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ASYMPTOTIC DISPERSION CORRECTION IN GENERAL FINITE
DIFFERENCE SCHEMES FOR HELMHOLTZ PROBLEMS

PIERRE-HENRI COCQUET, MARTIN J. GANDER

Abstract. We introduce a new technique to reduce the dispersion error in general Finite Differ-
ence (FD) schemes for frequency-domain wave propagation using the Helmholtz equation as guiding
example. Our method is based on the introduction of a shifted wavenumber in the FD stencil which
we use to reduce the numerical dispersion for large enough numbers of grid points per wavelength
(or for small enough meshsize), and thus we call the method asymptotic dispersion correction. The
advantage of this technique is that the asymptotically optimal shift can be determined in closed
form by computing the extrema of a function over a compact set. For 1d Helmholtz equations, we
prove that the standard 3-point stencil with shifted wavenumber does not have any dispersion error,
and that the so-called pollution effect is completely suppressed. For higher dimensional Helmholtz
problems, we give easy to use closed form formulas for the asymptotically optimal shift associated to
the second order 5-point scheme and a sixth-order 9-point scheme in 2d, and the 7-point scheme in
3d that yield substantially less dispersion error than their standard (unshifted) version. We illustrate
this also with numerical experiments.

Key words. Frequency-Domain wave propagation, Finite difference method, Helmholtz equa-
tion, Numerical dispersion, Asymptotic dispersion correction.

1. Introduction. The Helmholtz equation is a model problem for time-harmonic
wave propagation. On a bounded domain Ω ⊂ Rd, it is given by

−∆u(x)− k2u(x) = f(x), x ∈ Ω, (1.1)

where k is the so-called wavenumber, f is a given right hand side, and we will specify
the necessary boundary conditions later when needed.

Solving this problem numerically for large k is difficult (see e.g. [14]), mainly
because of its elliptic yet non-coercive nature, and that solutions oscillate with period
proportional to 1/k. In addition, at the continuous level, plane waves are given by
eikx·θ for θ ∈ Sd−1 whereas, at the discrete level, plane waves are given by eikdx·θ

where kd is the discrete wavenumber, which depends on θ and the meshsize h, and we
usually have kd(θ, h) ̸= k, which is called the dispersion error. The dispersion error is
also responsible for the pollution effect [17, 20, 24, 32], which is the fact that keeping
kh small is not enough to prevent the relative error to grow with the wavenumber.

For the hp-Finite Element method for Helmholtz problems, it is known that the
pollution effect can actually be suppressed (see e.g. [17, 19, 20, 21, 24, 32]) if kh/p
is small enough, and p ≥ C log(k) for a large enough constant C. Such results have
been obtained for Discontinuous-Galerkin methods as well in [22].

In addition to the previous results, the pollution effect can be suppressed in 1d.
We refer for instance to [1], where a stabilized FEM without dispersion error is built,
or to [31] where a CIP-FEM is shown to be pollution free if some parameter is suitably
chosen. For 2d problems, we refer for example to [12, 16, 33] where several methods
have been designed to reduce the dispersion error and pollution effect.

For Finite-Difference (FD) methods, techniques have also been derived to reduce
the dispersion error. For the 1d Helmholtz equation, a FD scheme without dispersion
error is given in [27, 15], and this suppresses the pollution effect. It is derived using a
Taylor series of the solution which permits to define a generalized 3-point stencil. For
2d Helmholtz problems, a dispersion correction using eigenvalues has been designed
in [13]. Although the matrix associated to the stencil is modified, numerical results
indicate that this method heavily reduces the pollution effect. Another widely used
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strategy is to consider FD stencils with free parameters that are then optimized to
minimize the dispersion error. This technique has been applied to various stencils
and we refer for example to [6, 28, 5, 10, 11, 29, 30]. This approach has then been
investigated further in [8], where a sixth-order 9-point stencil is considered, with
coefficients that are polynomials in (kh) with free parameters. These parameters are
then determined numerically by minimizing the averaged truncation error of plane
waves. For three-dimensional problems, a dispersion-minimizing scheme based on
free parameters that are determined by minimizing the dispersion error can be found
in [5]. A similar method is used in [26, 25] where the behavior of a multigrid method
is also numerically studied. It is shown that a FD scheme with dispersion correction
leads to a convergent multigrid method for some wavenumber/meshsize combinations
for which the un-corrected scheme leads to divergent multigrid methods (see also
[3, 7, 4]).

Dispersion minimizing schemes that do not rely on numerical optimization to
determine the free parameters for 1d can be found in [2, 3], and for 2d in [4] for
a 9-point stencil, where a shifted wavenumber is introduced in the stencil. For 1d
Helmholtz problems, the shift suppresses the dispersion error. In 2d, the shift is
explicitly determined so that the dispersion error is minimized for a large enough
number of grid points per wavelength. Numerical simulations then show that this
asymptotically optimal shift is close to the numerically best one even for a small
number of grid points per wavelength. The major drawback of these approaches is
the derivation of the explicit shift itself, which is based on minimizing the distance
between the discrete and continuous dispersion relations (see [4, Theorem 4.1]), and
can thus not be extended easily to other FD schemes or 3d.

We show here that the dispersion error associated to a general FD scheme can
be reduced without relying on numerical optimization. Our method is based on the
expansion of the discrete wavenumber kd as the meshsize goes to zero. A shifted
wavenumber is next introduced in the stencil to minimize the leading-order term
in the expansion of (kd(θ, h) − k). We show that this shifted wavenumber can be
determined in closed form by computing the extrema of the remainder which is a
trigonometric polynomial in d− 1 variables defined on a compact set.

Our paper is organized as follows: We first present the new shifted wavenumber
idea for the 1d Helmholtz equation and prove that the resulting FD scheme has neither
dispersion error nor does it suffer from the pollution effect. We present next the
general dispersion minimizing scheme based on a shifted wavenumber, and compute
the shift in closed form for the 5-point and 9-point stencils in 2d, and for the 7-point
stencil in 3d, so they can easily be used in existing codes. We conclude with numerical
experiments to illustrate how much the shift reduces the relative error.

2. Suppressing the dispersion error for the 3-point stencil in 1d. We
consider the one dimensional Helmholtz equation on Ω = [0, 1] with homogeneous
Dirichlet boundary conditions,{

−u′′(x)− k2u(x) = f(x) in (0, 1),
u(x) = 0, x ∈ {0, 1}, (2.1)

where f is a given source term. Since Problem (2.1) can be singular for some values
of k, we assume in what follows that

k2 /∈ πN,
2



which ensures that k2 is not an eigenvalue of the Laplace operator with homogeneous
Dirichlet boundary conditions at {0, 1}.

We consider a uniform grid {xj}nj=1 = {j/(n+1)}nj=1 with n ∈ N+ interior points
and meshsize h = 1/(n+1). The discrete problem associated to (2.1) using a 3-point
stencil reads

− 1

h2
(ui−1 − 2ui + ui+1)− k̂2ui = f(xi), i = 1 · · · , n, (2.2)

where k̂ is the shifted wavenumber introduced in [14] given by

k̂ =

√
2

h2
(1− cos(kh)).

Inserting uj := eikdxj into (2.2) with f = 0 and neglecting the boundaries, we get
that the discrete wavenumber kd is solution to

cos(kdh) = 1− k̂2h2

2
.

This yields

kd = k,

and thus this scheme does not have dispersion error. We also assume that

kh /∈ πN,

since otherwise, we would have k̂ ∈
{
0,
√
2/h, 2/h

}
and therefore k̂ no longer converges

to k as h → 0, and the stencil would no longer be consistent.
In what follows, we compute the l∞ error for the 3-point stencil with shifted

wavenumber. We begin by computing the local truncation error.
Theorem 2.1. Assume that f ∈ C2(0, 1) and let τi be the local truncation error,

τi = − 1

h2
(u(xi−1)− 2u(xi) + u(xi+1))− k̂2u(xi)− f(xi).

We then have the estimate

∥τ∥∞ := max
1≤i≤n

|τi| ≤
h2

12
∥f ′′∥L∞(0,1) +

k2h2

12
∥f∥L∞(0,1)

+

(
k4h2

12
+
∣∣∣k̂2 − k2

∣∣∣) ∥u∥L∞(0,1) .

Proof. Using a Taylor expansion, there exists ξ−i ∈ (xi−1, xi) and ξ+i ∈ (xi, xi+1)
such that

τi = −u′′(xi)− k̂2u(xi)− f(xi)−
h2

24

(
u(4)(ξ−i ) + u(4)(ξ+i )

)
.

Adding and subtracting k2u(xi) and using Eq. (2.1), we get

τi = −u′′(xi)− k2u(xi)− f(xi)− (k̂2 − k2)u(xi)−
h2

24

(
u(4)(ξ−i ) + u(4)(ξ+i )

)
= −(k̂2 − k2)u(xi)−

h2

24

(
u(4)(ξ−i ) + u(4)(ξ+i )

)
.

3



Noting that

u(4)(x) = −f ′′(x)− k2(−f(x)− k2u(x)) = −f ′′(x) + k2f(x) + k4u(x),

we obtain the estimate.
Using a Taylor expansion, we have∣∣∣k̂2 − k2

∣∣∣ = 2

h2

∣∣∣∣1− cos(kh)− (kh)2

2

∣∣∣∣ ≤ 2

h2

(kh)4

4!
=

k4h2

12
,

from which, together with Theorem 2.1, we can see that the shift has no effect on the
order of the truncation error.

The discrete problem (2.2) can be written as a linear system

Ak̂u = f ,

where Ak := h−2tridiag(−1, 2 − k2h2,−1), u := (ui)
n
i=1 and f := (f(xi))

n
i=1. The

eigenvalues of Ak are

λj(k) =
4

h2
sin

(
jπh

2

)2

− k2, j = 1, · · · , n.

As a result,

λj(k̂) = 0 ⇐⇒ k2 = jπ,

and thus the matrix Ak̂ is non-singular as soon as k is not an eigenvalue of the
(continuous) Laplace operator acting on H1

0 (0, 1).
Let e := (ui − u(xi))

n
i=1 be the error, which satisfies

Ake = τ ,

where τ = (τi)
n
i=1 is the vector of local truncation errors. We now estimate

∥∥∥A−1

k̃

∥∥∥
∞

with k̃ = k or k̃ = k̂.
Theorem 2.2.
• No dispersion correction: Assume that kh <

√
2 and that λj(k) ̸= 0, then

∥∥A−1
k

∥∥
∞ ≤ h

| sin(θ)|
1

| sin(θ/h)|
,

with cos(θ) = 1− (kh)2/2.
• With dispersion correction: Assume that kh /∈ πN and k /∈ πN, then∥∥∥A−1

k̂

∥∥∥
∞

≤ kh

| sin(kh)|
1

k| sin(k)|
.

Proof. We use [9, p. 15, Corollary 4.2] to compute explicitly the elements of the
inverse of Ak which yields

(
A−1

k

)
i,j

=


(−1)i+j bj−i

|b|j−i+1

Ui−1( a
2|b| )Un−j( a

2|b| )
Un( a

2|b| )
i ≤ j,

(−1)i+j bi−j

|b|i−j+1

Uj−1( a
2|b| )Un−i( a

2|b| )
Un( a

2|b| )
i > j,
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where a := (2 − k2h2)/h2, b := −1/h2 and Ul(x) are the Chebychev polynomials of
the second kind that are defined as

Ul(x) :=

{
sin((l+1)θ)

sin(θ) with x := cos(θ) if |x| < 1,
sinh((l+1)θ)

sinh(θ) with x := cosh(θ) if |x| > 1.

Note that

Un

(
a

2|b|

)
=

sin((n+ 1)θ)

sin(θ)
=

sin(θ/h)

sin(θ)
,

and that the following bound holds:∣∣∣∣Ul

(
a

2|b|

)∣∣∣∣ ≤ ∣∣∣∣ sin((l + 1)θ)

sin(θ)

∣∣∣∣ ≤ 1

| sin(θ)|
.

The infinity norm of A−1

k̂
can then be estimated as∥∥∥A−1

k̂

∥∥∥
∞

= max
1≤i≤n

n∑
j=1

∣∣∣(A−1

k̂

)
i

∣∣∣ ≤ n

|b|
∣∣∣Un

(
a

2|b|

)∣∣∣ 1

| sin(θ)|2

≤ h2n

| sin(θ)|| sin(θ/h)|
≤ h

| sin(θ)|| sin(θ/h)|
.

If no dispersion correction is used, the assumptions ensure that θ = arccos(1−(kh)2/2)
is well-defined and the previous estimate gives the result. If dispersion correction is
used, note that

a

2|b|
= 1− k̂2h2

2
= 1− (1− cos(kh)) = cos(kh),

which is strictly smaller than 1 since kh /∈ πN. This gives θ = ±kh and the bound on∥∥∥A−1

k̂

∥∥∥
∞

translates into ∥∥∥A−1

k̂

∥∥∥
∞

≤ h

| sin(kh)|| sin(k)|
,

which concludes the proof.
To get the final error estimate, we need some bounds on u satisfying (2.1), which

is actually explicitly given by

u(x) =
sin(kx− k)

k sin(k)

∫ 1

0

sin(ky)f(y)dy +
1

k

∫ 1

x

sin(k(y − x))f(y)dy,

and thus satisfies the estimate

∥u∥L∞(0,1) ≤ ∥f∥L∞(0,1)

(
1

k| sin(k)|
+

1

k

)
. (2.3)

Using Theorem 2.1 and the estimate (2.3), we get for the infinity norm of the error
the upper bound

∥e∥∞ ≤
∥∥∥A−1

k̂

∥∥∥
∞

∥τ∥∞

≤
∥∥∥A−1

k̂

∥∥∥
∞

(
h2

12
∥f ′′∥L∞(0,1) +

k2h2

12
∥f∥L∞(0,1)

)
+

∥∥∥A−1

k̂

∥∥∥
∞

(
k4h2

12
+
∣∣∣k̂2 − k2

∣∣∣) ∥f∥L∞(0,1)

(
1

k| sin(k)|
+

1

k

)
,
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We then distinguish the case with and without dispersion correction by using Theorem
2.2.
No dispersion correction: The error estimate becomes

∥e∥∞ ≤ 1

| sin(θ)|
1

| sin(θ/h)|

(
h3

12
∥f ′′∥L∞(0,1) +

k2h3

12
∥f∥L∞(0,1)

)
+

1

| sin(θ)|
1

| sin(θ/h)|

(
k3h3

12

(
1 +

1

| sin(k)|

)
∥f∥L∞(0,1)

)
,

where θ is given in Theorem 2.2. A Taylor expansion then gives

1

sin(θ)

1

sin(θ/h)
=

1

kh sin(k)
+

2kh

sin(k)

(
1

16
− k

cos(k)

48 sin(k)

)
+O(h3),

from which we see that as h → 0, there is a term of the form k(kh)4 in the expansion
of the upper bound of the error, indicating the presence of the pollution effect.
Using dispersion correction: With (2.3), the error estimate becomes

∥e∥∞ ≤ kh

| sin(kh)|
1

k| sin(k)|

(
h2

12
∥f ′′∥L∞(0,1) +

k2h2

12
∥f∥L∞(0,1)

)
+

kh

| sin(kh)|
1

k| sin(k)|

(
k3h3

6

(
1 +

1

| sin(k)|

)
∥f∥L∞(0,1)

)
.

Since limh→0(kh)/ sin(kh) = 1, this term does not contribute to the convergence
rate. The FD scheme with dispersion correction does not suffer from the pollution
effect since, for any k such that k, kh /∈ πN, the error decreases like O(G−2) for any
wavenumber, where G := 2π/(kh) denotes the number of points per wavelength. No-
tice however that the convergence rate is deteriorating if k comes close to a continuous
or a discrete eigenvalue.

Remark 2.3 (Suppressing dispersion error for general 1d FD schemes). We
consider a uniform grid and the following general stencil associated to the Helmholtz
operator:

(Hhu)i := −
(
D2

hu
)
i
− k2 (Mhu)i ,

where the subscript i means the approximation is computed at grid point xi. The
(discrete) symbol can then be defined as σd(k, ξ, h) = e−iξxi

(
Hhe

iξx
)
i
and it can always

be written as

σd(k, ξ, h) := σ−∂2
x
(ξ, h)− k2σM (ξ, h),

where σ−∂2
x
(ξ, h) and σM (ξ, h) are the discrete symbols associated to the FD discretiza-

tion of the operator φ 7→ −∂2
xφ and the constant multiplication operator φ 7→ 1 × φ,

and σ−∂2
x
(ξ, h) → ξ2 and σM (ξ, h) → 1 as h → 0.

We recall the discrete wavenumber is defined as kd satisfying σd(k, kd, h) = 0.

Now setting k̂ to

k̂2 =
σ−∂2

x
(k, h)

σM (k, h)
, (2.4)

we have limh→0 k̂
2 = k2. In addition, when using this shifted wavenumber, the discrete

wavenumber k̂d verifies

σd(k̂, k̂d, h) = 0 = σ−∂2
x
(k̂d, h)− k̂2σM (k̂d, h).
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Therefore, k̂d satisfies

σ−∂2
x
(k̂d, h)

σM (k̂d, h)
= k̂2 =

σ−∂2
x
(k, h)

σM (k, h)
,

from which we see that k̂d = k is a solution showing there is no dispersion error.
We now apply the previous derivation to the FD scheme from [18, Eq. (2.4)]

whose stencil is (with the notations of the present paper)

− 1

h2
(ui+1 − 2ui + ui−1)− k2

αui+1 + 2(3− α)ui + αui−1

6
.

Note that we get the standard 3-point second order stencil for α = 0 and a Taylor
expansion also shows that, when applied to the homogeneous Helmholtz equation, this
stencil is fourth order for α = 1/2 (see also [23]). The discrete symbols for this stencil
are

σ−∂2
x
(ξ, h) =

2

h2
(1− cos(ξh)) , σM (ξ, h) =

1

6
(2α cos(ξh) + 6− 2α) .

The shifted wavenumber is then defined by (2.4) which gives

k̂2 =
6

h2

(
1− cos(kh)

α cos(kh) + 3− α

)
,

and one can check the FD stencil using k̂ instead of k is now free from dispersion
error. A Taylor expansion also yields

k̂2 = k2 + k4
h2

12
(2α− 1) +O(h4)

which shows that the FD scheme with shifted wavenumber is again 2nd order for α = 0
and 4-th order for α = 1/2. We also emphasize that the proof of Theorem 2.2 could
be extended to the α−scheme above since the matrix is again tri-diagonal.

3. Reducing dispersion error for general FD schemes in higher dimen-
sions. For Helmholtz problems in dimension d > 1, we cannot suppress the dispersion
error completely, but we can reduce it. To do so, we introduce the symbol of the con-
tinuous Helmholtz operator H = −(∆ + k2) which is

σc(k, ξ) = |ξ|2 − k2.

We now consider a uniform grid embedded in Rd, with meshsize h, and a general finite
difference discretization of H defined as

(Hhu)i = −(∆hu)i − k2(Mhu)i,

where the subscript i indicates that the approximation is computed at the grid point
xi. The discrete symbol is then

σd(k, ξ, h) =
(
e−ix·ξ)

i

(
Hhe

ix·ξ)
i
.

The discrete wavenumber is, for any θ ∈ Sd−1, kd := kd(k,θ, h) that satisfies

σd(k, kdθ, h) = 0,
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and we usually have

kd(k,θ, h) ̸= k,

which is again the dispersion error. We also introduce the discrete and continuous
dispersion relations

Dc :=
{
ξ ∈ Rd | |ξ|2 − k2 = 0

}
,

Dd :=
{
ξ ∈ Rd| σd(k, ξ, h) = 0

}
.

For a consistent numerical scheme, we have limh→0 σd(k, ξ, h) = σc(k, ξ) for all k, ξ.
As a result,

lim
h→0

kd(k, kθ, h) = k,

for every k,θ. In what follows, we first compute an expansion of kd as h goes to 0 and
next introduce the so-called asymptotic optimal shifted wavenumber which is actually
defined up to a free parameter that is next used to minimize the dispersion error for
h small enough.

3.1. Expansion of the discrete wavenumber for small meshsize. From
now on, we assume that

(H1) The discrete symbol admits the expansion

σd(k, kθ, h) = hpE(k, kθ) +O(hp+1),

for a smooth function E .
(H2) For a given wavenumber k, the sequence of functions (∇ξσd(k, ·, h))h con-

verges uniformly to ∇ξσc(k, ·) on a compact neighborhood of ξ = kθ for
θ ∈ Sd−1.

(H3) For a given ξ, the sequence of functions (∂kσd(·, ξ, h))h converges uniformly
to ∂kσc(·, ξ) on a compact neighborhood of the wavenumber k.

We emphasize that (H1) is satisfied for any FD scheme that is of order p on plane
waves. This means that

(Hhuθ)i = hpE(k, kθ)uθ(xi) +O(hp+1),

for any plane wave uθ(x) = eikx·θ where θ ∈ Sd−1. As a result, assumption (H1)
can be derived by computing directly the Taylor expansion of the discrete symbol at
ξ = kθ and keeping the leading order term. It is also worth noting that, although
(H2) and (H3) seem rather technical, they are also easily checked by computing the
Taylor expansion of the derivatives of the discrete symbol with respect to (k, ξ). We
can now compute the expansion of the discrete wavenumber kd as h → 0.

Theorem 3.1. Assume that (H1) and (H2) hold.
(i) Then the discrete wavenumber has the expansion

kd(k,θ, h) = k − hp

2k
E(k, kθ) +O(hp+1).

(ii) If in addition, Dd has a polar representation of the form

∀θ ∈ Sd−1 there is a unique ξ ∈ Dd such that ξ = |ξ|θ,

then we have between the discrete and continuous dispersion relations the
distance estimate

dist (Dc,Dd) =
hp

2k
max
θ

|E(k, kθ)|+O(hp+1).
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Proof. For (i), using (H1) and multiplying by u−θ(xi), the discrete symbol sat-
isfies

σd(k, kθ, h) = hpE(k, kθ) +O(hp+1).

We then get

σd(k, kdθ, h)− σd(k, kθ, h) = 0− hpE(k, kθ) +O(hp+1).

Using a Taylor expansion with integral remainder, this gives

(kd − k)R(θ, h) = −hpE(k, kθ) +O(hp+1),

with

R(θ, h) =

∫ 1

0

e(θ) · ∇ξσd(k, {k + s(kd − k)}θ, h) ds.

Since kd → k as h → 0, we have ξh := {k+s(kd−k)}θ → kθ and, for h small enough,
the sequence ξh remains in a compact neighborhood of kθ. Assumption (H2) then
gives that

∇ξσd(k, {k + s(kd − k)}θ, h) → ∇ξσc(k, kθ)

uniformly, and we can exchange the limit and integral symbols. Since ∇ξσc = 2ξ, we
obtain

lim
h→0

R(θ, h) = 2k

∫ 1

0

θ · θ ds = 2k.

We then finally get

(kd − k) =
1

2k + o(1)

(
−hpE(k, kθ) +O(hp+1)

)
= −hp

2k
E(k, kθ) +O(hp+1),

which is the desired estimate.

To prove (ii), any ξd ∈ Dd can be written as ξd = |ξd|θ by assumption, and
with the definition of the discrete wavenumber, we have ξd = kd(k,θ, h)θ. Since any
ξ ∈ Dc can be written as ξ = kθ, we obtain

dist (Dc,Dd) = max {|ξ − ξd|, ξ ∈ Dc, ξd ∈ Dd}
= max

θ∈Sd−1
|kθ − kdθ|

= max
θ∈Sd−1

∣∣∣∣hp

2k
E(k, kθ)

∣∣∣∣+O(hp+1),

where we used the result from (i) to get the last estimate.

Remark 3.2. From Theorem 3.1, we can obtain as well the expansion of kd with
respect to the number of points per wave length G = 2π/(kh),

kd = k −G−p (2π)
p

2kp+1
E(k, kθ) +O(G−p−1).
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3.2. Definition of the shifted wavenumber. We now introduce a real shift
k̂ := k̂(k, h) in the finite difference stencil, which leads to the discrete symbol

σd(k, ξ, h) = σ−∆(ξ, h)− k̂2σM (ξ, h),

where σ−∆(ξ, h) → |ξ|2 and σM (ξ, h) → 1, for all ξ, as h → 0. We assume that

k̂ = k + kph
p,

and compute the expansion of the discrete symbol σd(k̂, kθ, h) as h goes to 0. A
Taylor formula with integral remainder gives

σd(k̂, kθ, h) = σd(k, kθ, h) + kph
p

∫ 1

0

∂kσd(k + skph
p, kθ, h) ds.

Using (H3), we can invert the limit and integral signs to get

lim
h→0

∫ 1

0

∂kσd(k + skph
p, kθ, h) ds =

∫ 1

0

∂kσc(k, kθ, h) ds = −2k.

From (H1), we then obtain

σd(k̂, kθ, h) = −2kkph
p + hpE(k, kθ) +O(hp+1) = hp (−2kkp + E(k, kθ)) +O(hp+1),

and Theorem 3.1 gives

kd(k, kθ, h) = k − hp

2k
(−2kkp + E(k, kθ)) +O(hp+1).

From this, we can minimize the dispersion error for small enough meshsize by taking

kp = argmin
kp

(
max

θ∈Sd−1
|−2kkp + E(k, kθ)|

)
. (3.1)

In what follows, we call kp the asymptotically optimal shift, since it minimizes the
dispersion error as h → 0, and we denote by kasyp any solution to the minimization
problem (3.1).

Remark 3.3. Due to Theorem 3.1 (ii), the shift defined in (3.1) also minimizes
the distance between the discrete and continuous dispersion relations for small enough
h (or large enough G).

We now give an explicit formula for the asymptotically optimal shift.
Theorem 3.4. Assume that there exists some θmin, θmax such that

Emin := E(k, kθmin) ≤ E(k, kθ) ≤ E(k, kθmax) =: Emax,

where the lower and upper bounds may depend on the wavenumber k. The solution of
(3.1) is then

kasyp =
1

4k
(Emax + Emin) ,

and the relative dispersion error satisfies

max
θ∈Sd−1

∣∣∣∣∣kd(k̂asy,θ, h)− k

k

∣∣∣∣∣ = hp

2k2

∣∣∣∣Emax − Emin

2

∣∣∣∣+O(hp+1),

10



where k̂asy = k + hpkasyp .

Proof. For all θ ∈ Sd−1, we have

−2kkp + Emin ≤ −2kkp + E(k, kθ) ≤ −2kkp + Emax.

Since E(k, kθ) reaches its extrema, this gives

max
θ

|−2kkp + E(k, kθ)| = max {|−2kkp + Emin| , |−2kkp + Emax|} := F (kp),

and we now need to find the argmin of F (kp) to get kasyp . We emphasize that both
kp 7→ −2kkp + Emin and kp 7→ −2kkp + Emax are affine functions with the same slope
and thus the minimal value of F is reached for kasyp such that(

−2kkasyp + Emin

)
= −

(
−2kkasyp + Emax

)
,

from which we can derive the announced formula. To get the estimate on the relative
dispersion error, we use Theorem 3.1 which yields

kd(k̂
asy, kθ, h) = k − hp

2k

(
−2kkasyp + E(k, kθ)

)
+O(hp+1),

and next use that maxθ
∣∣−2kkasyp + E(k, kθ)

∣∣ = ∣∣−2kkasyp + Emax

∣∣.
The relative dispersion error without shift satisfies

max
θ∈Sd−1

∣∣∣∣kd(k,θ, h)− k

k

∣∣∣∣ = hp

2k2
max {|Emax| , |Emin|}+O(hp+1).

Using then Theorem 3.4, we obtain that the shift reduces the relative dispersion error
by the factor

Rf :=
maxθ |E(k, kθ)|

maxθ |−2kkasyp + E(k, kθ)|
= 2

max {|Emax| , |Emin|}
|Emax − Emin|

. (3.2)

We now get some lower bounds for the reduction factor Rf (Emax, Emin) defined as

Rf(a, b) = 2
max (|a|, |b|)

|a− b|
.

Assuming first that 0 < a < b, we have −b < a − b < 0 and thus |a − b| < |b| from
which we infer

Rf(a, b) = 2
|b|

|a− b|
> 2

|b|
|b|

= 2.

Noting that Rf(−a,−b) = Rf(a, b) and Rf(a, b) = Rf(b, a), we have proved that

∀(a, b) ∈
(
R+
)2 ∪ (R−)2 with a ̸= b : Rf(a, b) > 2. (3.3)

Assuming now that a < 0 < b and |a| < |b|, we have |a− b| < 2|b| and thus

Rf(a, b) = 2
|b|

|a− b|
> 1.

Using again the symmetry properties of Rf , we obtain

∀(a, b) ∈
(
R+ × R−) ∪ (R− × R+

)
with |a| ≠ |b| : Rf(a, b) > 1.

We emphasize that Rf(a, b) = 1 if and only if a = −b but in this case, we would have
Emin = −Emax and thus the asymptotic shift is kasyp = 0. It is worth noting that, in
the next section, we only end up being in the case (3.3) for each stencil considered.
As a result, the reduction factor is in each case greater than 2.
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4. Asymptotically optimal shift for some standard FD stencils. We now
compute the asymptotically optimal shift in 2d for the standard second-order 5 point
stencil, a sixth-order 9-point stencil, and the second-order 7-point stencil in 3d. In each
case, we first compute the function E with a Taylor expansion of the discrete symbol,
followed by its lower and upper bounds. Applying Theorem 3.4, we can then get the
asymptotically optimal shift, as well as the improvement on the relative dispersion
error by computing the reduction factor Rf . We also show that the asymptotically
optimal shift can be used to reduce the dispersion error even when a relatively small
number of grid points per wavelength is used. Note that there is no extra cost when
using this asymptotically optimal shift in solving the associated discretized systems,
the improvement in the discrete solutions comes for free.

4.1. Application to the five-point stencil in 2d. The second order five-point
stencil for the Helmholtz operator in 2d is defined as(

H5pt
h u

)
i,j

=
−ui+1,j − ui−1,j + 4ui,j − ui,j+1 − ui,j−1

h2
− k2ui,j ,

and the discrete symbol is therefore

σ5pt
d (k, ξ, h) =

4− 2(cos(hξ1) + cos(hξ2))

h2
− k2.

A Taylor expansion gives

σ5pt
d (k, ξ, h) = σc(k, ξ)−

h2

12

(
ξ41 + ξ42

)
+O(h4).

Since any θ ∈ S1 can be written as θ = (cos(s), sin(s)) for s ∈ [0, 2π], we obtain

E(k, kθ) = −k4

12

(
cos(s)4 + sin(s)4

)
= −k4

12

(
2 cos(s)4 − 2 cos(s)2 + 1

)
,

and it is easy to verify that the hypotheses (H1),(H2) and (H3) hold. We now intro-
duce the shifted wavenumber as

k̂ = k + k2h
2,

with k2 defined by (3.1).
Theorem 4.1. The asymptotically optimal shift for the standard 5-point differ-

ence scheme and the associated reduction factor are

kasy2 = −k3

32
, Rf = 4.

Proof. To use Theorem 3.4, we have to find the extrema of E(k, kθ) for θ ∈ S1.
Setting X := cos(s)2, this is equivalent to finding the extrema of

f(X) = −k4

12

(
2X2 − 2X + 1

)
.

It is easy to see that 1/2 ≤ 2X2 − 2X + 1 ≤ 1 for all X ∈ [0, 1] and thus

Emin = −k4

12
, Emax = −k4

24
.
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Theorem 3.4 then gives for the asymptotically optimal shift

kasy2 =
Emin + Emax

4k
= −k3

32
.

From (3.2), the reduction factor is

Rf = 2
max {|Emax| , |Emin|}

|Emax − Emin|
= 4.

The stencil with shifted wavenumber thus becomes(
Ĥ5pt

h u
)
i,j

=
−ui+1,j − ui−1,j + 4ui,j − ui,j+1 − ui,j−1

h2
− (k − h2 k

3

32
)2ui,j . (4.1)

We now verify the efficiency of the method presented above by computing numerically
an optimal shift kopt2 which minimizes the error between the discrete wavenumber kd
and the continuous wavenumber k. The computation of kd satisfying

σ5pt
d (k, kdθ, h) = 0,

is done numerically since the optimal shift is obtained by computing first kd(θ, k2)
satisfying

σ5pt
d (k + k2h

2, kd(θ, k2)θ, h) = 0,

and next by minimizing k2 7→ maxθ |k − kd(k2)|. The optimization is done using the
Matlab function fminsearch.

According to [4, Remark 5.2], the discrete dispersion relation is disconnected for
G < π. When using the asymptotically optimal shift kasy2 (see Theorem 4.1), this
requirement translates to

G(k2) =
2π

(k + kasy2 h2)h
=

8G3

8G2 − π2
< π,

where G = 2π/(kh) is the number of grid points per wavelength associated to the
unshifted discrete Helmholtz equation. Accordingly, the dispersion relation of Ĥ5pt

h

becomes disconnected for G < π(1 +
√
5)/4 and we thus restrict our numerical opti-

mization to G ≥ 2.5. The relative dispersion error is

Errdisp(k̃) = max
k∈K

max
θ

∣∣∣kd(k̃,θ)− k
∣∣∣

k
,

where kd is the discrete wavenumber and k̃ is going to be either k, k̂asy = k + h2kasy2

or k̂opt = k+kopt2 h2. We show in Figure 4.1 the relative error between the asymptotic

shift kasy2 and the optimized one kopt2 as well as the relative dispersion error Errdisp(k̃).
From Figure 4.1, we see that the relative error between kasy2 and kopt2 is smaller than
2% for G ≥ 3 and thus our asymptotic derivation can be used even for meshsize
and wavenumber combinations such that kh ≤ 2π/3 ≈ 2. We also note that, for G
small, the relative dispersion error is large. This can be explained by the fact that
the discrete dispersion relation becomes disconnected for G small and even empty for
smaller G (see [4, Theorem 5.1]).
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either k̃ = k (no dispersion correction), k̃ = k + h2kopt2 or k̃ = k + h2kasy2 . Right:
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function of G. We used K = {20, 40, 80, 100, 140, 160, 180, 200, 250, 300, 600}.

4.2. Application to a 6th order 9-point stencil. We now derive the asymp-
totically optimal shift for the 9-point 6-th order FD scheme from [4, Theorem 4.1]
whose stencil is(

H9−pts
h v

)
i
:=

(
4a

h2
− k2gb

)
v(xi, yj)

+

(
1− 2a

h2
−

k2gc

4

)
(v(xi−1, yj) + v(xi+1, yj) + v(xi, yj−1) + v(xi, yj+1)) . (4.2)

−
(
1− a

h2
+ k2g

1− b− c

4

)
(v(xi−1, yj−1) + v(xi+1, yj−1) + v(xi−1, yj+1) + v(xi+1, yj+1)) ,

where a, b, c and kg are positive constants given by

a =
5

6
, b =

5

6
− c

2
, c =

8

45
+ c2G

−2, kg = k − π4k

30
G−4,

with c2 being a free-parameter. The discrete symbol associated to H9−pts
h satisfies the

expansion

σ9−pts
d (k, kθ, h) = − k8h6

6048π2
(2 cos(θ)8π2 − 4 cos(θ)6π2 + 6 cos(θ)4π2

+ 189c2 cos(θ)
4 − 4 cos(θ)2π2 − 189 cos(θ)2c2 + π2) +O(h8)

= h6E (k, kθ, c2) +O(h8).

We first determine the constant c2 by minimizing the asymptotic dispersion error.
We thus set

c∗2 = argmin
c2

|E (k, kθ, c2)| .

Theorem 4.2. The asymptotically optimal shift for the 9-point stencil and asso-
ciated reduction factor are

c∗2 = −π2

54
, kasy6 = − k7

12288
, and Rf = 64.
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Proof. We introduce the function F such that

E (k, kθ, c2) = − k8

6048π2
F (cos(θ), c2). (4.3)

Setting X = cos(θ) ∈ [−1,+1], we then have to find first the extrema of

F (X, c2) = 2π2X8 − 4π2X6 + 6π2X4 + 189X4c2 − 4π2X2 − 189X2c2 + π2.

Computing the solution to F ′(Xc, c2) = 0, we obtain

Xc ∈

{
0, ±

√
2

2
, ±

√
2

2π

(
π2 ∓

√
−3π4 − 189π2c2

)}
.

Assuming that c2 < −π2/63 to avoid complex square roots, we get

F (Xc, c2) ∈
{
π2,

π2

8
− 189

4
c2,

−1

8π2

(
8π4 + 1512π2c2 + 35721c22

)}
.

Studying the variation of these functions (or simply plotting them) for c2 ≤ −π2/63,
we obtain

Fmin(c2) =
−1

8π2

(
8π4 + 1512π2c2 + 35721c22

)
≤ F (X, c2) ≤ Fmax(c2),

where

Fmax(c2) = max

{
π2,

π2

8
− 189

4
c2

}
.

Using (4.3), we then get

− k8

6048π2
Fmax(c2) ≤ E (k, kθ, c2) ≤ − k8

6048π2
Fmin(c2),

from which we finally get

Emin(c2) = − k8

6048π2
Fmax(c2), Emax(c2) = − k8

6048π2
Fmin(c2).

From these estimates, we also obtain

max
θ∈S1

|E (k, kθ, c2)| =
k8

6048π2
max {|Fmax(c2)| , |Fmin(c2)|} := K(c2),

and c∗2 = argminK(c2). From Figure 4.2, we see that K(c2) = |Fmax(c2)| and thus

c∗2 = [−π2

54
,−π2

63
].

To get a single value for c∗2, we maximize the reduction factor (see (3.2)) which, for

c2 ∈ [−π2

54 ,−
π2

63 ] is given by

Rf(c2) = 2
max {|Emax| , |Emin|}

|Emax − Emin|
=

16π2

16π4 + 1512π2c2 + 35721c22
.
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Since the function c2 7→ Rf(c2) is decreasing on [−π2

54 ,−
π2

63 ], it reaches its maximum

at c2 = −π2

54 and we thus set

c∗2 := −π2

54
.

This gives

Rf(c
∗
2) = 64

as well as

Emin = Emin(c
∗
2) = − k8

6048
, Emax = Emax(c

∗
2) = − k8

6048

31

32
.

Theorem 3.4 finally gives that the asymptotically optimal shift is

kasy6 =
1

4k
(Emin + Emax) = − k7

12288
.

We show in Figure 4.3 the relative error between the asymptotically optimal shift
and the numerically optimized one where the optimization has been performed as in
Section 4.1. From these numerical results, we see that the asymptotically optimal shift
is close to the numerically optimized one up to G ≥ 5 and that the relative dispersion
error is also reduced even for a small number of grid points per wavelength.

4.3. Application to a 7-point stencil in 3d. The second order 7-point stencil
for the Helmholtz operator in 3d is defined as(
H7pt

h u
)
i,j,k

=
−ui+1,j,k − ui−1,j,k − ui,j,k+1 − ui,j,k−1 − ui,j+1,k − ui,j−1,k + 6ui,j,k

h2

− k2ui,j,k,

and the discrete symbol is thus

σ7pt
d (k, ξ, h) =

6− 2(cos(hξ1) + cos(hξ2) + cos(hξ3))

h2
− k2.
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function of G. We used K = {20, 40, 80, 100, 140, 160, 180, 200, 250, 300, 600}.

Since any θ ∈ S2 can be written as θ = (cos(φ) sin(s), sin(φ) sin(s), cos(s)) for φ ∈
[0, 2π] and s ∈ [0, π], a Taylor expansion gives

E(k, kθ) = −k4

12

(
(cos(φ) sin(s))4 + (sin(φ) sin(s))4 + cos(s)4

)
,

and the asymptotically optimal shift can then be computed.
Theorem 4.3. For the 7-point finite difference scheme in 3d, we have the asymp-

totically optimal shift and related reduction factor

kasy2 = −k3

36
, Rf = 3.

Proof. Setting X = cos(s)2 and Y = cos(φ)2, we get

E(k, kθ) = −k4

12

(
X2 + (1−X)2

(
Y 2 + (1− Y )2

))
= −k4

12
f(X,Y ),

and we now have to compute the extrema of f over [0, 1]2. A computation gives
∂Xf(X,Y ) = X(2 + g(Y )) − 2g(Y ) with g(Y ) = Y 2 + (1 − Y )2. Since g(Y ) ≥ 1/2,
2 + 2g(Y ) > 0, for any fixed Y , the function X ∈ [0, 1] 7→ f(X,Y ) is decreasing for
0 ≤ X ≤ 2g(Y )/(2 + 2g(Y )) and increasing otherwise. As a result, we have

∀(X,Y ) ∈ [0, 1]2 : f

(
2g(Y )

2 + 2g(Y )
, Y

)
≤ f(X,Y ) ≤ max {f(1, Y ), f(0, Y )} ≤ 1.

Noting then that

f

(
2g(Y )

2 + 2g(Y )
, Y

)
=

1

2

2Y 2 − 2Y + 1

Y 2 − Y + 1
≥ 1

2

1/2

3/4
=

1

3
,

we obtain

1

3
= f

(
1

2
,
1

3

)
≤ f(X,Y ) ≤ f(1, 1) = 1,
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and thus

Emin = −k4

12
, Emax = −k4

36
.

Using Theorem 3.4, we find kasy2 = Emin+Emax

4k = −k3

36 .
From (3.2), the reduction factor is

Rf = 2
max {|Emax| , |Emin|}

|Emax − Emin|
= 3.

The 7-point finite difference stencil with shifted wavenumber is therefore(
Ĥ7pt

h u
)
i,j,k

=
−ui+1,j,k − ui−1,j,k − ui,j,k+1 − ui,j,k−1 − ui,j+1,k − ui,j−1,k + 6ui,j,k

h2

−
(
k − k3h2

36

)2

ui,j,k.

We show in Figure 4.4 the relative dispersion error Errdisp(k̃), for k̃ ∈ {k, k̂asy, k̂opt}
as well as the relative error between kasy2 and the numerically optimized shift com-
puted as in Section 4.1. This shows that the asymptotically optimal shift is close
to the numerically optimized one even for a relatively small number of grid points
per wavelength, and that both reduce the relative dispersion error compared to the
standard 7-point FD stencil.

5. Numerical experiments. We now test the asymptotically optimal shift
numerically to see the effect of dispersion correction when solving some Helmholtz
boundary value problems. We start with the 3-point stencil in 1d, followed by the
5-point stencil in 2d, to solve Helmholtz problems with Robin boundary conditions.
Then, we test the 9-point stencil with Dirichlet boundary conditions.

5.1. Numerical results for 1d problems. We illustrate now by numerical
experiments that, for one dimensional Helmholtz problems, no dispersion error leads
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Fig. 5.1. Log-log plots of the errors for Robin boundary conditions. Left: k = 200. Right:
k = 2000.

to no pollution effect as well. The Helmholtz equation with homogeneous Robin
boundary condition at x = 1 is −u′′(x)− k2u(x) = f(x), in ]0, 1[,

u(0) = 0,
u′(1)− iku(1) = 0,

(5.1)

where f is a given source term. We discretize (5.1) with the 3-point stencil (2.2) at
n interior grid points, and use a ghost point for the Robin boundary condition. We
assume the right-hand-side f to be

f = sin(kx),

which gives the closed form solution

uex,R(x) = −x cos(kx)

2k
+ sin(kx)

(
1 + 2e2ik − 2ik

4k2

)
.

Denoting by u the discrete solution, we compare the relative errors

err :=
∥u− uex,R(x)∥∞
∥uex,R(x)∥∞

for the scheme (2.2) with and without the real shift k̂. For the Robin boundary

condition, we also compute the error when using the real shift k̂ on the boundary. We
compute the error for k fixed and a number of grid points per wavelength given by

G :=
2π

kh
= 320, 160, 140, 120, 100, 80, 40, 30, 20, 15, 10, 8, 5, 3, 2.

The results are shown in Figure 5.1 and clearly show the pollution effect when no
dispersion correction is used. It is also worth noting that using the real shift on the
Robin condition does not have a major impact on the error.

5.2. Numerical experiments in 2d with the 5-point stencil. We solve the
test problem (see also [33, p. 22, Example 2]) −∆u− k2u = 0, in Ω = (0, 1)2,

u = f, on {0} × [0, 1] ∪ {1} × [0, 1],
∂nu+ iku = g, on [0, 1]× {0} ∪ [0, 1]× {1},

(5.2)
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Fig. 5.2. Relative error with and without shifted wavenumber.

n 24 25 26 27 28 29 210

k = 20 0.6153 0.5514 0.5406 0.5376 0.5353 0.5342 0.5335
k = 40 1.1662 0.8251 0.5594 0.5190 0.5136 0.5126 0.5123
k = 80 2.1981 0.6594 0.8327 0.5723 0.5118 0.5052 0.5045
k = 160 1.0015 2.2481 0.6354 0.8776 0.6078 0.5119 0.4988

Table 5.1
Ratio of the errors err∞

(
k̂
)
/err∞(k) for varying meshsize and wavenumber.

where f, g are defined so that u(x, y) = sin(k(x+ y)
√
2/2) is the exact solution.

We discretize the Robin boundary condition with a ghost point to achieve second
order accuracy and also use the shifted wavenumber in the Robin condition. To
compare the efficiency of the 5-point FD scheme with shifted wavenumber, we compute

err∞(k̃) =

∥∥∥u− uh(k̃)
∥∥∥

∥u∥∞
,

where uh(k̃) is the numerical solution without shift (hence k̃ = k) or using the shifted

wavenumber (in that case k̃ = k̂ = k − h2k3/32).
We compute numerically (see Figure 5.2) the relative error for meshsizes h =

1/(n+ 1) with n = 2j and j = 4, · · · , 10, and k = 20, 40, 80, 160. These results show
that the shifted wavenumber can not cancel the pollution effect in 2d, but it reduces
the error for large enough number of grid points per wavelength. We also compute
the reduction factors in Table 5.1. This shows that the shift roughly reduces the
relative error by a factor 2 for large enough numbers of grid points per wavelength.
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Note that it is not beneficial to use the asymptotically optimal shift if too few grid
points per wavelength are used. This is expected, since we define kasy by minimizing
the dispersion error as the meshsize goes to zero. Nevertheless, since the dispersion
error is still reduced when using the asymptotically optimal shift (see Figure 4.1) for
G ≥ 5, we can still expect to reduce the relative error when enough grid points per
wavelength are used to get accurate solutions. Also note again that the numerical
cost for solving the linear system with or without shift is identical.

5.3. Numerical experiments in 2d with the 9-point stencil. We now solve
the test problem {

−∆u− k2u = 0, in Ω = (−1, 1)2,
u = f, on ∂Ω,

(5.3)

where f is chosen so that u(x, y) = sin(k(x+ y)
√
2/2) is the exact solution. We solve

(5.3) with the 9-point stencil (4.2) where the constants are

a =
5

6
, b =

5

6
− c

2
, c =

8

45
− π2

54
G−2, kg = k

(
1− π4

30
G−4

)
,

for the FD scheme without dispersion correction. Since G = 2π/(kh), these constants
become with dispersion correction

c =
8

45
− π2

54

(
2π

(k + h6kasy6 )h

)−2

, (5.4)

kasyg = (k + h6kasy6 )

(
1− π4

30

(
2π

(k + h6kasy6 )h

)−4
)
.

The value for kasy6 is defined in Theorem 4.2. We emphasize that the constants from
(5.4) satisfy as h → 0 the expansions

casy =
8

45
− π2

54
G−2 +O(h7), kasyg = k

(
1− π4

30
G−4 − π6

192
G−6

)
+O(h7),

where we can use either G or h. Since the 9-point stencil is sixth-order accurate, only
the expansion up to order 6 is going to matter for the error and we then neglect the
O(h7) term above to define our FD scheme with dispersion correction. Using these,
we now have the same stencil as the one obtained in [4, Theorem 4.1] by minimizing
the distance between the discrete and continuous dispersion relations thanks to an
asymptotic analysis. Our new approach is however much easier to use, and also to
extend to other FD stencils.

Using the same notations as in Subsection 5.2, we show in Figure 5.3 the evolution
of the relative error, for a fixed wavenumber, and varying meshsize, and in Table 5.2
the reduction factor. From these results, one can see that the pollution effect is
greatly reduced with the dispersion correction and that, for small enough meshsize,
it is highly beneficial to use dispersion correction since it can lower the relative error
by a factor up to 100 in some cases.

6. Conclusions and outlook. We introduced a new dispersion correction tech-
nique for finite difference discretizations of Helmholtz problems. The technique is
based on a modified wavenumber, which can be obtained in closed form for arbitrary
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Fig. 5.3. Relative error with and without shifted wavenumber.

n 24 25 26 27 28 29 210

k = 20 2.231 0.167 0.022 0.006 0.013 0.014 0.050
k = 40 0.994 4.647 0.174 0.023 0.006 0.013 0.015
k = 80 0.999 0.997 2.627 0.177 0.023 0.006 0.013
k = 160 0.999 0.999 0.998 0.458 0.178 0.023 0.006

Table 5.2
Ratio of the errors err∞

(
k̂
)
/err∞(k) for varying meshsize and wavenumber.

finite difference discretizations by obtaining the extrema of an associated function
defined on a compact set. This function is simply obtained from the Taylor expansion
of the discrete symbol of the FD stencil considered. We applied our method to several
standard stencils from the literature and our numerical experiments show that, for
small enough meshsize, reducing the dispersion error also reduces the relative error
in the solution.

A next step is to extend our new technique to finite element discretizations, where
dispersion correction is more difficult to achieve. Our technique can also be extended
to other time-harmonic wave propagation problems like for instance electromagnetic
waves modeled by the Maxwell system, linear elasticity, or even linearized water-wave
models (e.g. Serre-Green-Nagdhi or Nwogu equations). It might also be possible to
derive asymptotically optimal shifts for finite-difference methods in the time-domain
(FDTD).
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