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Abstract

[Disclaimer: this is Part I of a cross-disciplinary survey that is work in progress;
All comments are welcome.] Some fifty years ago, in her seminal PhD thesis, Odile
Macchi introduced permanental and determinantal point processes. Her initial moti-
vation was to provide models for the set of detection times in fundamental bosonic
or fermionic optical experiments, respectively. After two rather quiet decades, these
point processes have quickly become standard examples of point processes with non-
trivial, yet tractable, correlation structures. In particular, determinantal point pro-
cesses have been since the 1990s a technical workhorse in random matrix theory and
combinatorics, and a standard model for repulsive point patterns in machine learn-
ing and spatial statistics since the 2010s. Meanwhile, our ability to experimentally
probe the correlations between detection events in bosonic and fermionic optics has
progressed tremendously. In Part I of this survey, we provide a modern introduction
to the concepts in Macchi’s thesis and their physical motivation, under the combined
eye of mathematicians, physicists, and signal processers. Our objective is to provide a
shared basis of knowledge for later cross-disciplinary work on point processes in quan-
tum optics, and reconnect with the physical roots of permanental and determinantal
point processes.
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1 Introduction
The photoelectric effect is the release of individual electrons from a metal, when light falls
onto that metal. The empirical observation that no electrons are released if the light
frequency is beneath a certain threshold, along with an analogy with elastic collisions,
prompted Einstein to posit the existence of light quanta, also known as photons. A century
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later, the full explanation of the photoelectric effect is considered a success of the quantum
theory of light.

In parallel, experimental devices have been designed to amplify the current resulting
from a small number of released electrons, eventually giving detectors of light so sensitive
that they are able to detect single photons. These detectors have led to investigations on
the quantum coherence properties of light. Coherence here means the ability of sources of
light to generate interference patterns, such as in Young’s celebrated double slit experiment
[Mandel and Wolf, 1965, Sections 1-3]. One puzzling aspect of coherence was demonstrated
by Hanbury Brown and Twiss [1958], and is called photon bunching or the HBT effect,
after the initials of its discoverers. When placing a detector of single photons in the electric
field created by a thermal light source, such as incandescent matter, Hanbury Brown and
Twiss [1958] showed that the detector tends to produce clicks that are grouped in time.
Everything happens as if the photons were tightly bunched together when arriving at the
detector, hence the name of photon bunching. A few years later, with the invention of the
laser, it was realized that this bunching effect disappeared for (so-called coherent) laser
light.

At the turn of the 60s, there was intense research in finding the right mathematical
framework to describe such coherence phenomena. A celebrated contribution is that of
Glauber [1963], who introduced concepts like coherent states and coherence functions, which
quickly became textbook material for quantum optics. Having met Glauber at Les Houches
in 1964, French signal processing pioneer Bernard Picinbono launched a team in statistical
optics in Orsay, determined to explore the transition between bunching and non-bunching
measurements using the formalism of stochastic processes. Picinbono assembled a small
and diverse group, including PhD student Odile Macchi, who had just obtained a degree
in mathematics. The starting point of Macchi’s 1972 PhD thesis was to find the right
stochastic object to describe the detection times in HBT and explain photon bunching. Her
thesis turned out to be foundational in many respects. This justified a recent translation
of Macchi’s thesis (originally in French) by Hans Zessin [Macchi, 2017], along with a large
appendix written by Hans Zessin and Suren Poghosyan.

Odile Macchi introduced what we now call correlation functions to describe point pro-
cesses, i.e., random configurations of points in a generic space. She showed how common
models for physical sources and detection led to point processes with closed-form correlation
functions. In particular, for a given model of the source used in the HBT experiment, she
showed that the resulting point process of detection times is a permanental point process,
for which bunching can be fully characterized and related to properties of the electric field.
Teaming up with fellow PhD student in physics Christine Bénard, they used Glauber’s
formalism to identify the point process describing the parallel situation of detection times
of electrons. Unlike for photons, the latter point process naturally exhibits anti-bunching,
with detection times being very regularly spaced. [Bénard and Macchi, 1973] is one the
foundational stones1 for what we call today determinantal point processes (DPPs).

Outside physics, determinantal point processes (DPPs) have since then become a cor-
nerstone of the theory of random matrices [Anderson, Guionnet, and Zeitouni, 2010, Jo-
hansson, 2006], with applications in combinatorics [Borodin et al., 2000] and number theory
[Rudnick and Sarnak, 1996]. DPPs are also a popular model for repulsive point pattern data
in spatial statistics [Lavancier, Møller, and Rubak, 2014] and machine learning [Kulesza
and Taskar, 2012]. Many DPP users in these fields2 have little idea of the physical origin
of DPPs. Given the late blooming of DPPs outside their original field, and some fifty
years after Macchi’s first generic formalization of DPPs, we felt it a natural endeavour to
reconnect DPPs with their physical roots, as models for non-interacting fermions and tools
to probe generalizations of the HBT effect. This has been the purpose of two workshops
so far.

1Together with a 1974 conference communication, that appeared later as [Macchi, 1977], and earlier
work by Jean Ginibre; see the preface to the recent re-print [Macchi, 2017] of Odile Macchi’s thesis for a
broader history.

2including some of us prior to this work!
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We started with a two-day event3 in 2019 in Lille, France, opened by Odile Macchi
and featuring both theoretical and experimental physicists exposing their view of fermionic
coherence to an audience of DPP users across mathematics, computer science, and signal
processing. The workshop having been met with cross-disciplinary enthusiasm, we made
two decisions. The first was to organize an ambitious, two-week follow-up to the workshop,4
which took place in 2022 in Lyon, France. The second decision was to unite forces and
write a survey on the links between point processes and optics, to pin down a common
ground for discussions. The current document is the first part of this survey. It is both
a joint introduction to point processes and quantum optics, and organized notes from a
modern reading of Odile Macchi’s thesis. The novelty of our document relies in its cross-
disciplinary target audience of mathematicians, physicists, and signal processers, with a
solid undergraduate background in probability and functional analysis. In particular, while
tackling topics in modern physics, we assume little physics knowledge from the reader
beyond undergraduate exposure to wave optics. One of our leitmotivs is to sketch the
thought process behind some fundamental arguments in quantum optics. Indeed, in our
experience, arguments thought as basic by physicists can be hard to grasp by people trained
in mathematics, mostly because the implicitly assumed lore differs across communities. In a
reverse movement towards physicists, and following the spirit of Macchi [1975], we motivate
most mathematical concepts by their need as models in optics, including point processes.

We have striven to maintain a balance between mathematical rigour, clarity, and brevity,
giving references whenever we had to take shortcuts. We expect that every reader will find
some of the material basic and some more exotic, depending on their background, and
we hope that all readers will eventually learn something useful. Our objective is to make
the potential barrier for crossing from one discipline to another as low as possible, so that
ideas can flow more easily. A second part of the document is in preparation, presenting
selected advanced topics from the Lille workshop, including experimental measurements
of the HBT effect, non-interacting trapped fermions in statistical physics [Dean et al.,
2016, 2019], fermions in combinatorics, and electronic quantum signals. The two parts are
ultimately to be bound in a single manuscript.

The rest of the document is organized as follows. In Section 2, we introduce key examples
of point processes. Poisson, Cox, and permanental point processes are motivated there by
the so-called semi-classical derivation of the HBT photon bunching effect, treating only
the detector as a quantum object, not the electric field. Determinantal point processes
are also introduced, but their physical motivation requires to go beyond the semi-classical
picture, which justifies the next three sections. Section 3 is a crash course in quantum
field theory, from the basics of quantum mechanics to Wick’s theorem on the average of
products of ladder operators. Wick’s theorem yields two very different results depending
on the commutation rules of the operators it applies to, which in turn derive from modeling
either bosonic particles (like photons), or fermionic particles (like electrons). Ultimately,
this dichotomy is at the origin of the appearance of permanental and determinantal point
processes. The section concludes with a discussion of the coherent states of Glauber [1963]
and their relation to time-frequency analysis in signal processing. Section 4 covers the
modern view on photodetection, culminating in the full quantum justification of the HBT
effect using permanental point processes as a model for the coincidence measurements of
photons, as well as considerations on the role of the source in the bunching properties of the
measurements. Following the lines of Section 4, Section 5 covers the detection of electrons,
finally resulting in the appearance of determinantal point processes. The section concludes
on the comparative difficulties of recovering non-quantum arguments from the quantum
treatment in the case of fermions. Finally, Section 6 wraps up this first part, commenting
on the generic derivation of a permanental or determinantal point process from a model of
free fermions, and discussing open questions motivated by this construction.

A note on the style. Because of its cross-disciplinary objectives, the style of our docu-
ment is hybrid. We mostly follow a style inspired by texts in mathematics, with definitions,

3https://dpp-fermions.sciencesconf.org/
4https://indico.in2p3.fr/event/25182/
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theorems, assumptions, and examples, sometimes merged with the main text, sometimes
fleshed out to draw the reader’s attention. Assumptions, in particular, often stand out. By
assumption we mean a statement for the reader to accept in order to progress in a discussion
or a computation. It can be, e.g., a modeling choice or a mathematical approximation.

Examples are often borrowed from physics; to make the text self-contained, some of
these examples are relatively long. To help the reader to visually isolate examples from
the rest of the text, we conclude each example with a � symbol. Finally, footnotes abound,
and are usually meant as side remarks to one of the targeted scientific communities, e.g.
to discuss notational or minor conceptual differences between different domains.

2 Point processes and the semiclassical picture of HBT
In a physical experiment where a detector clicks when hit by a particle, the observation
consists of a set of real numbers, the times at which the detector clicks. The natural
probabilistic model for such a situation, where both the number and the location of the
observed points are uncertain, is a point process, i.e, a random configuration of points. In
Sections 2.1 to 2.4, we introduce some of the modern vocabulary of point process theory,
along with three key families of point processes: Poisson, permanental and determinantal
point processes.

While optical models that feature determinantal point processes will have to wait for
the fully quantum treatment of electron detection in Section 5, we already motivate Poisson
and permanental point processes in this section by the so-called semi-classical (as opposed
to fully quantum) derivation of the photon bunching effect. Our running examples are
based on the simple setup given here as Example 0.

Example 0 (A simple photodetection setup). As introduced in Section 1, photodetection
is based on the photoelectric effect: when light falls onto a metal, electrons are released,
generating a current that we can measure. Light is an electromagnetic field, so typically has
an electric and magnetic component, but the physics of the photoelectric effect is essentially
dependent on the electric component of the field.

The electric field at a point r ∈ R3 in space and time t is modeled by a square-integrable
function E : R3 × R→ R3 of space and time. The three components of E(r, t) correspond
to what is called in physics the polarization of light. Throughout this paper, for simplicity,
we assume that the field is linearly polarized. In this section,5 linear polarization amounts
to assuming the existence of a unit vector u ∈ R3 such that, for all (r, t) ∈ R3 × R,
E(r, t) = E(r, t)u, with E(r, t) ∈ R. This simplification allows us to focus here on the
scalar function E : R3 × R → R. Moreover, we consider a photodetector placed at a fixed
position r ∈ R3. The effect of the field on the detector is assumed to only depend on the
value E(r, ·) of the field at the detector position, and we thus further focus on the function
t 7→ E(r, t) in our examples, which we also denote6 by E in this section.

We are interested in the times at which our detector clicks, i.e., detects a single photon.
Because the measured times vary from one run of the experiment to the next, we want to
model them as a random set of (distinct) real numbers. �

Finally, note that we only describe in this section an idealized version of the HBT
experiment, following [Macchi, 1975, Section 4.2]. For physics arguments, we refer the
reader with little prior exposition to physics to [Mandel and Wolf, 1995, Chapter 9], which
is a recent textbook treatment of the survey [Mandel and Wolf, 1965] to which Macchi
[1975] originally referred.

5In later sections, the field will be modeled by a collection of operators, and linear polarization will thus
correspond to a different mathematical assumption.

6Overloading variable names is common in physics, and we shall follow this convention when possible
without confusion.
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2.1 The correlation functions of a point process
Let us fix a complete metric space X, with µ a Borel measure on the Borel sets of X. A
majority of the examples in this paper will deal with X = R equipped with the Lebesgue
measure. As mentioned in the header of Section 2, this choice describes the ideal detection
times of physical particles. In spatial statistics, we typically encounter X = Rd with µ
the Lebesgue measure [Baddeley et al., 2015]. It is also not uncommon to take X to
be a compact manifold M (like a sphere; [Beltrán and Hardy, 2019]) or a discrete space
(like a large dataset in machine learning [Kulesza and Taskar, 2012]), in which case µ is
typically taken to be the volume form on M or the counting measure of the discrete space,
respectively.

A point process γ on X is a random configuration7 of points in X. In other words, γ is
a random variable taking its values in the space of locally finite subsets of X,

Conf(X) :=
{
γ ⊂ X : #(γ ∩A) <∞ for all compact A ⊂ X

}
.

In terms of modeling beams of physical particles, the locally finite assumption entails that
for any given time interval, there is a finite number of particles that were detected in that
interval.

For any k ≥ 1, the k-point correlation function ρk : Xk → [0,∞] satisfies, when it exists,

E

 ∑
x1,...,xk∈γ
xi 6=xj if i6=j

f(x1, . . . , xk)

 =
∫
Xk
f(x1, . . . , xk) ρk(x1, . . . , xk)

k∏
i=1

dµ(xi) (1)

for any bounded (or positive) and measurable test function f . Here

Xk =
k︷ ︸︸ ︷

X× · · · × X

and the symbol E in (1) stands for the expectation8 under the law of the random variable
γ. Thus, the k-point correlation function ρk encodes the distribution of k-tuples of points
from γ. Indeed, an informal rewriting of (1) reads

ρ(k)(x1, . . . , xk)µ(dx1) . . . µ(dxk) = P

There are at least k points in γ,
one in each of the infinitesimal
balls B(xi,dxi) for i = 1, . . . , k

 . (2)

It is common to actually define a point process γ by a sequence (ρk) of compatible corre-
lation functions; see [Daley and Vere-Jones, 2003]. By compatible, we mean that not every
sequence (ρk) actually defines a point process, and that usually a mathematical argument
for existence is necessary.

Of particular practical significance are the correlation functions for k = 1 and k = 2.
The first correlation function ρ1 describes the marginal distribution of particles, and is called
the intensity in probability and statistics.9 The second correlation function ρ2 describes
pairwise correlations, and is often discussed in its normalized form

g(x, y) = ρ2(x, y)
ρ1(x)ρ1(y) . (3)

7Stricto senu, we are defining here simple point processes, i.e., such that the samples never contain a
given point of X more than once. Since all point processes in this work are simple, we take this shortcut
and identify a (simple) point process with a random configuration.

8Physicists speak of an ensemble average, and denote it using angle brackets 〈·〉. We stick with the
symbol E for classical expectations, and we reserve brackets only for Hilbert space inner products and
quantum averages.

9Physicists might prefer to call it density of particles, and reserve intensity for other physical quantities.
To avoid confusion, we will write first correlation function in full.
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Finally, when X = Rd and the distribution of γ is translation- and rotation-invariant, g
only depends on r = ‖x − y‖, so that we write g(x, y) = g0(r). The function g0 is called
the pair correlation function of γ.

Figure 1 shows samples of three translation-invariant point processes in R, along with
their pair correlation functions. The three point processes share the same (constant) first-
order correlation function. Note how the pair correlation function in Figure 1(f) is lower
than 1 close to 0, indicating fewer small pairwise distances than the reference point process
in Figure 1(d): this is a sign of a very regular, more grid-like distribution of the points,
as seen in Figure 1(c). On the contrary, the pair correlation function of Figure 1(e) shows
more small pairwise distances than the reference: points are lumped together, as confirmed
by Figure 1(b). The rest of this section describes these three examples in more detail.

2.2 Poisson and Cox point processes
Let λ : X→ R+ be locally integrable, that is,

∫
B
λ(x)dµ(x) <∞ for every bounded B ⊂ X.

Further assume for simplicity that the measure λdµ has no atom.10 The point process with
correlation functions

ρk(x1, . . . , xk) = λ(x1) . . . λ(xk), k ≥ 1, (4)

always exists and is called the Poisson point process with parameter function11 λ. The
first correlation function of the process is thus ρ1 = λ. Moreover, the separable form of (4)
implies the lowest level of correlation among the points of the process. In particular, the
pairwise correlation function g ≡ 1 is constant, so that no pairwise distances are preferred.
Figure 1(a) shows a few Poisson samples where µ is the Lebesgue measure on X = R and
λ is constant.

Example 1 (Deterministic electric fields yield Poisson point processes). Consider the pho-
todetection setup of Example 0. Let us further assume that the field is quasi-monochromatic,
i.e., that the modulus |FE| of the Fourier transform of the function E : R→ R concentrates
around ω and −ω for a single value of the frequency ω > 0. Note that the symmetry of
|FE| is a consequence of E being real-valued. Denote by E+ the analytic signal of the
electromagnetic field E, i.e.,

E+ = 2F−1 (F(E)× 1(0,∞)
)
. (5)

Taking the analytic signal [Mandel and Wolf, 1995, Section 3.1] is a partial isometry of
L2(R) commonly used in signal processing, which has several natural properties. For in-
stance, E+ removes the symmetry in |FE|, so that each frequency is represented in an
unambiguous, non-redundant manner. To a mathematician, the analytic signal is the
boundary value of a particular analytic function of the upper-half plane, defined as the
Cauchy transform of f ; see e.g. [Pugh, 1982, Section 2.1]. A more physical property is
that when E is quasi-monochromatic, |E+| is a good approximation of the envelope of the
signal E; see Figure 2. This idea of an envelope, insensitive to rapid oscillations, along with
intuition from classical electromagnetism relating a physical intensity to the square of the
amplitude of a wave, is at the origin of the following modeling assumption, which we flesh
our for future reference.

Assumption 1. For a deterministic field E, the detection times follow a nonstationary
Poisson process, with parameter function proportional to t 7→ |E+(t)|2, where E+ is given
by (5).

The full justification for the assumption can be obtained by a more precise model of light
and matter interaction using quantum theory; see [Mandel and Wolf, 1995, Chapter 9] or
our Section 4. Meanwhile, we see that Poisson processes naturally result from deterministic
fields. �

10Without this assumption, a Poisson point process would not necessarily be a simple point process.
11Statisticians call this parameter function the intensity of the process. We refrain from using this naming

convention, to avoid confusion with any physical intensity.
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Figure 1: (a, b, c) The intersection with W = [0, 1] of four samples of each of the three
types of point processes introduced in Section 2. All three point processes are translation-
invariant and are scaled to have the same expected number of points falling in W . (d, e, f)
The pair correlation function (3) of the three point processes, and histograms of pairwise
distances from 100 independent samples.

Poisson point processes are useful both as a reference point process and as a building
block in statistical modeling. For instance, a Poisson point process with a random parame-
ter function λ is known as a Cox process [Daley and Vere-Jones, 2003, Section 6.2]. A Cox
process has correlation functions

ρk(x1, . . . , xk) = Eλ(x1) . . . λ(xk), k ≥ 1,

where the expectation is over λ. In particular, by Jensen’s inequality,

ρ2(x, x) = Eλ(x)2 ≥ (Eλ(x))2 = ρ1(x)2. (6)

If inequality is strict and ρ2 is continuous, one can thus expect that for x, y close to each
other, the probability that there is a point near x and a point near y in the same realization
is larger for a Cox process than for a Poisson process with the same first correlation function.
In other words, samples from a Cox process exhibit clusters, or bunching.

Example 2 (Random classical sources imply photon bunching). When the physical field E
comes from a thermal source (i.e., incandescent matter or a gas discharge), experimentally
observed detection events do not seem to form a Poisson process, but rather exhibit some
form of bunching, or clustering. This is the HBT effect [Hanbury Brown and Twiss, 1958].
Mathematically, it can be seen as a consequence of Assumption 1, as soon as one represents
the field resulting from the thermal source by a stochastic process making x, y 7→ ρ2(x, y)
smooth near the diagonal x = y. The point process of detection times is then a Cox process
that favors clusters of points, compared to a Poisson process. �

The archetypal Cox processes are the so-called permanental point processes, which we
now introduce.
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2.3 Permanental point processes
A point process γ is said to be permanental when there exists a so-called correlation kernel
K : X× X→ C such that the correlation functions of γ read

ρk(x1, . . . , xk) = per
[
K(xi, xj)

]k
i,j=1

, k ≥ 1 . (7)

The permanent perA in (7) of a matrix A ∈ Rk×k is defined, analogously to the determi-
nant, by a sum over permutations

perA =
∑
σ∈Sk

k∏
i=1

aiσ(i),

where Sk denotes the symmetric group. Assuming existence for a moment, the point
process described by (7) has nontrivial correlation functions. Taking k = 1 and k = 2 in
(1), we obtain for instance

E

[∑
x∈γ

f(x)
]

=
∫
f(x)K(x, x)µ(dx), (8)

E

 ∑
x,y∈γ
x 6=y

f(x, y)

 =
∫
f(x, y)

[
K(x, x)K(y, y) +K(x, y)K(y, x)

]
µ(dx)µ(dy) . (9)

When the kernel K is Hermitian, that is, K(x, y) = K(y, x), the second correlation function
in (9), once normalized, becomes

g(x, y) = ρ2(x, y)
ρ1(x)ρ1(y) = 1 + |K(x, y)|2

K(x, x)K(y, y) ≥ 1. (10)

In particular, (10) shows that permanental point processes are attractive: the larger
|K(x, y)|2, the more likely two particles at x and y are to co-occur. Moreover, they are al-
ways more likely to co-occur than if γ were a Poisson process with the same first correlation
function.

The existence of a point process satisfying (7) requires conditions on K [Shirai and
Takahashi, 2003]. A standard set of conditions comes from a representation of γ as a
Cox process. This representation derives from the semiclassical treatment of the HBT
effect for photons by Macchi [1975], which we present below as Example 3. To isolate the
mathematical statement, let us simply mention that a Poisson point process with random
first correlation function λ taken to be the squared modulus of a Gaussian process is a
permanental point process; see e.g. [Hough et al., 2006, Proposition 35]. Making sure
that the underlying Gaussian process exists in turn guarantees existence of the attached
permanental point process.

Example 3 (Gaussian classical fields yield permanental point processes). Continuing Ex-
ample 2 on thermal sources, quasimonochromatic thermal sources are actually represented
by zero-mean stationary Gaussian processes, following the intuition that they result from
the superposition of many zero-mean, independent random contributions from the source
at roughly the same frequency [Macchi, 1975, Section 4.2]. Mathematically, a random func-
tion f is said to have for distribution a zero-mean Gaussian process with kernel K if, for
any number n of observations and for any times t1, . . . , tn ∈ R, we have

(f(t1), . . . , f(tn))T ∼ N
(
(0, . . . , 0)T , ((K(ti, tj))1≤i,j≤n

)
, (11)

where N (µ,Σ) stands for the multivariate Gaussian with mean µ and covariance matrix
Σ. Assuming E is such a zero-mean Gaussian process, and that its distribution is invariant
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Figure 2: A sample E of the zero-mean Gaussian process with Lorentz kernel (12), and the
modulus |E+| of the corresponding analytic signal.

under translations along the time axis, the linear transform E+ in (5) is also a zero-mean,
translation-invariant Gaussian process,12 with the specific property that EE+(t)E+(s) = 0.

As an example, the reader can think of E as having kernel

KLorentz(t, s) = exp
(
−|t− s|

σ

)
cos(ω(t− s)) = KLorentz,0(t− s), (12)

for some ω � 1/σ. KLorentz is the product of a slowly varying envelope, which we arbitrarily
take to be exponential for concreteness, and a fast oscillating function. In particular, the
Fourier spectrum of KLorentz,0 is concentrated around ω, making E quasi-monochromatic
in the sense of [Macchi, 1975]. In that case, E+ has kernel

CLorentz(t, s) = 2K+
Lorentz,0(t− s) ≈ 2 exp

(
−|t− s|

σ

)
eiω(t−s). (13)

The first equality is a general property of analytic transforms of second-order stationary
processes, and can be proved by direct computation. The approximation in (13) is a
consequence of Bedrosian’s theorem, stating that the slowly varying envelope is preserved
when taking the analytic signal; see e.g. [Picinbono, 1997]. Finally, we note that the
covariance (13) is a slight modification of the Lorentz kernel example given by [Macchi,
1975], where we have introduced a phase factor since, stricto sensu, analytic covariance
kernels cannot take only real values. A sample E with kernel KLorentz is shown in Figure 2.
The modulus of the analytic signal E+ visibly plays the role of an envelope for E, averaging
over local oscillations of E.

We now go back to a generic E following a zero-mean Gaussian process with kernel K.
Following Assumption 1, the detection events now form a Poisson process with random
parameter function, a.k.a. a Cox process; see Section 2.2. Its correlation functions read

ρk(t1, . . . , tk) = E|E+(t1)|2 . . . |E+(tk)|2 = EE+(t1) . . . E+(tk)E+(t1) . . . E+(tk).

Now the expectation of a product of Gaussians can be expressed in terms of pairwise
expectations using a theorem by Isserlis.13 Further recalling that EE+(t)E+(s) = 0 for all
t 6= s, we obtain

ρk(t1, . . . , tk) =
∑
σ∈Sk

k∏
i=1

EE+(ti)E+(tσ(i)). (14)

12However, E+ is complex-valued, i.e., the vector in (11) is a complex multivariate Gaussian vector.
13This theorem is also known to physicists as Wick’s theorem, by analogy with a similar theorem for the

quantum average of products of certain operators; see later in Section 3.5.
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Recognizing a permanent in (14), we conclude that

ρk(t1, . . . , tk) = per((C(ti, tj))), k ≥ 1,

where C(t, s) = EE+(t)E+(s) is the covariance kernel of the Gaussian process E+. The
photon detection process is thus a permanental point process, see Section 2.3, with kernel
the covariance kernel of the analytic signal of the electromagnetic field. In particular, for a
Hermitian and translation-invariant kernel C(t, s) = C0(t − s) = C0(s− t), we obtain, for
all s, t such that t− s = r,

g(r) = ρ2(t, s)
ρ(t)ρ(s) = 1 + |C0(r)|2. (15)

The probability of coincidence of a pair of detection times is thus larger than under a
Poisson process with the same first correlation function. The pair correlation function g
in Figure 1(e) is actually (15) with the Lorentz kernel in (13). The corresponding samples
exhibit bunching when compared to the Poisson samples of Figure 1(a). �

Equation (15) provides a remarkably simple mathematical derivation of photon bunch-
ing in terms of correlation functions, due to [Macchi, 1975, Chapter 4]. It is noteworthy
that the representation of permanental point processes as Cox processes, which has become
more of a side result for probabilists [Hough et al., 2006, Proposition 35], was actually the
physical motivation for the introduction of permanental point processes by Macchi [1975].

2.4 Determinantal point processes
A point process γ is said to be determinantal when there exists a so-called correlation
kernel K : X× X→ C such that the correlation functions of γ read, for any k ≥ 1,

ρk(x1, . . . , xk) = det
[
K(xi, xj)

]k
i,j=1

. (16)

We write DPP(K,µ) for the point process with correlation functions (184) with respect to
the reference measure µ. Note that, by definition of ρk, the kernel K(x, y) has to be chosen
so that the right hand side of (184) is nonnegative for any k ≥ 1 and x1, . . . , xk ∈ X; like
for permanental point processes, not every kernel yields a well-defined DPP.

Assuming existence for a moment, we look at the first and second correlation functions.
Taking k = 1 and k = 2 in (1), we obtain for instance

E

[∑
x∈γ

f(x)
]

=
∫
f(x)K(x, x)µ(dx), (17)

E

 ∑
x,y∈γ
x 6=y

f(x, y)

 =
∫
f(x, y)

[
K(x, x)K(y, y)−K(x, y)K(y, x)

]
µ(dx)µ(dy). (18)

When the kernel K is Hermitian, that is, K(x, y) = K(y, x), the second correlation function
in (18), once normalized, becomes:

g(x, y) = ρ2(x, y)
ρ1(x)ρ1(y) = 1− |K(x, y)|2

K(x, x)K(y, y) ≤ 1. (19)

In particular, (19) shows that DPPs with Hermitian kernels are repulsive: the larger
|K(x, y)|2, the less likely the two particles at x and y are to co-occur. Moreover, they
are always less likely to co-occur than if γ were a Poisson process with the same first corre-
lation function. In particular, if γ were to model the clicks of a detector as particles arrive,
the arrival times would exhibit antibunching. We shall see examples of antibunching arrival
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times in Section 5. Unlike Poisson and permanental point processes, whose appearance re-
sults from Assumption 1, to understand why DPPs appear in quantum optics, we shall
need first to introduce elements of quantum field theory.

Necessary and sufficient conditions for existence of a DPP are known when the operator
K : f 7→

∫
K(·, y)f(y)dµ(y) on L2(µ) is Hermitian and locally trace-class. In particular,

letting (λk) denote the eigenvalues of K, DPP(K,µ) is well-defined if and only if 0 ≤ λk ≤ 1
for any k ∈ N, namely when K is a contraction operator. This is now known as the Macchi-
Soshnikov theorem.

One constructive proof of this existence theorem relies on the following decomposition
lemma [Hough et al., 2006]. Informally, a DPP with kernel

K(x, y) =
∞∑
k=0

λk ϕk(x)ϕk(y), (20)

is a statistical mixture of projection DPPs, i.e., DPPs with projection kernels. More pre-
cisely, if (bk)k∈N are independent Bernoulli random variables with P(bk = 1) = 1− P(bk =
0) = λk and Kb(x, y) :=

∑
k bkϕk(x)ϕk(y), then DPP(Kb, µ) = DPP(K,µ) in law; see

again [Hough et al., 2006]. In particular, if we restrict ourselves to projection kernels, i.e.,
if λk ∈ {0, 1} for every k, the cardinality of γ ∼ DPP(K,µ) is thus TrK almost surely. If
we further assume TrK = N <∞, the corresponding projection DPP generates exactly N
particles, with joint probability distribution on XN given by

1
N !

∣∣∣∣det
[
ϕk−1(xj)

]N
j,k=1

∣∣∣∣2 N∏
j=1

µ(dxj). (21)

3 Elements of quantum field theory
To deepen our understanding of the relationship between point processes and quantum
physics, we now introduce a few elements of what is known as many-body quantum physics,
quantum statistical physics or quantum field theory. We first introduce the basic quantum
formalism to describe a single particle, its evolution in time and what information we can
gather on it, mostly following [Folland, 2008]. Then, we introduce how to deal with systems
made of many or an indefinite number of particles.

3.1 The mathematical framework of quantum theory
States. The state ψ of a quantum system is represented by a non-zero element of a
complex Hilbert space (H , 〈·|·〉), the space of all possible states of the quantum system of
interest. Two elements of H that are equal up to multiplication by a (complex) scalar are
understood to represent the same physical states,14 and we henceforth always assume that
our states are normalized, i.e. ‖ψ‖ = 〈ψ|ψ〉 = 1. Finally, we will often use the so-called
bra-ket notation, denoting a vector by |ψ〉 = ψ ∈H and the associated linear form on H
by 〈ψ| : h 7→ 〈ψ|h〉.

Observables. Any observable quantity is represented by a self-adjoint operator A : H →
H . To understand in what sense, take a self-adjoint operator A : H → H and a vector
|ψ〉 ∈ H , and define an ordinary probability measure PA,ψ on the spectrum σ(A) ⊂ R of
A by

PA,ψ : E 7→ 〈ψ|1E(A)|ψ〉 , E ⊂ σ(A). (22)

The operator 1E(A) in (22) is defined by the spectral functional calculus; see [Reed and
Simon, 1980, Chapter VII]. Informally, 1E(A) is the projection operator with the same
eigenvectors as A, but replacing each eigenvalue λ by 1 if λ ∈ E, and 0 otherwise. One
easy setting to understand the definition of PA,ψ is that of a compact (self-adjoint) operator

14For brevity, we will stay informal on that point and ignore the subtleties coming from considering a
projective Hilbert space rather than H ; see [Folland, 2008, Chapter 3].
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A, for in that case the support σ(A) = {λn} of PA,ψ is discrete, with no other accumulation
point than 0, and there is an orthonomal basis (|ϕn〉) of H with A |ϕn〉 = λn |ϕn〉; see
e.g. [Reed and Simon, 1980, Theorem VI.16]. In particular, for λn 6= 0 with multiplicity
one, PA,ψ({λn}) = | 〈ψ|ϕn〉 |2, which indeed sums to ‖ψ‖2 = 1 in n. Without entering
into details, we finally note that the definition (22) extends to unbounded operators by
representing them as multiplication operators [Reed and Simon, 1980, Theorems VIII.4
and VIII.5]. Unbounded operators are necessary to represent physical observables that
have an unbounded support, such as the position of a particle on the real line.

Interpreting a self-adjoint operator A as an observable means that the experimentally
accessible information about the observable A is in PA,ψ. In particular, if we had a machine
that could repeatedly prepare unrelated copies of the physical system in question in a state
|ψ〉, we would model the measurements of observable A on such a sequence of states as
independent draws from PA,ψ. Unless |ψ〉 is an eigenvector of A with eigenvalue λ, in which
case PA,ψ = δλ, measuring the physical quantity encoded by A thus becomes inherently
probabilistic: one can only talk about the probability that a measured observable will lie
in a given E ⊂ R. Finally, we note that by the law of large numbers, the average of a
large number of measurements of A is expected to be close to the expectation of a random
variable with law PA,ψ, which is∫

λ dPA,ψ(λ) = 〈ψ|A|ψ〉 . (23)

Again, the derivation of (23) is easier for a compact operator A =
∑
n λn |ϕn〉〈ϕn| , say

even Hilbert-Schmidt, so that
∑
λ2
n < ∞. In that case, both sides of (23) are equal to∑

i λn| 〈ψ|ϕn〉 |2 <∞. The general treatment of self-adjoint operators requires to carefully
define the spectral measure of an operator, and we refer to [Reed and Simon, 1980, Chapters
VII & VIII].

Mixed states and Born’s rule. In practice, most experimental devices are not able to
repeatedly produce a given state |ψ〉 ∈H , but rather a noisy version of it. To model this
noise, first associate to each state |ψ〉 ∈H the projector |ψ〉〈ψ| : |h〉 7→ 〈ψ|h〉 |ψ〉, which we
also abusively call a state. Now consider a linear operator on H defined as

ρ = E|ψ〉∼p |ψ〉〈ψ| , (24)

with p a probability measure on H . The linear combination Equation (24) is typically
interpreted as being the output of a noisy preparation device, which outputs the state
|ψ〉〈ψ| with |ψ〉 drawn from p. When the agent runs its machine many times, they will
describe the output by Equation (24).15 More abstractly, a density matrix ρ is a trace-
class positive operator on H with unit trace.16 A density matrix is often called a mixed
state, as opposed to a pure state, which corresponds to a single element of H . In other
words, pure states correspond to density matrices that are also projectors.

Generally speaking, a density matrix ρ exhausts all the statistical content that an
observer can predict about a system. For instance, for ρ defined by (24),

Tr [ρ1E(A)] = ETr [|ψs〉〈ψs|1E(A)] = E 〈ψs|1E(A) |ψs〉 , E ⊂ R.

In particular, the map PA,ρ : E 7→ Tr (ρ1E(A)) is a probability distribution on R that
corresponds to a statistical mixture of pure states, and simplifies to (22) for pure states. It
gives the probability that a measurement of A will belong to E. By linearity, the expectation
of the random variable17 describing the measurement of observable A when the system is
in the state ρ, denoted by convention 〈A〉ρ, is given by Born’s rule

〈A〉ρ = Tr (ρA) . (25)
15In other words, a mixed state can be used to describe epistemic uncertainty on the preparation process,

while draws from PA,ψ in (22) represent aleatoric uncertainty. Unlike epistemic uncertainty, aleatoric
uncertainty cannot be reduced by better knowledge of the system.

16The use of the word matrix for an operator can be confusing at first glance, but it is standard here.
17Physicists talk of the expectation value of A in state ρ.
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This formula is a cornerstone of the quantum formalism. It contains Equation (22) as a
special case and thus describes both noisy and noiseless situations.

Conditioning on measurements. To define the joint distribution of the measurement
of two observables A and B when the physical system is in a (possibly mixed) state ρ, one
would like to use the operator AB in a spectral formula like (22). It turns out to be very
natural to define a joint distribution using the spectral calculus when A and B commute,
i.e. AB = BA. In particular, one can then talk of the conditional distribution of the
measurement of B on ρ given that we observed A on ρ. Without entering into details,
Bayes’ formula yields that evaluating the conditional amounts to evaluating PB,ρ̃, where

ρ̃ = CρC†, (26)

and C is related to the measurement of A; see [Bouten et al., 2007] for a precise statement
that includes monitoring a state across time, i.e., filtering. The “sandwiched” updated state
ρ̃ in (26) is interpreted as the state of the system immediately after the measurement of A.

Incompatible observables and Heisenberg’s uncertainty principle. When AB 6=
BA, it is not even guaranteed that AB is self-adjoint, let alone that A and B have com-
mon eigenspaces. Physicists associate this mathematical difficulty to the fact that non-
commuting observables are incompatible: it is not possible to obtain a joint measurement
of both observables using a single prepared copy of a state ρ.

Another hint that non-commuting observables are peculiar is Heisenberg’s celebrated
uncertainty principle; see [Folland, 2008, Section 3.3]. In a nutshell, for two non-commuting
observables A and B and a state ρ, the product of the standard deviations σA,ρ of PA,ρ
and σB,ρ of PB,ρ is lower-bounded,

σA,ρσB,ρ ≥
1
2 |Tr [(AB −BA)ρ]| . (27)

Since A and B cannot be measured simultaneously, this does not imply anything on mea-
suring A and B on the same copy of ρ, but it is rather a property of the model of the
overall experiment, i.e., of the physical system and the probes corresponding to A and
B. The concrete consequences of the uncertainty relation (27) can be seen by repeatedly
preparing a copy of the state ρ and measuring either A or B. If the measure represented
by A yields measurements with a small empirical variance, then measuring B on similar
repeated copies of ρ will lead to a comparatively large empirical variance.

Schrödinger’s equation and Hamiltonians. To complete our description of a physical
system, we need to model its evolution in time. In quantum physics, the evolution of the
state of the system is given by a one-parameter group {U(t), t ∈ R} of unitary operators
on H , that is, U(t)U(s) = U(t+ s) and U(t)−1 = U(t)† = U(−t). In particular U(0) = 1

is the identity operator. After time t, the state of a system that was in state |ψ(0)〉 at time
t = 0 is considered to be

|ψ(t)〉 = U(t) |ψ(0)〉 . (28)

Under weak assumptions on H and U(t), one can show that U(t) = exp
(
− it

~H
)

in the
sense of the spectral functional calculus again, for some (possibly unbounded) self-adjoint
operator H on H [Folland, 2008, Section 3.1]. Conversely, any choice of self-adjoint H
gives a one-parameter unitary group. The operator H, thought as an observable, is called
the Hamiltonian of the system. As the generator of the dynamics, H is often thought as
the energy of the system. In particular, the group identity of U yields by differentiation
that U(t)†HU(t) = H for all t, so that the average energy 〈ψ(t)|H|ψ(t)〉 of the state ψ(t)
in (28) is constant over time.

Building a model in quantum physics usually boils down to choosing a state space H ,
a set of self-adjoint operators as observables, and a Hamiltonian to describe the evolution
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of the system in time. In particular, when s� 1, (28) informally yields

|ψ(t+ s)〉 =
(
1− isH

~
+O(s2)

)
|ψ(t)〉 ,

so that
i~ d

dt |ψ(t)〉 = H |ψ(t)〉 , (29)

which the reader may recognize as the celebrated Schrödinger equation. This equation of
motion can be generalized to mixed states (24) by linearity.

To finish, note that instead of letting |ψ(t)〉 depend on time through (28) and keeping
observables constant (the so-called Schrödinger picture), we can obtain the same mea-
surement probabilities (22) by keeping states constant and letting observables vary as
A(t) = U(t)†A(0)U(t) (the so-called Heisenberg picture). The two pictures are thus equiv-
alent as to what observations they predict. There is a third equivalent convention that
is commonly used, the interaction picture. The latter is tailored to problems where the
Hamiltonian

H = H0 +HI

is the sum of a well-studied Hamiltonian H0, typically describing standard prior information
on a subpart of the physical system (say, a free field), and an additional term HI , called
interaction Hamiltonian, typically encoding the interaction between parts of the system.
In the interaction picture, one lets both states and observables evolve in time. Observables
evolve according to A(t) = U0(t)†A(0)U0(t), using the one-parameter unitary group U0
associated to Hamiltonian H0. On the other hand, states evolve as |ψ(t)〉 = V (t) |ψ(0)〉,
where V (t) = U0(t)†U(t) and U(t) is the group associated to the full Hamiltonian H.
While the state evolution now differs from (29), the interaction picture yields again the
same probabilities (22). Unless otherwise specified, we use the interaction picture in this
work.

Perturbation theory. What is convenient with the interaction picture is that it singles
out the role of HI as follows. To compute U(t), it is enough to compute V and then apply
U(t) = U0(t)V (t), since U0(t) is assumed to be known. Now, by definition, V satisfies

d
dtV (t) = i

~
U0(t)†H0U(t)− i

~
U0(t)†HU(t) = 1

i~HI(t)V (t). (30)

Even in seemingly simple physical situations, as when modeling the detection of photons
in Section 4.1, solutions to (30) have to be approximated. Writing (30) in integral form,
and noting that V (0) = 1, we obtain

V (t) = V (0) +
∫ t

0

d
dtV (τ)dτ = 1+ 1

i~

∫ t

0
HI(τ)V (τ)dτ . (31)

Plugging (31) into itself yields

V (t) = 1+ 1
i~

∫ t

0
HI(τ)dτ − 1

~2

∫ t

0
dτ
∫ τ

0
dτ ′HI(τ)HI(τ ′)V (τ ′). (32)

Iteratively plugging (31) into (32) yields a series representation for V , the study of which is
called perturbation theory, and is at the heart of quantum field theory and its current mathe-
matical difficulties [Folland, 2008, Chapter 6]. In practice, physicists will often assume that
stopping this iterative process early on yields a good approximation to V . For instance, we
shall see in Section 4.1 a physical assumption that is mathematically interpreted as keeping
only the first two terms in the right-hand side of (32).

3.2 Two fundamental one-particle systems
We saw in Section 3.1 that a quantum model consists in a Hilbert space H , a Hamiltonian
H specifying the dynamics, and self-adjoint operators that describe observables. To make
things more concrete, we now describe two simple systems: the qubit and the harmonic
oscillator.
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3.2.1 The qubit

Consider a physical system whose state is described by one of two labels, say {e, g}, like
whether a two-level atom is excited or in its ground state. One would then use H = C2

with the usual inner product. Let now (|e〉 , |g〉) be any orthonormal basis of H , and
|ψ〉 = α |e〉+ β |g〉 be a state. Normalization implies |α|2 + |β|2 = 1.

Observables are described by self-adjoint operators of H . For instance, the observable
corresponding to checking whether the system is in state |e〉 is the projector |e〉〈e|. Following
(22), the probability to obtain the result e in the state |ψ〉 is given by

P|e〉〈e|,ψ({e}) = 〈e| (|ψ〉〈ψ|) |e〉 = | 〈e|ψ〉 |2 = |α|2 = 1− P|e〉〈e|,ψ({g}) = 1− |β|2.

More generally, every self-adjoint operator on C2 can be expressed as a linear combination
of four matrices. Expressed in the basis (|e〉 , |g〉), the four so-called Pauli matrices are

1 =
(

1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (33)

All four matrices squared are the identity, so they are all diagonalizable with spectrum
{±1}. For instance, an orthonormal basis of eigenvectors of σx is given by

|±x〉 = 2−1/2(|e〉 ± |g〉),

which is simply a rotation of the basis (|e〉 , |g〉). We can compute for instance the prob-
ability (22) of observing the outcome +x, when the state is a generic |ψ〉 = α |e〉 + β |g〉,
namely

P|+x〉〈+x|,ψ({+x}) = 〈ψ|
(
|+x〉〈+x|

)
|ψ〉

= | 〈ψ|+x〉 |2

= |α+ β|2

2 ≤ 1.

Similarly, the average value of the observable σx is given by

〈ψ|σx |ψ〉 = |α+ β|2

2 − |α− β|
2

2 = 2R(αβ∗).

Finally, we give the example of a rather common and simple Hamiltonian for the qubit,
called free evolution. In the basis we have chosen, it reads

HFQ = 1
2~ωegσz , (34)

where ωeg is the transition frequency between the excited (|e〉) and ground (|g〉) states, and
the label FQ stands for free qubit. The resulting evolution in time is easy to understand. The
states |g〉 and |e〉 are eigenstates of HFQ. Calling U0 the one-parameter group corresponding
to HFQ, and starting e.g. at state |g〉 at t = 0, the probability of finding the evolved state
U0(t) |g〉 in state |g〉 is 〈g|U0(t)|g〉 = 1. The basis vectors |e〉 and |g〉 are thus stationary
states. Finally, note that the form (34) of the free dynamics is mostly conventional; we
could for instance add a term proportional to the identity to shift the energy reference
without changing the physics. What matters is that the energy difference between the two
states is ~ωeg.

Richer physical behaviors are modeled by adding interaction terms to the free Hamilto-
nian. There is no general prescription as to how to write interaction Hamiltonians and they
mostly depend on the physical context we wish to describe. One simple but useful model
is to consider a qubit interacting with an external field B(t). Note that we mean here a
classical field, in the sense that B(t) is a vector (Bx(t), By(t), Bz(t))T of functions from R
to R. Concretely, the model describes a small magnet or the spin of a particle in an external
magnetic field. The basic ideas behind nuclear magnetic resonance, and magnetic resonance
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imaging, come from this choice of interaction Hamiltonian [Cohen-Tannoudji et al., 2019a,
Chapter IV, Appendix F]. Adding the free part, we obtain the total Hamiltonian

H = 1
2ωegσz + gσ ·B(t), (35)

where g ∈ R is a coupling constant and σ · B(t) is a shorthand notation for the linear
combination of matrices σxBx(t) +σyBy(t) +σzBz(t). When the field is time-independent,
the dynamical problem can be interpreted geometrically. Indeed, the Hamiltonian is of the
general form H = ~ωn · σ with n a unitary vector. The evolution operator is thus

U(t) = e−iωtn·σ,

and we recognize one way of parametrizing an element of the rotation group SU(2), where
ωt is the angle of the rotation around the axis n. The dynamics of a qubit in this model
can be represented as a vector, representing the state |ψ〉, which precesses around an axis
fixed by the external field; see [Degiovanni et al., 2021] for details.

3.2.2 The harmonic oscillator

To model the position of a particle living in Rd, the state space is commonly taken to
be H = L2(Rd). A natural observable is the position of the particle. We associate18

the measurement of the jth coordinate to the multiplication operator Xjf : x 7→ xjf(x),
defined for all functions f of H = L2(Rd) such that x 7→ xjf(x) ∈ L2(Rd). Note that the
only candidates to be common eigenvectors of all Xj are delta functions, and are thus not
in L2. When performing computations, however, it is convenient to consider the tempered
distributions

〈x| := δx, x ∈ Rd

as generalized states, and interpret
∫
δa(x)δb(x)dx = δ(a − b) and f =

∫
f(x)δx(·)dx as

making |x〉 a “generalized orthogonal basis”. In particular, for a smooth state |ψ〉 ∈ H ,
〈x|ψ〉 = ψ(x), and the probability distribution (22) corresponding to Xj in a smooth state
|ψ〉 becomes

PXj ,ψ(Ej) =
∫
R×···×R×Ej×R×...R

|ψ(x)|2dx, Ej ⊂ R .

The reader may recognize here the common interpretation of the squared modulus |ψ(x)|2
of the wave function as the probability density function for the position of the particle.

Similar considerations allow for considering the momentum operator Pj , defined for
1 ≤ j ≤ d through its Fourier transform

F(Pjf)(k) = ~kjF(f)(k),

for all f ∈ H such that kjF(f)(k) ∈ L2(Rd). The “generalized basis” of tempered dis-
tributions 〈k| : f 7→ F(f)(k) allows talking about the momentum representation 〈k|ψ〉 of
a smooth state |ψ〉. Furthermore, by the inverse Fourier transform, we can express the
momentum operator Pj in the position basis as a derivative operator,

Pj = −i~∂j .

A natural Hamiltonian in this setting is the so-called quantum harmonic oscillator,
modelling the movement of a single particle in a quadratic potential. It writes

H =
d∑
j=1

1
2mP 2

j + 1
2mω

2Q2
j , (36)

18Choosing what operator to associate to what classical quantity is a process known as quantization and
is a whole research area; see [Folland, 2008] and references therein.
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where m > 0 is called the mass and ω ∈ R the angular frequency of the oscillator. For ψ a
smooth (Schwartz) function, we get

〈x|H |ψ〉 = − ~2

2m∆ψ(x) + 1
2mω

2‖x‖2
2ψ(x).

In particular, the eigenequation 〈x|H |ψ〉 = λψ(x) leads to a well-known differential equa-
tion. The solutions are tensor products of Hermite functions [Folland, 2008, Section 3.4],
and form an orthonormal basis of L2(Rd) of (smooth) eigenfunctions of H.

The harmonic oscillator can also be diagonalized algebraically. Define the so-called
ladder operators

aj :=
√
mω

2~

(
Qj + i

mω
Pj

)
and a†j :=

√
mω

2~

(
Qj −

i
mω

Pj

)
.

They satisfy the commutation relation aia
†
j − a

†
jai = δij . The Hamiltonian can now be

rewritten as

H = ~ω
d∑
j=1

(
a†jaj + 1

2

)
, (37)

and its spectrum is given by that of the number operators Nj = a†jaj . Using that the
number operator is positive, one can easily show that its eigenvalues are nj ∈ N, with cor-
responding eigenstates |nj〉, i.e. Nj |nj〉 = nj |nj〉, called the Fock states [Cohen-Tannoudji
et al., 2019a, Chapter V]. The corresponding wavefunctions 〈x|nj〉 are the Hermite functions
discussed above.

The ladder operators were introduced first by Dirac to solve the harmonic oscillator of
a single quantum particle. But these operators have taken a life of their own, to describe
many-particles quantum states, as we discuss now.

3.3 Modelling a finite number of particles
Section 3.1 focused on describing systems made of one particle. In this section, we show
how to combine such systems to describe one made of a (known) finite number of particles.

3.3.1 Subsystems, bosons and fermions

Let us now consider a system of N <∞ identical particles. Concatenating several physical
systems is represented by tensor products, so that one is tempted to consider the Hilbert
spaceH⊗N =

⊗N
i=1H, whereH is the Hilbert space corresponding to a one-particle system.

A generic state would thus be a linear combination of states of the form

|ψ〉 =
N⊗
i=1
|ψi〉 =: |ψ1 · · ·ψN 〉 . (38)

However, experiments rather suggest to use a state that encapsulates the property that
the particles are indistinguishable, i.e., that permuting particles leaves the state invariant.
Arguments from (projective) representation theory of the symmetric group [Degiovanni
et al., 2021, Chapter 1.2] lead to two types of state spaces, at least when d > 2, bosons and
fermions. Bosons have symmetric states, i.e., they are represented by states |ψ〉 ∈ H⊗N
such that for all permutations σ ∈ SN

|ψ1, . . . , ψN 〉 = Uσ |ψ1, . . . , ψN 〉 :=
∣∣ψσ(1), . . . , ψσ(N)

〉
,

where we have implicitly defined the unitary representation Uσ of the permutation group
on the Hilbert space H⊗N . In other words, the Hilbert space for N bosons is the symmetric
subspace of H⊗N , namely the range of the orthogonal projector

S = 1
N !

∑
σ∈SN

Uσ.
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The other type of particles is called fermion, and corresponds to antisymmetric states

|ψ1, . . . , ψN 〉 = ε(σ)Uσ |ψ1, . . . , ψN 〉 , σ ∈ SN ,

where ε(σ) is the signature of σ. Systems of N fermions are thus represented by states in
the antisymmetric subspace of H⊗N , namely in the range of the orthogonal projector

A = 1
N !

∑
σ∈SN

ε (σ)Uσ.

Note that observables that are permutation-invariant leave both the ranges of S and A
invariant. If the Hamiltonian is permutation-invariant, bosons thus stay bosons across time,
and fermions stay fermions. One particular case is that of N free (a.k.a. non-interacting)
particles. Letting H be the Hamiltonian for one particle, the dynamics of N free particles
is given by the Hamiltonian

H(N) =
N∑
n=1

1⊗ · · · ⊗ 1⊗ H︸︷︷︸
n-th term

⊗1⊗ · · · ⊗ 1. (39)

3.3.2 Example N-particle states

Consider the harmonic oscillator setting of Section 3.2.2, say with d = 1 for simplicity.
Since the Hamiltonian is interpreted as measuring the energy of the system, and since the
eigenstates of the Hamiltonian H in (36) form a basis of L2(R), the state with minimal
energy is the eigenfunction of H with minimal eigenvalue. In position representation, it is
the first Hermite function ϕ0, that is, a normalized Gaussian function.

Now, if we consider N free bosons, each coming with the same 1-dimensional harmonic
oscillator Hamiltonian, the ground state of H(N) in (39) is easily seen to be, in position
representation,

ψSym
0 (x1, . . . , xN ) = ϕ0(x1) . . . ϕ0(xN ),

so that, in this ground state, the probability density of having a configuration of N free
bosons at (x1, . . . , xN ) ∈ RN is given by

|ψSym
0 (x1, . . . , xN )|2 = |ϕ0(x1)|2 · · · |ϕ0(xN )|2.

This is the law of N independent random variables with identical distribution |ϕ0(x)|2dx,
i.e. N i.i.d. Gaussians.

Still within the harmonic oscillator setting, but this time for N free fermions, the sit-
uation is less straightforward. With similar eigendecomposition arguments, one can show
that the ground state of H(N) on AH⊗N is given by

ψAsym
0 (x1, . . . , xN ) = 1√

N !
det

 ϕ0(x1) · · · ϕ0(xN )
...

...
ϕN−1(x1) · · · ϕN−1(xN )

 , (40)

where ϕk−1 ∈ L2(Rd) is the (unit-norm) eigenstate associated with the kth smallest eigen-
value of H, i.e. here, the kth Hermite function. The right hand side of (40) is known as a
Slater determinant. In particular, in this ground state, the density probability of having a
configuration at (x1, . . . , xN ) ∈ RNd is given by

|ψAsym
0 (x1, . . . , xN )|2 = 1

N ! det

∣∣∣∣∣∣∣
 ϕ0(x1) · · · ϕ0(xN )

...
...

ϕN−1(x1) · · · ϕN−1(xN )


∣∣∣∣∣∣∣
2

= 1
N ! det

[
KN (xi, xj)

]N
i,j=1
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where

KN (x, y) :=
N−1∑
k=0

ϕk(x)ϕk(y).

Since the ϕk’s are orthonormal, KN is a projection kernel. In other words, the N positions
of the free fermions form a projection DPP on X = R, as introduced in Section 2.4. In our
setting where d = 1 and the ϕk are Hermite functions, this DPP is known as the Gaussian
unitary ensemble (GUE); see e.g. [Dean et al., 2019]. The GUE is a fundamental example
in random matrix theory, as it arises as the eigenvalues of a (A+ A∗)/2, where A is filled
with i.i.d. complex Gaussian random variables [Anderson et al., 2010].

More generally, any projection DPP can be obtained as the position representation of
the ground state of an (adhoc and non-necessarily physically realizable) free Hamiltonian
for fermions. This is our first encounter of DPPs as arising from a fermionic construction.19

3.3.3 Occupation number representation

Since the Hilbert space for modeling N bosons, respectively N fermions, is SH⊗N , re-
spectively AH⊗N , it is useful to have an orthonormal basis of these spaces [Folland, 2008,
Section 4.5]. A convenient way of writing states of indistinguishable particles is through
the occupation number basis.

The rationale behind this basis is simply to count the number of particles that are in a
specific basis state of the one-particle Hilbert space, chosen to make observables simple to
express. Let (ei) be a Hilbert basis of H. Then an orthonormal basis of SH⊗N is given by

|n1, n2, . . .〉 := 1
Z

S

∣∣∣∣∣∣e1, · · · , e1︸ ︷︷ ︸
n1

, e2, · · · , e2︸ ︷︷ ︸
n2

, · · ·

〉
, where

∑
i≥1

ni = N,

with Z the normalization constant. The label of the state |n1, n2, . . .〉 represents occupation
numbers: ni represents the number of particles in the state |ei〉. By construction, the inner
product between two states with different occupation numbers is zero. The normalization
constant Z > 0 is fixed by requiring the state to be normalized, i.e.,

1 = 1
Z2 〈n1, n2, . . .|S†S|n1, n2, . . .〉 = 1

Z2
1
N !

∞∏
i=1

ni! .

The same construction applies for fermions. An orthonormal basis of AH⊗N is given by

|n1, n2, · · ·〉 =
√
N !A

∣∣∣∣∣∣e1, · · · , e1︸ ︷︷ ︸
n1

, e2, · · · , e2︸ ︷︷ ︸
n2

, · · ·

〉
, where

∑
i≥1

ni = N , (41)

with the important difference that for fermions, ni ∈ {0, 1} for all i. Indeed, if there is
some j such that nj ≥ 2, then the corresponding state of H⊗N is in the kernel of the
antisymmetrization operator A. Physicists identify this property with Pauli’s exclusion
principle: no two fermions of the same multi-particle state can be in the same mode, i.e.,
correspond to the same vector of the basis ei of the single-particle space H.

3.4 Modeling an indefinite number of particles
In order to form a state space that can accommodate any number of particles, and in
particular to model uncertainty in that number, physicists introduce so-called Fock spaces.

19In Section 6, we shall come back to the idealized free fermion construction of this section, introducing
a temperature parameter to obtain non-projection DPPs.
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3.4.1 Fock spaces for bosons and fermions

Denote by H⊗0 ∼= C the Hilbert space consisting of all multiples of some unit norm state
labeled as |0〉, called the vacuum, and representing the absence of any particle. Taking the
convention Sh = Ah = h for h ∈ H⊗0, we define two Hilbert spaces H∞Bosons and H∞Fermions,
respectively called the bosonic and fermionic Fock spaces, as orthogonal direct sums

H∞Bosons :=
⊕
k≥0

SH⊗k, H∞Fermions :=
⊕
k≥0

AH⊗k. (42)

Several remarks are in order. Note first that in (42), by an abuse of notation, we write
the symmetrization and antisymmetrization operators in any dimension as S and A, re-
spectively. Second, the orthogonal sum in (42) makes two vectors coming from different
summands have inner product zero by definition. Third, we underline that the absence of
particles is modeled by the vacuum state |0〉, not by the null element of either Hilbert space
H∞Bosons or H∞Fermions. In particular, unlike any null element, the vacuum state represents a
physical state, and thus has norm 1 in the Fock space.

The Fock spaces in (42) are defined as orthogonal sums of Hilbert spaces, and are thus
Hilbert spaces themselves. For instance, H∞Bosons is the set of collections h = (hk)≥0, where
hk ∈ SH⊗k and ‖h‖ :=

∑
k ‖hk‖2 <∞. It is sometimes convenient to work instead with the

algebraic sum of the same vector spaces, meaning that all but a finite set of coefficients are
constrained to be zero. This is the case, for instance, when defining the number operator
through

N |n1, n2, . . .〉 :=
(∑

i

ni

)
|n1, n2, . . .〉 , (43)

which counts the particles in a state, and is defined by the same formula for bosons and
fermions. N is then uniquely extended to an unbounded operator on the Fock space [Fol-
land, 2008, Section 4.5]. In this text, we will assume that this extension step can always be
done unequivocally, and work directly with the (Hilbert) Fock spaces (42). Finally, a state
of the form |n1, n2, . . .〉 with

∑
i≥1 ni < ∞ is called a Fock state, and together they form

an orthonormal basis of the corresponding Fock space. Any state of a Fock space can thus
be represented as a linear combination of Fock states.

3.4.2 Creation and annihilation operators

Besides the number operator, we now introduce two types of operators on Fock spaces that
are respectively thought of as creating and destroying a particle in a given one-particle
state. The choice of the symmetrization operator S or A has important consequences on
the commutation relations between these operators, and we thus separate the treatment of
bosons and fermions. We paraphrase here [Folland, 2008, Chapter 4.5].

Bosons. For v ∈H , define the operator b(v) on the algebraic sum corresponding to (42),
i.e., finite linear combinations of Fock states, by

b(v)S(u1 ⊗ · · · ⊗ uk) = 1
k

k∑
j=1
〈v|uj〉S(u1 ⊗ · · · ⊗ uj−1 ⊗ uj+1 ⊗ · · · ⊗ uk),

for any k ≥ 1 and u1, . . . , uk ∈ H . Now, for later ease of writing, we renormalize b
and define the operator a(v) on the algebraic sum corresponding to (42), i.e., finite linear
combinations of Fock states, by a(v)w =

√
kb(v)w whenever w ∈ SH⊗k. Alternately, using

the number operator introduced in Section 3.4.1, a(v) =
√
N + I b(v). The operator a(v) is

called the annihilation operator in state v. Its adjoint a†(v) := a(v)† on the same algebraic
sum is defined as a(v)† = S

√
Nb(v)†, and is called the creation operator in state v. Together

with a(v), they are called ladder operators.20 21

20Note that like the number operator later on, the ladder operators are defined only on the dense subset
of finite linear combinations of Fock states; see Folland [2008] for discussions on their extension.

21We also note that these ladder operators were inspired by those introduced by Dirac to solve the
harmonic oscillator; see Section 3.2.2. However, one should keep in mind that they do not act on the same
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Writing [u, v] = uv − vu for the commutator of two operators, we can check that the
ladder operators satisfy the so-called canonical commutation relations (CCR),

[a(u), a(v)] =
[
a†(u), a†(v)

]
= 0,

[
a(u), a†(v)

]
= 〈u|v〉 I. (44)

To see why the creation and annihilation operators bear such names, consider again a
basis (ei) of H , and let ai = a(ei) for i ≥ 1. It can be checked that the ladder operators
act on Fock states as

a†i |n1, · · · , ni, · · · 〉 =
√
ni + 1|n1, · · · , ni + 1, · · · 〉, (45a)

ai|n1, · · · , ni, · · · 〉 =
√
ni|n1, · · · , ni − 1, · · · 〉 , (45b)

where, by convention, the right-hand side of (45b) is the null element of the Fock space
whenever ni = 0. Physically, a†i thus models the creation of a particle in the state |ei〉,
while ai removes a particle from the same state. Note also that ai |0〉 = 0 is the null element
of the Fock space; we say that the annihilation operator annihilates the vacuum.

In terms of ladder operators, the number operator (43) can be rewritten

N =
∞∑
i=1

a†iai, (46)

with N |0〉 = 0 |0〉 = 0, the null element of the Fock space, as expected from an operator
that counts particles. Note also that the CCRs imply [N, a†i ] = a†i and [N, ai] = −ai.
Finally, any Fock state can be rewritten as the action of creation operators on the vacuum
as

|n1, · · · , ni, · · · 〉 = 1√∏∞
i=1 ni!

∞∏
i=1

(
a†i

)ni
|0〉 . (47)

Note that by definition of Fock states, the products in (47) consist of a finite number of
terms.

Fermions. Following the same lines, we can now define the creation and annihilation
operators for fermions on the Fock space H∞Fermions. Formally, a(v) is defined on finite
linear combinations of Fock states22 by

a(v)A(u1 ⊗ · · · ⊗ uk) = 1√
k

k∑
j=1

(−1)j 〈v|uj〉A(u1 ⊗ uj−1 ⊗ uj ⊗ · · · ⊗ uk),

while one can check that its adjoint a†(v) := a(v)† satisfies

a†(v)A(u1 ⊗ · · · ⊗ uk) =
√
k + 1Au1 ⊗ · · · ⊗ uk.

As for bosons, these definitions lead to particular commutation relations. Writing {u, v} =
uv+ vu for the so-called anti-commutator of two operators, the fermionic annihilation and
creation operators satisfy

{a(u), a(v)} = {a†(u), a†(v)} = 0 {a(u), a†(v)} = 〈u|v〉 I, (48)

known in the literature as the canonical anti-commutation relations (CARs). Here again,
the presence of an anti-commutator is interpreted by physicists as a manifestation of Pauli’s
exclusion principle. For instance, the identity {a†(u), a†(u)} = 2a†(u)a†(u) = 0 translates
the fact that there cannot be two fermionic particles in the same quantum state.

spaces. In the rest of the paper, we only use the ladder operators acting on the Fock space.
22and then extended to the whole Fock space.
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Again, the ladder operators ai = a(ei) in a given basis apply straightforwardly to the
corresponding Fock states. For i ≥ 1, and remembering that ni ∈ {0, 1}, we obtain

a†i |n1, · · · , ni, · · · 〉 = δni0ε(σ)|n1, · · · , ni + 1, · · · 〉 (49a)
ai|n1, · · · , ni, · · · 〉 = δni1ε(σ)|n1, · · · , ni − 1, · · · 〉, (49b)

where n =
∑
ni <∞, σ is the permutation

σ =
(

1 · · · Si + 1 Si + 2 · · · n+ 1
Si + 1 · · · Si Si + 2 · · · n+ 1

)
, (50)

where Si =
∑i−1
j=1 nj are the partial sums of the sequence of occupation numbers.

These fermionic ladder operators call for comments again. First, the presence of the
delta symbols ensures that in order to create a fermion in a given mode, i.e. in a state
described by one of the basis vectors, this mode must be empty; similarly, destroying a
fermion in a mode requires that mode to be initially occupied by one particle. This is a
natural implementation of the exclusion principle which requires that a mode can only be
either empty or occupied by one and only one particle.

Finally, we note that the fermionic number operator can be written as N =
∑∞
i=1 a

†
iai,

and that the following commutators are identical to their bosonic counterparts,[
N, a†i

]
= a†i [N, ai] = −ai. (51)

3.4.3 Modes

As seen in Section 3.4, a Fock space H∞ is built starting from a single-particle Hilbert state
H of arbitrary dimension, of which we single out a basis (ek). Basis vectors of the single-
particle Hilbert space H are typically called modes in physics. Fock states |n1, n2, . . .〉 form
a basis of the Fock space, where the notation stands for the (anti-)symmetrization of the
tensor product of n1 times the basis vector (mode) e1, n2 times the basis vector e2, etc.

There is a natural isomorphism of Hilbert spaces between the Fock space H∞ built on H
and the tensor product

⊗
k(Cek)∞ of the Fock spaces built on each of the one-dimensional

(or “single-mode”) Hilbert spaces Cek. Indeed, taking bosons as an example, one simply
needs to map the Fock state |n1, n2, . . .〉 ∈ H∞ to⊗

k

S(ek ⊗ · · · ⊗ ek︸ ︷︷ ︸
nk times

),

where S is the symmetrization operator, and should be replaced by A for fermions.
Thinking of the Fock space as a product of Fock spaces across modes is often implicit

in physics texts.23 It is, for instance, customary to introduce sophisticated states assuming
a single mode, i.e., that H is one-dimensional, and then to write tensor products of such
states across modes to cover the case of an H of arbitrary dimension. A concrete example
will be bosonic coherent states in Section 3.6.

3.4.4 Field operators

There are often several natural bases for a physical situation, for instance a natural basis to
describe a source of radiation, and a natural basis to describe a measurement. The linearity
of the definition of ladder operators yields easy “change of basis formulas” connecting ladder
operators in two different bases. Formally, let (|ui〉)i∈I and (|vi〉)i∈I be two bases of the
single-particle Hilbert space H. The creation and annihilation operators transform exactly
as a regular change of basis, i.e.,

a†(vk) =
∑
i

a†(ui)〈ui|vk〉 and a(vk) =
∑
i

a(ui)〈vk|ui〉. (52)

23Arguably, one already has this isomorphism in mind when writing |n1, n2, . . .〉 for a Fock state.

23



Note that we implicitly assumed that the two bases were actual Hilbert bases(i.e., count-
able), but the formula naturally extends in a weak sense to “generalized orthogonal bases”,
such as the position basis for the harmonic oscillator in Section 3.2.2. The creation and
annihilation position field operators are precisely the creation operator and the annihilation
operator corresponding to the position basis, and are usually denoted by ψ† (x) and ψ (x),
respectively. Their physical interpretation is that the operator ψ† (x) creates a particle of
a certain type at the position x. They are called (position) field operators because they
are the building blocks for position-dependent operators, which we shall see are the math-
ematical description of quantum physical fields. As ladder operators, the field operators
also satisfy the commutation relations corresponding to the particles being described, say
for bosons

[ψ(x), ψ(y)] = 0 ,
[
ψ†(x), ψ†(y)

]
= 0 ,

[
ψ(x), ψ†(y)

]
= δ(x− y) . (53)

To illustrate a generalized case of the change of basis in (52), consider the other funda-
mental basis for the harmonic oscillator, the momentum basis |k〉. Since, in an appropriate
sense 〈k|x〉 = e−ik·x

(2π)d , Equation (52) then yields the Fourier transform relationship between
position and momentum field operators,

ψ†(x) =
∫
a†(k)e−ik·x dk

(2π)d
and ψ(x) =

∫
a(k)eik·x dk

(2π)d
, (54)

with a†(k) the creation operator corresponding to the momentum basis, creating a parti-
cle of momentum k. Once again, the important algebraic relations are the commutation
relations written in the momentum basis, say for bosons,

[a(k), a(`)] = 0 ,
[
a†(k), a†(`)

]
= 0 ,

[
a(k), a†(`)

]
= (2π)3

δk` . (55)

Note that the whole section translates to fermions, with the anticommutation relations (48)
replacing the commutation relations of bosons.

Finally, we make a point on notation. While it is customary in physics to use ψ(x) for
the field operator of bosons and fermions, to avoid confusion, we write a(x) for a position
bosonic field operator, and reserve ψ(x) for a position fermionic field operator.

3.4.5 Observables

Ladder operators allow one to define observables that model clusters of interacting particles.
Depending on the number of particles interacting, we call the corresponding operators one-
particle observables, two-particle observables, etc.

One-particle observables. An example of one-particle observable is the number oper-
ator N in (46).

A generic one-particle operator O(1) is an operator that takes as in input a one-particle
state |ui〉 and gives as an output |uj〉, in a given basis (ui) of the one-particle Hilbert space
H. This means that we destroy the particle in the state |ui〉 and create one in the state
|uj〉. The operator O(1) can actually be rewritten [Cohen-Tannoudji et al., 2019b, Section
XV.B] as

O(1) =
∑
ij

O
(1)
ij a

†(uj)a(ui) . (56)

The number operator N is diagonal, in the sense that the only nonzero terms in the sum
(56) are those for which i = j. A typical non-diagonal one-particle observable correspond
to a hopping between states. For example, if i, j are labels for sites on a lattice, then∑
ij Jija

†
iaj with Jij a symmetric matrix implements the hopping of particles from i to j

with amplitude Jij .
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Two-particle observables. Two-particle observables are used to describe the interaction
between two particles. The intuition is that an interaction takes two particles in a state
|uk〉 ⊗ |ul〉 and yields a new two-particle state |ui〉 ⊗ |uj〉. Acting on the Fock space, a
generic two-body operator O(2) can be written using ladder operators as

O(2) =
∑
ijkl

O
(2)
ijkla

†(ui)a†(uj)a(ul)a(uk) ; (57)

see [Cohen-Tannoudji et al., 2019b, Chapter XV, Section C] for manipulations using multi-
particle observables. A simple Hamiltonian featuring one- and two-particle observables is
the Bose-Hubbard model [Fisher et al., 1989],

H =
∑
i

~ωiNi +
∑
i,j

Jij a
†
iaj +

∑
i

UiNi(Ni + 1), (58)

where (ωi, Jij , Ui) are real numbers that parametrize the model, and Ni = a†iai counts the
particles in mode i. The Hamiltonian (58) is composed of both one-particle and two-particle
contributions. The two-particle term in Ni(Ni + 1) models the extra energetic cost to pay
to add a particle on a site i when some are already present.

3.5 Wick’s theorem
Wick’s theorem is a cornerstone of quantum field theory and the backbone of perturbation
theory. It gives rise to the famous Feynman diagrams, and importantly for us, it yields the
permanents and determinants in the correlation functions of fields, later to be turned into
correlation functions of point processes when we introduce physical detection in Section 4
and Section 5.

In essence, Wick’s theorem is a generalization of the calculation of the moments of
multivariate Gaussian distributions to the case of Gaussian density matrices. We follow
the derivation from [Cohen-Tannoudji et al., 2019b, Appendix C XVI].

3.5.1 Gaussian density matrices

A commonly used mixed state on the Fock space H ∞ of either fermions or bosons corre-
sponds to the so-called Gaussian density matrices, defined, when it exists, as the unit-trace,
self-adjoint operator

ρ = 1
Z
e
−
∑

i,j
a†
i
Mijaj , (59)

with Mij = Mji. As in Section 3.1, the definition (59) relies on the spectral calculus: ρ
is the operator with the same eigenvectors as the argument of the exponential, but with
the exponential applied to the corresponding eigenvalues, followed by division by Z. The
normalization constant

Z = Tr e−
∑

i,j
a†
i
Mijaj

is called the partition function in statistical physics. The use of of the word Gaussian in the
name is sometimes confusing to non-physicists. It is motivated by the quadratic expression
in the exponential, and the fact that, as we shall see below, the moments of products
of creation and annihilation operator under these density matrices behave similarly to
the moments of multidimensional Gaussian distributions. Finally, we note that there are
conditions on the operator appearing in the exponential in (59) for ρ to be a proper mixed
state, in particular to guarantee that Z <∞. These conditions are best discussed for any
particular M .

Example 4 (Grand canonical ensemble). Consider a system described by a Hamiltonian H
acting on a Fock space of either bosons or fermions, with the Hamiltonian being quadratic
in the ladder operators. In other words, we require that the Hamiltonian is a one-particle
observable (56), like the Bose-Hubbard Hamiltonian (58) with Ui = 0. Physicists usually
consider additional fluctuations in energy and number of particles, and describe the system
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at thermal equilibrium by the so-called grand canonical ensemble. Formally, this amounts
to considering the Gaussian density matrix

ρGC = e−β(H−ζN)

ZGC
(60)

where N =
∑
i a
†
iai is the number operator, β > 0 is the inverse temperature and ζ > 0

is the chemical potential, which can be adjusted to change the average number of particles
in the system. The normalization ZGC = Tr e−β(H−ζN) is the so-called grand-canonical
partition function. �

As with any state ρ, a natural question is to compute the expectation 〈A〉ρ = Tr (ρA)
of an observable A; see Section 3.1. It turns out that for Gaussian density matrices, this is
a simple mechanical computation using canonical (anti)commutation relations, as soon as
A is a product of linear combinations of annihilation and creation operators. The result of
this computation is precisely Wick’s theorem, a close parent to Isserlis’ theorem in classical
statistics on the computation of moments of a Gaussian distribution. Up to a change of
basis, and because we only care about linear combinations of ladder operators, it is enough
to treat the case of

ρ = 1
Z
e−
∑

i
νia
†
i
ai . (61)

In the rest of this section, we henceforth assume ρ to be in diagonal form (61).

3.5.2 Where permanents and determinants appear

For brevity, every average in this section is implicitly meant as under the Gaussian density
ρ in (61), and we thus write 〈·〉 instead of 〈·〉ρ. Additionally, to treat both bosons and
fermions in a single theorem, we define the generalized commutator [u, v]η := uv − ηvu,
where η = ±1. We note that both the CCR (44) and the CAR (48) can be rewritten as

[ai, aj ]η = 0,
[
a†i , a

†
j

]
η

= 0, and
[
ai, a

†
j

]
η

= δij , (62)

with η = 1 for CCR and η = −1 for CAR.
We note right away that the density matrix (61) conserves the number of particles, in

the sense that [ρ,N ] = 0, with N =
∑
i a
†
iai. This leads to the following important lemma.

Lemma 2 (Creation and annihilation numbers must match). Consider the Gaussian den-
sity matrix ρ given by (61), acting on either the bosonic or fermionic Fock space, and an
operator Onc,na composed of the product, in any order, of nc creation operators a†i1 , . . . , a

†
inc

and na annihilation operators ai1 , . . . , aina . Then 〈Onc,na〉 = 0 unless nc = na.

Note that this implies that if the total number of creation and annihilation operator is
odd, the average necessarily vanishes.

Proof. The proof is simply based on the fact, to be shown below, that [N,Onc,na ] = (nc −
na)Onc,na . Then it follows that (nc − na)〈Onc,na〉 = 〈[N,Onc,na ]〉 = Tr (ρNOnc,na −
ρOnc,naN) = 0 by the cyclicity of the trace and [ρ,N ] = 0.

To prove [N,Onc,na ] = (nc − na)Onc,na , we proceed by recurrence. It is true for
max(nc, na) ≤ 1 by the commutation relations of the creation and annihilation opera-
tors with the number operator (51). Now assume that it is true up to some nc, na, and
write Onc,na+1 = Omc,maaiOpc,pa with mc + pc = nc and ma + pa = na. Then

[N,Onc,na+1] =[N,Omc,ma ]aiOpc,pa +Omc,ma [N, ai]Opc,pa +Omc,maai[N,Opc,pa ],
=(mc −ma)Onc,na+1 −Onc,na+1 + (pc − pa)Onc,na+1,

=(nc − (na + 1))Onc,na+1.

(63)

The case Onc+1,na is similar.
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Now, for an even integer N = 2k, define a contraction of order N as a permutation
σ ∈ SN such that σ(1) < σ(3) < ... < σ(2k − 1), and σ(2i − 1) < σ(2i) for i = 1, . . . , k.
For instance, there are three contractions of order 4, namely(

1 2 3 4
1 2 3 4

)
,

(
1 2 3 4
1 3 2 4

)
, and

(
1 2 3 4
1 4 2 3

)
. (64)

In words, contractions are built as follows. Starting from Z = {1, . . . , N} and i1 = 1, pair i1
with an arbitrary i2 ∈ Z \{i1}. Then select the smallest element i3 of Z \{i1, i2} and pair it
with any element of Z \ {i1, i2, i3}. Repeat the procedure until all integers in Z have been
paired. The corresponding permutation σ is the one such that (σ(1), σ(2), . . . , σ(N)) =
(i1, i2, . . . , iN ). This constructive definition shows that there are actually (N − 1)!! =
1× 3× 5 · · · × (N − 3)× (N − 1) contractions of order N .

Theorem 3 (Wick’s theorem). Consider the Gaussian density matrix ρ given by (61) and
N = 2k linear combinations b1, . . . , bN of creation and annihilation operators, in any basis.
Then

〈b1 . . . bN 〉 =
∑

σ contraction
ηε(σ)〈bσ(1)bσ(2)〉〈bσ(3)bσ(4)〉 . . . 〈bσ(N−1)bσ(N)〉, (65)

where η = +1 for bosons and η = −1 for fermions. The sum is over contractions of order
N , with parity ε(σ).

Before proving Wick’s theorem for the sake of completeness, we give two illustrative
examples. First, when N = 4, remembering the three contractions (64) of order 4, we have

〈b1b2b3b4〉 = 〈b1b2〉 〈b3b4〉+ η〈b1b3〉〈b2b4〉+ 〈b1b4〉〈b2b3〉. (66)

Second, Wick’s theorem is the mathematical reason why permanents and determinants will
appear when we consider point processes of detection times in Sections 4, 5, and more
abstractly in Section 6. This application is so fundamental to our paper that we highlight
it here.

Example 5 (Wick’s theorem for coherence functions). We are interested in the expected
number of k-uplets of particles simultaneously appearing in (distinct) modes 1 to k. Since
the operator Ni = a†iai counts the number of particles in mode i, we aim to compute

〈N1 . . . Nk〉 =
〈
a†1a1 . . . a

†
kak

〉
.

Note that allNis commute, so that the order is irrelevant. We now use the (anti-)commutation
relations (62) to bring all creation operators to the front,

〈N1 . . . Nk〉 = η1+2+···+(k−1)
〈
a†1a
†
2 . . . a

†
ka1a2 . . . ak

〉
.

By convention, we also put the annihilation operators in decreasing order, which removes
the sign,

〈N1 . . . Nk〉 =
〈
a†1a
†
2 . . . a

†
kakak−1 . . . a1

〉
.

Now, we are ready to apply Theorem 3. Upong noting, thanks to Lemma 2, that pairing
two creation or two annihilation operators results in a zero average, the only non-zero terms
in (65) result from permutations σ ∈ S2k of the form

σ =
(

1 2 3 4 5 · · · 2k − 1 2k
1 ν(k + 1) 2 ν(k + 2) 3 · · · k + 1 ν(2k)

)
,

where ν is a permutation of {k + 1, . . . , 2k}. Composing σ with 2× (1 + 2 + · · ·+ (k − 1))
transpositions, we obtain(

1 · · · k k + 1 · · · 2k
1 · · · k ν(k + 1) · · · ν(2k)

)
,
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so that ε(σ) = ε(ν). In particular, Wick’s theorem yields

〈N1 . . . Nk〉 =
∑
ν∈Sk

ηε(ν)
k∏
i=1

〈
a†iaν(i)

〉
,

where we recognize the permanent or determinant of the matrix (〈a†iaj〉)1≤i,j≤k, depending
on η = ±1. �

We now prove Wick’s theorem for the sake of completeness.

Proof. We want to compute the expectation Tr (ONρ), where ON = b1b2 . . . bN ,

bi =
∑
α

(
Ai,αa

†
α +Bi,αaα

)
, and ρ = e−

∑
α
ναa
†
αaα/Z,

where we have expanded the bi’s in the basis in which the density matrix is diagonal.
Let us start with two general remarks. First, by Lemma 2, we can restrict the number of

bi’s to be even, since otherwise the average vanishes. We henceforth assume that N = 2k is
even. We are going to repeatedly use the generalized commutation relations. In particular,
we note that, for any η and i, j, [bi, bj ]η is a multiple of the identity and thus commutes
with all operators.

We are now ready to compute 〈ON 〉 = 〈b1 . . . bN 〉 = Tr (b1 . . . bNρ). The general idea
is (i) to push b1 through all the other operators bi using the (anti)commutation relations.
Then, (ii) using the cyclicity of the trace, we bring b1 back in front of the rest. And finally,
(iii) using that ρ is Gaussian to recover the original average 〈ON 〉 up to a constant.

Starting this programme, we have

〈ON 〉 = [b1, b2]η〈b3 . . . bN 〉+ η〈b2b1 . . . bN 〉,
= [b1, b2]η〈b3 . . . bN 〉+ η[b1, b3]η〈b2b4 . . . bN 〉+ η2〈b2b3b1 . . . bN 〉.

Iterating the same steps, we write

〈ON 〉 = ηN−1〈b2b3 . . . bNb1〉+
N∑
j=2

[b1, bj ]ηηj−2〈b2 . . . bj−1bj+1 . . . bN 〉. (67)

Now, by the cyclicity of the trace, we have

〈b2b3 . . . bNb1〉 = Tr (ρb2b3 . . . bNb1) , (68)
= Tr (b1ρb2b3 . . . bN ) . (69)

Let us for a moment assume that b1 is either a specific creation or annihilation operator,
i.e. b1 = a

(†)
α for some specific α. Now, using the explicit Gaussian form of the density

matrix, we have b1ρ = λρb1, with λ = e−να/Z if b1 = aα, and λ = eνα/Z if b1 = a†α, as
can be seen by checking the action of these operators on the basis of Fock states. We thus
come to

〈b2b3 . . . bNb1〉 = λ〈b1 . . . bN 〉 . (70)

Since η = ±1, Equation (67) is simplified into:

〈b1 . . . bN 〉 =
N∑
j=2

ηj
[b1, bj ]η
1− ηλ 〈b2 . . . bj−1bj+1 . . . bN 〉. (71)

In particular, note that (71) with N = 2 becomes

〈b1bj〉 = [b1, bj ]η
1− ηλ . (72)
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Plugging this into (71), we conclude that

〈b1 . . . bN 〉 =
N∑
j=2

ηj〈b1bj〉〈b2 . . . bj−1bj+1 . . . bN 〉. (73)

Since this last expression is explicitly linear in b1, it is actually valid for any linear combi-
nation of creation and annihilation operators. In particular, (73) replaces the calculation of
an average of a product of N operators by the weighted sum of N − 1 averages of products
of N − 2 operators. Repeating the procedure for each product of N − 2 operators in (73),
we obtain Wick’s theorem.

This is the simplest form of Wick’s theorem. It can be further generalized to Hamilto-
nians with in addition the “anomalous” quadratic terms

∑
nmAnmanam+

∑
nm Ānma

†
na
†
m,

which arise in mean-field theories of interacting Bose gases and superconductors, and gen-
erate 〈aiaj〉 6= 0; or to the case of Hamiltonians with linear terms, which generate nonzero
〈ai〉 [Berezin, 1966, Chapter 3].
Remark 4. The proof of Wick’s theorem also holds for the vacuum, and the vacuum is also
usually said to be a Gaussian state. The vacuum can also be obtained as a limiting state
when the temperature 1/β is taken to zero and ζ = 0; see the computations in Section 6.

Finally, note that the definition of a Gaussian state is not universal and may be
community-dependent. Quantum opticians, for instance, might define a Gaussian state
as one that has a Gaussian Wigner transform; see Section 4.

3.6 Bosonic coherent states model classical fields
Many quantum systems have a classical (i.e., non-quantum) description, and physicists
also sometimes start from a classical description to build a quantum theory, a procedure
known as quantization. But in the end, a physical system is fundamentally quantum and
we should try to understand how a classical behavior emerges from a quantum description.
This phenomenon is known as decoherence, and is a vast modern research programme. An
important part of the answer is to build quantum states that behave as closely as possible to
classical ones. Glauber [1963] made seminal contributions in that regard, defining coherent
states for systems of photons.24 We follow the introduction of bosonic coherent states
in [Mandel and Wolf, 1995, Chapter 11], before pointing out the strong connections with
the subfield of signal processing called time-frequency analysis. We defer the more subtle
discussion on fermionic coherent states to Section 5.4.

3.6.1 Definition and properties

As discussed around Equation (26), measuring an observable is modelled by sandwiching
the state operator. After measurement, the quantum state is thus different from the initial
state. This is very different from classical physics, where it is possible, in principle, to
perform passive measurements, e.g. looking at a screen, or recording the intensity of the
electromagnetic field. Consider henceforth the boson Fock space built using the modes of
the harmonic oscillator from Section 3.2.2. If we are to build a state of this Fock space
that behaves classically, we would intuitively like to take a state that remains unchanged
when we measure it. Since most measurements involve absorbing bosons (think photons in
optics; see Section 4.1), good candidates for classical-like states are the left eigenstates of
the annihilation operator, or equivalently the right eigenstates of the creation operator.

To make things concrete, consider a single mode for simplicity, that is, a Fock space
built on a one-dimensional H = Ce1; see Section 3.4.3. Denote the ladder operators by
a = a(e1) and a† = a†(e1). Our candidate classical-like states are |α〉 ∈ H∞Bosons such that

a |α〉 = α |α〉 , α ∈ C . (74)

Informally,25 the sandwiched state (26) that appears when modeling absorption mechanisms
24The name coherent state comes from the concept of coherence in optics.
25For details, see the Lindblad equation in [Bouten et al., 2007].
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is then a |α〉〈α| a† = |α|2 |α〉〈α|, so that coherent states are stable under absorption of a
photon.

Solving the eigenstate equation (74) for |α〉 =
∑
n cn |n〉 expressed in the Fock basis, we

write ∑
n≥1

cn
√
n |n− 1〉 =

∑
n≥0

cn |n〉 ,

so that cn = αcn−1/
√
n for n ≥ 1. This leads to

|α〉 = e−|α|
2/2
∑
n≥0

αn√
n!
|n〉 , (75)

up to a complex number of unit modulus, where we have determined the modulus of the
normalizing constant by imposing 〈α|α〉 = 1. The states (75), labeled by nonzero complex
numbers α, are called canonical coherent states. By construction, they are mixed states
formed as an infinite linear combination of Fock states. If we were to measure the number of
photons in |α〉, we would obtain n with probability | 〈α|n〉 |2 ∝ |α|2n/n!, and we recognize
the Poisson distribution with mean |α|2. In particular, the Poisson distribution is in a
sense the maximum entropy distribution for independent counts [Harremoës, 2001]: for a
fixed mean λ > 0, the maximal entropy of a sum of k independent Bernoulli variables is
increasing with k, and converges to the entropy of the Poisson variable with mean λ. In
that limited sense, one can think of the coherent states as states with a maximally uncertain
number of particles.

An equivalent point of view on coherent states, which sometimes serves as their definition
in mathematical physics [Ali et al., 2000], is that they are naturally associated to a projective
representation of the translation group in phase space,26 the complex plane indexed by α.
To see this, start from the description of Fock states |n〉 = (a†)n/

√
n! |0〉. The coherent

state (75) is thus obtained from the vacuum by the action of an operator D(α) on the boson
Fock space called a displacement operator,

|α〉 = D(α) |0〉 , D(α) = eαa
†−α∗a . (76)

This formula is a consequence of the CCRs and the so-called Baker–Campbell–Hausdorff
formula expanding the exponential of a sum of (non-commuting) operators. The same
formula yields properties of D like

D−1(α) aD(α) = a+ α (77)
D(α)D(β) = ei Im{(αβ∗)}D(α+ β) . (78)

These relations are central to the theory of coherent states. First, they show that D is a
projective representation of the translation group in phase-space. Second, they naturally
generalize to other groups, yielding coherent states for different systems than the harmonic
oscillator; see e.g. spin coherent states. In fact, coherent states have been defined for any
locally compact Lie group [Perelomov, 1972, Arecchi et al., 1972, Zhang et al., 1990].

Another way to justify that coherent states are almost classical is through Heisenberg’s
uncertainty principle (27). Remember that for the harmonic oscillator, position and mo-
mentum operators X,P are incompatible observables, and that both can be expressed as
sums of ladder operators; see the discussion around Equation (37). With the notation of
Section 3.1, one can check that the product of σX,|α〉〈α|σP,|α〉〈α| is minimal among states.
One says that coherent states saturate Heisenberg’s uncertainty relations.

Another quasi-classical aspect of coherent states is their dynamical evolution. Since
the Fock states are eigenvectors of the Hamiltonian of a harmonic oscillator H = ~ωa†a,
U(t) = e−itH applied to α decomposed on the Fock basis (75) yields

|α(t)〉 =
∣∣αe−iωt〉 . (79)

26The name phase space comes from the connection through (37) to the classical phase space with
position-momentum coordinates.
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In phase space, i.e., the complex plane parametrized by α, the coherent state parameter α(t)
simply rotates over time, with an angular frequency ω. This is precisely the phase-space
behavior of a classical harmonic oscillator.

Finally, we mention two more properties of coherent states. First, they are an overcom-
plete family of the Fock space, with a reconstruction formula

1
π

∫
C
|α〉〈α| dα = 1 . (80)

The fact that they are not an orthonormal basis is further seen from the overlap

〈β|α〉 = exp
(
α∗β − 1

2 |α|
2 − 1

2 |β|
2
)
, α, β ∈ C. (81)

A good reference for such properties of coherent states of the harmonic oscillator is [Folland,
1989], or, actually, books on harmonic analysis applied to time-frequency signal processing
[Gröchenig, 2001], on which we say a few words in the next section.

Finally, we have built here bosonic coherent states assuming a single-mode Fock state.
Multi-mode coherent states are naturally obtained as tensor products of single-mode co-
herent states, see Section 3.4.3, and one typically writes them

|α〉 = |α1〉 ⊗ |α2〉 ⊗ . . .

3.6.2 The Husimi distribution and time-frequency analysis

Single-mode bosonic coherent states of the harmonic oscillator are intimately linked to
the subfield of signal processing called time-frequency analysis; see e.g. [Flandrin, 1998,
Gröchenig, 2001]. Consider e.g. the short-time Fourier transform Vg : L2(R) → L2(R2),
defined as

Vg(f) : t, ω 7→
∫
f(τ)g(τ − t)e−2iπωτdτ ,

where g(t) = 21/4e−πt
2 is a unit-norm Gaussian window. Intuitively, if f is a signal,

say representing an audio recording, then |Vg(f)(t, ω)| will be large whenever frequency
ω is present at time t. In other words, Vg(f) is akin to a musical score. Time-frequency
transforms such as Vg are thoroughly used in signal processing, for tasks such as detection or
estimation of signal corrupted with noise [Flandrin, 1998]. Mathematically, Vg is a unitary
linear operator, which can be inverted [Gröchenig, 2001]. Furthermore, it is tightly linked
to decomposing a state into coherent states. Indeed, up to a non-vanishing factor,

Vg(f)(t,−ω) ∝ 〈α|ϕ〉 , (82)

where α = t+iω indexes a coherent state (75), and the state ϕ is described in the Fock basis
by 〈ϕ|n〉 =

∫
fh∗ndt, where hn is the nth Hermite function, a special basis of L2(R) that we

already met in Section 3.2.2. Physicists call the squared modulus of the right-hand side of
Equation (82) the Husimi distribution of ϕ, and think of it as a phase space representation
of the state ϕ, in pretty much the same way signal processers think of the spectrogram
t, ω 7→ |Vg(f)(t, ω)|2 as a time-frequency representation of the signal f .

As a final note and to introduce another related point process, one can prove that,
in a suitable sense, the STFT Vg of white Gaussian noise is equal to the so-called planar
Gaussian analytic function, up to an nonvanishing term [Bardenet et al., 2018, Bardenet
and Hardy, 2019]. Similarly, if one had access to a white noise-like state |ξ〉 such that
〈ξ|n〉 ∼ NC(0, 1) are i.i.d. complex unit Gaussians, then its coherent-state “decomposition”
α 7→ 〈ξ|α〉 would be the so-called planar Gaussian analytic function, up to a nonvanish-
ing term again. This planar Gaussian analytic function, along with the point process of
its zeros, plays a role in the analysis of chaotic dynamical systems in statistical physics
[Nonnenmacher, 2013], where it is also called the chaotic analytic function [Hannay, 1998].
The zeros of the planar Gaussian analytic function are not a DPP. Yet, being the zeros
of a random smooth function, they have a repulsive behaviour. They actually share many
properties with the Ginibre ensemble, itself a fundamental DPP [Hough et al., 2009].
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4 Photodetection and bosonic coherences
To obtain signals from a physical situation, the picture to have in mind consists in the
processes of emission, propagation, and detection of radiation. The first two processes are
usually described by physicists using one or several sources, classical or quantum, and a
field theory, classical or quantum. Questions that arise regard, for instance, the dynamics
of the source(s), how they generate radiation, and the physical properties of this radiation.
The third process, detection, lies at the interface of physics and signal processing. In this
section, we discuss simple standard models for the sources, the field, and the detection for
bosons, having in mind photodetection. Following the footsteps of Macchi [1975], our goal
is to arrive at the description of the measurement of arrival times at a simple detector as
a point process. We shall see how some of the point processes introduced in Section 2
naturally appear from Glauber’s coherent state decompositions. As a guiding thread, we
will comment on the HBT effect in its different guises.

In Section 4.1, we decribe simple models for sources, fields, and detectors, and arrive
at the marginal probability of detecting an event at a given time. In Section 4.2, we
examine the correlation between more than one detection events. The central objects that
encapsulate information about detection times are the coherence functions. In Section 4.3,
we examine how to turn the coherence functions of a physical detection setup into the
correlation functions of a point process. We discuss special particular cases, and recover
the permanental point processes already announced using a semi-classical treatment in
Section 2.3. Finally, in Section 4.4, we show that single-atom sources can yield anti-
bunching detection events. This is a warning that bosons should not be identified with
bunching particles in general, but that the properties of the source should be mentioned.

4.1 Modeling photodetection events
Photomultipliers are experimental devices that turn incoming radiation into a measurable
electric current. The theory of photodetection aims at understanding what kind of signals
can be observed as the output of a photomultiplicator. As we shall see, these signals are
directly related to the so-called coherence functions27 of the field, quantum or classical.

4.1.1 Modeling the radiation

Before discussing how we introduce coherence functions, we need to specify how we describe
the radiation we want to probe, using the objects of quantum field theory introduced in
Section 3. Note that, while the framework below is enough to describe photodetection, a
complete description would require to go into the details of the construction of (relativistic)
quantum field theories and especially its dynamical content [Cohen-Tannoudji et al., 1998].

The electromagnetic field is described by a set of quantum fields satisfying some com-
mutation relations. For photodetection, the dominant contribution comes from the electric
field at the detection device. As a reminder, a field is a quantity that depends on both
position and time. A bosonic quantum field is a collection of operators associated to an
indefinite number of bosonic particles, called e.g. photons, on a Fock space H∞Bosons (see
Section 3.4). Formally, the state of the field is built by acting on the vacuum |0〉 with
creation and annihilation operators a†k,ε and ak,ε [Mandel and Wolf, 1995, Chapter 10].
The quantities k and ε index modes of the field (i.e., solutions to Maxwell’s equations),
and typically correspond to the momentum and the polarization of the photon.

For simplicity, and because it already contains the ingredients that relate the point
processes of Section 2 to photodetection, we consider a fixed linear polarization, and hence-
forth drop the index ε. This corresponds to an assumption we made in the semi-classical
treatment of Section 2.3. The electric field is then described by a single (instead of one per
space coordinate) time- and space-dependent operator E(r, t), acting on the Fock space
H∞Bosons.

27Often called correlation functions in physics, but we refrain from using correlation here to avoid
confusion with the concept of correlation function of a point process; see Section 2.
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To obtain the explicit form of the electric field operator, the stategy is to consider
the field as enclosed in a (large) box and perform the so-called canonical quantization of
Maxwell’s equations. We refer the reader to the literature for such details, e.g. [Mandel
and Wolf, 1995, Chapter 10], and consider as given the resulting form of the field, namely

E(r, t) =
∑

k

Nk

[
akei(k·r−ωkt) + a†ke−i(k·r−ωkt)

]
, (83)

where Nk is a normalization coefficient, r ∈ Rd indexes space and t ∈ R indexes time. The
time dependence in (83) is a consequence of working in the interaction (or equivalently, so
far, Heisenberg) picture. The explicit plane-wave form corresponds to the evolution implied
by the free electromagnetic Hamiltonian

HFF = ~
∑

k

ωka
†
kak . (84)

4.1.2 Modeling the detector: the first-order coherence function

The usual image to have in mind for a detector is a two-level atom like the qubit described
in Section 3.2.1, described quantum-mechanically with an eigenfrequency ωeg. The atom
interacts with the electric field E(r, t). In mathematical terms, the Hilbert space of the
detector is finite-dimensional, isomorphic to C2; see Section 3.2.1. Since the Hilbert space
of the electric field is H∞Bosons, the joint system of the detector and the field is C2⊗H∞Bosons.

To describe the time evolution of the system, we use the interaction picture and decom-
pose the Hamiltonian as a free and an interaction part

H = H0 +HI , (85)

see Section 3.1. The free part is taken to be H0 = HFQ ⊗ 1 + 1 ⊗ HFF, a combination
of the free Hamiltonians of a qubit and the field, respectively defined in (34) and (84).
To describe the interaction Hamiltonian, let first q ∈ R model the modulus of the dipolar
moment multiplied by the charge of an electron. Once gain, Maxwell’s equations hint that
the interaction can be taken as [Cohen-Tannoudji et al., 1998]

HI(t) = −q σx(t)⊗ E(r, t), (86)

where
σx(t) = UFQ(t)σx(t)UFQ(−t) = UFQ(t)

(
0 1
1 0

)
UFQ(−t),

is the observable σx from Section 3.2.1, evolved through time using the group UFQ(t)
corresponding to the free part of (85), as befits the interaction picture.28

We want to compute the probability pωeg (r, t) of a detector at position r to be in its
excited state |e〉 after a time t, knowing that the initial state of the detector is |g〉 and
the field is any arbitrary initial state, but irrespective of the final state of the field. We
assume that the initially prepared state of the detector and the field is |g〉 ⊗ |i〉 = |g, i〉,
where |g〉 is the ground state of the detector and |i〉 is an arbitrary initial state of the field.
The corresponding density matrix is thus the projector ρ(0) = |g, i〉〈g, i|. In the interaction
picture described in Section 3.1, the state evolves until time t through the action of the
evolution operator V (t) = U†0 (t)U(t) as ρ(t) = V (t)ρ(0)V †(t). Measuring the detector in
its excited state corresponds to the observable

|e〉〈e| ⊗ 1 = |e〉〈e| ⊗
∑
f

|f〉〈f | =
∑
f

|e, f〉〈e, f | , (87)

where f indexes Fock states, and we decomposed the identity operator onto the Fock states,
1 =

∑
f |f〉〈f |. Now the observable (87), in the interaction picture, evolves as

U†0 (t)
∑
f

|e, f〉〈e, f |U0(t).

28Physicists will recognize here an instance of the more traditional form HI(t) = −d(t) · E(r, t), where
we assumed the dipolar moment d(t) to be aligned with the polarization u of the field E(r, t) = E(r, t)u.
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We are now ready to compute the probability pωeg (r, t) of the detector being measured in
its excited state at time t. By Born’s rule (see Section 3.1), this probability is the average
value of the evolved observable onto the evolved state ρ(t), namely

pωeg (r, t) = Tr

U†0 (t)

∑
f

|e, f〉〈e, f |

U0(t)V (t) |g, i〉〈g, i|V †(t)

 (88a)

=
∑
f

Tr (|e, f〉〈e, f |U(t) |g, i〉〈g, i|U(−t)) (88b)

=
∑
f

|〈e, f |U(t) |g, i〉|2 (88c)

=
∑
f

|〈e, f |V (t) |g, i〉|2 , (88d)

where the last line comes from the definition V (t) = U†0 (t)U(t) and the fact that |e, f〉 is
an eigenvector of H0(t), so that applying U0(t) to |e, f〉 simply multiplies by a complex
number of modulus 1. Note also that the dependence in r is hidden in V (t).

Up until now, all the discussion is exact. We now introduce a physical assumption that
allows for a simple expression of V (t).

Assumption 5 (Weak Coupling). The interaction between the detector and the field is
assumed to be weak, allowing us to treat the dynamics using perturbation theory. Formally,
this means that we assume the existence of a series expansion of the evolution operator in
terms of the interaction Hamiltonian; see the discussion around (32). To first order, this
amounts to

V (t) ' 1− i
~

∫ t

0
HI(t′)dt′ . (89)

Using (89) and 〈e|σx(t)|g〉 = eiωegt, we find

〈e, f |V (t)|g, i〉 = iq
~

∫ t

0
eiωegt′〈f |E(r, t′)|i〉dt′ . (90)

Plugging this into (92), and remembering that the Fock states |f〉 form a basis of the Fock
space, we obtain

pωeg (r, t) =
( q
~

)2 ∫
[0,t]2

eiωeg(t′−t′′)〈i|E(r, t′′)E(r, t′)|i〉dt′dt′′ . (91)

This equation is straightforwardly generalized to the case where the initial state of the field
is not a pure state but a mixed state, described by a density matrix ρ =

∑
i pi |i〉〈i| in some

basis (|i〉) of initial states; see Section 3.1. The probability of a detection event between 0
and t then becomes

pωeg (r, t) =
( q
~

)2 ∫
[0,t]2

eiωeg(t′−t′′)〈E(r, t′′)E(r, t′)〉ρ dt′dt′′ . (92)

Equation (92) underlies most of photodetection theory. It relates properties of the field,
encoded in a coherence function 〈E(r, t′′)E(r, t′)〉ρ, to the excitation probability of the
detector.

The second important approximation usually made in photodetection theory is the
rotating wave approximation (RWA), which translates the intuition that a proper photode-
tection event is an absorption of an excitation. To motivate and illustrate it, we consider
first a simple example where the field is assumed to always be in a coherent state.

Example 6 (Monochromatic classical wave). We assume here that the field always re-
mains in a coherent state as time evolves and is factorized with respect to the state of the
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qubit; see Section 3.6. Since the free part of the Hamiltonian preserves coherent states up
to a phase, what we are assuming is that the evolution under the interaction Hamiltonian
approximately preserves coherent states. Physically, this assumption corresponds to, for
instance, a macroscopic source emitting a coherent state or a statistical mixture thereof,
like a common lightbulb: the fact that one observes the emitted light does not change its
classical character. We also assume, for simplicity, that we have an incoming monochro-
matic coherent state at frequency ω. Formally, we reduce the sum in (83) to a single term
k such that ωk = ω, and denote by E(t) = E(r, t) the average value of this field at the fixed
position r of the detector. The terms in r can be omitted by changing the time origin.
More explicitly, we set E(t) = E sinωt. We want a coherent state |α〉 such that the average
value of the electric field operator

〈α|E(t)|α〉 = 〈α|ake−iωt + a†keiωt|α〉 = Nk(αe−iωt + α∗eiωt)

is equal to E(t). We thus choose the coherent state parameter α to be −E/2iNk.29 Further-
more, assume that we initially prepare the detector in its ground state |g〉. In the interaction
picture, our approximation that the state of the field remains the same coherent state30

and factorized allows to write

V (t) |g〉 ⊗ |α〉 ≈ (Vsc(t) |g〉)⊗ |α〉 . (93)

The operator Vsc(t) in (93) is defined as the interaction picture evolution operator of
the so-called semi-classical Hamiltonian Hsc(t) = −qE(t)σx(t). Using the weak coupling
approximation to evaluate the time evolution, we obtain

pωeg (r, t) = Tr
(
U†0 (t)

[
|e〉〈e| ⊗ 1

]
U0(t)V (t)

[
|g〉〈g| ⊗ |α〉〈α|

]
V †(t)

)
(94a)

= Tr
([
|e〉〈e| ⊗ 1

]
V (t)

[
|g〉〈g| ⊗ |α〉〈α|

]
V †(t)

)
(94b)

= Tr
(
Vsc(t) |g〉〈g|V †sc(t) |e〉〈e|

)
(94c)

=
∣∣∣∣ iq~
∫ t

0
E(t′) eiωegt′ dt′

∣∣∣∣2 (94d)

=
∣∣∣∣ qE2~i

(
1− ei(ωeg−ω)t

ωeg − ω
− 1− ei(ωeg+ω)t

ωeg + ω

)∣∣∣∣2 , (94e)

where the second line is obtained because the state |e〉 is an eigenvalue of the free evolution
operator U0(t), the third follows from the semi-classical assumption that the state of the
field always stays in a coherent state, the fourth from the weak coupling assumption and
the form of Hsc, and the last from the monochromatic assumption.

At this point, we make an extra assumption called the rotating wave approximation
(RWA). In our special case, the RWA amounts to neglecting the second term of the right-
hand side of (94e). Because both ω and ωeg are strictly positive, the denominator of the
second term never vanishes, unlike the denominator of the first term. Around resonance
ω ≈ ωeg, the first term will largely dominate the second. �

We make the RWA from Example 6 a general principle that applies to arbitrary quantum
fields. It echoes the use of the analytic signal in representing a real classical field; see
Section 2.

Assumption 6 (Rotating wave approximation). The photodetection response is a function
of the positive frequency part of the quantum field only.

With Assumption 6, the transition probability (92) now reads

pωeg (r, t) =
(e q

~

)2 ∫ t

0
eiωeg(t′−t′′)G(1)

ρ

(
r t′, r t′′

)
dt′dt′′ , (95)

29The normalization constant Nk is reinserted into the coherent state parameter in this derivation to
simplify the notation.

30Strictly speaking, we should allow α to depend on time, but the argument below does not change.
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where31 we introduced the first-order coherence function

G(1)
ρ

(
r′ t′, r t

)
= 〈E−(r′, t′)E+(r, t)〉ρ , (96)

where E+ is associated to the positive part of the spectrum (annihilation operators) and
E− is associated to the negative part (creation operators). The coherence function (96)
was originally introduced by Glauber [1963].32

At least informally, it is not difficult to generalize the computations leading to (92) to
more sophisticated detectors. In experiments, for instance, photodetection is often per-
formed through ionization: an electron of an atom is extracted by the incident light and
this event is amplified and detected. This detector is best described by a system having,
on top of its ground |g〉 state, a countable set of excited states |ei〉, and a continuum of
so-called diffusive states |p〉 , p ∈ R. This leads to non-compact Hamiltonian operators,
having a spectrum that is partly discrete, partly continuous. Nonetheless, the computation
of the transition probability p(r, t) follows from the same lines as above, with the new
observation corresponding to projecting on all states that are not the ground state, that
is, (

∑
n |en〉〈en| +

∫
|p〉〈p|dp) ⊗ 1 instead of |e〉〈e| ⊗ 1. Because we are working with a

first-order approximation in Assumption 5, this leads to a probability of transition that is
an expectation of the single-state probability of transition (92), namely

p(r, t) =
∫
pωeg (r, t)dξ(ωeg) =

∫
[0,t]2

κ(t′ − t′′)G(1)
ρ

(
r t′, r t′′

)
dt′dt′′ , (97)

where ξ has a support that is the union of a discrete set, corresponding to the states |en〉,
and an uncountable set, corresponding to |p〉 , p ∈ R, and the structure function is defined
as

κ(τ) :=
( e
~

)2 ∫
e−iωτdξ(ω).

We can think of either ξ or κ as being a characteristic of the detector, describing its time
or frequency efficiency. For instance, if ξ is supported on a single point or closely around a
single point, we only collect photons at a very specific energy, and call the detector narrow-
band. If ξ is supported on a large interval, we collect all photons equally, and call the
detector broad-band.

For completeness, we close this section by recovering the semi-classical treatment of Sec-
tion 2.3 through our quantum treatment, using the coherent state formalism of Section 3.6.

Example 7 (General rotating wave). By linearity arguments, the monochromatic light
case of Example 6 can be used to derive the excitation probability in the case of a more
general field. Thinking of the field being enclosed in a large box, so as to be able to work
with Fourier series instead of Fourier transforms for simplicity, let us decompose the electric
field Eα(r, t) on a set of monochromatic plane waves

Eα(r, t) =
∑

k

Nk

[
αkei(k·r−ωkt) + α∗ke−i(k·r−ωkt)

]
, (98)

with Nk a normalization coefficient and αk ∈ C the amplitude of the mode k. Note that
E is a (real-valued) function, not an operator: we are still treating the field as a classical
field. The first part of the sum corresponds to the positive frequency part of the field (the
“analytic” field), while the second part corresponds to the negative frequency part E−.

An important observable of the electromagnetic field is its intensity. A general result of
Maxwell’s equations [Mandel and Wolf, 1995] is that the energy carried by the field is given

31The missing commas in the arguments are a convention that will become handy when we consider
higher-order coherence functions.

32As a side remark, remember that this coherence function is defined after choosing a specific polarization
of the field. In the general case, the electric field should be expanded along a basis of the three-dimensional
polarization space and we should consider all combinations of coherence functions

G
(1)
ij (t′, t) = 〈E−j (t′)E+

i (t)〉ρ
where i, j label the basis elements.
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by the squared modulus of the field. Under our rotating wave Assumption 6, the intensity
I(r, t) of the field reads

I(r, t) = E−α (r, t)E+
α (r, t) = |E+

α (r, t)|2 . (99)

Investigating this intensity, and especially its correlation structure in the case of random
sources, has led to the major discoveries of photon bunching and in the end of the general
theory of optical coherence in quantum theory [Mandel and Wolf, 1995]. More precisely,
say the field (98) is not perfectly known; it is then reasonable to model it as a stochastic
process, i.e., a random function. A very common assumption is to assume the process to be
a stationary Gaussian process. One partial justification is that the field at a given spacetime
point is the sum of the contributions of many independent sources, and is well approximated
by a Gaussian. Formally, the field state becomes a statistical mixture of coherent states, a
mixed state in the vocabulary of Section 3.1. The probability of excitation remains of the
form (92), with first-order coherence function

G(1)
ρ

(
r t′, r t′

)
= Eα 〈α|E−(r′, t′)E+(r, t)|α〉 (100)
= EαE−α (r′, t′)E+

α (r, t) (101)

=
∫
pclassical(α)E−α (r′, t′)E+

α (r, t) dα . (102)

The expectation is over the stochastic process E . Physicists prefer to denote it informally
using a probability density pclassical over the Fourier coefficients α = (αk) of the field
in (98), and we use that notation here for future notational compatibility with Glauber-
Sudarshan decompositions. In Section 4.2, we shall use Wick’s theorem to derive higher-
order coherence functions, and recognize the set of correlation functions of a permanental
point process.

�

4.1.3 Role of the detector structure function

In this section, we consider the influence of the detector response κ on the probability of
excitation (97).

Broad-band detector. Consider first a broad-band detector, i.e. a detector with struc-
ture function that is sharply peaked in time or, equivalently, does not depend much on the
frequency. Ideally, this corresponds to κ(t− t′) = κ0 δ(t− t′) with κ0 a real constant. The
probability of excitation (97) becomes

p(r, t) = κ0

∫ t

0
G(1)
ρ

(
r t′, r t′

)
dt′ . (103)

Anticipating over Section 4.3, we would like to map this probability to a point process on
the positive half-line R+. One way to associate the two notions is to imagine t > 0 infinitely
small in (103), and “re-setting” the detector in its ground state at each time multiple of t,
keeping track of whether the detector was found in its excited state, say in the middle of
each small time interval. Loosely speaking, in the limit t→ 0, these detection times would
form a point process on the positive half of the real line, with first correlation function
G

(1)
ρ

(
r t′, r t′

)
. To obtain a more formal correspondence, one needs to further model the

detection process, for instance including de-excitation of the detector, see e.g. Bouten et al.
[2007].

Narrow-band detector. A narrow-band detector is a detector that is well-resolved in
frequency, like the two-level atom we used in our derivation of the photodetection signal.
At the extreme, we think of the structure function as a delta distribution in Fourier space at
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a frequency ω0, so that Fκ(ω) = κ0δ(ω−ω0), and thus κ(t) = κ0/
√

2πeiω0t. The excitation
probability (97) now reads

p(r, t) = κ0√
2π

∫
[0,t]2

G(1)
ρ

(
r t′, r t′′

)
eiω0(t′−t′′) dt′dt′′ . , (104)

The meaning of this equation is even more transparent when we switch to the frequency
representation of the coherence function. Indeed, let us define the Fourier representation
of the first-order coherence function through the Fourier transform(-like) equation

G(1)
ρ (r′ t′, r′′ t′′) =

∫
R2
G(1)
ρ (r′ ω′, r′′ ω′′)e−iω′t′eiω′′t′′ dω′dω′′

2π , (105)

where we follow the physicists’ convention to denote both the function and its Fourier
transform by the same notation and index the function by the name of its variable. Putting
everything together, we arrive at

p(r, t) = κ0√
2π

∫
R2
G(1)
ρ (rω, r′ ω′) 2t sin(t(ω − ω0))

(ω − ω0)
dωdω′

2π . (106)

In the long time limit33, the integration window is approximately equal to tδ(ω − ω0). We
end up with the simple expression

p(r, t) ≈ κ0t√
2π
G(1)
ρ (rω0, rω0) . (107)

The interpretation of this expression is easier now. For a narrow-band detector in frequency
space centered around a frequency ω0, the excitation probability is proportional to the
diagonal ω0 part of the first-order coherence function which is none other than the average
intensity of the mode ω0.

4.2 Correlation between photodetection events
We now examine the joint probability of detecting two, and then more, photons.

4.2.1 Second-order coherence

Consider two detectors labelled 1 and 2 and placed at two distinct positions r1 and r2.
They are excited by an incident radiation, and we ask for the probability that detector 1
gets excited at time t1 and detector 2 gets excited at time t2. Actually, the derivation of
the joint probability of detection is quite similar to the derivation for the one photodection
event in Section 4.1.2, and we will only give the general principles of the method here again.

The dynamics are once again modeled through a Hamiltonian, whose interaction term
is given by the following generalization of (86),

HI(t) = q1σ
(1)
x (t)⊗ 1⊗ E(r1, t) + q21⊗ σ(2)

x (t)⊗ E(r2, t) . (108)

Such a form is natural to physicists, in the sense that it models the local interaction of each
of two detectors with the field at their respective position.

Computing the joint probability of excitation requires to compute first a matrix element
of the evolution operator in the interaction picture, which is again done assuming weak
coupling. We will see that in order to have a non-trivial result, we need to push the
expansion in Assumption 5 up to second order.

Assumption 7 (Weak Coupling; second order). The interaction between the detectors and
the field is assumed to be weak, allowing to treat the dynamics using perturbation theory.
To second order, this amounts to

V (t) ' 1− i
~

∫ t

0
HI(t1)dt1 −

1
~2

∫ t

0

∫ t1

0
HI(t1)HI(t2) dt2dt1 . (109)

33usually the coherence function varies over some timescale, so large time means t sufficiently large
compared to that timescale
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Being interested in the joint probability of excitation after a time t, we have to compute
the matrix element 〈e1, e2, f |V (t)|g1, g2, i〉 where (|g1〉 , |g2〉) and (|e1〉 , |e2〉) are the ground
and excited states of both detectors. Since they are all pairwise orthogonal, the 1 term
in (109) will give a zero contribution. As for the linear term, and given the form of the
interaction (108) as a sum of two contributions from each detector, it will split into two
terms, each acting trivially on one of the detectors, again yielding a zero result. For instance

〈e1, e2, f |σ(1)
x (t)⊗ 1⊗ E(r1, t)|g1, g2, i〉 = 〈e1|σ(1)

x (t)|g1〉 〈e2|g2〉 〈f |E(r1, t)|i〉 = 0

by orthogonality of |e2〉 and |g2〉. This is the reason why we have to go to the second order
in perturbation theory to compute the joint probability distribution. In general, to compute
the joint probability distribution of N detectors clicking, we will need to push the expansion
of Assumption 7 to the orderN , since none of the lower-order terms contributes. Going back
to N = 2, the quadratic term also simplifies with only the cross terms E(r2, t2)E(r1, t1)
giving a non-zero contribution. Using again the RWA of Assumption 6, we end up with

〈e1, e2, f |V (t)|g1, g2, i〉 (110)

= − 1
~2

∫ t

0

∫ t

t1

eiωeg1 t1eiωeg2 t2〈f |E+(r2, t2)E+(r1, t1)|i〉dt2dt1 + 1↔ 2

= − 1
~2

∫ t

0

∫ t

0
eiωeg1 t1eiωeg2 t2〈f |E+(r2, t2)E+(r1, t1)|i〉dt2dt1 . (111)

The notation 1↔ 2 is a shorthand for the same term with the two indices transposed. The
second line is obtained by grouping the two terms into one and changing the integration
range, noting that the involved operators commute. Just like we did in Section 4.1.2, we use
Born’s rule and sum over the final state of the field, since we are only interested in the state
of the detectors, to obtain the joint excitation probability. Once again, we express it as the
Fourier transform of a second-order coherence function. Assuming a fixed polarization for
the field for simplicity, we have

G(2)
ρ (r′1 t′1, r′2 t′2, r2 t2, r1 t1) := 〈E−(r′1, t′1)E−(r′2, t′2)E+(r2, t2)E+(r1, t1)〉ρ . (112)

By once again introducing structure functions κ1 and κ2 for both detectors, we obtain
our final expression for the joint excitation probability

p(r2 t, r1 t) =
∫ t

0
κ1(t′1 − t′′1)κ2(t′2 − t′′2)G(2)

ρ (r1 t
′′
1 , r2 t

′′
2 , r2 t

′
2, r1 t

′
1)) dt′1dt′′1dt′2dt′′2 , (113)

Intensity correlations. Of particular experimental relevance is the diagonal of the
second-order coherence function, namely

G(2)
ρ (r1 t1, r2 t2, r2 t2, r1 t1) = 〈E−(r1, t1)E−(r2, t2)E+(r2, t2)E+(r1, t1)〉ρ . (114)

For reference, if we were treating a classical field (i.e., modeled as a real- or complex-valued
stochastic process rather than a collection of noncommuting operators), all the fields would
commute and from the definition of the field intensity, we would obtain

G(2)
ρ (r1 t1, r2 t2, r2 t2, r1 t1) = EI(r2, t2)I(r1, t1) . (115)

Equation (114) is the non-commuting counterpart to (115), which gives us information
about the intensity correlations of the field. The order of the operators in (114), called
normal order, is crucial for the interpretation of the photodetection signal as the absorption
of excitations by the detector, but also to take properly into account the fundamental
quantum fluctuations that affect the detection signal.

Intensity correlations can be probed experimentally. For instance, assume a perfect
temporal resolution for each detector, and that they are functioning in the time intervals
[0, ti], i = 1, 2. This is modeled by choosing for structure functions

κ(ti − t′i) = κi Θ[0,ti]δ(ti − t
′
i), i = 1, 2,
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with κ1, κ2 > 0. The probability of joint excitation is then given by

p(r2 t2, r1 t1) = κ1κ2

∫ t2

0

∫ t1

0
G(2)
ρ (r1 t

′, r2 t
′′, r2 t

′′, r1 t
′)) dt′dt′′ . (116)

In particular, taking the derivative in t1 and t2 yields the so-called transition rate,

Γ(r2 t2, r1 t1) = κ1κ2G
(2)
ρ (r1 t1, r2 t2, r2 t2, r1 t1) , (117)

which is proportional to (114), and reduces to the intensity correlation function in the
classical setting.

4.2.2 Higher-order coherences

The previous derivation can be generalized straightforwardly to obtain the joint probability
of n detection events. Denoting the spacetime coordinates by xi = (ri, ti), we define the
nth order coherence function by

G(n)
ρ (x1, · · · , x2n) = 〈E−(x1) · · ·E−(xn)E+(xn+1) · · ·E+(x2n)〉ρ , n ≥ 1. (118)

This definition generalizes the first- and second-order coherence functions. Upon noting
that Tr (ρO†O) ≥ 0 for any operator O, we can derive general inequalities for the coherence
functions (118). For instance, consider the operator O =

∑m
k=1 λkE

+(xk), for arbitrary
λk’s. The nonnegativity of the quadratic form Tr (ρO†O) implies a contraint in the under-
lying determinant. For m = 2, we obtain

G(1)
ρ (x, x)G(1)

ρ (y, y) ≥ |G(1)
ρ (x, y)|2,

which we interpret as a sign of bunching.
Finally, we note that for general states, higher-order coherence functions are typically

hard to compute. One special case is for a Gaussian state (59), where Wick’s Theorem 3
applies. The nth-order coherence function can then be expanded as

G(n)
ρ (x1, · · · , x2n) =

∑
σ∈Sn

n∏
i=1
〈E−(xi)E+(xn+σ(i))〉ρ . (119)

We now have all the tools to identify the point processes behind the detection of photons.

4.3 Turning coherence functions into correlation functions
There is a specific set of states for which the coherence functions are particularly simple,
namely the coherent states of Section 3.6. Specifically, take a multi-mode coherent state
|α〉 = ⊗k |αk〉. These states are eigenstates of the electric field (83) itself, with eigenvalue
the classical field from (98) , i.e.,

E+(r1, t1) |α〉 = E+
α (r1, t1) |α〉 =

(∑
k

E+
αk

(r1, t1)
)
⊗k |αk〉 . (120)

Physically, coherent states correspond to ideal lasers. Now, by construction, the quantum
coherence functions (118) are reduced to the classical coherence functions when the field is
prepared in such a state, i.e., writing xi = (ri, ti),

G
(n)
|α〉〈α|(x1, · · · , x2n) = 〈α|E−(x1) · · ·E−(xn)E+(xn+1) · · ·E+(x2n)|α〉

=
n∏
i=1
E+
α (xi)E+

α (xn+i). (121)

This factorization across coherent states is what allows us recovering the correlation func-
tions of a Poisson point process.
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Example 8 (Ideal lasers yield Poisson processes). Take xi = xn+i = (r, ti) for some fixed
position r ∈ R3 in (121), and assume a broad-band detector placed at r, see Section 4.1.3.
The joint detection probabilities yield measurement times that follow a point process with
correlation functions

ρn(t1, . . . , tn) = |E+
α (t1) · · · E+

α (tn)|2.

Such a point process indeed exists: it is the Poisson point process of first correlation function
|E+
α |2; see Section 2.2. �

Now, consider a slightly more general state ρ that can be written as a statistical mixture
ρ = Eα∼pclassical |α〉〈α| of coherent states. Concretely, this state describes non-ideal laser
light, e.g. where there is uncertainty on which light amplitude is emitted. For instance, a
single-mode randomly phased laser falls into this category, where pclassical is uniform over
a circle in the complex plane: the mixture is over all possible phases with a fixed intensity
|α|2. As for the coherence functions, by linearity, we obtain

G(n)
ρ (x1, · · · , x2n) = Eα∼pclassical

n∏
i=1
E+
α (xi)E+

α (xn+i).

Example 9 (Mixture states in phase space yield Cox processes). Taking again xi = xn+i =
(r, ti) for some fixed position r ∈ R3 in (121) and a broad-band detector, the detection times
follow a point process with correlation functions

ρn(t1, . . . , tn) = Eα∼pclassical |E+
α (t1) · · · E+

α (tn)|2.

The detection times thus form a Cox point process; see Section 2. In particular, arrival
times tend to exhibit bunching: they are more clustered together than a Poisson process.
Moreover, assuming that each αk in (98) is Gaussian, Eα is a Gaussian process, and the
detection times then form a permanental point process. Permanental point processes are
the archetype of a point process exhibiting bunching; see Section 2.3 and a few samples in
Figure 1(b). The fact that we obtain a permanental point process validates a posteriori
the semiclassical analysis carried out in Section 2. �

Additionally, note that while we mention ideally resolved detectors in time for sim-
plicity, non-broad-band detectors also yield standard point processes when the detector’s
characteristic functions can be normalized. Indeed, consider for simplicity the point process
formed by the detection times at detectors that share the same characteristic function κ.
The correlation functions then correspond to the point process formed by the marks in
a marked point process with independent marks. In the vocabulary of [Daley and Vere-
Jones, 2003, Chapter 6], the ground process is formed by the ideal detection times, and for
each such time ti, an actual detection time is drawn from the probability density function
proportional to κ(· − ti), independently from all other ideal detection times and marks.

Now we consider states that are not statistical mixtures of coherent states, the so-
called non-classical or genuinely quantum states. As we saw in Section 3.6, coherent states
form an overcomplete family of states. This suggests that even nonclassical states admit
a decomposition as a linear combination of coherent states. The decomposition of any
mixed state as a linear combination of projectors onto coherent states is known as the
Glauber-Sudarshan decomposition. However, the linear decomposition is not a statistical
mixture over a bona fide probability density, and needs to be interpreted in a weak sense.
Informally, physicists write

ρ =
∫
Pρ(α) |α〉〈α|dα, (122)

with Pρ(α) a tempered distribution for each α; see [Mandel and Wolf, 1995, Section 11.8]
and references therein. For a general state, there is no reason for Pρ to be a positive
function, or even a function at all. We do not attempt to formalize the Glauber-Sudarshan
decomposition here, but we study the simplest example of a nonclassical state: a Fock
state.
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Consider a single-mode Fock state

ρ = |k〉〈k| ⊗ I ⊗ . . . .

The associated Glauber-Sudarshan distribution, denoted for simplicity P|k〉, is the “deriva-
tive of a Dirac delta”, namely

P|k〉(α) = e|α|2

k!
∂2k

∂kα∂kα
δ(α) ; (123)

see [Mandel and Wolf, 1995, Section 11.8]. This representation of a Fock state is very
singular and comes with no simple statistical interpretation. To get some intuition about
Equation (123), let us fix two arbitrary states |u〉 and |v〉. We have in fact the matrix
elements

〈u|ρ|v〉 =
∫
C2

(
∂2k

∂kα∂kα

e|α|2

k! 〈u|α〉 〈α|v〉
)
δ(α) dα (124)

=
(

∂2k

∂kα∂kα

e|α|2

k! 〈u|α〉 〈α|v〉
)∣∣∣∣

α=α=0
, (125)

as long as α 7→ 〈u|α〉 〈α|v〉 is smooth enough. This indeed corresponds to the informal
(122), when computing matrix elements and with Pρ a specific tempered distribution. In
particular, if |m〉 and |n〉 are two single-mode Fock states, and remembering from Section 3.6
that 〈n|α〉 = e−

|α|2
2 αn/

√
n!, we verify that (125) yields

〈n|ρ|m〉 =
(

∂2k

∂kα∂kα

e|α|2

k! e−|α|
2 αnαm√

n!
√
m!

)∣∣∣∣
α=α=0

= δkn δkm

which is 1 if n = m = k and otherwise 0, as expected.
As for the coherence functions themselves, we can use this representation to give a form

very similar to the statistical mixture we discussed above. Indeed, by linearity, we can
write

G(n)
ρ (x1, . . . , x2n) =

∫
Pρ(α)

n∏
i=1
E+
α (xi)E+

α (xn+i) dα . (126)

As an example, consider again a single-mode state in a Fock state with k photons. The
coherence function can then be obtained directly from Equations (123) and (126)

G
(n)
|k〉 (x1, . . . , x2n) = ∂2k

∂kα∂kα

(
e|α|2

k!

n∏
i=1
E+
α (xi)E+

α (xn+i)
)∣∣∣∣

α=α=0
. (127)

Example 10 (A candidate point process corresponding to a Fock state.). Taking again
xi = xn+i and a broad-band detector, we obtain candidate correlation functions to define
a point process for a single-mode Fock state with k photons

ρn(t1, . . . , tn) = ∂2k

∂kα∂kα

(
e|α|2

k! |E
+
α (t1) · · · E+

α (tn)|2
)∣∣∣∣

α=α=0
. (128)

Explicitly, we have
E+
α (t) = Nαe−iωt. (129)

Then (128) implies ρn(t1, . . . , tn) = 0 for k < n. For k ≥ n, we obtain

ρn(t1, . . . , tn) = Nn ∂2k

∂kα∂kα

e|α|2

k! αnαn
∣∣∣∣
α=α=0

(130)

= N
n

k!
∂2k

∂kα∂kα

(αα)k

(n− k)!

∣∣∣∣
α=α=0

(131)

= Nn k!
(k − n)! . (132)
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We find an expression reminiscent of the correlation functions of k independent and uni-
formly distributed times [Johansson, 2006, Example 2.6]. However, these tentative corre-
lation functions are not integrable, a problem linked with the fact that the plane waves in
(83) or (98), while allowing simple formal derivations and a clear separation of positive and
negative frequencies, are not actually in L2.

In fact, it is possible to build a quantum field theory of radiation replacing plane waves
by any orthonormal set of L2 solutions ϕ`(r, t) of the classical equation of motion [Fabre
and Treps, 2020]. The positive part of the field can then be decomposed on these modes as
E+
α (r, t) =

∑
` α`ϕ

+
` (r, t), where the + subscript still corresponds to the analytic signal 5

taken in the time variable. The whole framework introduced in Section 3 follows, with lad-
der operators and coherent states now relative to this new basis. Similarly, Equation (128)
stills holds with α corresponding to the coherent state parameters in the chosen modes.
However, in the current example of a single-mode Fock state with k photons, the electric
field (129) becomes E+

α (t) = Nαϕ+(t), where we have dropped the dependence on r as in
(129) since the detector remains at a fixed position. We thus obtain, in lieu of (133),

ρn(t1, . . . , tn) = Nn k!
(k − n)! |ϕ

+(t1)|2 . . . |ϕ+(tn)|2, n ≥ 1. (133)

Since ϕ+ ∈ L2, these are valid correlation functions, namely of the point process formed by
k times t1, . . . , tk drawn independepently with probability density function proportional to
t 7→ |ϕ+(t)|2. �

4.4 Single-photon sources can lead to anti-bunching
The fact that photons emitted by a Gaussian classical field yield bunched detection times
is known as the Hanbury-Brown & Twiss (HBT) effect, and was first evidenced by Han-
bury Brown and Twiss [1958]. While we shall come back to HBT-type experiments in Part
II, we pause here to insist on the fact that bunching is a consequence of considering multiple
independent sources. It is perfectly possible to obtain point processes that anti-bunch with
photons, in the sense that the resulting second correlation function ρ2(x, y) of the point
process is small close to the diagonal {(x, y) : x = y}.

To gain intuition without the quantum overhead, we first recast the HBT effect as a
consequence of interference between classical sources. Consider S independent34 classical
sources, represented by S independent, zero-mean stochastic processes Es(r, t). The total
field is E(r, t) =

∑
s Es(r, t).

As derived in Section 4.1, the first-order coherence function is

G(1)(r′ t′, r t) = E

(∑
s

E−s (r′, t′)
)(∑

s

E+
s (r, t)

)
. (134)

By assumption, all cross-terms in the product have expectation zero, so that

G(1)(r′ t′, r t) =
∑
s

E E−s (r′, t′)E+
s (r, t) :=

∑
s

G(1)
s (r′ t′, r t) . (135)

The total first-order coherence is the sum of the first-order coherence of each source. Quite
generically, the sum will tend to zero when |r − r′| or |t − t′| are large compared to the
so-called spatial coherence scale and correlation time , respectively.

We can also compute physical quantities like the average field intensity, which, in this
simple model, is the sum of the average field intensities of each source,

E I(r, t) = E E∗(r, t)E(r, t) = G(1)(r t, r t) =
∑
s

E (|Es(r, t)|2) =
∑
s

E Is(r, t) . (136)

34For instance, we neglect interatomic coupling through the radiation for atomic sources.
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To go further and be able to discuss bunching or anti-bunching, we need to consider
the second-order coherence function, which characterizes the density of pairs of detection
events; see (118). It writes

G(2)(r′1 t′1, r′2 t′2, r2 t2, r1 t1) (137)

= E

(∑
s

E−s (r′1, t′1)
)(∑

s

E−s (r′2, t′2)
)(∑

s

E+
s (r2,2 t)

)(∑
s

E+
s (r1, t1)

)
. (138)

Using our assumptions of independence and zero mean, this coherence function is a sum
of one-source and two-source terms. We focus on two-source terms. Developing (138), the
contribution of two-source terms to EI(r, t)I(r′, t′) is∑

s6=s′
E (|E+

s (r, t)E+
s′ (r

′, t′) + E+
s (r′, t′)E+

s′ (r, t)|
2) . (139)

At coincidence (r, t) = (r′, t′), both amplitudes are the same and give a contribution
4|E+

s (r, t)E+
s′ (r, t)|2. However, when (r, t) and (r′, t′) differ, a phase appears between the

two contributions and reduces the modulus of the sum. We recover here the bunching effect
of light as an interference effect between pairs of complex amplitudes. Note that S = 2
sources are enough to create this interference.

If we want to observe the opposite effect, a reduction in the rate at coincidence, we
need a single-photon source such as a single two-level atom described by a Hilbert space
C2 excited by a pumping laser field. A natural analogy is that of a gun (the atom) that
needs to be reloaded (by the laser pump) before firing a new bullet (the photon). We shall
see that the need to reload implies anti-bunching for the fired photons.

What we want to compute is once again the second-order coherence between two de-
tections at the same photodetection location r, but delayed by a time τ , and abusively
denoted by G(2)

ρ (r, r, τ). The whole state space of the source, the field and the detector is
then C2 ⊗H ∞ ⊗ C2. An accurate model of the situation would require a proper descrip-
tion of the interaction between the field, the source and the detector but we only give some
elements of the general computation; see [Cohen-Tannoudji, 1979] for details. The new
element here is the interaction of the field and the source and the main technical problem
is to relate the field E+(t) emitted by the source to some of its physical properties. We
ask the reader to admit that E+(t) ∝ σ−(t), where σ−(t) = U†(t)(σ−(0) ⊗ I ⊗ I)U(t).
Physically, this expression means that when the source is excited and then relaxes to its
ground state, it emits light. The second-order coherence of the field can then be written as
a function of the time evolution of a source operator as

G(2)
ρ (r, r, τ) ∝ 〈σ+(0)σ+(τ)σ−(τ)σ−(0)〉ρ

∝ 〈σ+(0)U†(τ)σ+(0)U(τ)U†(τ)σ−(0)U(τ)σ−(0)〉ρ . (140)

Naturally, we assume that the initial state of the atom is excited and the field is in the
vacuum so that ρ = |e〉〈e| ⊗ |0〉〈0|. With σ−(0) = |g〉〈e| we end up with the very simple
form:

G(2)
ρ (r, r, τ) ∝ Tr

((
|g〉〈g| ⊗ |0〉〈0|

)
U†(τ) |e〉〈e|U(τ)

)
∝ 〈e|U(τ)

(
|g〉〈g| ⊗ |0〉〈0|

)
U†(τ)|e〉 . (141)

Two comments are in order. First, we could have also assumed a more general form for
the atomic density matrix which would amount to multiply the above expression by the
probability p(e) for the atom to be initially excited. Its appearance is natural since the
atom has to be excited initially. Second, the physical interpretation of the second-order
coherence (141) is as follows. Starting from a factorized state in which the atom has already
emitted a photon and is thus in its ground state, the system evolves until time τ where we
compute the probability for the atom to be excited again. Equation (141) is the conditional
probability that, knowing that the atom is in its ground state initially, it gets excited at
time τ .
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Figure 3: Experimental measurement of the second-order correlation signal of light coming
from a single quantum dot showing anti-bunching at coincidence (zero time delay). The
traces show different pump laser powers, all of which are multiples of the lowest power P0.
The oscillations at larger delay correspond to so-called Rabi oscillations between the two
energy levels; as the pump power is increased these oscillations increase in frequency. The
solid line is a fit to a model. Figures taken from Flagg et al. [2009].

From there, predicting photon anti-bunching at coincidence is straightforward: near
coincidence τ = 0, the evolution operator is U(0) = 1. Since |e〉 and |g〉 are orthogonal,
this implies

G(2)
ρ (r, r, 0) = 0 . (142)

In other words, at coincidence, the probability to have a second emission is zero. This result
is in fact physically quite intuitive if we think at the single-source level. Indeed, after the
atom emits one photon, it is surely in its ground state and cannot emit a second photon
right away. It has to be re-excited first by the laser source before emitting the second
photon. A typical experimental signal is shown in (3) where we clearly see the coherence
signal going to zero at coincidence. The oscillation pattern is also nicely understood as
Rabi oscillations between the two atomic levels [Degiovanni et al., 2021]. Nowadays, this
anti-bunching is used as signature of a good single photon source, along with a second
major interference effect called Hong-Ou Mandel; see e.g. [Degiovanni et al., 2021].

5 Electrodetection and fermionic coherences
While photonic optics experiments have reached a high level of sophistication [Haroche
and Raimond, 2006, Grynberg et al., 2010], it is only recently that electronic coherences
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have started to be probed, thanks to experimental advances in the manipulation, control
and measurement of small quantum systems in condensed matter and atomic physics. For-
mally, the main difference with bosons comes from the anti-commutation of the associated
ladder operators, resulting in the Pauli exclusion principle and in determinants appearing
in Wick’s Theorem 3. Moreover, while we limit ourselves to free (i.e., non-interacting)
fermions in this section, in realistic physical models fermions are usually subject to the ef-
fects of interaction. These two aspects drastically change the physics compared to photons.
Photons are noninteracting objects with a truly empty reference state, the vacuum. Elec-
trons, on the contrary, are subject to Coulomb interaction and their ground state, called
the Fermi sea and representing a metal at equilibrium, is full of fermions: their vacuum is
not empty.

This Section follows the lines of Section 4.2, explaining how similar computations are
affected by the fermionic character of the particles. In Section 5.1, we remind what a
fermionic field is and discuss how to model the detection of electrons. In Section 5.2,
we discuss the coherence functions of arbitrary orders, and use the second-order one in
Section 5.3 to justify the default anti-bunching character of fermions. In Section 5.4, we
finally discuss the difficulties in recovering classical currents in the way coherent states do
for bosonic fields.

5.1 Modeling electrodetection events
We proceed as for photodetection by first modeling the field and then the detection, so as
to be able to write correlation functions.

5.1.1 Modeling the fermionic field

A fermionic quantum field ψ(r, t) is a collection of operators indexed by space and time
and acting on a Fock space H∞Fermions of fermions; see Section 3.4. The field models an
indefinite number of fermionic particles, like electrons. Similarly to a bosonic field, the
state of a fermionic system is built by acting on a reference state with operators that create
or annihilate fermions in a given state of a basis of the single-particle Hilbert space. When
it is clear that we speak of fermions,35 these ladder operators are usually denoted as c† and
c, and indexed by the label of the single-particle state. Unlike for bosons, the creation and
annihilation operators satisfy the canonical anticommutation relations (48).

In theory, the reference state can be taken to be the vacuum, meaning the complete
absence of any particle, as we did for bosons. But when modeling electronic experiments,
physicists often have to take another reference state, labeled as |F 〉, and called the Fermi
sea. The Fermi sea is meant to represent, for instance, the metal used in experiments,
which is itself full of electrons. In the simplest case, corresponding to temperature zero,
the Fermi sea is a state with one fermion in every energy level of the considered system,
up to some reference level called the Fermi level. For instance, in a system built using
a single-particle Hamiltonian with eigenpairs (ϕn, εn)n∈N, so that c†n creates a particle in
mode ϕn, the Fermi sea is

|F 〉 =
∏

n:εn<εF

c†n |0〉 ,

with the Fermi level εF defined by the experimental setting. Like the vacuum, the Fermi sea
can also be built as the limit of a Gaussian state when β →∞ and the chemical potential
ζ is fixed as a function of εF ; see the computations in Section 6.

Remark 8. Depending on the situation to model, more physical parameters can be in-
troduced to describe the field in addition to the spacetime coordinates. For instance, the
spin of the fermionic excitation could contribute, or more fermionic fields can be used to
describe different channels, as in the description of the quantum Hall effect [Ezawa, 2008].

35a† and a are usually kept for photons, or general particles.
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5.1.2 First-order electronic coherence

As we did for photons, we consider a two-level detector with Hilbert space C2 probing a
fermionic field ψ(r) living in the Hilbert space H∞Fermions.36 The dynamics of the detector is
described here by a fermionic operator d that satisfies the anticommutation rule {d, d†} = 0.
Their interaction, again assumed to be weak, is modeled by Hamiltonian (in the interaction
picture)

HI(t) = d†(t)ψ(r, t) + d(t)ψ†(r, t) , (143)

Note that we place ourselves in the interaction picture, so that the time dependence in
(143) results from the evolution of the free part of the Hamiltonian. The first term of the
interaction Hamiltonian describes the absorption process of an electron that excites the
detector while the second term describes an electron being emitted by the detector. With
the same assumptions as in the photodetection problem, we can compute the excitation
probability of the detector as a function of an electronic correlation function, naturally
called in this context the first-order electronic coherence function, and defined as

G(1e)
ρ (r′ t′, r t) = 〈ψ†(r′, t′)ψ(r, t)〉ρ . (144)

Remark 9. In concrete condensed matter systems, we argued above that the natural
ground state is in fact a Fermi sea |F 〉, contrary to the photonic case where the natural
ground state is the true vacuum |0〉. In such a context, it is then also interesting to consider
the de-excitation probability of the detector, sending back the electron into the system, or
equivalently creating a hole in the Fermi sea. This transition probability is controlled by
the first-order hole coherence function

G(1h)
ρ (r′ t′, r t) = 〈ψ(r′, t′)ψ†(r, t)〉ρ . (145)

Note however that the two types of coherence functions are not independent. Indeed,
thanks to the canonical anticommutation relations, they satisfy the equal time relation

G(1e)
ρ (r′ t, r t) +G(1h)

ρ (r′ t, r t) = δ(r′ − r).

In the following, we work with one of the two coherence functions, and we pick G
(1e)
ρ by

convention.

Example 11 (Free fermions at non-zero temperature T ). The simplest example we can
consider is a set of free fermions. In particular, we consider the free field Hamiltonian
HFF =

∑
k νkc

†
kck, and further assume that the energy level νk = νk only depends on

k = ‖k‖. We prepare the state in the grand-canonical ensemble (60), which we denote here
as ρ = ρβ,ζ . Note that ρ commutes with HFF, so that Schrödinger’s equation yields that ρ
does not change in time: it is an equilibrium state. In particular, the coherence function
G

(1e)
ρ (r′t′, rt) depends only on t − t′. We arbitrarily set t = t′, and write G

(1e)
ρ (r′, r).

Introducing the Fourier transform of the annihilation operator

ψ(r) =
∫
R3
ck ei(k·r) dk/(2π)3,

we can write the first electronic coherence function as

G(1e)
ρ (r′, r) = 〈ψ†(r′)ψ(r)〉ρ =

∫
R6
〈c†k′ck〉ρ ei(r·k−r′·k′) dk

(2π)3
dk′

(2π)3 . (146)

Now note that37

〈c†k′ck〉ρ = fβ,ζ(k)δ(k− k′)
36Actual experimental settings are more intricate to describe than for photons exciting a two-level atom;

Part II will contain examples.
37This computation is standard in physics. At this stage, we take it for granted; but see Equation (181)

for an explicit derivation.
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with k = ‖k‖ where fβ,ζ is the Fermi-Dirac distribution

fβ,ζ(k) = 1
eβ(νk−ζ) + 1

. (147)

We obtain

G(1e)
ρ (r′, r) =

∫
R3
fβ,ζ(k) ei(r−r′)·k dk

(2π)3 . (148)

A practically relevant case is the zero-temperature limit, where the grand-canonical en-
semble state is replaced by the Fermi sea itself |F 〉〈F |. The Fermi-Dirac distribution then
simplifies to the indicator 1B(kF ) of the centered ball B(kF ) of radius kF known as the
Fermi momentum, which is an input of the model38. The first-order electronic coherence
function is then

G
(1e)
|F 〉 (r′, r) = 1

π2‖r− r′‖

∫ kF

0
k sin(k‖r− r′‖) dk

= 1
π2‖r− r′‖

(
sin(kF ‖r− r′‖)
‖r− r′‖2 − kF

‖r− r′‖ cos(kF ‖r− r′‖)
)
. (149)

�

Example 12 (Chiral free fermions at non-zero temperature T ). A second example appears
naturally when discussing electronic coherences. This time, we consider a simple model of
a chiral quantum wire, that is, electrons moving in one dimension and only in a given
direction (e.g. to the right). The Hilbert space is similar to Example 11, C2 ×H∞Fermions,
with H = L2(R) as a single-particle Hilbert space. Rather than describing the Hamiltonian,
a typical shortcut to describe the model is to directly discuss the solutions to Schrödinger’s
equation, or, as we do here for the field operators, how operators evolve in the Heisenberg
picture.

Compared to Example 11, we are not at equilibrium, and thus need to keep track of
the time dependence of the field ψ(x, t). The Fourier variable conjugated to the time t
is denoted by ω, just like the momentum k is conjugated to the position r. Being in
one dimension in this example, the vectors r and k are in fact scalar quantities that we
will denote x and k respectively. To further constrain the model, we posit an equation of
motion for the field, i.e., a relation between its time- and space derivatives39. The non-zero
solutions of this equation are described by a relation between all the Fourier variables, called
a dispersion relation. In our quantum wire model, the dispersion relation is assumed to be
linear, meaning that the eigenvalues of the free field Hamiltonian are given by νk = vF |k|,
with vF the so-called Fermi velocity of the electron in the quantum wire. Finally, we again
assume that the electrons coming into the wire come from a reservoir of particles, whose
state is the grand-canonical ensemble ρ = ρβ,ζ at temperature β = 1/kBT and chemical
potential ζ.

Now that we have all the additional elements for this model, we can proceed to compute
the first-order coherence function. Assuming that the field lives in a large box, from the
Fourier decomposition ψ(x, t) =

∑
k ck ei(kx−νkt), the first-order coherence expands as

G(1e)
ρ (x′ t′, x t) = 〈ψ†(x′, t′)ψ(x, t)〉ρ =

∑
k,k′

〈c†k′ck〉ρ ei(kx−k′x′−(νkt−νk′ t
′)) . (150)

The average value of c†k′ck on the grand canonical state ρ can be shown to be 〈c†k′ck〉 =
δ(k−k′)fβ,ζ(k). In short, the first-order electronic coherence is simply a Fourier transform
of the Fermi-Dirac distribution. Doing the change of variable to ω, we have

G(1e)
ρ (x′ t′, x t) =

∫
R

1
eβ(~ω−ζ) + 1

ei(x−vF t−(x′−vF t′)) ω
vF

dω
2πvF

. (151)

38Equivalently, we could have specified the chemical potential ζ to a certain value ζF , called the Fermi
chemical potential. Moreover, kF is related to the Fermi velocity vF or the Fermi energy νF by the free
Hamiltonian so these too can be used as inputs of the model.

39Again, this is a shortcut to avoid describing the Hamiltonian and Schrödinger’s equation.
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Figure 4: Representation of a simple model of a quantum wire where fermions are sent from
a reservoir at equilibrium (grand-canonical ensemble) into a one-dimensional wire where
they can travel and are probed by an electro-detection device. Detection probabilities are
given by electronic coherence functions.

As it is traditionally done in this field, we will use a rescaled time variable t − x/vF as
t. This simplification between time and space is very special to the one-dimensional case
thanks to the ballistic propagation of the electron. We then write the simpler expression

G(1e)
ρ (t′, t) =

∫
R

1
eβ(~ω−ζ) + 1

ei(t′−t)ω dω
2πvF

. (152)

As such, the integral is divergent when t = t′ and has to be regularized. This divergence has
a physical origin: the linear dispersion relation posits a Fermi sea with an infinite number
of fermions with negative energy. In practice however, the system has a finite size and the
Fermi sea has a finite bandwidth. The strategy is then to introduce a small parameter
ε > 0, which corresponds to the inverse of that bandwidth, and compute the integral with
the substitutiont− t′ → t− t′ + iε. With these modifications, the residue theorem gives

G
(1e)
F (t′, t) = i

2πvF τth

e−i ζ~ (t−t′)

sinh
(
t−t′+iε
τth

) , (153)

where τth = ~β/π is called the thermal coherence time. A particular case to have in mind is
the zero-temperature limit of the coherence function. It can in fact be computed directly as
the Fourier transform (in the sense of distributions) of the zero-temperature Fermi-Dirac
energy density distribution f0,ζ(ω) = Θ(ζ − ω), where Θ is the Heavyside function. It
reads40

G
(1e)
F (t′, t) = i

2πvF
e−i ζ~ (t−t′)

t− t′ + iε . (155)

�

5.2 Correlation between electrodetection events
The first-order coherence gives information about the system at the one-particle level. If
we want to probe two-particle or higher levels of information like the correlations between
electrodetection events, we have to study the coherence functions of higher order. They are
defined similarly as the photonic coherences of Section 4. For instance, the second-order
electronic and hole coherence functions are defined as

G(2e)
ρ (r′1 t′1, r′2 t′2, r2 t2, r1 t1) = 〈ψ†(r′1, t′1)ψ†(r′2, t′2)ψ(r2, t2)ψ(r1, t1)〉ρ (156a)

G(2h)
ρ (r′1 t′1, r′2 t′2, r2 t2, r1 t1) = 〈ψ(r′1, t′1)ψ(r′2, t′2)ψ†(r2, t2)ψ†(r1, t1)〉ρ . (156b)

40The +iε notation is a shorthand notation for the more rigorous distribution

lim
ε→0

1
x+ iε

= P
( 1
x

)
− iπδ(x) . (154)
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This straightforwardly generalizes to higher orders. Using the shorthand notation x = (r, t)
for the spatio-temporal coordinates, the n−th-order electronic and hole coherences are

G(ne)
ρ (x′1, · · · , x′n, xn, · · · , x1) = 〈ψ†(x′1) · · ·ψ†(x′n)ψ(xn) · · ·ψ(x1)〉ρ (157a)

G(nh)
ρ (x′1, · · · , x′n, xn, · · · , x1) = 〈ψ(x′1) · · ·ψ(x′n)ψ†(xn) · · ·ψ†(x1)〉ρ . (157b)

Example 13 (Continuation of Example 11). The grand canonical ensemble ρ = ρβ,ζ for
free fermions is Gaussian, so that Theorem 3 (Wick’s) applies and we obtain a 2 × 2
determinant

G(2e)
ρ (r′1, r′2, r2, r2) = 〈ψ†(r′1)ψ†(r′2)ψ(r2)ψ(r1)〉ρ (158a)

=
Wick

G(1e)
ρ (r′1, r1)G(1e)

ρ (r′1, r1)−G(1e)
ρ (r′1, r2)G(1e)

ρ (r′2, r1) . (158b)

The minus sign is of course a consequence of the fermionic character of the electronic field.
In fact, we can already see at this level the repulsion between different fermions. Indeed,
if we look for instance at the diagonal part r′1 = r1 and r′2 = r2, in the zero temperature
limit, we have

G
(2e)
|F 〉 (r1, r2, r2, r1) ∝

(
1−

∣∣∣g(1e)
|F 〉 (‖r1 − r2‖)

∣∣∣2) , (159)

where g(1e)
|F 〉 (‖r1 − r2‖) is the first-order electronic coherence function (149) normalized to

unity. We clearly see that when r1 = r2, the second-order coherence function is exactly
zero: two fermions cannot be at the same place at the same time. This is another avatar
of the general anti-bunching effect of fermionic systems. �

Example 14 (Second-order coherence of N excitations). To gain some intuitive under-
standing of the information content of the second-order coherence function, let’s continue
Example 12 of a quantum wire. Remember that in this simple one-dimensional model,
time and space coordinates are identified thanks to the linear dispersion relation and that
we are looking for the coherence functions at the fixed position of the detector (position
that we omit in the arguments to simplify the notations). Consider a state containing two
electrons above the true vacuum |0〉 (not the Fermi sea) in two orthogonal wavefunctions
|ϕ1, ϕ2〉 = ψ†[ϕ1]ψ†[ϕ2] |0〉, where ψ[ϕ] =

∫
ψ(t)ϕ(t)dt. Note again that wavefunctions,

strictly speaking functions of x and t, are here functions of x − vF t only because of the
linear dispersion relation. Since we further consider a fixed position here (that of the
detector), we simply write t 7→ ψ(t) and t 7→ ϕ(t).

Since the true vacuum is a Gaussian state, we can apply Wick’s Theorem 3 to the
second-order coherence function

G
(2e)
|ϕ1,ϕ2〉(t

′
1, t
′
2, t2, t1) =

∫
R4
〈0|ψ(y′1)ψ(y′2)ψ†(t′1)ψ†(t′2)ψ(t2)ψ(t1)ψ†(y2)ψ†(y1)|0〉

ϕ∗1(y′1)ϕ∗2(y′2)ϕ2(y2)ϕ1(y1) dy1dy′1dy2dy′2
= ϕ∗1(t′1)ϕ∗2(t′2)ϕ1(t1)ϕ2(t2) + ϕ∗1(t′2)ϕ∗2(t′1)ϕ1(t2)ϕ2(t1)
− ϕ∗1(t′2)ϕ∗2(t′1)ϕ1(t1)ϕ2(t2)− ϕ∗1(t′1)ϕ∗2(t′2)ϕ1(t2)ϕ2(t1) . (160)

We see that the form of this coherence contains the expected anti-symmetries coming with
fermionic statistics. It can be written even more explicitly by introducing the antisymm-
metrized wave-function

Φ12(t1, t2) = det
[
ϕ1(t1) ϕ2(t1)
ϕ1(t2) ϕ2(t2)

]
. (161)

The second-order electronic coherence function then reads

G
(2e)
|ϕ1,ϕ2〉(t

′
1, t
′
2, t2, t1) = Φ∗12(t′1, t′2)Φ12(t1, t2) . (162)
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ϕe1 · · · ϕek · · · ϕeN
G(1e) ϕ∗e1

ϕe1 · · ·
∑k
p=1 ϕ

∗
epϕep · · ·

∑N
p=1 ϕ

∗
epϕep

...
...

. . .
...

G(ke) 0 Φ∗1,...,kΦ1,...,k
∑
i1<···<ik Φ∗i1,...,ikΦi1,...,ik

...
...

. . .
...

G(Ne) 0 · · · 0 · · · Φ∗1,...,NΦ1,...,N

Figure 5: Table showing the structure of the electronic coherence functions of order up to
N in the presence of one up to N fermions in some given wavepackets.

The second-order coherence function is thus essentially the full many-body wavefunction
of a two-particle state.

When more than two fermions are present, the second-order coherence function only
keeps track of two-particle terms. To see this, consider a state containing N electrons
above the vacuum in mutually orthogonal wavepackets |ψN 〉 = ψ†[ϕ1] . . . ψ†[ϕN ] |0〉. A
straightforward, but cumbersome, application of Wick’s theorem gives

G
(2e)
|ψN 〉(t

′
1, t
′
2, t2, t1) =

∑
k<l

Φ∗kl(t′1, t′2)Φkl(t1, t2) . (163)

Informally, the second-order coherence function contains only the “two-particle physics”.
�

Example 15 (kth-order coherence of N excitations). Continuing the quantum wire ex-
ample, we can understand its k−particle physics by computing the kth-order coherence
function. Consider again N fermions prepared in mutually orthogonal wavepackets |ψN 〉 =
ψ†[ϕ1] . . . ψ†[ϕN ] |0〉. By Wick’s theorem, the kth-order coherence function is

G
(ke)
|ψN 〉(t

′
1, · · · , t′k, t1, · · · , tk) =

∑
i1<···<ik

Φ∗i1,...,ik(t′1, · · · , t′k)Φi1,...,ik(t1, · · · , tk) , (164)

with

Φi1,...,ik(t1, · · · , tk) = det

ϕi1(t1) · · · ϕik(t1)
...

. . .
...

ϕi1(tk) · · · ϕik(tk)

 . (165)

In particular, the N -th coherence function is

G
(Ne)
|ψN 〉(t

′
1, · · · , t′N , t1, · · · , tN ) = Φ∗1,...,N (t′1, · · · , t′N )Φ1,...,N (t1, · · · , tN ) . (166)

As expected, the N -th coherence function is essentially the full many-body wavefunction
of a quantum state with N excitations in mutually orthogonal wavefunctions. �

To see the correlation functions of determinantal point processes appear, one can use
an ideal broad-band detector as in Section 5. In particular, imagine that we could prepare
N electrons in mutually orthogonal wavepackets ϕ1, . . . , ϕN , and set up an ideal detector
as we did for photons in Section 4, resulting in a point process with correlation functions
given by the diagonal of G(ne)

|ψN 〉,

ρn(t1, . . . , tn) = G
(ne)
|ψN 〉(t1, · · · , tn, t1, · · · , tn), (167)

= |Φ1,...,N (t1, · · · , tN )|2 (168)
= det [K(ti, tj)]ni,j=1 , (169)
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where

K(t, s) =
N∑
i=1

ϕei(t)ϕ∗ei(s). (170)

We recognize a DPP with (projection) kernel K, as introduced in Section 2.4.

Remark 10. To illustrate what reference computations different scientists may have in
mind, note that, following a physics viewpoint, we computed in Examples 14 and 15 coher-
ence functions applying Wick’s theorem, one after the other, starting from the lower ones.
Probabilists and statisticians are more used to derive correlation functions starting from
the definition of the point process. Had we started by defining the DPP with kernel K in
(170), and asked for the diagonal of, say, the second coherence function in (14), it would
have been enough to notice, from the definition (184) of the correlation functions of a DPP,
that

ρ2(t1, t2) = det
[
K(t1, t1) K(t1, t2)
K(t2, t1) K(t2, t2)

]
. (171)

By definition (170) of K,

ρ2(t1, t2) = det
[
ϕ1(t1) . . . ϕN (t1)
ϕ1(t2) . . . ϕN (tN )

]ϕ
∗
1(t1) ϕ∗1(t2)

...
...

ϕ∗N (t1) ϕ∗N (t2)

 . (172)

The diagonal version of (163) then results from the Cauchy-Binet formula, which allows
rewriting ρ2(t1, t2) as a sum of 2× 2 determinants; see e.g. [Kulesza and Taskar, 2012].

5.3 Electron anti-bunching
For photons, we saw that HBT-type experiments can reveal both a bunching effect (for
classical light beams) and an anti-bunching effect (for quantum beams), depending on the
source.

A similar experimental setup as the one pictured for photons in Section 4 can be imag-
ined for fermionic excitations. We defer the discussions on how to properly do this experi-
mentally with fermionic atoms or single electronic excitations to Part II, but we can already
foresee from either DPP constructions like the one with kernel (170), or directly from the
coherence functions of Section 5.2 that fermions will exhibit anti-bunching detection times.
Unlike bosons, this is a direct consequence of the anti-symmetric statistic of fermions, and
does not qualitatively change when introducing source models.

If the arrival times follow a DPP with an Hermitian kernel like (170), we saw indeed
in Section 2.4 that samples tend to spread regularly, and form less clusters than a Poisson
point process. Alternately, this statistical anti-bunching effect can be directly seen from the
coherence funtions. Indeed, as for photons, the HBT signal is controlled by the second-order
coherence function at the position r of the detector,

G(2e)
ρ (r, t2, t1) = 〈ψ†(r, t1)ψ†(r, t2)ψ(r, t2)ψ(r, t1)〉ρ . (173)

At coincidence τ = t2 − t1 = 0, because the CAR (48) impose ψ(r, t1)2 = 0, we obtain

G(2e)
ρ (r, t, t) = 0 . (174)

If G(2e)
ρ is smooth, then we expect few coincidences at small time differences.

As a final remark, we insist that bunching or anti-bunching of quantum excitations is not
a signature of the statistics of the elementary excitations. While it is a consequence of the
statistics for fermions, bosons also anti-bunch when we add to the model a single-excitation
source. Hence, it is better to think of anti-bunching as a signature of the quantum nature
of the fundamental excitation.
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5.4 Recovering a classical current is not as easy as for bosons
For photons, coherent states allowed for relating the quantum formalism to classical fields;
see Section 4. Describing a classical electric current or, more generally, a classical theory
of fermionic fields, is more difficult. In this section, we examine reasons why it is not
possible to build a set of states having all the properties that make bosonic coherent states
handy. First, even considering a single mode, bosonic coherent states are superpositions of
arbitrary numbers of bosons, which allows for having very small fluctuations around the
average boson number. Indeed the number of photons in the mode is a Poisson variable
with arbitrarily large parameter, and thus arbitrarily small relative variance. Such small
fluctuations are not achievable with fermions, because it is impossible to have more than
one fermion per mode.

A second difference is that the eigenvalue of a tentative fermionic coherent state of
the fermionic annihilation operator cannot be a complex number. Indeed, were |α〉 an
eigenstate of the fermionic annihilation operator a, then the CAR (48) would imply that
its eigenvalue α satifies α2 = 0. Moreover, in the many-mode case, a two-mode coherent
state |α1, α2〉 would satisfy the anti-commutation relation a1a2 |α1, α2〉 = α1α2 |α1, α2〉 =
−a2a1 |α1, α2〉 = −α2α1 |α1, α2〉.41 The eigenvalues of a fermionic coherent state thus
cannot be complex numbers.42

A more subtle difference is that fermionic fields cannot have an observable average
amplitude,43 unlike bosonic fields prepared in a coherent state.44 This impossibility is
fundamental and is related to superselection rules [Wick et al., 1952]. For concreteness,
consider a general fermionic state |ϕ〉 = α |0〉 + β |1〉 with |1〉 = ψ† |0〉, where ψ† is any
fermionic creation operator. Now, physicists usually impose symmetries on their models,
which implies that some states should yield the same measurements. In particular, one
would like to model the fact that rotating the physical system around any axis by an angle
of 2π should not modify the law of measurements. For fermions, the so-called spin-statistics
theorem of relativistic quantum field theory tells us that this kind of rotations should be
modelled by the action of the half-integer representations of the group SU(2). For instance,
in the representation of order 1/2, a rotation of angle 2π corresponds to multiplying the
state by eiπN , where N is the number operator. Applied to |ϕ〉 = α |0〉+ β |1〉, this yields
|ϕ′〉 := eiπN |ϕ〉 = α |0〉 − β |1〉, where the minus sign comes from the fact that 1 is an
odd number. However, since such a rotation should not correspond to any change of the
system, we impose that |ϕ′〉 = |ϕ〉 up to a phase, and consequently either α or β is zero.
Thus |ϕ〉 is in fact not a superposition, implying that 〈ψ〉|ϕ〉 = 0. More generally, the parity
superselection rule imposes that a given state can only consist of superpositions of states
with the same parity of the number of fermions. Therefore, a single fermionic annihilation
operator can only have a vanishing average.45

For all these reasons, defining a classical regime with fermionic fields is an open question.
This actually raises deep conceptual questions when fermions are involved. For instance, it
is not clear what is meant by a classical electronic current if we start from a pure quantum
description of the electronic current.

41This result is independent on whether one assumes that αi commutes or anti-commutes with aj .
42It is however possible to define fermionic coherent states in terms of anti-commuting variables (elements

of an exterior algebra) by the action of the analogue of a displacement operator [Berezin, 1966, Chapter
1]. While they are very useful objects to define and use (especially to write path integrals), they do not
possess the nice set of properties of bosonic coherent states that allow for deriving coherence functions.

43Just like a for photons, ψ is not Hermitian, and thus not an observable, stricto sensu. Yet, for a, the
average value corresponds to the intensity of the field, and is thus experimentally accessible as a statistical
average. It thus makes sense to wonder whether the average value of ψ can be non-zero.

44This property can actually be used as a definition of bosonic coherent states [Cohen-Tannoudji et al.,
2019a].

45This generalises beyond physically realistic fermions of half-integer spins, and applies to non-relativistic
quantum mechanics, see for instance [Johansson, 2016, Szalay et al., 2021].
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6 Wrapping up and open questions
To conclude this Part I, we first show how to use the formalism of Sections 2 to 5 to write
a generic permanental or determinantal point process as the detection process of a system
of free bosons or fermions, respectively. Second, we propose a list of questions, from simple
ones to open problems, that are raised by the connections between point processes and
physical measurements in quantum field theory. Third, we announce the sections that are
to appear in Part II of this document.

6.1 From a point process to free particles
In Sections 4 and 5, we obtained some point processes, including permanental and de-
terminantal point processes, by modeling the detection of physical particles. A natural
question is whether all permanental and determinantal point processes arise in this form.
We now show that, at least formally and under weak assumptions on the kernel, the answer
is yes. More precisely, let µ be a Borel measure on a complete metric space X, and (ϕi) an
orthonormal family in L2(µ). Consider the kernel

K(x, y) :=
∑
i

λiϕi(x)ϕi(y), (175)

where, for all i, λi ∈ [0, 1] if η = −1, and λi ∈ R+ if η = +1. We now build a Fock
space, a quantum state, and a measurement model that together lead to a permanental or
determinantal point process with K as its kernel. Let η = ±1 depending on whether one
wants a permanental or a determinantal point process.

Building a Fock space. Build the Fock space like in Section 3.4, using the basis (ϕi) as
single-particle basis and the symmetrization property dictated by η. Consider the operator

H =
∑
i

νia
†
iai,

where (νi) is left as a free parameter for now, and will later be chosen in relation to the
spectrum of K. We think of H as a Hamiltonian.

A Gaussian density matrix. Let ζ > 0, and define the so-called grand canonical
ensemble as in (60) by the Gaussian density matrix

ρ = e−β(H−ζ
∑

i
a†
i
ai)

Zη
= 1
Zη

e−β
∑

i
(νi−ζ)a†

i
ai .

We explicitly write the dependence of Z to η, as bosons and fermions lead to different
normalization constants. More precisely, since the Fock states |n〉 = |n1, n2, . . .〉 are eigen-
vectors of all the number operators a†iai in the exponential, the normalization constant
is

Zη = Tr e−β
∑

i
(νi−ζ)a†

i
ai =

∑
n
〈n|e−β

∑
i
(νi−ζ)a†

i
ai |n〉 =

∑
n

e−β
∑

i
(νi−ζ)ni . (176)

For bosons, we sum over all sequences of integers with only p non-zero components, and
this for all p ≥ 1. In particular,

Z1 =
∏
p∈N

∑
n∈N

e−β(νp−ζ)n =
∏
p∈N

1
1− e−β(νp−ζ) , (177)

where we implicitly assumed νp − ζ > 0 for all p, for the geometric sums in (177) to
converge.46 For Z1 to be finite, we further need a condition on the (νp), such as∑

p

log
(

1
eβ(νp−ζ) − 1

)
<∞. (178)

46Note that for a given p, the limit νp → ζ corresponds to the onset of Bose-Einstein condensation, where
a macroscopic number of bosons start to occupy the state p.
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For fermions, we only sum in (176) over all sequences in {0, 1}N that have p non-zeros
components, for all sizes p ≥ 1, so that

Z−1 =
∏
p∈N

∑
n∈{0,1}

e−β(νp−ζ)n =
∏
p∈N

(
1 + e−β(νp−ζ)

)
. (179)

Guaranteeing convergence is easier than for bosons, e.g. assuming that
∑
p(νp − ζ) con-

verges.
Now that we have simple expressions for Zη, η = ±1, we can use the partition function

trick47 to compute the expected number of particles in mode i,〈
a†iai

〉
ρ

= 1
Zη

Tr a†iaiρ (180a)

=
∑
n nie

−β
∑

j
(νj−ζ)nj∑

n e−β
∑

j
(νj−ζ)nj

(180b)

= − 1
β

∂

∂νi
logZη(ν). (180c)

Using (177) and (179) in turn, this yields〈
a†iai

〉
ρ

= 1
eβ(νi−ζ) − η

, (181)

which is the so-called Fermi-Dirac distribution48 for η = −1 and the Bose-Einstein distri-
bution for η = 1. Note that along the lines of Lemma 2, one can show that 〈a†iaj〉ρ = 0 if
i 6= j.

A measurement basis. Now, consider the alternative basis |x〉, x ∈ X, with annihilation
operator

ψ(x) =
∑
i

〈x, ϕi〉ai;

see (52). We think of |x〉 as the position basis, so that we write 〈x, ϕi〉 = ϕi(x), and we
actually mean a generalized basis if necessary, e.g., if X = Rd; see Section 3.1. In the basis
|x〉, the state ρ rewrites

ρ = 1
Z

exp
(
−β
∑
i

(νi − ζ)
∫
ϕi(x)ϕi(y)ψ†(x)ψ(y)dµ(x)dµ(y)

)
.

Wick’s theorem applies. By Theorem 3, see also Example 5, for all n ≥ 1, we obtain
the coherence functions 〈

ψ†(x1)ψ(x1) . . . ψ†(xn)ψ(xn)
〉

= fη(K),

where
K =

(〈
ψ(xi)†ψ(xj)

〉
ρ

)
1≤i,j≤n

and fη is the determinant if η = −1, and the permanent if η = 1. If the framework is
consistent, an ideal detection experiment that measures all particles in ρ in the basis |x〉
should thus correspond to a permanental/determinantal point process on X, with kernel〈

ψ†(x)ψ(y)
〉
ρ

=
∑
i,j

ϕi(x)ϕj(y)
〈
a†iaj

〉
ρ
. (182)

47Statisticians might say the score function trick.
48The word distribution is used here in a loose sense.
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This is precisely K in (175), provided that we choose νi so that

λi = (eβ(νi−ζ) − η)−1. (183)

This is achieved by setting

β(νi − ζ) = log
(

1 + ηλi
λi

)
.

Note that when η = 1, one can check that the corresponding permanental point process
exists by an adaptation of Macchi’s Cox process construction of Section 2.3. When η = −1,
the determinantal point process exists by the Macchi-Soshikov theorem; see Section 2.4.

Obtaining any kernel. We conclude with several comments. First, inverting (181) al-
lows us to obtain any spectrum (λi) with λi ∈ (0, 1) for fermions, and λi > 0 for bosons.
With the right assumptions, projection kernels for DPPs can also be obtained, but as a
limit as β → +∞, i.e. when the temperature 1/β goes to zero. The corresponding projec-
tion operator is onto the span of the ϕis for which νi < ζ. In other words, the chemical
potential controls the rank of the limiting projection operator. Note that for DPPs, uniform
convergence of the kernel on compact subsets of X implies convergence of the point process
in a natural sense; see e.g. [Anderson et al., 2010, Section 4.2.8]. Another way to formally
obtain projection DPPs is as a ground state; see Section 3.3.2.

Second, the construction in this section, with a state ρ and measuring correlators, is
as close as one can hope for a Cox process-like decomposition of determinantal point pro-
cesses. Loosely speaking, there is a Gaussian object above determinantal point processes
with self-adjoint kernels, but it is a Gaussian density matrix, i.e., an operator, not a func-
tional process.49 Third, while we restricted here to Hermitian kernels, thus corresponding
to an observable quantity, the Hermitian assumption does not play a major role in the
mathematical framework. Furthermore, non-Hermitian free fermions may not be so re-
moved from physics, see e.g. [Ashida et al., 2020] for a recent survey and [Guo et al., 2021]
for a formal example.

On physical realizability. Finally, we have seen in Section 5 examples of experimentally
realizable DPPs, in the sense that the corresponding idealized experimental setups can, in
principle, be built in a physics laboratory. We will see in Part II concrete examples of DPP
samples obtained from lab experiments. Yet, the generic construction given in Section 6.1
remains rather theoretical, as it is not clear how to build an experimental setup leading to
any given DPP, that is, any choice of underlying space (X, µ) and any valid kernel K. One
might be able to treat X = Rd for d up to 3 by associating mathematical coordinates to
space-coordinates. Going slightly beyond 3 might be doable using either time or additional
physical degrees of freedom (“pseudo-dimensions”) as the next dimensions, but it is unclear
to physicists where fermions in arbitrary dimension would be needed as a model. Outside
the problem of dimensionality, fixing the spectrum of the Hamiltonian to an arbitrary
sequence can also be experimentally difficult.

6.2 Going further: from simple to open questions
Many natural questions come to mind when one looks back at the correspondence between
permanental point processes and free bosons, or between DPPs and free fermions.

6.2.1 A quantum state is more than a point process

A point process is the result of observing a state ρ with a detector, but the state itself
contains a lot more information. For instance, the correlation functions that we identified in

49Alternatively, the formulation in terms of operators can be replaced by a “Gaussian functional integral”
over complex commuting (anti-commuting) fields for permanents (determinants). The connection with
Gaussian measures is then more direct, at the price of subtle mathematical difficulties. Furthermore, in
the case of fermions, this implies generalising the notion of integration to variables that anti-commute, see
for instance [Berezin, 1966, Chapter 1].
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Sections 4 and 5 are only the diagonals of the corresponding coherence functions. Relatedly,
depending on the measurement basis, a single state ρ can yield many point processes.

As a concrete example, consider for simplicity fermions living in X = {1, . . . , N}, µ the
counting measure on X, and the Hamiltonian

H =
N∑
i=1

νia
†(ϕi)a(ϕi)

acting on the corresponding Fock space. By (182), measuring in an orthonormal basis (vi)
of CN , with V = (〈ϕi|vj〉)i,j , we obtain the DPP with kernel matrix

K =
(∑

k

λk 〈ϕk|vi〉 〈vj |ϕk〉

)
1≤i,j≤N

= Vdiag(λk)V†,

where (λi) is given by (183). All Hermitian kernels with spectrum (λk) can thus be obtained
from the same Hamiltonian, just changing the measurement basis.

At one extreme, measuring in the original basis used to build the Hamiltonian, i.e.
taking V = I, leads to a diagonal kernel matrix. This means that the corresponding point
process is a set of independent Bernoulli samples for fermions, and independent geometric
samples for bosons [Hough et al., 2006]. Correlation appears when the observation basis
(vk) and the creation basis (ϕk) do not match. For instance, let vk = ϕk for k = 1, . . . , N−2,
but apply a special unitary transformation to the last two vectors. That is, for α, β ∈ C
such that |α|2 + |β|2 = 1, complete the observation basis with

vN−1 = αϕN−1 − βϕN and vN = βϕN−1 + αϕN .

The resulting permanental or determinantal point process, call it γα,β , has a block diagonal
kernel

Kα,β =


λ1

. . .
λN−2

λN−1|α|2 + λN |β|2 (λN−1 − λN )αβ
(λN−1 − λN )αβ λN−1|β|2 + λN |α|2

 .

Note that since the diagonal of Kα,β varies with (α, β), the first correlation function of the
point process is also altered. For instance, the marginal probability that item N−1 belongs
to the point process is λN−1|α|2+λN |β|2. If λN−1 ≥ λN , then as soon as β 6= 0, the marginal
probability of item N − 1 occurring decreases. Note that for η = −1, though, the average
number of points in γα,β remains constant, as the trace of Kα,β does not depend on (α, β).
Meanwhile, the second correlation function ρ2,θ(N − 1, N) is the permanent/determinant
of the trailing block of Kα,β , namely

ρα,β2 (N − 1, N) = |α|2|β|2
(
λ2
N−1 + λ2

N + η(λN−1 − λN )2)+
(
|α|4 + |β|4

)
λN−1λN .

For the sake of illustration, we focus now on η = −1, in which case

ρα,β2 (N − 1, N) = λN−1λN
(
|α|2 + |β|2

)2 = λN−1λN .

The probability of co-occurrence of items N − 1 and N thus does not depend on α and β,
while the product of their marginal probabilities of occurrence does change: we have thus
introduced correlation between the events {N − 1 ∈ γα,β} and {N ∈ γα,β}. Because γα,β
is a DPP with Hermitian kernel, this correlation is nonpositive.

To go further, an interesting question would be to relate the different ways to quantify
repulsiveness in a DPP [Biscio and Lavancier, 2016, Møller and O’Reilly, 2021] to properties
of the bases used in the construction of free fermions.
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6.2.2 A DPP from bosons in a non-Gaussian state

Another example that illustrates the subtleties of associating correlation functions to states
is that (non-Gaussian) density matrices corresponding to interacting (i.e., non-free) bosons
can give rise to a DPP for some observables.

One example is the Tonks-Girardeau gas [Girardeau, 1960], which consists of impenetra-
ble (statisticians would say hardcore) bosons in X = R. The very strong interactions prevent
two bosons to be at the same position, which is reminiscent of the Pauli exclusion principle
for fermions. In particular, one considers the usual bosonic field operators a(x), a†(y), sat-
isfying the canonical commutation relations as long as x 6= y, but the hardcore constraint
is enforced by requiring that a(x)2 = a†(x)2 = 0 and [a(x), a†(x)]+ = 1. These additional
constraints are the results of adding a large penalty term to the Hamiltonian at coincidence.

Now, there actually is a transformation, called the Jordan-Wigner transformation, that
maps these hardcore bosons onto free fermions [Lieb et al., 1961]. Concretely, one can write
a(x) = S(x)ψ(x) and a†(x) = ψ†(x)S†(x), where ψ(x), ψ†(x) obey the standard canonical
anti-commutation relations, and S(x) is a unitary operator called a string operator, which
allows for preserving the commutation relations of the bosonic operators.50

By construction, all observables that are built from number operators51 are the same
as for free fermions, since a†(x)a(x) = ψ†(x)ψ(x), and the correlation functions of an
ideal detection experiment are those of a DPP with kernel 〈ψ†(x)ψ(y)〉. However, the
coherence function 〈a†(x)a(y)〉 = 〈ψ†(x)S†(x)S(y)ψ(y)〉 is very different from that of the
free fermions. For instance, the largest eigenvalue of the operator with kernel 〈a†(x)a(y)〉
evaluated in a pure state typically scales like the square root of the number of particles;
see e.g. Forrester et al. [2003] for investigations on the ground state properties of a Tonks
gas in a harmonic trap.

6.2.3 Interacting field theories and point processes

The relationship between, on one side, permanental and determinantal point processes, and,
on the other side, bosonic and fermionic quantum field theory, is based on free models, i.e.,
with a quadratic Hamiltonian in the fields. However, in physical models, Hamiltonians
are rarely quadratic, but take into account interactions between the particles. For a given
Hamiltonian, success is achieved when it is possible to approximate the coherence functions
of the field, which correspond to concrete experimental measurements. The main issue is
that Wick’s theorem does not apply.

There are interacting Hamiltonians that still yield closed-form correlation functions for
the underlying ideal detection experiments. Such systems are usually called integrable by
physicists. For instance, the Calogero-Sutherland model is a one-dimensional system of
interacting fermions, for which ideal detection leads to well-known point processes, called
β-ensembles in random matrix theory; see e.g. [Forrester, 2010, Chapter 11] as well as
[Stéphan, 2019, Smith et al., 2021].

Yet, most interacting systems are not integrable. In Sections 4 and 5, we have used
simple perturbation-theoretic arguments like Assumption 5 to work with the interaction
Hamiltonian. There is now a significant and sophisticated toolbox to approximate coherence
functions in the presence of interaction. Key tools include mean-field methods [Goldenfeld,
2018, Chapter 3], Feynman diagrams [Folland, 2008, Chapter 6] and renormalisation [Fol-
land, 2008, Chapter 7]. At a high level, it would be interesting to investigate what these
methods say about point processes. In words, one of the lessons of quantum field theory is
that it is possible, even in the presence of interaction, to get “close” to a free situation in
some regimes. Does this imply approximation results for the sophisticated point processes
behind models with interaction? Conversely, can we use the mathematical technology of
DPPs to perform non-trivial calculations for many-body problems?

Moreover, a central concept in quantum field theory is that of universality, i.e., the
fact that many different interacting models behave, in a certain regime usually qualified

50In particular, it satisfies [S(x), S(y)] = 0 and S(x)ψ(y) + sign(x− y)ψ(y)S(x) = 0.
51Usually rather called density operators when we use a generalized basis like here.
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as the low-energy regime, essentially in the same way. Put differently, the detailed form of
the interactions are irrelevant to understand this low-energy regime, only the dimension of
the space and the symmetries of the model usually matter. The archetypal phenomenon
illustrating this is phase transitions [Goldenfeld, 2018]. Does this universality connect with
similar results for point processes, such as those obtained for the eigenvalues of random
matrices [Anderson et al., 2010]?

6.2.4 Constructive arguments for point processes

The fermionic system “above” a DPP can help address fundamental questions on DPPs,
about their invariance or their construction. For instance, a single DPP corresponds to
many kernels. In particular, for any f , the kernel

x, y 7→ f(x)
f(y)K(x, y)

yields the same correlation functions (184) as K. Without strong assumptions on the
kernel, it has proven difficult to find all the transformations of a kernel that leaves a DPP
invariant. It would be interesting if the fermionic framework helped us to understand these
invariances; see e.g. recent partial results by Olshanski [2020].

As another example, generalizing permanental and determinantal point processes, one
can define α-DPPs as having correlation functions

ρk(x1, . . . , xk) = detα
[
K(xi, xj)

]k
i,j=1

, k ≥ 1, (184)

where, for an n× n matrix A = ((aij)),

detα(A) :=
∑
σ∈Sn

αn−ν(σ)
n∏
i=1

aiσ(i).

Shirai and Takahashi [2003] have studied the existence of α-DPPs for α ∈ [−1, 1], where α =
−1 corresponds to a DPP, and +1 to a permanental point process. Some α-DPPs appear
naturally when marginalizing a projection DPP with a separable kernel over coordinates
[Mazoyer et al., 2020]. It is a natural question whether α-DPPs correspond to any physical
system of particles. As a partial affirmative answer, Cunden et al. [2019] give a limit
procedure to construct certain α-DPPs out of fermionic processes.

In the same vein, can we build point processes from particles with more exotic commu-
tation rules for their ladder operators? A natural physical example is anyons [Ezawa, 2008,
Chapter 8], for which a phase factor appears for each transposition.

The links of fermions to Pfaffian point processes, another generalization of DPPs are
also a promising research direction [Koshida, 2021], as well as the point processes behind
quasi-free states [Bach et al., 1994, Lytvynov, 2002, Lytvynov and Mei, 2007, Olshanski,
2020], namely (possibly non-Gaussian) states to which Wick’s theorem still applies.

6.3 A teaser for Part II
This manuscript is intended to become Part I of a monograph. In Part II, we shall present
selected topics at the intersection of point processes and quantum optics, using the vocab-
ulary of Part I. We will describe landmark experimental measurements of HBT signals,
with both photons and (bosonic and fermionic) atoms. We will discuss the application of
determinantal point processes to the study of non-interacting trapped fermions in statis-
tical physics. We will show how the formalism of quantum field theory can help to prove
fundamental results on point processes appearing in combinatorics. Finally, we will discuss
electronic quantum optics and its interactions with signal processing.
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G. Grynberg, A. Aspect, and C. Fabre. Introduction to quantum optics: from the semi-
classical approach to quantized light. Cambridge university press, 2010.

Y.-B. Guo, Y.-C. Yu, R.-Z. Huang, L.-P. Yang, R.-Z. Chi, H.-J. Liao, and T. Xiang.
Entanglement entropy of non-hermitian free fermions. Journal of Physics: Condensed
Matter, 33(47):475502, sep 2021.

R. Hanbury Brown and R. Q. Twiss. Interferometry of the intensity fluctuations in light. II.
an experimental test of the theory for partially coherent light. Proceedings of the Royal
Society of London. Series A. Mathematical and Physical Sciences, 243(1234):291–319,
1958.

J. H. Hannay. The chaotic analytic function. Journal of Physics A: Mathematical and
General, 31(49):L755, 1998.

S. Haroche and J.-M. Raimond. Exploring the quantum: atoms, cavities, and photons.
Oxford university press, 2006.
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