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1 Introduction

Matrix model approach to 2d quantum gravity, first proposed in [1–3], has undergone since
then many important and diverse developments (see [4–6] for early results, and a more
recent review [7]). They range from the study of critical exponents in the presence of
conformal matter with a central charge c < 1 [8–12] to the construction of quantum field
theory for non-critical strings via the double scaling limit [13–16]. As was first proposed
in [4], and then generalized to the double-scaling limit [17–20], a special, limiting c = 1 case
of non-critical string theory can be studied via the matrix quantum mechanics (MQM) [21].
An interesting peculiarity of c = 1 case are the integer critical exponents, resulting in the
logarithmic scaling, as well as in the presence of Berezinsky-Kosterlitz-Thouless vortex
excitations on the world-sheet of the c = 1 string [22–24], whose condensation can lead to
the black hole formation [25]. The c = 1 MQM model has served as a basis of formulation
and study of type-0 2d superstring models [26]. The other interesting cases with integer
critical exponents and a logarithmic scaling are various models with matter central charges
c = −2 and c→ 0, in particular, the Q→ 0, 1 limits of the Q-state Potts model [10, 27, 28]1
and the n → 0,−2 limits of O(n) spin model [11, 30–34],2 both on planar graphs. More
recently the matrix models for the pure JT gravity [37] and JT gravity coupled with the
massive scalar [38] have been suggested.

Beyond the scaling properties, certain important physical quantities have been studied
and computed for various central charges of the matter c, such as the disc and cylinder
partition functions and the multi-loop correlators for the minimal (p, q) series, with c =
1 − 6 (p−q)2

pq [31]. However, the questions of universal flows between critical points with
different central charges of the matter hasn’t yet been carefully studied. A particular, well-
studied case is the non-unitary (2, 2n− 1) series [39, 40], where the precise map from the

1The solution of the saddle point problem for the matrix model of Potts spins on random graphs was
found by I.Kostov and V.K., published in [29].

2See also [35, 36].
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matrix model to the minimal Liouville theory of 2d gravity with conformal matter [41–44],
completing and old proposal [45], was formulated. The study on the matrix side is simplified
here by formulation in terms of the one-matrix model with a polynomial potential [12, 46].
Certain flows have been observed between various p, q points within the O(n) model of
Kostov [31–33]. Apparently, these are only particular examples, and a thorough study of
the whole variety of such flows, especially around logarithmic criticalities mentioned above,
is largely missing.

The main subject of this paper is the study of such flows, and of the associated physical
quantities (one point functions, disc partition functions) for an interesting case of 2d QG
coupled to cM = −2 matter, with a logarithmic scaling. This system can be represented as
the 2d QG in the presence of complex Grassmannian scalar matter field θ(σ). Such model
has been studied in both the matrix model approach, where the sum over geometries is
represented by the sum over planar graphs [3, 30, 47], as well as in continuous Liouville
field theory approach [48–50].

Massive spinless fermions on the fixed non-fluctuating torus have been explored in [51].3
If the four-fermion interaction for massive fermions is added at a particular value of four-
fermion coupling this model on a fixed graph is identical to q → 0 Potts model and O(−2)
sigma model [53]. The q → 0 Potts model coupled to 2d gravity has been considered
in [10, 54, 55] via matrix model representation. At a particular value of the four-fermion
coupling the model gets reduced to the statistical ensemble of unrooted spanning forests.
The matrix potential is non-analytic and a complicated pattern of phase transitions has
been discovered [55].

In this work, we will study a generalization of this c = −2 QG matrix model where the
matter field ψ(σ) is massive. The disc partition function of this 2d QG theory in continuum
is given by the functional integral

Z(Λ0,η,m0) =
∫
Dg(σ)

∫
Dψ(σ)Dψ̄(σ)exp

[
−
∫
D
d2σ
√
g
(
gαβ∂αψ̄∂βψ+m2

0ψ̄ψ+Λ0+κR
)

−η0

∫
∂D
ds [g(σ(s))]1/4

]
(1.1)

where g is the 2dmetric, Λ0 is the bulk cosmological constant, η0 is the boundary cosmological
constant, R is the Gaussian curvature and κ = 2− 2g is the Euler characteristics which in
our paper will correspond to the topologies of the sphere κ = 2 or of the disc κ = 1. At
zero mass m = 0, the matter field has the conformal central charge cM = −2.

Using the matrix-forest theorem [56] and Parisi-Sourlas trick [57] we will derive the
corresponding matrix model, with a specific non-polynomial potential, with two-parameters
— the bare mass of fermions and the bare cosmological constant. In our matrix formulation,
the functional integral over metrics will be represented by the sum over φ3 (i.e. trivalent)
planar graphs, and the matter fields ψj will be placed at the sites j = 1, 2, . . . V of each
graph of size V , see eq. (2.1).

If one turns on the mass, at large distances (small cosmological constant) the matter
is screened out and one “flows” in the infrared to the pure gravity cM = 0 point, with a

3See also [52] for a related model of fermions coupled to gravity.
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renormalized cosmological constant. The study of this flow by the matrix model tools is
the principal task of this paper. Solving the corresponding one-matrix model with a special,
non-polynomial potential, we will establish the universal scaling functions describing the
one-point function and the disc partition functions (with various boundary conditions).

We should stress here that, whereas a lot is known about the universal critical behavior
of various physical quantities (correlation functions, disc and annulus partition functions,
etc) at a given central charge of conformal matter [11, 28, 31, 34, 58–61], the universal flows
between the fixed points with various central charges are not that well studied. In this
paper, we present our results for the one-point function and the disc partition functions for
such a flow, between the c = −2 and c = 0 fixed points.

As an example, we present in the introduction the t-parametric representation of the
one point function of the type Φs = 〈ψ̄ψ〉 : (see section 6 for details4)

Φs ∼ 2(J + const)(t2 − 2t) + 3t2 − 2t3 (1.2)

where (in certain units)

J = t− log(m2
∗t) ,

(
J = Λ∗

m2
∗

)
(1.3)

and Λ∗,m2
∗ are the lattice analogues of Λ0,m

2
0 of (1.1), and const in (1.2) indicates a

numerical constant (given in section 6). This equation is closely related upon exponentiation
to the Lambert function which has appeared previously in related contexts. It was found
in [62] that the Lambert function corresponds to the peculiar brane which provides the
generating function for the multiple boundaries in the Airy limit of topological gravity at
genus zero. Since the brane insertion shifts the closed moduli [63] it defines these shifts
as well. Another example of the Lambert function providing the moduli shift has been
identified in the topological string on CP1 coupled to topological gravity [64]. In our study
the Lambert function will play a similar role. Lambert function also emerges in various
formulas related to asymptotics of Hurwitz numbers [65] and as the spectral curve of the
type B topological string on C3 in the limit of one-leg infinite framing.

One can easily see that this scaling function interpolates between pure 2d QG c = 0
regime Φs ∼ (Λc − Λ)3/2 when Λ � m2 and the 2d QG with c = −2 matter regime
Φs ∼ Λ2 log Λ when Λ� m2, described by spanning trees on large planar graphs.

In addition to (1.2), we also computed another 1-pt function of a similar type, which
turns out to differ only by the value of the additive shift of J in (1.2). This suggests a
universality-like property that would be interesting to explore further.

We will also derive two universal disc partition functions describing the flow between
the c = −2 and c = 0 fixed points, for massive spinless worldsheet fermions with Neumann
and Dirichlet boundary conditions. The results are given by equations (7.6) and (7.16),
respectively. In the limits mentioned above for the one-point function Φs, they reproduce
the known asymptotic behavior at the c = −2 and c = 0 fixed points [32].5

4In the notation used there this correlator corresponds to tr φ3.
5In the cited paper, the author presents another example of a flow between the same critical points,

which he derives from the O(−2) model on planar graphs. Apparently, that flow is different, it leads to a
different universal scaling function.
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If we drop off the planarity condition, the sum over the graphs is nothing but the random
regular graph (RRG) ensemble which enjoys some exact results in the limit of large number
of nodes. In particular we can utilize the famous Kesten-McKay(KM) distribution for the
resolvent and spectral density of RRG ensemble [66, 67]. Recently the RRG has attracted a
lot of attention from the very different perspective which has nothing to do with the quantum
gravity. It is considered as the toy model for the Hilbert space of the interacting many-body
system and according to the conjecture [68] the one-particle Anderson localization of spinless
fermion on RRG with diagonal disorder is equivalent to the many-body localization in the
physical space-time (see [69] for the recent review and references therein). It was argued
that the fragmentation of the Hilbert space graph into some number of “trees” is one of the
key mechanisms of transition to the MBL phase (see [70] for review and references therein).
It is not clear whether the problem we are solving in this work — the massive spineless
fermions on planar graphs — is directly related to the abovementioned RGG ensembles of
generic graphs. Possibly, the similar phenomena can occur in our model in the appropriate
double scaling limit, summing up the large graphs (near criticality) of all topologies [13–16].

The paper is organized as follows. In section 2 we define our model of massive spinless
fermions on the random planar graphs. It can be equally considered as the theory of
anticommuting bosons. In section 3 we derive the one-matrix model for our theory using
two different strategies. First we generalize the Parisi-Sourlas trick for the massive case
and obtain the generalization of the matrix model for c = −2 theory. Secondly we shall
utilize the matrix-forest theorem [56] for the massive determinant of the graph Laplacian
and develop a combinatorial derivation of the matrix model. This derivation is somewhat
similar to the derivation of the matrix model in [54, 55] for a slightly different model of
spinless fermions coupled to 2d gravity. In section 4 we find the one-cut solution of this
one-matrix model in the planar limit via the standard tools, in terms of the elliptic curve.
In section 5 we derive the critical curve which bounds the regime of validity for the one-cut
solution in the two-dimensional parameter space of the model (related to the (Λ,m2) space
of (1.1) in the critical regime). In section 6 we consider in more detail the limit of small
fermion mass and define a new double scaling regime in the space of two parameters. We
will compute two 1-pt functions and find they are given by closely related scaling functions
that interpolate between c = −2 and c = 0 critical regimes and are related to the Lambert
function. In section 7 we derive the universal disc partition functions of the model for the
Dirichlet and Neumann boundary conditions (involving the parameter analogous to the
boundary cosmological constant η0 from (1.1)). In section 8 we summarize the main results
of the paper and lastly section 9 discusses several possible topics for future research. The
appendices contain various technical details, while in appendix E we discuss the role of
the Lambert function in our model and related contexts. We also attach a supplementary
Mathematica notebook with some of the lengthy explicit results.

2 Definition of the model

In the spirit of the discrete, random lattice approach to 2d QG, we will construct a matrix
model for which the perturbative expansion for the free energy, combined with the 1/N
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expansion, is given as the following sum over planar graphs G:

log ζ =
∑
G

N2−2gλ|G|
∫ ∏

i∈G
d2ψi

∏
<ij>∈G

e−(ψ̄i−ψ̄j)(ψi−ψj)
∏
i∈G

e−m
2ψ̄iψi (2.1)

where in the first exponent the propagators e−(ψ̄i−ψ̄j)(ψi−ψj) mimic the kinetic term of
fermions in the action (1.1), the last product introduces the mass of fermions, log λ plays
the role of bare bulk cosmological constant and g represents the genus of the discretized
worldsheet. In this paper we will focus on the strictly planar case. We see that this partition
function looks as a lattice analogue of the partition function (1.1).6

Integrating in (2.1) over ψ’s we rewrite this partition function in the form

Z ≡ log ζ =
∑
G

N2−2gλ|G| det[m2 + ∆(G)] (2.2)

where ∆ = −Q + A is the graph Laplacian with Q = diag{q1, q2, . . . } where qj are the
valencies of vertices and A is the adjacency matrix. In what follows we will use, for
definiteness, the 3-valent graphs, i.e. qi = 3. For m2 = 0 the model was solved in [3, 47]
using the spanning trees representation and interpreted there as 2d QG with c = −2 matter.
We will generalize it to the m2 6= 0 case and use for it the Parisi-Sourlas approach proposed
in [30, 71].

Notice that the partition function of the c = −2 model coupled to gravity is given
by the sum over graphs of the determinant of the graph Laplacian with the zero mode
removed, which we denote by det′∆(G). Nicely, it is related in a simple way with the
massive determinant7 since

det′∆(G) = d

dm2 det(∆(G)−m2)m2=0 . (2.3)

Hence we have an exact relation between the c = −2 and massive partition functions

Zc=−2(λ) = d

dm2Z(λ,m2 = 0) (2.4)

The partition function (2.2) can be usefully rearranged via the generalization of the
Kirchhoff matrix-tree theorem to the matrix-forest theorem for characteristic polynomial
for the graph Laplacian which was obtained in [56] (see also [51])

det[m2 + ∆(G)] =
∑

F=(F1...Fl)∈G

l∏
i=1

m2V (Fi) (2.5)

where V (Fi) is the number of nodes in the tree Fi and m2 is the generating parameter for
the number of trees in the forest. That is, our model can be considered as the partition
function of spanning rooted forests interacting with 2d gravity.

6The boundary term for the disc partition function will be introduced later within the matrix model
formalism.

7The properties of this spectral determinant are discussed in appendix B.
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Notice that the work [54] considered a related model which involves massive spinless
fermions supplemented with the four-fermion term coupled to 2d gravity. In that case the
generalization of the matrix-forest theorem exists [53] but the model, contrary to our case,
reduces to the spanning unrooted forests on fluctuating surface. Instead we have rooted
forests and no four-fermion interaction.

Since the degrees of all nodes are equal, our model can be considered as a particular
case of the random regular graph (RRG) ensemble with general exponential weight:

Z =
∑
RRG

exp (−TrV [A(G)]) (2.6)

where the sum goes w.r.t. graphs G with fixed number of nodes with the same degree. This
partition function describes the microcanonical ensemble with fixed area of the surface,
contrary to the canonical ensemble with the cosmological constant. Usually in consideration
of RRG ensemble no planarity condition for the graphs is implied. Since Tr here is
taken w.r.t. indices of adjacency matrix of a graph, TrAn gives the number of cycles of
length n on the graph. In our case, the potential will have a specific, determinant form
V (A) = − log((m2 − 3) I− A), and furthermore we restrict to only planar graphs among
the whole 3-valent RRG ensemble.

3 Derivation of the matrix model

In this section we will derive the Hermitian one-matrix model which gives our partition (2.1)
and provides the interpolation between pure gravity and c = −2 conformal matter coupled
with 2d quantum gravity. We will use two different strategies which generalize two approaches
used for the c = −2 case. First, extending the approach of [30, 51] we will apply a massive
version of the Parisi-Sourlas trick. Second, extending the derivation of the matrix model
for the unrooted spanning forests in [55]8 we will derive the matrix model for our case
of spanning forests. We will show that the matrix model potentials we find in the two
derivations coincide.

3.1 Derivation via Parisi-Sourlas representation

Using the Parisi-Sourlas approach [30, 49, 57, 73] we can represent our partition function
as a super-matrix integral of the form

ζ =
∫
DN2Φ(ψ) e−NS(Φ) =

∫
dN

2
φd2N2

θ d2N2
ε e−NS(Φ) (3.1)

where the functional integration is performed w.r.t. the matrix superfield

Φ(ψ) = φ+ ψ̄θ + ψθ̄ + ψ̄ ψε , (3.2)

where θ̄, θ are the grassmann valued matrix fields, ψ̄, ψ are anticommuting parameters and
ε and φ are commuting matrix fields. Note that the matrix superfield Φ is taken to be
hermitian, hence φ is an hermitian matrix while ε is anti-hermitian. For our case, the matrix

8See also [72].
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model action producing the Feynman diagram expansion (2.1) with cubic (q = 3) vertices
is given by

S(Φ) = tr
∫
d2ψ

(
−1

2Φ2(ψ)+1
2∂ψΦ(ψ)∂ψ̄Φ(ψ) + λ

3 e
−m2ψ̄ψ [Φ(ψ)]3

)
(3.3)

where d2ψ = dψdψ̄. The superfield propagator is chosen to reproduce the kinetic term of
the worldsheet fermion action, while the coefficient of the cubic vertex is responsible for
the mass term. To reproduce the worldsheet action, notice that the kinetic term of the
action (3.3) can be easily inverted, using:

(−1− ∂ψ∂ψ̄) exp{−(ψ̄ − χ̄)(ψ − χ)} = (ψ̄ − χ̄)(ψ − χ) = δ(2) (ψ − χ) . (3.4)

This means that the propagator is indeed the desired function of the grassmannian distance:〈
Φij(ψ)Φkl(χ)

〉
λ=0

= δilδjk exp{−(ψ̄ − χ̄)(ψ − χ)} .

Here the expectation value is with respect to the Gaussian part of the action (3.3). Now
we would like to integrate out the grassmannian variables to obtain a bosonic matrix model
that would generate the same expansion (2.1). Taking the integrals we obtain:

S(Φ) = tr
[
−1

2ε
2 − (φ− λφ2)ε− 1

3λm
2φ3 − θ̄θ + 2λθ̄θφ

]
. (3.5)

After integration over auxiliary fields ε (the positive sign of ε2 in −S(Φ) is due to anti-
hermiticity of the integration variable) and θ we get:

ζ =
∫
dN

2
φ det(1− 2λφ) eNtr [− 1

2 (φ−λφ2)2+ 1
3λm

2φ3]] . (3.6)

We have dropped an irrelevant overall numerical prefactor in front of the partition function.
Finally doing a change of variables X = φ−λφ2 we come to the one-matrix model partition
function:

ζ =
∫
dN

2
X exp

(
Ntr

[
−1

2X
2 + λm2

3 (φ(X))3
])

(3.7)

with φ related to X by
φ(X) = 1

2λ
(
1−
√

1− 4λX
)

(3.8)

where we have selected the proper root of the quadratic equation. Thus we see that the
result is a 1-matrix model with a particular non-polynomial potential. This opens the way
to solve the model using standard techniques. In the next subsection we will provide yet
another derivation leading to this matrix model.

Instead of (φ(X))3 interaction in the potential in (3.7) we could take any polynomial
potential. Then, instead of trivalent graphs, we will study the same problem of spinless
massive fermions (or forests) on the corresponding collection of planar graphs. For the generic
couplings of this potential the critical behavior we study below should not change (due to
universality). However, we can have multicritical points of the kind known from [12, 32].
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3.2 Combinatorial derivation of the matrix model

Here we will present another, combinatoric, derivation of the matrix model (3.7) describing
our partition function.

Let us consider the graphical interpretation for our action (3.7) and demonstrate that
it indeed reproduces the expansion (2.1). First, recall that the function (3.8) appearing in
our matrix model potential

φ(X) = (1−
√

1− 4λX)
2λ = X + λX2 + 2λ2X3 + 5λ3X4 + . . . =

∞∑
n=1

1
n+ 1

(
2n
n

)
λnXn+1

(3.9)
is the generating function of rooted trees with node degree q = 3. Here the expansion
coefficients Cn = 1

n+1
(2n
n

)
are nothing but the Catalan numbers. Each vertex is weighted

with the coupling λ, and the exterior branches are decorated with the matrix X (‘Christmas
Tree’). In our potential we have φ3(X) which generates three such trees growing from the
same vertex (call it ‘root vertex’).

Next, we expand the exponent in (3.7) under the matrix integral w.r.t. the 2nd term in
the action. This expansion generates forests of such Christmas trees with marked vertex.
Each marked vertex (corresponding to φ3(X) is weighted with λm2, while the other vertices
are weighted with λ. Hence each such forest has weight λ|G|m2l, where |G| and l denote
the total number of vertices and the number of trees respectively.

As a next step, we see that the Gaussian integral over X connects, via rainbow diagrams,
these Christmas trees into graphs, so that we sum up over all “forests” of such trees on
each graph. All graphs are planar, due to the matrix structure. We notice that this
statistical-mechanical system, on each graph, is the same as given by the equation (13)
of [53], where it is proven to be equal to the determinant det[m2 + ∆(G)] on each graph G.
This is another confirmation of our derivation of the matrix model (3.7) in section 3.1 and
its relation to the partition function (2.2).

To prove that the combinatorial factors, such as the Catalan numbers and symmetry
factors of Feynman graphs in (3.7), do indeed match up with the Kirchoff theorem (the
proof of its “massless” version is given in appendix A) and the expansion (2.2) we use the
result of the paper [54] which considers a model that generates forests of “unrooted trees”,
i.e trees without a marked point. Instead of (3.7) it corresponds to a similar potential:

SX = tr
[
−1

2X
2 +m2X2Ṽ (λX)

]
(3.10)

where

Ṽ (z) = 1
12z2

(
−6z2 + (1− 4z)3/2 + 6z − 1

)
=
∞∑
n=1

c̃nz
n+2 , where c̃n = (2n)!

n!(n+ 2)! . (3.11)

The coefficients of the expansion are equal to the Catalan numbers Cn = (2n)!
n!(n+1)! divided

by n+ 2 giving the number of unrooted trees with n vertices with cyclic symmetry factored
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out. Notice now the following identity relating our potential with Ṽ (z):

λ

3

(
1−
√

1− 4λX
2λ

)3

= λ∂λ
(
X2Ṽ (λX)

)
. (3.12)

In terms of coefficients of expansion for the l.h.s. this relation looks as follows:

cn = n
Cn

(n+ 2) . (3.13)

In other words, the number of trees with n marked vertices is equal to the number of rooted
trees divided by the cyclic permutation order n+ 2 of external legs (called “leafs” in [54]),
which makes these trees unrooted, and multiplied by the n — the number of ways to mark
one vertex. This is another proof that our model (3.7) describes indeed the sum over
forests of rooted trees over planar graphs, which is equal, according to the above-mentioned
theorem from [53] (see equation (13) there), to the partition function of massive spinless
fermions (our ψi’s in (2.1)) on planar graphs. In our notation, for each individual planar
graph this theorem states

det[m2 + ∆(G)] =
∞∑
k=1

m2kFk(G) (3.14)

where Fk(G) is the number of forests consisting of k unrooted trees, each with one marked
vertex, on this graph G.

3.3 Boundary conditions for disc partition functions

As announced in the Introduction, we are going to be interested in computing disc partition
functions. There are two types of disc partition functions we can compute in the matrix
model (3.7). One corresponds to a boundary with the X-matrix, and another to the matrix
φ(X) that generates trees. They correspond to two resolvents we will study: the resolvent
G(x) which generates 〈tr Xk〉 correlators,

G(x) =
∞∑
k=0

1
xk+1

1
N
〈tr Xk〉 (3.15)

and the resolvent for 〈tr φk〉 correlators,

H(r) =
∞∑
k=0

1
rk+1

1
N
〈tr φk〉 (3.16)

with k in the correlator being the disc boundary length, while log x and log r play the role
of the bare boundary cosmological constant.

One can expect that these two resolvents correspond to two different types of boundary
conditions. We would like to formulate these boundary conditions in terms of the worldsheet
action (1.1) for the anti-commuting bosons. To do this we first recall how the trees appear
from the miscroscopic model on graphs (2.1).
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Let us fix a graph G and consider the action for this graph. To produce trees we expand
the kinetic terms from (2.1). Keeping in mind that our variables are anti-commuting we
obtain: ∏

<i,j>

e|ψij |
2 =

∏
<i,j>

(
1 + |ψij |2

)
. (3.17)

Expanding the product over edges for each edge we can either choose to include it into
the tree, which corresponds to choosing the |ψij |2 term, or not, in which case we take the
identity. Loops are forbidden because of the vanishing of the cyclic product ∏

<i,j>∈L
|ψij |2.

Hence we obtain the expression for trees T on the graph:∏
<i,j>

e|ψij |
2 =

∑
T∈G

V (T )
∏

<i,j>∈T
|ψij |2 (3.18)

where V (T ) is the number of vertices in a tree. However in order to obtain a non-zero
expression we should also introduce boundaries for the trees. The first type of boundary
corresponds to insertions of Tr φn. In graph terms this means that we have a graph with
trees that start from the boundary and some trees in the bulk. Trees in the bulk are
generated by the mass terms, while boundary trees should be enforced by fixing the field φ
on the boundary, as the tree-generating formula (3.8) suggests,. This is done by inserting a
specific boundary term under the integral: ∏

<i,j>

e|ψij |
2 ∏
<b,j>

e|ψbj |
2

ψbψ̄b (3.19)

where b denotes the boundary. In other words we fix the value of ψ on the boundary.
The other type of boundary corresponds to operators Tr Xn. Now we have a boundary

with edges going into the bulk, while trees appear already in the bulk and do not touch the
boundary. One can describe such behaviour on the worldsheet by an insertion∏

<i,j>

e|ψij |
2 ∏
<b,j>

e|ψbj |
2 ∏ |ψbj |2 (3.20)

effectively fixing the derivative of the field on the boundary.
Having described the discrete picture it is natural to conjecture that the proper

continuous boundary conditions are Dirichlet conditions

ψ(∂D) = 0 (3.21)

for the φ-type boundary disc partition function H(r) and Neumann conditions

∂⊥ψ|∂D = 0 (3.22)

for the X-type boundary appearing in G(x).
The critical behaviour of both disc partition functions, related to the continuous limit

of 2d QG interacting with massive fermions, appears to be different. We will compute it in
section 7.
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Figure 1. The matrix model potential (4.1) at λ = 6/100 , M = 1/15.

4 Solution of the matrix model in the planar limit: saddle point

As discussed above, the problem we study reduces to a 1-matrix model with the potential

V (x) = 1
2x

2 − 3
16
M

λ2

(
1−
√

1− 4λx
)3

(4.1)

where we make a redefinition of the mass parameter for convenience:

M = 2
9m

2 (4.2)

In this section we describe how to solve this matrix model at large N and present the 1-cut
solution in detail.

We give a plot of the potential on figure 1. One can check that the shape remains
the same regardless of the values of M and λ (with M,λ > 0) — namely, as we go from
negative x the potential has a local minimum at x = 0 and then a local maximum before
falling off to some finite value at x = 1/(4λ) which is the boundary of the allowed region
due to the presence of the square root in the potential.

Since the potential has a local minimum at x = 0, it can be populated by eigenvalues
and thus it is natural to look for a 1-cut solution which can be found by standard methods
and which we will focus on in this paper. We parameterize the endpoints of the cut by b
and a with b < a and also denote the branch point of the square root by9

c = 1
4λ (4.3)

so that b < a < c are the three branch points in our problem (with one more at infinity
coming from the square root) meaning it is resolvable in elliptic functions. Introducing the
density of eigenvalues ρ(x) normalised to 1 on the interval [b, a] and the resolvent

G(x) =
∫ a

b

dy ρ(y)
x− y

(4.4)

9We hope this notation will not create confusion with the notation c for the central charge of the model.
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we can write the saddle point equation on the [b, a] cut as

G(x+ i0) +G(x− i0) = x+ 9cM + 9
2M
√
c
x− 2c√
c− x

. (4.5)

The solution can be written easily as

G(x) =
√
x− a

√
x− b

∫ a

b

dy

2π(x− y)
1√

(a− y)(y − b)

(
y + 9cM + 9

2M
√
c
y − 2c√
c− y

)
.

(4.6)

The integrals here can be taken explicitly (see appendix C) and we find the resolvent,

G(x) = 9
4π
√
cM
√
x− a

√
x− b

2(x− 2c)Π
(
a−b
x−b

∣∣∣ 1− p)
√
c− b(x− b)

− 2K√
c− b

 (4.7)

+ 1
2
(
−
√
x− a

√
x− b+ 9cM + x

)
where we denoted

p = c− a
c− b

(4.8)

and K ≡ K ′(p) ≡ K(1− p) is the elliptic integral with modulus10 1− p.
Then we can find the density as the discontinuity of the resolvent on the [b, a] cut,

G(x± iε)−G(x− iε) = −2iπρ(x) (4.9)

which gives the density in terms of elliptic functions as well,11

ρ(x) =
√

(a− x)(x− b)
(

9
√
cMK

2π2
√
c− b

+ 1
2π

)
(4.10)

− 9
√
cM(x− 2c)

2π2
√
c− b

√
a− x
x− b

(
K −Π

(
x− b
c− b

, 1− p
))

.

4.1 Fixing parameters

We fix a, b from the condition that for x→∞ we must have G(x) ' 0 · x0 + 1
x +O(x−2)

which follows from the definition of the resolvent and the normalisation of the density.
Introducing the variable

y =
√
c− b√
c

(4.11)

we get two relations fixing y and p (or equivalently the branch points a and b) in terms of
our original couplings λ and M , namely the x0 term in G(x) gives

− π(p+ 1) y3 − 18ME y2 + 2π (9M + 1) y − 18MK = 0 (4.12)
10We denote the modulus by 1− p for convenience, so that p→ 0 corresponds to the modulus approaching

1 which is the limit we will study later. In Mathematica the functions we use correspond to EllipticK[1-p],
EllipticPi[n,1-p], etc.

11In terms of the expression in (4.10), the density we should integrate to get G is to be taken as ρ(x+ iε).
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Figure 2. The density ρ(x) given by (4.10) on the [b, a] cut for λ = 5/106 ≈ 0.047 , M = 1156/25 ≈
46. We chose the small value of λ and largeM so that the density has a nontrivial profile substantially
different from a semicircle.

relating p and y, while from the 1/x term we have

−λ2 + (1−p)2

256 y4− 3M
64π (−(p+1)E+2pK)y3 + 9M

64π (−(p+1)K+2E)y= 0 . (4.13)

Here we denoted the elliptic integral of the 2nd kind as E ≡ E′(p) ≡ E(1− p). Notice that
λ only enters the second equation and is explicitly expressed as a function of y, p.

As these are two polynomial equations in y, we can exclude y by taking their resultant12
which we denote as P (λ,M, p), so we have

P (λ,M, p) = 0 . (4.14)

This gives a lengthy, though explicit, equation linking λ,M and p. The function P is a
polynomial of 6th order in M and of 3rd order in λ2, thus one can in principle write λ(M,p)
explicitly.

These equations are a complete system that allows one to obtain the 1-cut solution at
a given value of our parameters λ and M . In order to e.g. solve the system numerically, we
can first solve (4.14) for p and then plug the result into (4.13) which is then solved for y. As
an example we give a plot of the density in figure 2. Note that in general these equations
have multiple solutions and we should be careful to select the ‘physical’ one, for which the
density is real and positive. We discuss this requirement in more detail in section 5.

It is instructive to plot the effective potential Veff felt by the eigenvalues, which as usual
is given by

Veff(x) = V (x)− 2
∫ x

0
dy(G(y − i0) +G(y + i0)) (4.15)

From this definition it follows that it has a flat section on the [b, a] cut where it vanishes.
We show a plot of it on figure 3. Apart from the flat region, its shape is similar to the
original matrix model potential.

12We recall that for two polynomials with roots ai and bj the resultant is defined as
∏
i,j

(ai − bj). As a
symmetric function in both sets of roots, it is a polynomial in the coefficients of the original two polynomials.
It is also implemented in Mathematica.
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Figure 3. The effective potential Veff(x) at λ = 1/18 , M = 16/100.

4.2 Exact results for correlators

Let us discuss how to compute the observables in this model. First, the correlators 〈 1
N tr Xk〉

are encoded in the large x expansion of the resolvent G(x) and can be obtained directly by
expanding (4.7). Another important set of observables are built from the matrix φ related
to x by (3.8). They can be written as

〈 1
N

tr φk〉 =
∫ a

b
dx ρ(x)

(
2c
(

1−
√

1− x

c

))k
, k = 1, 2, . . . (4.16)

These integrals are highly nontrivial since the density involves the elliptic Π function.
However, remarkably, we found a way to compute them in closed form for any given k.
The tricky part is the integration of the square root with the elliptic integral of third kind
in (4.10). To explain how this integral can be evaluated explicitly, first denote

n = b− x
b− c

. (4.17)

The integral is then over n between 0 and 1. The relevant piece is:∫ 1

0
dn(n− 1)k/2

√
1− p− n

n
(bn− b− cn+ 2c)Π(n|1− p) (4.18)

The key trick is to get rid of the integration of elliptic functions, by using the identities
presented in appendix A (see section C.2 for details). The integration of Π(n|1 − p) is
reduced to an integral of a derivative, while the remaining part contains only algebraic
dependence on n and can be easily integrated.

As an example, important for the further computations of this one point function in
the critical regime, we give below the explicit result for k = 1

〈 1
N

tr φ〉 = c3y

2π2

[ 4
15πp(p+ 1)y4K −− 8

15π
(
p2 − p+ 1

)
y4E + 1

4π
2(p− 1)2y3

+M
(
K
(
12y

(
py2 + p+ 1

)
E − 3π

(
p
(
2y2 + 3

)
+ 3

))
− 6pyK2 − 6y

(
(p+ 1)y2 + 3

)
E2 + 3π

(
(p+ 1)y2 + 6

)
E
) ]

.
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Figure 4. The critical curve λc(M). The shaded area below the curve shows the allowed physical
region on the (M,λ) plane where the density is real and positive.

We also give the result for 〈 1
N tr φ3〉, which is more lengthy, in a supplementary Mathematica

notebook accompanying this paper. This observable is particularly important as it gives
the derivative of the partition function w.r.t. the mass m2, which in view of (2.1) means it
describes the fermionic condensate of the type 〈ψ̄ψ〉.

It would be also interesting to obtain an explicit result similar to (4.7) for the generating
function of these correlators, which seems to be quite challenging but might be possible to
do by using the methods of [33].

5 The critical line

The critical regime in our model, corresponding to large graphs, is obtained by going close
to a singularity of the partition function. A (standard) shortcut to deriving the condition
for criticality is requiring that the density has zero slope at the endpoint, ρ′(a) = 0. The
reason for this is that generically we have ρ(x) ∼

√
a− x when x→ a, and since the density

should be positive the coefficient in front of the square root must be nonnegative as well.
The case when the coefficient becomes zero thus belongs to the boundary of the allowed
parameter space where the model becomes singular.

From our explicit result for the density (4.10) we find that imposing ρ′(a) = 0 gives

− π(1− p)py3 − 9Mp(K − E)y2 + 9M(−pK + E) = 0 . (5.1)

Combining this with (4.12), (4.13) have three conditions linking the four variables M,λ, p, y,
and thus we get a line on the (M,λ) plane that we will call the critical line. We denote it
by λc(M) and we give a plot of it on figure 4.
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In order to study the critical regime analytically we can take the resultant in y of (4.12)
and (5.1) which gives a 4th order polynomial in M equation involving only M and p, whose
solution13 is Mc(p) which can be written explicitly but is rather lengthy. Furthermore, we
can solve (4.12) as a linear equation for M , then plugging the result into (4.13) and (5.1)
and taking their resultant in y gives a 4th order polynomial equation whose solution is
λc(p). Thus we have a parametric representation of the critical line λc(p) in terms of two
(explicit but very lengthy) functions Mc(p) and λc(p).

5.1 Merging of solutions and the physical region

Numerically we observe that when λ < λc(M) our two constraint equations (4.12), (4.13)
have two real solutions for p, y, with one of them being the actual physical solution while
the other one should be discarded as it corresponds to a non-positive density. As we move
close to the critical line, we find that these solutions get closer and finally merge at the
value λ = λc(M). Beyond that point, i.e. for λ > λc(M), there is no solution with real
positive density.14 Note that naturally the origin (λ,M) = (0, 0) lies in the allowed region
since λ and M are weights in our partition function which is well defined for small enough
values of them.

As a technical consistency check, let us show how to deriveMc(p) independently starting
from our two original constraints (4.12) and (4.13). For that we consider the equation (4.14)
which follows from them and reads P (λ,M, p) = 0. Considering its l.h.s. as a function of p
at fixed λ,M , we find that generically it has three roots 0 < p1 < p2 < p3 < 1 of which p2
is the physical one. It merges with p1 at some λ = λ(M) which will be the critical value
and is characterized by the condition that ∂pP (λ,M, p) = 0. Since this condition and the
original equation P (λ,M, p) = 0 are both polynomials in λ, we can take their resultant and
find a polynomial equation now for M(p), which is solved by the same function Mc(p) we
found using the shortcut ρ′(a) = 0, i.e (5.1). This shows that indeed (5.1) corresponds to
the boundary of the allowed parameter region, as expected. Notice also that the condition
∂pP (λ,M, p) = 0 we just discussed means that on the critical line

∂pλ(M,p) = 0 (5.2)

which is15 another equivalent formulation of the criticality condition.

5.2 Looking for further singularities

It could happen that on the critical curve itself there are special points at which additional
phase transitions take place and the structure of the solution changes. So far we have
not found any features of this type. For example, since Mc(p) is given by a solution to a
polynomial equation, one source of singularities could be the crossing of its roots at particular
values of p. Indeed we can identify several such values by looking at the discriminant of
this equation and numerically they are p ' 0.05, p ' 0.29. We find numerically that they

13Note that we also have to pick the correct branch.
14There could be a two-cut solution in that region, whose exploration we postpone to the future.
15Notice that here we first differentiate λ as a function of M and p, and only then set M = Mc(p).
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Figure 5. The derivative ∂ppλ(M,p) evaluated on the critical line, shown as a function of p. We
see no zeros or singularities for 0 < p < 1.

do not seem to correspond to a singularity of the physical solution but rather the crossing
of singularities of unphysical roots. Similarly, for λc(p) the discriminant of the equation
that it solves vanishes at p ' 0.09 but again this does not seem to give a singularity in the
physical solution.

To further make sure that we are not missing any singularities, we can plot the 2nd
derivative ∂ppλ(p,M) at fixed M , evaluated on the critical line M = Mc(p) (recall that the
first derivative ∂pλ(p,M) vanishes on the critical line). We give its plot on figure 5. We find
that it does not have any zeros or singularities and thus we would not expect to find any
special points on the critical curve. A“physical” picture of eigenvalues behaving as Coulomb
charges confined in a potential well also does not suggest the existence of any additional
phase transition for finite λ and M along the critical line: the appropriate changes in these
parameters only smoothly change the density of eigenvalues. The critical line corresponds
to the values of Mc(λ) when the eighevalues start spilling over the top of the potential (see
again figure 1). We leave a more careful analysis for the future.

5.3 Decoupling of the heavy matter: M → ∞ limit

Let us discuss the limit of large mass when we expect the fermions to decouple so that we
are left with the pure gravity limit. We see from the matrix model potential that when
λ→ 0 the expansion of the square root yields the cubic term in the potential required for
pure gravity. To get finite coupling in pure gravity we have to take a scaling limit λ→ 0,
M →∞ with Mλ = λeff kept finite:

V (z) = 1
2z

2 − 3
2λeffz

3 +O(λ2) . (5.3)

Let us identify this limit in our critical curve. The regime M → ∞, λ → 0 corresponds
to p → 1 and from the numerical solution for the critical line we see that the scaling is
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M ∼ 1
1− p, λ ∼ 1− p, y ∼ 1. Then from equations (4.12), (4.13), (5.1) we find

λc = 1− p
16 4√3

+

(
31
√

3− 18
)

(1− p)2

768 33/4 + . . . ,

Mc = 16
9
√

3
1

1− p +
(
−4

9 −
28

27
√

3

)
+ . . . .

(5.4)

Therefore the critical value for the effective coupling gives:(3λeff,crit
2

)2
= 1

108
√

3
(5.5)

which is in perfect agreement with the well known results from [3] and [21]. This is a
nontrivial test of our calculation.

The emergence of the proper scaling parameter can be seen in the initial combinatorial
partition function as well

Z(λ,m) =
∑
G

λ|G| det[m2 + ∆(G)] =
∑
G

λ|G|
∑

F=(F1...Fl)∈G

l∏
i=1

m2V (Fi) . (5.6)

Consider the m→∞ limit (we recall that M = 2/9m2) and assume that the contribution
from the term when all trees become the isolated nodes dominates. In this case V (Fi) = 1 and
we immediately get the (λm2)|G| weight factor which means the logarithmic renormalization
of the bare cosmological constant Λ = − log λ obtained from the matrix model.

5.4 Critical line at M → 0

Having discussed the large M limit in the previous subsection, in the remaining part of the
paper we will mostly focus on the opposite limit of small M . Since M controls the number
of trees, for M = 0 we have only 1 tree in the forest and thus for each graph we are counting
the number of spanning trees on it with λ weighing the number of graph’s vertices. This
is a well studied problem, describing in the critical regime the 2d QG in the presence of
c = −2 matter, discussed in [3, 30, 47–50, 71] and the critical value is known to be λc = 1/8.
Indeed we verified this is what we find from our critical curve (as can be seen already on
the plot in figure 4). This is another successful test of our calculation. In subsequent parts
of this paper we will make further contact with known results in this regime.

Let us also present here the expansion of the critical line near this point, which will be
important for our further calculations. For the critical line M → 0 corresponds to p→ 0
and it is convenient to use p as an expansion parameter. We will also use instead of λ a
redefined coupling

g = 256πλ2 . (5.7)

Then it is straightforward to obtain the expansion of the critical values Mc(p) and gc(p).
For Mc(p) we have

Mc(p) = Ap+ [B + C log(p)] p2 + [D + E log(p) + F log2(p)] p3 +O
(
p4 log3(p)

)
(5.8)
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where the coefficients read

A = 2
√

2π
9 , B = 1

18π
(
24π −

√
2(41 + log(16))

)
, C = π

9
√

2
, (5.9)

D = 1
288π

(
64π

(
21π
√

2− 155 + log(16)
)

+
√

2(8385 + 8 log(2)(173− 168 log(2)))
)
,

E = − 1
144π

(
32π +

√
2(173− 336 log(2))

)
, F = − 7π

12
√

2
.

We see that each power of p is accompanied by an expansion of a growing number of powers
of log p. For the g coupling we find

gc(p) = A + [B + C log(p)] p+ [D + E log(p) + F log2(p)] p2 +O
(
p3 log3(p)

)
(5.10)

with

A = 4π , B = 16
3
(
3π2√2− π − 12π log(2)

)
, C = 16π , (5.11)

D = 4
3π
(
96π2 − 171

√
2π + 38 + 96 log2(2)− 204

√
2π log(2) + 568 log(2)

)
,

E = 4
3π
(
51π
√

2− 142− 48 log(2)
)
, F = 8π .

Notice that the expansion starts with g = 4π + . . . , corresponding of course to the critical
value λc = 1/8 discussed above.

We can also invert these expansions and find gc(M) which reads to leading order

gc = 4π +
(
36
√

2LM + 72π − 12
√

2
)
M +O(M2) (5.12)

where
LM = log 9M

32
√

2π
. (5.13)

This gives the shape of the critical curve near its M = 0 endpoint.

6 New double scaling limit for 1-pt functions

At a generic point on the critical curve we expect the continuum theory to be pure gravity.
However, when M is strictly zero we have the very different c = −2 theory. This suggests
to explore a double scaling limit when we get close to the critical line, in the vicinity of its
M = 0 endpoint. In this section we will define and study this near-critical regime in which
we expect to see a nontrivial interpolation (flow) between the c = 0 and c = −2 theories.

In order to design an interesting scaling limit, let us look at the 1-pt function 〈 1
N tr φ〉

that we computed in closed form in (4.16). Technically it is convenient to use p instead
of λ as an expansion parameter, as otherwise we would need to deal with iterated log log
corrections. The endpoint of the critical line corresponds to (M,p) = (0, 0), and we will
consider an expansion near it with both M and p being small. As a first example, the
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expansion of λ or equivalently g to the first few orders has the form

g = 4π − 16πp+ 32πp2 +O(p3) (6.1)

+M


(
576

(√
2− π

)
π − 54

√
2πL+O(L2)

)
p

2π

+ 48π
√

2 + 144π2 + 72π
√

2L+O(L2)
2π +O(p2)

+O(M2) (6.2)

with

L = log p

16 . (6.3)

Thus at each order in M we have a series in positive powers of p and log p. As a technical
intermediate result, we also give the expansions of a, b, c to higher order in appendix D.

Next, expanding (4.16) we find for the 1-pt function 1
N 〈tr φ〉

1
N
〈tr φ〉 = 4− 128

√
2

15π +
(

8− 96
√

2
5π

)
p (6.4)

+M

12
(
124 + 11

√
2π − 15π2

)
5π2 +

(
432− 90

√
2π
)
L

5π2

+p

−24
(
3π
(
9
√

2 + 5π
)
− 464

)
5π2 +

(
6192− 945

√
2π
)
L

10π2

+ . . .

where like in (6.1) we dropped various higher order terms.
We see in both expansions (6.1) and (6.4) a similar structure of a double series in p

and M (with additional log p terms). This suggests to consider the limit when p and M
both go to zero with their ratio fixed. Thus we define

z = p

16M = finite , M ∼ p→ 0 (6.5)

and eliminate p in favor of z. This gives a series now only in M , in which any given order
receives contributions only from a finite number of therms in the original expansion and is
thus straightforward to compute. Geometrically in this limit the branch points at a and c
collide as they both approach 2 with their difference being of order p, while the [b, a] cut
remains of a finite size as b ' −2.

Below we will compute in this limit the 1-pt functions 1
N 〈tr φ〉 and

1
N 〈tr φ3〉. We will

find that the results for them are closely related.
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6.1 The 1
N

〈tr φ〉 one-point function

Let us first discuss the beahavior of the 1pt function 1
N 〈tr φ〉 in this scaling limit. We will

need the result for the 1pt function to quadratic order only, and it reads

1
N
〈trφ〉=−

4
(
32
√

2−15π
)

15π (6.6)

+ 2M
5π2

(
(−45

√
2π+216) log(Mz)+320π2z−768

√
2πz−90π2+66π

√
2+744

)
+ M2

20π3

[
−20480

√
2π2z2 log(Mz)−13608

√
2log2(Mz)+4455π log2(Mz)

−30240
√

2π2z log(Mz)+198144πz log(Mz)−73008
√

2log(Mz)
−23004π log(Mz)+8100π2√2log(Mz)+40960π3z2−182272

√
2π2z2

−23040π3z−41472
√

2π2z+712704πz

+6480π3+4536π2√2−74880
√

2−108432π
]
.

Let us also define instead of g the rescaled and shifted cosmological constant

J = 2π4π − g
M

−
(
648
√

2π − 648π2
)
M + 144π2 + 48

√
2π (6.7)

which in the limit M → 0 reads

J = 512π2z − 72
√

2π log(Mz)

+M
[
− 81 log2(Mz) + 864π

√
2z log(Mz)− 324(

√
2π − 1) log(Mz)

− 16384π2z2 + 9216π(π −
√

2)z
]
. (6.8)

The first term 2π 4π−g
M in the r.h.s. of (6.7) is a finite nontrivial quantity in the limit we

consider (as follows from (6.1)) and can be viewed as a renormalized coupling in our regime.
The other terms in that equation serve to remove from (6.8) the trivial nonsingular pieces
that are polynomial in M and do not contain log(M) or z, and thus will not affect the part
of the 1-pt function we are interested in.

Similarly, subtracting from (6.6) the irrelevant regular terms we define its singular part as

1
N
〈tr φ〉sing = 〈 1

N
tr φ〉+

4
(
32
√

2− 15π
)

15π −

(
5
√

2π − 24
)
MJ

20
√

2π3 (6.9)

−

(
1134π2√2− 18720

√
2 + 1620π3 − 27108π

)
M2

5π3

−
12
(
11π
√

2− 15π2 + 124
)
M

5π2

– 21 –



J
H
E
P
0
3
(
2
0
2
3
)
0
6
7

where the coefficient of the MJ term is chosen so as to cancel the M log(Mz) term in (6.6).
The final result reads

〈 1
N

trφ〉sing = 1
π3M

2
[ (

486π2√2− 3456
√

2− 1620π
)

log(Mz)− 243
(
3
√

2− π
)

log2(Mz)

+ z
((

10944π − 1728
√

2π2
)

log(Mz) +
(
5760π2√2− 3456π3 + 24576π

))
+ z2

((
6144π3 − 18944

√
2π2

)
− 1024

√
2π2 log(Mz)

) ]
. (6.10)

Notice also that we can now retain in the definition (6.8) of J only the leading terms since
it is already given by 2nd order in M , and we denote the resulting quantity by little j,

j = 512π2z − 72
√

2π log(Mz) . (6.11)

To summarise, the singular part of the 1-pt function is given by (6.10) where z is
implicitly a function of the coupling g determined via the intermediate variable j in (6.11) (or
equivalently J), related to the coupling via (6.7). These equations are one of our main results
and give the novel 1pt function representing the flow between c = −2 and c = 0 regimes.

Notice that according to (6.7) the variable j is essentially the coupling g, up to constant
factors, a shift and a rescaling by M . To write the 1-pt function in terms of M and g

one would need to invert (6.11) to obtain z(j). Curiously, this inverse function is (up to
numerical constants that can be scaled away) in fact the well known Lambert function
which has a variety of interpretations from combinatorics to quantum field theory and which
appears here in our new result for the 1-pt function. We discuss its role and origins in more
detail in section E.

6.1.1 Limiting regimes

Let us now discuss the two limiting cases in more detail. In the c = −2 regime describing
spanning trees we have to send z →∞ as we take M to be small and 4π − g �M . This
gives z ' 2π 4π−g

512π2M . Plugging it into (6.10) and retaining there the leading term (last line)
we get the correct c = −2 scaling

〈 1
N

tr φ〉sing ' −
1

32
√

2π3 (4π − g)2 log(4π − g) . (6.12)

The dependence on 4π − g, which is the parameter that measures deviation from criticality,
is in complete agreement with predictions from [3, 47].

In the latter case c = 0 pure gravity regime we have to solve the equation (6.11) up to
the 2nd order expansion around the critical16 point j′(zc) = 0. We find

zc = 9
32
√

2π
(6.13)

which can be equivalently read off from (5.8), (5.9). Taking z to be near this critical value
so that

z = 9
32
√

2π
+
√
ε , where ε = const×(gc(M)− g) (6.14)

16We recall that the critical line corresponds to ∂g(M, z)/∂z = 0.
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we find the scaling for the one-point function

〈 1
N

tr φ〉sing ∼ ε3/2. (6.15)

Remarkably, the term ε1/2 cancels, as it should be! This behavior thus perfectly matches
the prediction from [1, 2].

6.1.2 Rational representation and rescaled form

Let us present some other useful representations of the singular part of the 1-pt function.
One natural way to rewrite it is to exclude log(zM) from (6.10) using (6.11). Then we obtain

Φs≡ 1152π5 1
M2

1
N
〈trφ〉sing = 16384π3jz2−4608π2√2jz−8388608π5z3+1769472π4√2z2

(6.16)

where we dropped the (polynomial in j) terms that do not contain z and thus do not affect
the critical behavior. We see that in terms of z and j the result is purely polynomial. This
form can be used just as the one above for analysing the asymptotic regimes. For example,
to find the c = −2 behavior we solve (6.11) iteratively and find

z '
j + 72

√
2π log(M j

512π2 )
512π2 . (6.17)

Then we plug this into (6.16) and take the leading term, which is precisely the result (6.12)
we had before. The c = 0 limit (6.15) is also straightforward to take.

Another useful rewriting can be done by absorbing various coefficients into new rescaled
variables. Thus we redefine the variables in (6.11) and (6.16) as

z = t
32
√

2π
9

, M = 32
9
√

2πµ , (6.18)

g = 4π − 256π∆ + 24
(√

2 + 3π
)
M − 324

(√
2− π

)
M2 (6.19)

and lastly
J = ∆

µ
= j

72
√

2π
. (6.20)

Then the coupling parameterization (6.11) becomes simply

J = t− log(µt) . (6.21)

In these variables the critical value of z = zc corresponds to tc = 1. The physical range of
J is then from 1− logµ to infinity (corresponding to zc < z <∞). For the singular part of
our one-point function from (6.16) we get

Φs = C
[
2J (t2 − 2t) + 3t2 − 2t3

]
, (6.22)

where C = 23328π2√2. Equations (6.22) and (6.21) represent the canonical parameteriza-
tion of the (singular part of the) novel one point function 〈 1

N tr φ〉. This is one of the main
results of this paper. We give a plot of the singular part of the 1-point function on figure 6.
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Figure 6. Plot of singular part of 〈 1
N trφ〉 given by (6.22) (without the overall constant C) as a

function of normalized coupling, J = ∆/µ for fixed µ = 0.1. At J ' 3.30259 we see the c = 0
singularity 〈 1

N trφ〉 ∼ (g(c=0)
c −g)3/2. The c = −2 singularity 〈 1

N trφ〉 ∼ (g(c=−2)
c −g)2 log(g(c=−2)

c −g)
occurs at µ → 0 at fixed g, on the 1st sheet of the function (upper branch in the picture). The
exponential singularity is on the 2nd sheet (w.r.t. the c = 0 branchpoint, lower branch on the picture).

6.1.3 “Asymptotic freedom” on the second sheet

Let us consider the case j → 0. This is of course already beyond the c = 0 criticality,
which means that these are the “unphysical” values of parameters. However the underlying
physical quantity may have singularities on the second sheet which correspond to subleading
exponential corrections. Then we have from (6.10)

z 'M−1e
− j

72
√

2π . (6.23)

Plugging it into (6.16) and picking the leading term we find a behavior reminding asymptotic
freedom

Φs ' −4608π2√2 (4π − g) e−
4π−g

72
√

2πM , (M � 4π − g) . (6.24)

What are the excitations leading to these exponential effects? It cannot be the analogs
of ZZ branes known for 2d gravity, since these ones have the e−const×N behavior. They
seem to be corrections to the regime of “almost spanning trees”, already for the leading
order of planar graphs. We leave a more detailed exploration and interpretation of this
regime for the future.

6.2 The 1
N

〈tr φ3〉 one-point function

Having studied above the 1-pt function 1
N 〈tr φ〉, here we will discuss another one, namely

1
N 〈tr φ3〉. This 1-pt function is particularly important as it is related to the derivative
of the partition function in the mass M and consequently to the fermion condensate of
the type 〈ψ̄ψ〉. As discussed above in section 4.2, it can be explicitly computed at generic
values of the parameters and the result is given in the supplementary Mathematica file
accompanying this paper. As an illustration, figure 7 shows a 3d plot of this observable
as a function of M and λ in the physical region. Here we will study its expansion in the
scaling limit we just discussed above.
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Figure 7. Plot of the 1-pt function 1
N 〈tr φ3〉 as a function of M and λ, in the physical region

bounded by the critical line. We show the critical line in red, in the planes 1
N 〈tr φ3〉 = 1 and

1
N 〈tr φ3〉 = 0.

For this correlator we find expansions similar to what we had before, starting with the
small M expansion

1
N
〈trφ3〉=−59392

√
2

105π +256 (6.25)

+
64M

(
−90

(
21
√

2π−94
)

log(Mz)+105π2(128z−27)−8
√

2π(3760z−333)+16700
)

35π2

− 32M2

7π3

(
3
(
7
√

2π2
(
512z2+5616z−1215

)
−6π(30112z−2997)+47562

√
2
)

log(Mz)

+243
(
159
√

2−70π
)

log2(Mz)+2
(
−63π3

(
2048z2−864z+135

)
+
√

2π2
(
315520z2+24624z−7047

)
+π(96624−692800z)+57624

√
2
))

Then like before we define the singular part as

1
N
〈tr φ3〉sing =

 1
N
〈tr φ3〉 −

16
(
21π − 47

√
2
)

7π3 MJ

∣∣∣∣∣∣
M2

(6.26)

where we indicate that we take the term of order M2 (dropping the terms of order M0 and
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M1 which like for 1
N 〈tr φ〉 are regular). This gives

1
N
〈trφ3〉sing

=−16M2

7π3

(
42
(√

2π2
(
512z2+6048z−1377

)
−96π(289z−36)+6432

√
2
)

log(Mz)

+567
(
143
√

2−63π
)

log2(Mz)+4
(
−21π3

(
10240z2−4896z+405

)
(6.27)

+9
√

2π2
(
56448z2−14672z−783

)
+π(96624−476224z)+57624

√
2
))

Finally rewriting this in terms of J we find, up to an overall factor, the result analogous
to (6.22) for this correlator,17

Φ3,s = 2
(
J − 6

√
2π + 8

)
(t2 − 2t) + 3t2 − 2t3 . (6.28)

Notice that this function up to an overall multiplier coincides with the one for tr φ

defined in (6.22) up to an overall multiplier and redefinition J → J + const. This is a
remarkable property which indicates a kind of universality for these 1-pt functions that
would be important to elucidate further. As consequence, this function just like 〈tr φ〉 also
interpolates perfectly between the c = −2 scaling (6.12) and c = 0 scaling (6.15), with
the limiting result having exactly the same form and the only difference being the overall
constant factor. Furthermore, we see that both 1-pt functions are of course written in terms
of the Lambert function which technically originates from the relation between J and the
couplings in (6.21) which is the same for all observables of this type.

In principle one should be able to compute further 1-pt functions of the type 〈tr φn〉 at
least for fixed n explicitly, and we leave this to future work.

7 Disc partition function

While in section 6 we have studied extensively the 1-pt function, here we will discuss a
more complicated observable — the disc partition function. We will explore its critical
behavior and the interpolation (flow) between c = −2 and c = 0 regimes.

We will study two resolvents: the resolvent G(x) which generates 〈trXk〉 correlators,

G(x) =
∞∑
k=0

1
xk+1

1
N
〈tr Xk〉 =

∫ a

b
dy

ρ(y)
x− y

(7.1)

and another resolvent

H(r) =
∞∑
k=0

1
rk+1

1
N
〈tr φk〉 =

∫ a

b
dy

ρ(y)
r − φ(y) (7.2)

generating the correlators 〈tr φk〉. These resolvents can also be viewed as disc partition
functions, with k in the correlator being the disc boundary length, corresponding to different
boundary conditions (see section 3.3 for details). We will show that they have the same
universal behavior in the pure gravity limit as expected, while for the c = −2 regime we
find different properties depending on the type of boundary.

17Here Φ3,s is defined as 1
N
〈tr φ3〉sing multiplied by an overall constant and in which, like before, we

further drop terms polynomial in j.
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7.1 The resolvent G(x) for tr Xk correlators

First let us discuss the G(x) resolvent. We will work in the same limit as in section 6
described in (6.5), so that M ∼ p → 0. We will be interested in the singularity of the
resolvent near its branch point which physically describes the situation when the boundary
of the disc becomes large. Thus we expand G(x) around the branch point at x = a (which
in our limit collides with the x = c branch point present on the other sheet). In our limit
we have

b = −2 +O(M) , a ' 2 +Mα , c ' a+ 64Mz (7.3)

where

α =
3
(
3
√

2 log(Mz) + 6π + 2
√

2
)

π
(7.4)

and we expand x as
x = 2 +Mχ (7.5)

with χ ∼ 1 being the rescaled boundary cosmological constant. Then, using (7.14) and
dropping the terms which are regular in χ, we get

Gsing =
√
M

−9
√

2 cosh−1
(√

χ−α
64z

)
π
√
χ− α− 64z −

√
χ− α

+O(M) (7.6)

where we indicated that we keep only the singular terms. The singularity is at χ = α (which
in view of (7.3) corresponds of course to x ' a) and comes about from the square root and
the cosh−1 terms. Notice that the apparent singularity at χ = α+ 64z in fact cancels.

7.1.1 Limiting cases

Equation (7.6) gives the singular part of the resolvent which describes the critical behavior.
Let us examine its c = 0 and c = −2 limits. In the former regime (pure gravity) we should
expand as in section 6.1.1 around the critical value of z given by zc = 9

32
√

2π (see (6.13)),
and the same time we expand in χ near the singularity,

z = zc + δ , χ = αc + 64δ/ξ , δ → 0 (7.7)

with αc = (α)|z=zc and the factor 64 introduced for convenience. The variable ξ is a finite
scaling parameter and δ/ξ corresponds to the rescaled boundary cosmological constant
while δ is viewed as the square root of the renormalised bulk cosmological constant (due to
the relation (6.14) between z and the coupling in this limit). Then we get with δ → 0

1√
M
Gsing = c1 + c2

δ

ξ
+ c3

δ3/2

ξ3/2 (ξ − 2)
√
ξ + 1 +O(δ∈) (7.8)

where cn are (real) numerical constants. Thus we reproduce the universal pure gravity
prediction of [12] — the expected scaling function (ξ− 2)

√
ξ + 1 and the expected prefactor

(δ/ξ)3/2. This is yet another important test of our results.
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Next, the c = −2 regime corresponds to scaling z →∞ and we take at the same time
χ→∞ so that the ratio

κ ≡ χ

z
(7.9)

remains fixed. Then we find

1√
M
Gsing ' −

√
κ
√
z −

9
√

2 cosh−1
(√

κ
64

)
π
√

(κ− 64)z
. (7.10)

The interpretation of this result remains to be clarified since the observables tr Xn are not
very natural for the c = −2 limit. Below we will see however that for the other resolvent
H(r) corresponding to tr φn correlators we recover perfectly the known results for the
c = −2 limit.

7.2 The resolvent H(r) for tr φk correlators

While we have computed the resolvent G(x) in closed form, the resolvent H(r) for tr φk
vevs is harder to obtain exactly and we leave this question for the future. Nevertheless
we will be able to compute here the universal part of it which is responsible for critical
behavior, i.e. the singular part.

As for G(x), we will be interested in the singularity that appears when the argument
approaches the branch point of the resolvent. For H(r) the [b, a] cut in x gets mapped to
the cut [φ(b), φ(a)] in the r variable, so we will focus on the regime r → φ(a). The most
complicated part of the integral we wish to compute reads18

∫ a

b
dy

y − 2c
r/2− c+

√
c
√
c− y

√
a− y
y − b

Π
(
y − b
c− b

, 1− p
)
. (7.11)

We will work as before in the limit p ∼M → 0 so a and c are close. The singularity of the
resolvent comes from the integration region y ' a when the denominator becomes close
to zero since at the same time r ' φ(a) ' 2c. To zoom in on this singularity we make the
change of variables

y = a−MY . (7.12)

In order to get a nontrivial result we would like both terms (r/2− c) and
√
c
√
c− y in the

denominator of (7.11) to be of the same order (notice that both y− a and c− a are of order
M), which means that r − 2c ∼

√
M . Thus we define the rescaled variable R ∼ 1 by

r = 2c+ 2
√
MR . (7.13)

Now let us discuss the behavior of the Π function in (7.11). We see that its argument is
1 −M Y+64z

4 and its modulus is 1 − p = 1 − 16Mz, so both of them approach 1 at the
same rate ∝M . We did not find in the literature the expansion of Π in this regime (which
corresponds to a nontrivial resummation of the standard expansions in which one of the

18Notice the Π function here is regular on [b, a] but has a ∼ 1/
√
x− c behavior at x = c.
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two arguments is held fixed) but it can be quite straightforwardly derived from the integral
representation of Π. The result reads

Π(1− Sε, 1− Tε) ' 1
ε

arccosh(
√
S/T )√

S(S − T )
, ε→ 0 (7.14)

which is also easy to verify numerically. Plugging in the values of our parameters and
combining all the parts, for the full density (4.10) we find in our regime

ρ '
√
M
√
Y

π
−

9
√

2
√
M cosh−1

(
1
8

√
Y
z + 64

)
π2
√
Y + 64z

. (7.15)

Thus by focusing on the endpoint of the integration region we have got rid of elliptic functions.
The integral in Y can be now taken analytically as an indefinite integral. Plugging in the
limits of integration, expanding for M → 0 and discarding regular contributions we finally
get for the singular part

1
M
Hsing(R) =

(
πR
√

2
√

128z −R2 − 18 arccos
(

R√
128z

))
arccos

(
R√
128z

)
π2 . (7.16)

We see that as expected it has nontrivial square root and logarithmic singularities in R whose
position moreover depends nontrivially on our finite scaling parameter z. The singularity is
located as expected at the point where r = φ(a) which after expansion in M translates to
R = −

√
128z. It may seem that there is also a branch point at R = +

√
128z but in fact it

cancels between the different terms in (7.16).
This singular part of the resolvent (7.16) is another one of our main results. Below we

will discuss its limiting cases corresponding to the pure gravity and spanning trees regimes.
Remarkably, the analytic structure of (7.16) reminds that of the analogous disc partition

functions for the flattening of random geometries in the model of dually weighted graphs [74–
77] (see also [78]). This similarity deserves a further study which we postpone to the future.

7.2.1 Limiting cases

To get the pure gravity limit, similarly to the discussion above in section 7.1.1, we expand
near the critical value of z. Thus we set

z = zc + δ , R = −
√

128zc + 64
√
π

3 23/4
δ

X
(7.17)

where
zc = 9

32
√

2π
(7.18)

and expand for small δ. This gives

1
M
H

(c=0)
sing ' c1 + c2

δ(X + 1)
X

+ c3
δ3/2

X3/2 (X − 2)
√
X + 1 + . . . (7.19)

where ck are numerical constants. We see that the result perfectly reproduces the correct pure
gravity scaling function [12] and the expected 3/2 power of δ (notice there is no δ1/2 term).
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Let us now consider the c = −2 limit. To do this we expand the scaled disc partition
function (7.16) with z ' 4π−g

256πM ∼ R
2 →∞ (the result of dropping the last term in (6.11)

in this limit). We thus keep finite the combination ζ = R√
128z . Then we find for the singular

part of H(r)

H
(c=−2)
sing ' −

√
2

2π2 (4π − g)ζ
√
ζ2 − 1 log

(√
ζ2 − 1 + ζ

)
. (7.20)

Remarkably, it perfectly coincides with the prediction for the c = −2 limit obtained in [32]
(see equation (4.19) there) from a different matrix model. That shows once again the
universality of the critical regime.

Thus we see that our result for the singular part of the resolvent interpolates nontrivially
between two very different predictions in the c = 0 and c = −2 regimes and describes the
flow between these two models.

8 Conclusion

In this study we investigated the model of massive spinless fermions interacting with 2d
quantum gravity. We derived the Hermitian matrix model with non-polynomial potential
describing the theory, and solved it in the planar approximation considering the one-cut
solution. The regime where this solution exists is restricted by a critical curve in the
2-dimensional parameter plane of fermion mass m and cosmological coupling Λ = gc − g.
It is explicitly demonstrated that the theory in the scaling limit m2 ∼ Λ→ 0 interpolates
between the c = −2 theory, for m2 � Λ, when the spanning trees dominate, and the pure
2d gravity c = 0 theory, for m2 � Λ, when the fermions renormalize the cosmological
constant in a simple way. We also computed the universal singular part of the disc partition
functions in this scaling with Dirichlet and Neumann boundary conditions, interpolating
between the c = 0 and c = −2 regimes. They fit perfectly with the previous results known
for the limiting c = 0. The former one also fits the known c = −2 regime whehter as the
latter one demonstrates in this limit a new behavior.

According to the matrix-forest theorem for the massive determinant we have identified
the dominant number of trees in the forest in the different regions at the parameter space.
In other words we took into account the backreaction of the massive matter on the 2d
quantum geometry. At m = 0 the single tree saturates the partition function at criticality
and we reproduce the picture for the c = −2 theory. The cosmological constant dependence
of physical quantities (one-point functions, disc partition functions) contains logarithms due
to the influence of “large” trees in this limit. At m→∞ the heavy matter breaks the 2d
Euclidean space-time into the maximally possible number of components which coincides
with the number of zero modes of the graph Laplacian.

The most interesting behavior occurs at small but finite m where we find a new scaling
behavior. The new scaling parameter is the ratio J ∼ Λ

m2 and the parameterization of the
scaling functions is given in terms of the Lambert function (1.3) of the parameter t. In this
limit sufficiently large and numerous trees in the partition function matter and it turns
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out that this scaling regime exists at a narrow region near the critical curve. This scaling
describes the critical flow between c = −2 (in UV) and c = 0 (in IR) regimes.

There are a few questions concerning our solution which would be interesting to clarify:

• Study of the whole variety of flows in the vicinity of c = 0 and c = −2 critical points.
Comparison to another flow found in [33]. Generalization of such flows to all central
charges of matter c ≤ 1.

• Analysis of the rest of the parameter plane and of the multi-cut solutions to the
matrix model.

• Exploring various 1-pt functions and understanding the origin of the simple relation
between those we computed in (6.22) and (6.28)

• Clarification of the role of the second solution to the quadratic equation in the
Parisi-Sourlas derivation of the matrix potential.

• Computation of instanton contributions of different kinds, including ZZ branes.

• Establishing the double scaling limit N →∞,Λ→ 0 of our model along the critical
line and deriving the universal scaling function in this limit.

• Derivation of this and other critical flows from the continuous 2d QG (Liouville
formalism).

We hope to return to these questions in our future research.

9 Further directions

Here we outline in more detail some nontrivial potential directions for future exploration.

9.1 Double scaling limit and sum over topologies

It should be possible to solve our one-matrix model in the double-scaling limit [13, 15, 16],
for the whole critical flow in the space of (M,λ). It would be interesting to embed such a
double scaling solution into the KdV formalism of [14] for 2d gravity interacting with c < 1
matter fields. We could also expect other integrability pattern in our double scaling limit
with the Toda hierarchy involved like in [64]. This is quite common for the theories with
asymptotic freedom. The emergence of the Lambert function supports this expectation.

Is it possible to get the analogue of the Kontsevish matrix model in our case? The
fermionic bilinears (derivative with respect to mass) should reproduce some classes at the
moduli space. In the double scaling limit the Lambert function emerges implying the
relation with the Hurwitz numbers which indeed according to ELSV formulae are written
as particular integrals over the moduli space.

– 31 –



J
H
E
P
0
3
(
2
0
2
3
)
0
6
7

9.2 Generalization to other critical flows

An obvious generalization of our formulas describing the universal flow between c = −2 and
c = 0 critical points (1.2), (1.3), (7.6), (7.16) would be the construction of a more general
model with forests on planar graphs, working for all central charges −∞ < c < 1. Following
the Kastelyn-Fortuin-Stephens tree expansion [79] for the Q-state Potts model, realized
on planar graphs as a Q-matrix model in [10], we have to introduce the loops into the
trees and weigh such configuration with an extra factor Q#loops. The central charge will
depend on Q. It would be interesting to construct such a (multi)matrix model, which will
be different from the model of [10] since we deal here with rooted trees. As we have seen
on the example of the flow between c = −2 and c = 0 in our paper, such a model would
have universal critical flows different from those of the O(n) model of Kostov [11].

Furthermore, in [55] an interesting mapping of the model of unrooted trees considered
there to the (loop+dimer) statistical model of Kostov and Staudacher [32] has been developed.
What is the similar corresponding statistical model in our case of rooted trees?

9.3 Fragmentation of the RRG into finite number of trees and many-body
localization

Recently the RRG ensemble has attracted a lot of attention being the toy model for a
Hilbert space of some interacting many-body problem (see [69] for review and references
therein). One considers the spinless fermion ψi, i = 1 . . . N on RRG at large N with diagonal
on-site disorder. The partition function of the model reads

Z(W,N) =
∑
RRG

dψdψ† exp(ψ†i (Lij + δijεi)ψj) (9.1)

where εi is the random diagonal disorder with the flat distribution εi ∈ (−W,W ). Let us
compare this model with our study. Both models describe the spinless massive fermion
interacting with the 2d gravity, although in (9.1) the mass of the fermion is random while
we consider the fermion with the fixed mass. The second difference is that we consider
the canonical ensemble with the cosmological constant while in (9.1) the microcanonical
ensemble is assumed.

The models are very close but the questions discussed are quite different. We have
integrated out the fermions and look at the emergent partition function with the determinant
in the critical regime of large number of nodes as a function of two couplings. The usual
question in the model (9.1) is different and concerns the localization or delocalization of the
fermion at the graph due to the disorder. It was found [69] that there exists a critical Wcr
such that for W > Wcr the Anderson localization takes place. This has been established
via numerical evaluation of level spacing distribution or IPR.

The one-particle Anderson localization on RRG itself seems to be a somewhat artificial
problem, however it becomes interesting if we treat the RRG ensemble as the model of
Hilbert space for some interacting many-body system. The mapping is not exact but it
captures the key qualitative features. The one-particle Andersen localization transition
in the Hilbert space is treated according to the conjecture from [68] as the transition to
the many-body localized (MBL) phase in the physical space. It was argued (see [70] for
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review and references therein) that the fragmentation of the Hilbert space is one of the key
mechanisms for the transition into the MBP phase. In terms of RRG it means that we are
looking at the strong backreaction of fermions leading to fragmentation of RRG into some
number of weakly connected subgraphs, possibly trees.

Another mechanism of Hilbert space fragmentation involves not the random fermion
mass but the perturbation of the RRG ensemble by the chemical potentials for the short
cycles. These chemical potentials can be considered as the leading terms of the expansion
of the characteristic polynomial of the graph Laplacian in inverse powers of m2 since trAn
gives the number of cycles of length n on the graph log det(A + m2) ∝ ∑k(m2)−kTrAk.
Here we have a clear-cut link to our model in the large m2 limit.

If a cubic perturbation V = t3TrA3 is chosen, the phase transition occurs at some
critical value t3,crit and the RRG ensemble at t3 > t3,crit gets dominated by the clustered
graph with the number of clusters equal to Ncl = |G|

q [80]. Similar graph fragmentation
occurs for V = t4TrA4 at t4,crit when bipartite clusters emerge [81, 82]. From the spectral
viewpoint of the graph Laplacian each cluster represents the single low energy mode escaped
from continuum. The isolated eigenvalues form the second soft “non-perturbative” band in
the spectrum [80]. It turns out that the spectrum of the perturbed RRG ensemble enjoys
the mobility edge which separates the delocalized states in the main part of the spectrum
and localized modes in the second non-perturbative band [83].

We do not expand the massive determinant, hence the chemical potentials for all cycles
are present. The number of trees in the forest, which is the order parameter for the Hilbert
space fragmentation, in our exact solution in the planar limit depends on the mass and
the cosmological constant which provides the soft cut-off in the Hilbert space dimension.
At small mass we have no Hilbert space fragmentation at all. The investigation of the
localization of the fermions in the gravity background in our model is a clear direction for
further study. In order to explore this, more detailed characteristics like the level spacing
distribution have to be analysed. We postpone this issue for a separate investigation.

We could try to solve this model in the double scaling limit, summing up over the
topologies in the critical regime (near our critical curve, and presumably at m→ 0). One
might hope (though it is not at all guaranteed) that the double scaling solution contains
this fragmentation phenomenon.

9.4 ZZ-brane instantons for one-cut solution

Let us make a comment concerning the instanton effects and consider the single eigenvalue
ZZ-brane instanton for our one-cut solution. The instanton action evaluated along the
spectral curve reads as follows

Sinst =
∫ x0

a
Y (x)dx (9.2)

where the spectral curve in terms of the resolvent reads

Y (x) = V ′eff(x) = V ′(x)− 2G(x) = M(x)
√

(x− a)(x− b) . (9.3)

The critical point x0 of the effective potential Veff(x) is defined by condition M(x0) = 0
and corresponds to the pinch point of the spectral curve. The effective potential is constant
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on the cut and its derivative obeys the useful relation [5]

∂λVeff(a) = 2 log (a− b)
4 (9.4)

The instanton action can be written as

Sinst = Veff(a)− Veff(x0) . (9.5)

Let us focus on the instanton contribution at M → 0 when we can approximate the r.h.s.
by derivative since x0 is close to a,

Sinst ∝ ∂aVeff(a)(x0 − a) ∝ ∂c

∂a

∂Veff
∂c

(a)(x0 − a) ∝ log(b− a)(x0 − a) . (9.6)

We recall that c = 1
4λ . Using the identity (9.4) and expansions for a, c from appendix D

one can check that ∂c
∂a is finite in this limit. We see that the instanton action vanishes at

M → 0 and instanton contributions become unsuppressed.

9.5 Kesten-McKay distribution and criticality without planarity

So far we have considered the planar approximation but here we shall make a short remark
concerning the partition function for the generic RRG microcanonical ensemble at large
number of nodes n → ∞. In this limit we can utilize the famous Kesten-McKay(KM)
distribution for the spectral density of RRG ensemble [66, 67].

Consider the derivative of our partition function Z(m2) at the critical line which yields
the resolvent of Laplacian for RRG Rn(M)

Rn(m2) = 1
n
〈Tr 1

L−m2 〉 = − 2
n

d

dm2 〈logZ(m2)〉 (9.7)

The resolvent of the adjacency matrix of RRG reads [66, 67]

Rn(z) = (2− q)z + q
√
z2 − 4(q − 1)

2(z2 − q2) (9.8)

and the resolvent of the Laplacian of RRG can be derived via the shift z → q − z.
Hence from the spectral density of RRG

ρn(λ, q) = 1
n
〈
∑

δ(λ− λi)〉RRG = q

2π

√
4(q − 1)− λ2

q2 − λ2 +O(1/n) (9.9)

we obtain for the spectral density of the Laplacian

ρ(m2) = q

2π

√
4(q − 1)− (q −M)2

q2 − (q −M)2 +O(1/n) (9.10)

with density support |(q−m2)| < 2
√
q − 1. Recently the 1/n correction to the RRG spectral

density has been evaluated [84].
We observe two non-analyticities: the pole due to the zero modes in the spectral density

at m2 = 0 and the branch points at 4(q − 1) = (q −m2)2. The branch points seem to be
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interesting and amount to criticality and nontrivial “susceptibility” d2〈logZ(m2)〉
d2m2 for q = 3

at points m2
crit = 3± 2

√
2. There is no such regime in the matrix model studied here: our

graphs are planar whch drastically changes the critical behavior. We could ask the question
whether this kind of distribution can occur in the double-scaled limit of the model, when
we sum up over all genera of graphs with the weight N2−2×genus, close to criticality at every
genus. This is however beyond the scope of our paper.

9.6 Analogy with QCD matrix model

Let us consider two-dimensional QCD, that is, fermions interacting with the quantum gauge
fields. The partition function is the determinant of the Dirac operator averaged over gauge
fields 〈det(D̂(A) + iM)〉YM,gYM and it can be approximated by the large N matrix model
(see [85] for a review) which has the following interpretation. The ground state is assumed
to be populated by the instantons and antiinstantons hosting the fermion zero modes. The
Wishart matrix in the matrix model represents the Dirac operator in the basis of zero modes
or speaking a bit differently the overlap of zero modes which get collectivized.

In our case we have fermions interacting with gravity instead of the gauge field,
determinant of the massive Laplace operator instead of the determinant of Dirac operator
and we do not distinguish chirality. Therefore we have an analogue of the “instantons
without antiinstantons” situation where each tree is the analogue of instanton hosting zero
mode of the graph Laplacian. The number of the trees due to the index theorem coincides
with the number of zero modes hence like in QCD we could have a picture of the overlap
of zero modes upon switching on gravity. Our finding for massive fermions interacting
with gravity suggests that the formation of the multiinstanton clusters in 2d QCD can be
expected as a function of the ratio of the gauge coupling constant and fermion mass.

Fermionic condensates considered in this study have many similarities with the gluino
condensates in SYM. There are still subtle problems concerning the evaluation of gluino con-
densates due to the factorization of the higher topological correlators. It would be interesting
to investigate the factorization issue for the higher fermionic correlators in our case.
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A Combinatoric explanation of the Kirchoff-Tutte matrix-tree theorem

Theorem. The number of spanning trees of a connected loopless graph G is equal to the
determinant of ∆′(G) — the Laplacian of the graph without it’s last column and row. The
Laplacian itself is defined as:

∆ = −Q +A (A.1)

as in (2.1).
Let Kk,α(G) be the (oriented) incidence matrix of a graph G with oriented edges labeled

as α = 1, . . . , EG, and vertices labeled as k = 1, . . . n, constructed as follows:

Kk,α =


1 , if the edge α points from vertex k outside
−1 , if the edge α points from vertex k inside
0 , otherwise.

(A.2)

It is easy to see that ∆ij = ∑
α
Ki,αKi,α, or ∆ = KKT . Moreover this equatily “survives” on

the level of the first minor — ∆′ = K ′K ′T , where K ′ is the Kirchhoff matrix with erased
last line.

The proof is based on Cauchy-Binet formula: for two rectangular m×M matrices F
and H, we have

det(FH) =
∑

Sm∈SM

detFSm detHSm (A.3)

where by detFSn we denote one of the maximal m×m minors of the matrix F (and similarly
for H). The sum goes over all

(M
m

)
such minors.

Applying it to L′ = K ′K ′T we write

det(∆′) =
∑

Sm∈SM

detK ′Sm detK ′TSm =
∑

Sm∈SM

(detK ′Sm)2 (A.4)

Each matrix KSm is the Kirchoff matrix of a subgraph obtained by cutting in G all the rest
of EG − n edges.

Next, we notice that the matrix K ′ is unimodular: all its maximal minors are equal to
0,±1. It is zero if the subgraph has at least one cycle or is disconnected, and ±1 otherwise
(which means that it is a spanning tree). Indeed, each maximal square submatrix KS ∈ K is
in fact the incidence matrix of the subgraph obtained by cutting all the edges corresponding
to the erased columns ofK. ThenKSK

T
S is the laplacian on this subgraph. Then det(KSK

T
S )

is nonzero only if the graph is connected, or it has no loops (the connectivity and the
looplessness are actually the same of such maximal subgraphs). But in this case it is a
spanning tree, and it is easy to see that for the spanning tree det(KS) = ±1 (depending on
the orientation): each column contains only one 1 and one (-1), and they can be always
ordered in an upper-triangular way.

Then it is clear that

det(∆′(G)) = #of spanning trees of G. (A.5)

Quod erat demonstrandum!
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B Some properties of the spectral determinant

• Define the spectral determinant of undirected non-weighted graph G Laplacian L as

L(z,G) = det(L− Iz) (B.1)

The matrix-forest theorem claims

L(z,G) =
∑
i

(−1)iaizn−i (B.2)

where (n− i) is the number of trees in the forest and ai is the product of number of
nodes in all trees in (n− i)-component forest.

d

dz
L(z,G)|z=0 = an−1 = n|t(G)| =

∏
zi (B.3)

where zi are roots of the Laplace polynomial. It is the form of matrix-tree theorem.

• The reciprocity

L(z, Ḡp) = (−1)n−1L(np− z,G) (B.4)
t(Kp −G) = (sp)s−n−2L(sp,G) (B.5)

where Ḡp is graph p-complemented to G, s is the number of nodes in the full graph
Kp.

• The complementarity

zL(z,Gp1G2) = (z − n1p− n2p)L(z − n2p,G1)L(z − n2p,G2) (B.6)

where G1, G2 are graphs with the number of nodes n1, n2

• The spectral determinant can be generalized a bit if we attribute the weights for the
nodes x(vi) (contrary to the standard weights for links ω(vi, vj)) forming the weight
vector ~x. The generalization of the matrix-forest and matrix-tree theorems does exist
in this case and reads as [86]

z−1(−1)n−1 det(M(x,G)− Iz) = F(z, x,G) (B.7)

whereM(x,G) = (mij = −x(vj)ω(vi, vj)) is the Laplacian matrix of the graph dressed
by the node’s degrees of freedom and F(z, x,G) is the so-called forest volume of G. If
x(vi) = 1 it reduces to the matrix-forest theorem.

(−1)n−1L(−z,G) = F(z, 1, G) (B.8)

C Elliptic functions

Here we collect useful integrals and relations for elliptic functions we use.
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C.1 Some integrals

Let us give more details on taking the integral (4.6). We assume that b < a < c. For the
first two terms it reduces to elementary functions,∫ a

b
dy

9cM2 + y

(x− y)
√

(a− y)(y − b)
=
π
(
−
√

(a− x)(b− x) + 9cM2 + x
)

√
(a− x)(b− x)

(C.1)

whereas the last one contains the complete elliptic integral of 3-rd kind:∫ a

b

dy

(x− y)
y − 2c√

(a− y)(y − b)(c− y)
= −

2K
(
a−b
c−b

)
√
c− b

+ (x− 2c)
2Π
(
a−b
x−b , 1− p

)
(x− b)

√
c− b

(C.2)

Combining them together we find the result (4.7) for G(x).

C.2 Relations used for integration of elliptic functions

The relations we use to take the integral (4.16) read:

n(n− 1)k/2
√
l

n
− 1Π(n|l) = −

(kn+ n+ 2)(n− 1)k/2
√

l
n − 1(K(l)(l − n) + nE(l))

(k + 1)(k + 3)n(l − n) +

+ d

dn

2(n− 1) k2 +1
(

2
k+1 + n

)√
l
n − 1Π(n|l)

k + 3


(n− 1)k/2

√
l

n
− 1Π(n|l) = −

(n− 1)k/2
√

l
n − 1(K(l)(l − n) + nE(l))
(k + 1)n(l − n) +

+ d

dn

2(n− 1) k2 +1
√

l
n − 1Π(n|l)

k + 1


(C.3)

D Expansions at small M and p

We have to order M2 (dropping also terms of higher order than listed in L and p)

a = M2

27
(
25551L2 + 3

(
38879 + 5778

√
2π
)
L+ 3072π2 + 44738

√
2π + 129502

)
p2

256π2

+
27
(
465L2 + 2

(
841 + 255

√
2π
)
L+ 4

(
371 + 268

√
2π + 48π2

))
p

16π2 (D.1)

+
27
(
33L2 + 60

(
1 +
√

2π
)
L+ 8

(
2 + 9

√
2π + 6π2

))
8π2


+M

−3
(
1455

√
2L+ 768π + 2869

√
2
)
p2

64π −
3
(
51
√

2L+ 48π + 80
√

2
)
p

4π

−
3
(
3
√

2L+ 6π + 2
√

2
)

π


+ 2
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and

b = M2

27
(
−7317L2 +

(
8052

√
2π − 96055

)
L+ 3072π2 + 14392

√
2π − 215062

)
p2

256π2

+
27
(
−87L2 + 54

(
4
√

2π − 33
)
L− 4

(
943 +

√
2π − 48π2

))
p

16π2 (D.2)

+
27
(
−3L2 + 4

(
6
√

2π − 35
)
L− 8

(
22 + 11

√
2π − 6π2

))
8π2


+M

3
(
198
√

2L− 384π + 1589
√

2
)
p2

32π +
3
(
3
√

2L− 24π + 67
√

2
)
p

2π + 42
√

2
π
− 18


− 2

and

c = M2

27
(
35535L2 + 3

(
59487 + 7730

√
2π
)
L+ 3072π2 + 67074

√
2π + 219742

)
p2

256π2

+
27
(
537L2 + 6

(
347 + 97

√
2π
)
L+ 4

(
467 + 348

√
2π + 48π2

))
p

16π2 (D.3)

+
27
(
33L2 + 60

(
1 +
√

2π
)
L+ 8

(
2 + 9

√
2π + 6π2

))
8π2


+M

−9
(
853
√

2L+ 256π + 2439
√

2
)
p2

64π −
9
(
21
√

2L+ 16
(
3
√

2 + π
))
p

4π

−
3
(
3
√

2L+ 6π + 2
√

2
)

π


+ 4p2 + 4p+ 2

E Lambert function and brane insertion

E.1 Two examples with Lambert function

In this section we shall comment on the reason for the Lambert function to appear in our
double scaling limit. To preclude the arguments below recall our setting. We start with
fermions on the fixed graph and represent the massive determinant as the weighted sum
over the separated trees in the forest. Then we switch on the gravity the interacting system
itself selects the preferable state depending on the point at the two-dimensional parameter
space (m,λ). Hence in any representation of our model we need the boundary creation
operator in some form yielding the boundaries of the trees.

Before turning to our model let us describe two models where the Lambert function
has emerged in the very similar context. First, consider the setup discussed in [62] where
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the perturbation of the 2d topological gravity via the boundary creation operator has been
considered. The motivation of that study was as follows. The boundary matrix model for
JT gravity found in [37] involves the important contribution from the replica wormholes
providing the interaction of baby universes. It was suggested in [62] to substitute the
standard replica trick with useful integral representation for quenched free energy 〈logZ〉.
It is equivalent to the replica representation with particular analytic continuation to n→ 0.

In this representation the quenched free energy reads

〈logZ〉 − log〈Z〉 = −
∫ ∞

0

dx

x

[
e−Z̃x − e−〈Z〉x

]
(E.1)

and involves the function eZ̃(x) which is the generating function for connected correlators
〈Zn〉c. These correlators provide the multiple replica boundary contributions in JT gravity
partition function. It has been also identified as the operator creating the peculiar space-time
D-brane [87] introduced in the context of replica wormholes. Remarkably if we consider the
Airy limit of the Gaussian model in genus zero this generating function can be evaluated
exactly. The exact boundary creating operator Ẑ in topological gravity introduced in [45]
is applied to the partition function of topological gravity

〈Zn〉c = (Ẑ)nF (E.2)

where

Ẑ = gs

√
β

2π
∑
k

βk∂k (E.3)

and derivative is taken with respect to k-th time. If one restricts oneself to the genus zero the
Lambert function emerges as the generating function for boundary creating operator in topo-
logical gravity at genus zero in the Airy limit. This is the first role of the Lambert function.

The second role of Lambert function is important as well [62]. It is familiar in the
topological string context that the insertion of the brane shifts the closed moduli in
background which is usually written in symbolic relation Zclosed(~t′) = ZbraneZclosed(~t) (see,
for instance [63]). In the case under consideration this equation reads

Z̃(x) = F(tk)− e−ẐxF(tk) = F(tk)−F(t′k) (E.4)

hence we expect that “Lambert brane” amounts to the closed moduli shift. This argument
turns out to be true and the KdV flows in topological gravity yield the simple derivation
of this shift [62]. To this aim consider the case when only two first times in hierarchy are
switched on tk = 0, k ≤ 2. The relevant solution to the KdV hierarchy in this case depends
on two times t0, t1 and before the brane insertion it reads

u(t0, t1) = t0
1− t1

(E.5)

where u = ∂2
0F . The shift of the moduli can be seen from the string equation which can be

written for KdV in terms of Gelfand-Dikii polynomials Rk as follows

u(t) =
∑
k

tkRk (E.6)
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If there are only two non-vanishing times upon the shift string equation can be brought
into the Lambert form [62]

z = WeW (E.7)

for
W = βt0

1− t1
− βv z = x

1− t1
e
βt0

1−t1 (E.8)

Hence the second role of Lambert function — shift of the background via the brane insertion
when only two first times in integrable hierarchy are switched on.

The second model enjoying the Lambert function is the topological A model string on
CP1 coupled to topological gravity. The theory has two equivalent dual representations [64]:
a) all genus topological A type string on CP1 supplemented by the first gravitational
descendant of Kahler form and b) the massive two-dimensional fermions with specific
gravity induced action. According to the topological string framework the inclusion of
descendent corresponds to the insertion of some brane similar to the topological gravity
above. The first representation of Lambert function as the brane creation operator is not
explicitly known in this model hence we focus on the second role — shifting the moduli.
This aspect has been identified in [64] in explicit form.

It goes as follows. The model is solved in terms of the spectral curve which is the
sphere with two marked points. The cut on the C plane lies between x± = v ± Λ. The
filling fraction for fermions is defined as a = ~R and plays the role of closed moduli. This
theory similarly to the topological gravity case involves only two times t1, t2 and it was
found in [64] that instead of KdV hierarchy for pure gravity here the semiclassical limit of
Toda hierarchy does the job. When t2 = 0 we have no gravity descendant of Kahler form
and the relation v = a holds. When t2 6= 0 solution requires the proper matching condition
at the ramification points which yields shift of the closed moduli. The Lambert function
W (z) enters via the following matching conditions for moduli shift

v − a = W (t2et1+at2) (E.9)

log Λ = t1 + 2t2a− 1/2W
(
−16t22e2(t1+2t2a)

)
(E.10)

As in the previous case we interpret this relation as an effect of insertion of the “Lambert
brane” and its backreaction on gravity.

Integrability implies the fermionic representation of the partition function [64]

Z(t1, t2, R) = 〈R|e−
J1
~ e~

−1(t2W3+t1W2)e−
J−1
~ |R〉 (E.11)

where |R〉 is the state with U(1) charge R, ω is the coordinate on the cylinder, t1 = log Λ.
The harmonics of the U(1) current are defined as

Jk =
∑
r

: ψ̃rψr+k : (E.12)

The generators of the W1+∞ algebra are expressed in terms of fermions as follows

Wk+1 = − ~k

k + 1

∮
dω
(
ψ̃[(D + 1/2)k+1 − (D − 1/2)k+1]ψ

)
(E.13)
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where D = ω∂ω. Hence we observe that the fermions are effectively massive and have a
non-standard kinetic term involving the second derivative.

The time t2 is coupled to the unusual second derivative term induced by coupling to
gravity and coinciding with the zero mode of the W3 generator of the W1+∞ algebra. Upon
bosonization it can be expressed as the (∂φ)3 term in the action for the chiral boson and
has an interpretation as a cut-and-join operator. Such terms are familiar in many models
(see for instance [88] for the relevant discussion) and the coefficient in front of this term has
an interpretation of the string coupling.

This theory has one more interpretation which actually was the initial one for the
authors of [64]. The model can be viewed as the D = 4 abelian U(1) N = 2 SYM theory in
the Ω background when the leading gravitational correction to the prepotential is taken
into account. That is, in the UV the prepotential involves only two times

FUV = t1Tr Φ2 + t2Tr Φ3

where the second term is induced by the coupling to gravity. Naively there are no instantons
in the abelian theory but they do emerge when the coupling to gravity is switched on and
the theory is asymptotically free with a non-perturbatively generated IR scale. Presumably
this theory can be considered as the worldvolume theory on the inserted brane.

E.2 Lambert in the forest

From two examples above we see that the Lambert function plays the role of the generating
function for multiple boundary insertions and simultaneously shifts the closed moduli.
In our case we indeed need tree boundary creation operators, however according to the
matrix-forest theorem the boundary of each tree enters with the volume of the tree. Hence
the second CP 1 example is more similar to our case since the effect of the gravity descendant
of the Kahler class involves the volume factor indeed. As in that case we will observe the
shift of the closed moduli.

Let us first note that the Lambert function W (x) in (6.11) in our notation is just the z
variable or more precisely its rescaled version t (see (6.18)),

t = −W
(
−µ−1ec0

g−gc
µ

)
(E.14)

where W (x) obeys the equation W (x)eW (x) = x and numerical factor c0 = 1
256π . Recall

that near the critical point the area of the surface A behaves as A ∝ 1
g−gc hence we have

e−
1
MA in the argument of the Lambert function. This can be compared with the standard

instanton exponent e−
1
gsA which implies the suppression of the instanton effects at large

N since gs = 1/N . In our case it seems that gs ∝ M which implies the lack of large N
suppression. Notice that the factor like e−

1
gsA was discussed for the instanton contributions

in 2d YM theory.
Let us turn now to two roles of the Lambert function observed in the previous examples.

First, one can ask whether we have an effective brane generating multiple boundaries on
the worldsheet like in the Airy limit of topological gravity at genus zero. It is a well known
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fact that the insertion of det(M − x) in the matrix model for the type B topological string
corresponds to the insertion of the FZZT brane at point x of the spectral curve of the matrix
model. In our case the massive determinant det(∆ +M) involved in our partition function
according to the matrix-forest theorem seems to play such a role. Indeed its expansion in
mass provides multiple trees on the worldsheet. Hence we expect that we have the effective
brane insertion as well and the mass M provides the position of the insertion. Certainly
this point deserves further clarification.

Secondly, similarly to the example of the topological A model string on CP 1 we can
look for the equation describing the shift of the closed moduli via the insertion of the brane.
The shift has to be proportional to the deformation parameter M . The equation entering
our one-gap solution

p = 16Mz = MW (x) (E.15)

plays this role. WhenM = 0 and p→ 0 the elliptic curve degenerates into the marked sphere
while the insertion of the “Lambert brane” at point x yields the modified condition (E.15)
which is the analog of (E.9).

Notice that there are several other precise examples relating non-critical strings and
topological strings. In particular the c = 1 string is described as the topological string
on a conifold [89] and minimal models coupled to 2d gravity were argued to be described
via a topological string on a particular Calabi-Yau manifold. The account of the gravity
descendants in the minimal model corresponds to the adding of the B-branes into the B
model geometry and insertion points are the open moduli.

The Lambert function has a finite radius of convergence x0 = 1
e in the series represen-

tation
W (x) =

∑
n=1

nn−1x
n

n! .

The inspection of the radius of convergence in our case yields the condition for the area A
in the critical regime

A >
1

M logM (E.16)

which implies the validity of the approximation in this regime only. The meaning of a
possible transition at this radius deserves special study.
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