null since the acoustic boundary layer is located in the subviscous layer and does not see turbulence, and that at intermediate frequency the value is intermediate as well, and complex, meaning there is a phase lag between the stress and the straining induced by the wave. The effect of turbulent heat flux on the wave is also related to µ t and appears through the turbulent Prandtl number, Pr t = 0.84. A complete discussion is provided in [START_REF] Weng | The attenuation of sound by turbulence in internal flows[END_REF][START_REF] Weng | On the calculation of the complex wavenumber of plane waves in rigid-walled low-Mach-number turbulent pipe flows[END_REF][START_REF] Weng | Numerical and theoretical investigation of pulsatile turbulent channel flows[END_REF].

With the assumptions above, it is possible to write any perturbation q in the form of a mode q(x, y, t) = q(y)e i(kxx-ωt) , where the frequency ω is real and the wavenumber k x is complex, as in the rest of the paper. Substituting the mode expression into Eqs. (62-66) and accounting for the boundary conditions provides an eigenvalue problem which is the equivalent in Cartesian coordinates, and for variable mean density, of the one given in Weng et al. [START_REF] Weng | On the calculation of the complex wavenumber of plane waves in rigid-walled low-Mach-number turbulent pipe flows[END_REF] in cylindrical coordinates. Its solution with standard numerical methods [START_REF] Marx | Effect of turbulent eddy viscosity on the unstable surface mode above an acoustic liner[END_REF] provides, for any ω, the wavenumbers k +

x (resp, k - x ) of the right-(resp, left-) going plane acoustic waves, as well as the corresponding mode shapes such as û+ (y) (resp, û-(y)). These are compared to the waves extracted from the numerical simulation.

To validate our mode solver, in particular in conditions when turbulence plays a role, it is compared to measurements of Allam et al. [START_REF] Allam | Investigation of damping and radiation using full plane wave decomposition in ducts[END_REF]. The normalized damping coefficient they measure in their experiments (see their figure 9 for ka = 0.808) is compared to the present mode computation in Fig. 18. The comparison is as good as the one proposed originally in [START_REF] Allam | Investigation of damping and radiation using full plane wave decomposition in ducts[END_REF] between the measurements and the theory of Howe. Hence, we are confident that our solver is correct.

Finally, the solver is applied to our numerical spatial channel flow to predict the damping rate of the acoustic waves travelling in it. The solver uses as input the time-averaged profiles of velocity, density, turbulent eddy viscosity (computed with Reynolds stress), and temperature in order to compute the modes. It is recalled that the solver is local meaning it takes a single y-profile for the mean flow and assumes flow independence in the xdirection. Although some effort has been done to obtain a developed flow in the spatial channel, this developed flow includes a temperature and pressure dependence on x. Hence, one has to choose some mean temperature profile for the local solver. Figure 19(a) shows some temperature profiles obtained in the spatial simulation (the full temperature map looks qualitatively like the one in Fig. 5(d)). The inflow and ouflow profiles are shown, since they represent the limit choices one could make. Also shown are the two profiles that will be used in practice: the first profile, P1, is obtained at every y by averaging the numerical mean temperature field over the x-direction, over the whole domain length (the substitution T 0 (y) ←< T 0 (x, y) > x is done). The second, P2, is obtained in a similar fashion, but the average is computed only over the downstream half of the channel (over x ∈ [150H 200H]). These profiles are shown as thick plain and dashed lines in Fig. 19(a), respectively. It turns out (confirmed hereafter) that the right-going acoustic mode is pretty much independent of the chosen axial location, and profile P1 is a sensible choice. By contrast, the left-going mode is very sensitive to the temperature profile, and the profile P2 is selected based on the following observation: left modes are more damped than right-going ones, and as a result at high enough frequency they are non-negligible only in the downstream half of the channel, as illustrated in the main text in Fig. 11(b), for ωH/c w,0 = 0.41. Hence, left-going modes are computed from profile P2. To illustrate the effect of the temperature profile, the imaginary part of k x is shown in Fig. 19(b) for each of the two retained mean temperature profiles, P1 and P2, for both the right and left-going waves. The frequency range corresponds to the one covered in the simulations. The two curves for the right-going mode are almost undinstinguishable, which confirms our claim above that this mode is not sensitive to the temperature profile. Also confirmed is the fact that the left-going mode is more attenuated than the right-going one (|k x,i H| being much larger for the left-going wave than for the right-going one), and that it is sensitive to the temperature profile. The wave number educed from the simulation (section 4.2.2) shown by symbols is included to confirm that a better match is obtained with the profile P2 corresponding to the downstream part of the channel. Hence, in the main text and hereafter, the mean temperature profile P1 is retained for the computation of right-going modes, and P2 is retained for the computation of left-going modes. It is useful to specify the frequency range in which turbulence is expected to affect acoustic wave dissipation. Damping depends on the imaginary part of k x , shown in Fig. 20(a) and (b) for the right-going and left-going plane waves, respectively. The effect of turbulent eddy viscosity is assessed by taking into account or not the turbulent eddy viscosity (µ t neglected corresponds to laminar). Turbulence has almost no effect on the left-going wave, and its effect on the right-going wave is limited to the frequency range ωH/c w,0 < 0.2, and becomes really marked for ωH/c w,0 < 0.1. Hence, turbulence increases damping at very low frequency for the right-going mode. Wavenumbers obtained with turbulent eddy viscosity in Fig. 20(a-b) are those used in the comparisons with the simulations in the main text (see Fig. 12). 
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 2 Figure 2: Colormap of: (a) the averaged streamwise velocity, and (b) the averaged density. Averages are computed over time and over the z-direction.
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 3 Figure 3: (a) Mean velocity profiles; (b) mean temperature profiles; (c) rms temperature profiles in the spatial channel at different streamwise locations:x = 0, x = L x /2, • • • x = L x , precursor channel.
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 4 Figure 4: Streamwise evolution of (a) Re τ ; (b) Bq; : spatial channel; constant level associated with the precursor channel.
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 5 Figure 5: Colormap of: (a) the averaged streamwise velocity; (b) the averaged density; (c) the averaged pressure; (d) the averaged temperature. Averages are computed over time and over the z-direction.
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 6 Figure 6: (a) Mean velocity profiles (inset: zoom in on the wall region); (b) Mean density profiles; (c) Mean temperature profiles in the spatial channel at different streamwise locations:x = 0, x = L x /2, • • • x = L x , periodic channel.
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 7 Figure 7: Profiles of (a) rms streamwise velocity; (b) rms Reynolds stress; (c) rms temperature in the spatial channel at different streamwise locations:x = 0, x = L x /2, • • • x = L x , periodic channel.

Figure 8 :

 8 Figure 8: Streamwise evolution of (a) Re τ ; (b) Bq; (c) µ w /µ w,0 ; (d) (∂ < u > zt /∂y) w /(u b /H):spatial channel; constant level associated with the precursor channel.

Figure 9 :

 9 Figure 9: Profiles of (a) mean streamwise velocity; (b) rms velocity components (u, v, w); (c) Reynolds stress; (d) rms pressure: rough statistics in the precursor channel at Re τ = 173 (+ units), • • • rescaled statistics at Re * τ = 151 (* units, that is, Trettel transformation in (a), and semi-local scaling in (b) and (c)); reference incompressible data at Re τ = 150 (+ units).the gray line shows the profiles in the middle section of the spatial channel (x = 100H).

Figure 10 : 4 5

 104 Figure 10: (a) Amplitudes of the right-going waves at the inlet of the computational domain : ■ actually obtained in the simulation; imposed value 4 5 A 0 . (b) Reflection coefficient for plane waves at the outflow (x = L x ) of the computational domain : Theory, Eq. (52); ■ computed from the simulation.

Figure 11 :

 11 Figure 11: Plane wave amplitude and its fit: (a) right-going + |; (b) leftgoing |F -|. In each case the fits at two frequencies are shown: ωH/c w,0 = 0.41; ωH/c w,0 = 0.024. The plain lines represent |F ± |.

Figure 12 :

 12 Figure 12: (a) real; and (b-c) imaginary part of the wavenumber vs frequency: • right-running mode (k + x ) extracted from the simulation; • leftrunning mode (k - x ) from the simulation; right-running mode obtained from the mode solver; left-running mode obtained from the mode solver. (c) is a zoom in of (b) with just the right-running mode shown. In subplot (c): ▽ corrected values computed by the mode solver.

Figure 13 :

 13 Figure 13: Axial velocity eigenfunctions of the right-going acoustic wave at several frequencies. Left column: modulus normalized by modulus at the channel center. Right column: phase with respect to the channel center. extracted from the simulation; obtained with the mode solver. The four frequencies shown are: (a)(a') ωH/c w,0 = 0.635; (b)(b') ωH/c w,0 = 0.18; (c)(c') ωH/c w,0 = 0.0519; (d)(d') ωH/c w,0 = 0.013.

Figure 14 :

 14 Figure 14: Axial velocity eigenfunctions of the left-going acoustic wave at several frequencies. See caption in Fig. 13.

Figure 15 :

 15 Figure 15: Amplitude of the pressure eigenfunction, normalized by its value at the channel center. extracted from the simulation; mode solver. ωH/c w,0 = 0.635.

Figure 16 :

 16 Figure 16: Velocity gradient at y/H = -0.9 (arbitrarily normalized). right-going wave; right-going and left-going wave; • • o • • phase average. (a) ωH/c w,0 = 0.0519; (b) ωH/c w,0 = 0.0352; (c) ωH/c w,0 = 0.024; (d) ωH/c w,0 = 0.013.

20 Figure 17 :

 2017 Figure 17: Spectra obtained in the spatial channel with acoustic waves ( ): (a) pressure spectrum, at (x, y, z) = (100H, 0, L z /2) (no cross section average); (b) velocity spectrum, at (x, y, z) = (100H, 0, L z /2) (no cross section average); (c) velocity spectrum, z-averaged signal at (x, y) = (100H, 0); (d) velocity spectrum, y and z-averaged signal at x = 100H. For comparison, the spectra obtained in the precursor channel without waves are shown (). The vertical dotted lines indicate the excitation frequencies listed in Table1.

Figure 18 :

 18 Figure 18: Normalized damping rate as a function of normalized acoustic boundary layer thickness; comparison between the measurements of Allam et al. [18] (symbols) and the results of the present solver (lines).

Figure 19 :

 19 Figure 19: (a) Different mean temperature profiles in the spatial channel: inflow profile ( x = 0); outflow profile (x = 200H) P1 profile, obtained by averaging over all axial positions in [0 200H] P2 profile, obtained by averaging over axial positions in [150H 200H]. (b) Imaginary part of the wave number: • • • right-going mode for temperature profile P1, right-going mode for profile P2, left-going mode for profile P1, left-going mode for profile P2, left-going mode educed from the simulation.

Figure 20 :

 20 Figure 20: Variation with frequency of the imaginary part of the wavenumber for (a) the right-going plane mode, (b) the left-going plane mode, as predicted by the solver in the configuration of the simulated spatial channel flow: prediction done with ( ) or without ( ) turbulent eddy viscosity.

Table 1 :

 1 Characteristics of the acoustic waves sent into the simulation domain.

	H N per N blk
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