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Abstract. Upcoming large-scale structure surveys can shed new light on the properties of
dark energy. In particular, if dark energy is a dynamical component, it must have spatial
perturbations. Their behaviour is regulated by the speed of sound parameter, which is
currently unconstrained. In this work, we present the numerical methods that will allow to
perform cosmological simulations of inhomogeneous dark energy scenarios where the speed of
sound is small and non-vanishing. We treat the dark energy component as an effective fluid
and build upon established numerical methods for hydrodynamics to construct a numerical
solution of the effective continuity and Euler equations. In particular, we develop conservative
finite volume schemes that rely on the solution of the Riemann problem, which we provide
here in both exact and approximate forms for the case of a dark energy fluid.
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1 Introduction

We have compelling evidence that the universe is currently undergoing an accelerated phase
of expansion. In the standard cosmological model, this requires the existence of an exotic
component, dubbed dark energy, that is characterized by negative pressure and dominates
the present-day cosmic energy budget. A simple cosmological constant term (Λ) in Einstein’s
equation of General Relativity can play the role of dark energy since it behaves as a negative
pressure component. Together with the Cold Dark Matter (CDM) hypothesis, the ΛCDM
scenario currently reproduces all cosmological observations on the scales thus far available [1–
4]. Nevertheless, the success of this model remains purely empirical as the physical origin of
the cosmic dark components remains unknown.
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Observations indicate that the energy density associated with Λ is ρΛ ≈ 10−47 GeV4.
It is the smallness of this value that has so far posed puzzling problems to any attempt of
finding a satisfying theoretical explanation of Λ (for a review see [5]). On the observational
side, the ΛCDM model is showing its limitations in the form of tensions between cosmological
parameter values recovered from different kinds of cosmological probes [6, 7]. For these
reasons, alternative hypotheses to the cosmological constant have been advanced. Beyond the
cosmological constant, dark energy may result either from a modification of gravity on cosmic
scales [8, 9] or be the effect of a new degree of freedom not accounted for by the Standard
Model of particles [10].

Given the lack of new fundamental principles which may guide the dark energy theoretical
model building, there is hope nevertheless that the next generation of cosmological observations
may reveal hints of the new physics underlying the dark energy phenomenon. Ongoing and
upcoming large-scale structure surveys have the potential to constrain dark energy properties
using established probes such as galaxy clustering, cosmic shear, and galaxy cluster number
counts as well as newly proposed probes such as voids, counts in cells, and others. The usual
approach is to model dark energy as a perfect fluid characterized by homogeneous pressure
and density that are related through an equation of state parameter, w, the cosmological
constant case corresponding to w = −1. However, if dark energy is dynamical, i.e. its energy
density is not constant in time, general covariance imposes that it has to vary in space as well.
We then have an additional macroscopic quantity that specifies the properties of the dark
energy fluid, namely the speed of sound of dark energy perturbations, cs. This suggests that
the detection of the clustering of dark energy through observations of the cosmic structures
may provide smoking gun evidence of the dynamical nature of the dark energy phenomenon.

Bounds on the dark energy equation of state and speed of sound can be translated into
constraints on the microscopic properties of dark energy since these quantities can be related
to terms in a Lagrangian effective field theory of dark energy (see e.g. [11, 12]). For instance,
quintessence models in which dark energy results from the dynamics of a minimally coupled
scalar field are characterized by cs equal to the speed of light c [13], while k-essence models in
which dark energy is due to a scalar field with a non-canonical kinetic term have c2

s ≈ 0 [14].
It is important to notice that a perfect fluid approach is not limited to the phenomenological
study of dark energy. For instance models of unified dark matter and dark energy [15] as well
as alternative Dark Matter scenarios (see e.g. [16]) are described as dark fluids characterized
by an equation of state and a speed of sound. For this reason throughout the text we may
refer indistinctly to Dark Energy or dark fluids.

The clustering properties of Dark Energy can be tested through observations of the
cosmic distribution of matter at different scales and times. On large scales, linear perturbation
theory can be used to predict the effect of dark energy inhomogeneities on the evolution of
matter density perturbations [17–19]. However, since dark energy is a late-time phenomenon,
the impact of dark energy perturbations on those scales is small and well within cosmic
variance uncertainties, so that current data remains uninformative [19, 20].

This may not be the case at small scales and late times where the collapse process is
highly non-linear. For quintessence-like fluids, dark energy perturbations on sub-horizon scales
have been damped by free-streaming, so that only the background expansion is affected. Thus,
in these models the non-linear clustering of matter can be investigated using standard N-body
simulations [21–23]. Instead, in models with cs < c perturbations may cluster at small scales
so that it is necessary to include them in the simulation to capture the fully non-linear process
of structure collapse in the presence of dark energy inhomogeneities. Previous studies looked

– 2 –
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at the fully clustered case c2
s = 0 in the context of the spherical collapse model [24–26] or

higher-order perturbation theory [27–29]. Recently the first cosmological simulation code that
includes the effects of clustering dark energy has been developed, k-evolution [30, 31]. This
is a relativistic N-body code that treats the dark energy component as a scalar field. While it
has the advantage of including all the relevant relativistic effects, it cannot deal with the large
dynamic range of typical high-resolution cosmological simulations since it employs a fixed grid
that cannot be refined. Moreover, ref.s [32, 33] reported instabilities in the scalar field solver
in the context of cosmological simulations, providing strong motivation for an independent
check of whether these instabilities are a physical property of clustering dark energy.

The work presented here is complementary to k-evolution in that it uses the Newtonian
approximation but treats dark energy as a fluid and is meant to be implemented in fully
non-linear hydrodynamics codes. In fact, we will show that the non-linear evolution of dark
energy fluctuations is described by hyperbolic Euler equations which can be cast in the form
of modified equations of hydrodynamics. Numerical schemes that are best suited to solve this
type of equations are based on Finite Volume (FV) methods. Many of these schemes are
already implemented in cosmological simulation codes such as ENZO [34], FLASH [35] or
RAMSES [36] to follow the cosmological collapse of baryonic gas. These codes use high-order
variants of the Godunov scheme originally introduced in [37] and have been shown to provide
accurate solutions to a variety of problems in gas dynamics. The accuracy of these schemes
relies on their ability to capture discontinuities in the fluid flow and correctly predict the
velocity of propagating waves. The starting point of these methods is the solution to the
Riemann problem. Exact and approximate solutions have been derived for several systems
including real gases [38], inviscid flows of perfect gases [39], gases with generic equations of
state [40] and compressible liquids [41].

Here, we present a detailed study of the Riemann problem for cosmic dark fluid as a
first step toward a cosmological study of the non-linear structure formation in inhomogeneous
dark energy models. We derive an exact solution to the Riemann problem and construct
several approximated solvers that in combination with Godunov-type schemes can efficiently
solve the non-linear fluid equations for dark energy.

The paper is organized as follows: in section 2 we present the Euler equations for a
clustering dark energy fluid and cast them in the form that allows for an easier numerical
implementation. We then present the solution of the Riemann problem for this fluid in
section 3 and develop numerical Riemann solvers in section 4. Finally, in section 5 we present
working examples of finite volume conservative schemes that can be used to solve the Euler
equations for clustering dark energy and test them using standard hydrodynamical test cases.
We draw our conclusions in section 6.

2 Euler equations for dark energy fluids

The equations describing the evolution of a dark energy (or any non-relativistic) fluid under
the influence of Newtonian gravity in a Friedmann-Lemaitre-Robertson-Walker (FLRW)
background have been derived in [27], using conformal-Newtonian gauge. In Cartesian
comoving coordinates these read as:

∂ρ

∂τ
+ 3H

(
ρ+ p

c2

)
+ ~∇ ·

[(
ρ+ p

c2

)
~v

]
= 0 (2.1)

∂~v

∂τ
+H~v + (~v · ~∇)~v = − 1

ρ+ p
c2

(
~∇p+ ~v

∂

∂τ

p

c2

)
− ~∇Φ, (2.2)
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where ρ and p are the dark energy energy density and pressure respectively, ~v is the dark
energy peculiar velocity with respect to the Hubble flow, τ is the conformal time defined
by dτ = dt/a(t), with a the scale factor, H = d ln a/dτ is the Hubble rate and Φ is the
gravitational potential. The derivation of these equations assumes non-relativistic peculiar
velocities (v � c), and scales much smaller than the horizon, which removes a number of
relativistic contributions.

Since we aim to use conservative numerical methods we want to cast the fluid equations
in the form that is closest to the usual conservative form for baryonic fluids. To achieve this
we can start by re-writing eqs. (2.1) and (2.2) as:

∂

∂τ

(
ρ+ p

c2

)
+3H

(
ρ+ p

c2

)
+~∇·

[(
ρ+ p

c2

)
~v

]
= ∂p

∂τ
(2.3)

∂

∂τ

[(
ρ+ p

c2

)
~v

]
+4H

(
ρ+ p

c2

)
~v+~∇·

[(
ρ+ p

c2

)
~v⊗~v

]
=−

(
ρ+ p

c2

)
~∇Φ−~∇p. (2.4)

Given the non-barotropic effective description of the dark energy fluid, it is necessary to split
the evolution of the background density ρ̄ and pressure p̄ from that of the fluctuations δρ and
δp such that

ρ(~x, τ) ≡ ρ̄(τ) + δρ(~x, τ) (2.5)
p(~x, τ) ≡ p̄(τ) + δp(~x, τ), (2.6)

where p̄(τ) = w(τ)ρ̄(τ)c2 and the evolution of the background density is governed by
∂ρ̄

∂τ
= −3H(1 + w)ρ̄. (2.7)

We then describe the dark energy pressure perturbations by relating them to dark energy
density perturbations in the dark energy rest frame, denoted by a subscript rf:

δprf(~x, τ) = c2
s(τ)δρrf(~x, τ), (2.8)

where cs(τ) is the effective sound speed, which in general can be time-dependent.
We can now introduce the new variable:

Π ≡ 1 + w +
(

1 + c2
s

c2

)
δ, (2.9)

where δ = δρ/ρ̄. We will restrict here to the case Π > 0 because the solution of the Riemann
problem becomes ill-defined for Π ≤ 0 (see e.g. eq. (A.3) and (A.4)), but there is also a physical
reason for restricting to this case. In fact, one can also write Π as Π = (ρrf + prf/c

2)/ρ̄rf and
imposing that (ρ+ p/c2)rf > 0 is equivalent to enforcing the null-energy condition. Notice
that this translates to a floor in the physical dark energy underdensity:

δ > − 1 + w

1 + c2
s
c2

, (2.10)

meaning that the total dark energy density can never reach 0 if w < 0. Eq. (2.1) and eq. (2.2)
can finally be written in the form:

∂Π
∂τ

+
(

1 + c2
s

c2

)
~∇ · (Π~v) = 3H

(
w − c2

s

c2

)
(Π− 1− w) (2.11)

∂(Π~v)
∂τ

+ ~∇ · (Π~v ⊗ ~v) + c2
s(

1 + c2
s
c2

) ~∇Π = H(3w − 1)Π~v −Π~∇Φ, (2.12)
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which we call quasi-conservative in analogy with the conservative form of the Euler equations
for baryonic fluids. In fact, in the case of a vanishing equation of state w and sound speed
cs, eqs. (2.11) and (2.12) reduce to the standard conservation laws of mass and momentum.
Here, we have intentionally written the friction terms due to the cosmic expansion on the
right-hand side to distinguish the advection part of the Euler equations from non-advecting
time-dependent source terms. We have also assumed that w and cs are constant in time.
Relaxing this assumption will introduce additional source terms. However, even if cs varies in
time, this does not alter the form of the advection part of the Euler equations. Hence, the
derivations presented hereafter remain valid also in this case.

This system of equations gives a description of the gravitational dynamics of dark energy
perturbations in the presence of other matter components provided a closure equation for the
gravitational potential Φ. This is given by the Poisson equation [see e.g. 27]:

∇2Φ = 4πGa2
(
ρtot + 3ptot

c2

)
(2.13)

where ρtot and ptot are the total energy density and pressure of all gravitating components.
Similar to what is done in the case of cosmological hydrodynamical simulations of dark matter
and baryons, the idea of simulating the clustering of dark matter and dark energy is to use
the N-body method to solve the dynamics of dark matter particles and the hydrodynamical
description given by given by eq. (2.11) and (2.12) to solve that of dark energy fluctuations,
where the same total potential, sourced by matter and dark energy fluctuations, is used
for both components. These equations can be implemented for example in cosmological
N-body/hydro codes with an Adaptive Mesh Refinement (AMR) of the simulation volume
in which the energy density and pressure of dark energy can be added to that of the matter
density field on the same AMR grid before numerically solving the Poisson equation.

3 The Riemann problem

The advection parts of eqs. (2.11) and (2.12) form a hyperbolic system of partial differential
equations that can be solved numerically using finite volume methods. Here, we will focus on
the Godunov method originally introduced in [37]. At the heart of the method, as we will see
in detail in section 5, is the solution of the Riemann Problem (RP).

Let us briefly introduce here what is the Riemann Problem and how the solution is found.
We can start by writing eqs. (2.11) and (2.12) in a compact state-vector form in Cartesian
coordinates:

Uτ + F(U)x + G(U)y + H(U)z = S(U), (3.1)

where the indices denote partial derivatives, U is a state vector of unknowns, F(U), G(U) and
H(U) are vectors of fluxes and S(U) a vector of sources. Let us focus on the advection part
of the equations, which is simply given by imposing S(U) = 0. Physically, this corresponds to
the case of a non-expanding background without gravity, which is what we consider in the
following. Since in most applications this system is solved along each Cartesian direction
separately, let us simply focus on the x direction.

The Riemann problem is an initial value problem (IVP) of the advection equation

Uτ + F(U)x = 0, (3.2)

– 5 –
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with initial conditions

U(x, 0) =
{
UL if x < 0
UR if x > 0

(3.3)

In general, the solution of the RP for a m × m non-linear hyperbolic system consists of
m+ 1 constant states separated by m waves in the plane x− τ . These can be either shocks,
rarefaction or contact waves associated with the so called characteristic fields of the advection
equation eq. (3.2) [see e.g. 42, 43, for a standard textbook presentation]. The characteristics
are curves in the plane x− τ along which eq. (3.2) reduces to an ordinary differential equation.
In order to determine these curves let us rewrite eq. (3.2) as

Uτ + A(U)Ux = 0, (3.4)

where A(U) = ∂A(U)/∂U is the Jacobian matrix of the flux. Finding the eigenvalues λi
and associated right eigenvectors Ri of the Jacobian we can verify the nature of the waves by
computing:

~∇Uλi ·Ri, (3.5)

where ~∇U indicates the derivative with respect to the state variables U. If ~∇Uλi ·Ri 6= 0 the
characteristics are said to be genuinely non-linear and the associated waves are either shocks
or rarefaction waves, otherwise the wave is a contact discontinuity.

When λi is associated to a rarefaction wave the states to the left and right of the wave
UL and UR are connected through a smooth transition. The characteristics at the two
sides of the wave diverge so that a new region emerges: the rarefaction fan. This region is
enclosed between the head and the tail of the fan, whose speeds are given by sH = λi(UR)
and sT = λi(UL) respectively. This is depicted schematically in figure 1(a).

The solution across rarefaction waves can be found using the generalized Riemann
Invariants (see [44] for a detailed discussion). These are ordinary differential equations that
relate the changes in the state variables to the respective components of the i-th eigenvector:

du1
ri1

= du2
ri2

= . . . = dum
rim

, (3.6)

where ui are the elements of the state vector U.
When the wave is a shock the characteristics at the two sides of the wave converge and the

left and right states UL and UR are connected through a single jump-discontinuity that moves
with speed ss, as shown in figure 1(b). In this case we can make use of the Rankine-Hugoniot
conditions, that relate the state variables on the two sides of the discontinuity:

∆F = s∆U. (3.7)

In case the wave is a contact discontinuity the states to the left and right of the wave are
connected through a single jump-discontinuity, as shown in figure 1(c). The characteristics
on the two sides run parallel to the wave, which moves with speed sc = λi(UL) = λi(UR).
We can use either the Riemann Invariants or the Rankine-Hugoniot conditions to find the
solution across contact waves.

3.1 Structure of the solution in 1D

Let us now focus on the specific case of the Dark Energy fluid and find the analytical solution
of the Riemann problem. In section 4.1 we will provide the full solution, however it is useful

– 6 –
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x

τ sT

sH

UR

Ufan

UL

(a) Rarefaction wave: the left
and right states are separated by
the rarefaction fan, whose head
and tail (thick lines) move with
speed sH and sT respectively.

x

τ

ss

UR

UL

(b) Shock wave: the left and
right states are separated by a
jump-discontinuity (thick line)
that moves with speed ss.

x

τ

sc

UR

UL

(c) Contact wave: the left
and right states are separated
by a jump-discontinuity (thick
dashed line) that moves with
speed sc.

Figure 1. Structure of the solution for the three types of waves. The directions of the characteristics
on the two sides of the waves are indicated by the arrows.

to first derive a set of equations that relate state variables across different wave patterns.
Hereafter, we will extensively follow Toro’s textbook [43] to which we refer interested readers
for a detailed presentation of numerical methods in fluid dynamics.

The vectors in eq. (3.1) are given by:

U =
[
u1
u2

]
, F =


(
1 + c2

s
c2

)
u2

u2
2
u1

+ c2
s

1+ c2
s
c2

u1

 , S =
[
3H

(
w − c2

s
c2

)
(u1 − 1− w)

H(3w − 1)u2 − u1
∂Φ
∂x

]
, (3.8)

where u1 = Π and u2 = Πv are the conservative state variables. Since this is a 2× 2 system of
equations the solution consists of 3 states separated by 2 waves. The Jacobian matrix reads:

A(U) ≡ ∂F
∂U =

 0 1 + c2
s
c2

c2
s

1+ c2
s
c2

− v2 2v

 , (3.9)

and its eigenvalues are given by

λ± = v ± cs

√
1− v2

c2 . (3.10)

These are real and distinct if and only if cs > 0. In such a case we have λ−(v) < λ+(v) and the
system is strictly hyperbolic. Moreover, since we are considering Dark Energy models for which
peculiar velocities are non-relativistic (v � c) the wave structure of the system approximately
reproduces that of an isothermal fluid with constant sound speed, for which λ± = v ± cs. It
is also worth noticing that the condition of hyperbolicity requires a limiting speed for the
dark fluid velocity v ≤ c, which is direct consequence of including terms p/c2 in eq. (2.1)
and (2.2). The reader may wonder whether in the presence of gravitational interactions the
speed of dark energy fluctuations may numerically become ultra-relativistic, thus leading
to loss of hyperbolicity of the system. We believe this not to be the case, since these dark

– 7 –
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x

τ

λ+λ−

x0

UL UR

U∗

Figure 2. Structure of the solution of the Riemann problem for a dark energy fluid in 1D: two waves
λ± (thick lines) generate from the discontinuity at x0 and a new state U∗ emerges in between them.

fluids are cold, with negligibly small velocities, and cosmological simulations generally have
gravitational potentials Φ� 1.

The right eigenvectors associated with λ± are given by

R+ =

 1 + c2
s
c2

v + cs

√
1− v2

c2

 , R− =

 1 + c2
s
c2

v − cs
√

1− v2

c2

 , (3.11)

while the left eigenvectors read as

L+ =

 1
2
(
1 + c2

s
c2

)
1− v

cs

√
1− v2

c2

 , 1
2cs
√

1− v2

c2

 ,
L− =

 1
2
(
1 + c2

s
c2

)
1 + v

cs

√
1− v2

c2

 , −1
2cs
√

1− v2

c2

 (3.12)

and satisfy the relation L± ·R± = δ±±, where δ±± is the Kronecker symbol.
Using eqs. (3.10) and (3.11) we obtain

~∇Uλ± ·R± = ± cs

Π
√

1− v2

c2

[
1 + v2

c2

(
1 + c2

s

c2

)]
, (3.13)

hence the characteristic fields are genuinely non-linear if and only if cs > 0. In this case, the
waves associated with λ± are either rarefaction or shock waves.

In figure 2 we sketch the structure of the solution to the Riemann problem. Given
the data to the left UL and the right UR of the initial discontinuity at x = x0, we want to
determine the state U∗ in the region enclosed between the left and right waves and derive
the solution of the Riemann problem U(x, τ). Once the nature of the left and right waves
is known we can determine the value of U∗ as a function of the left or right state using the
Generalized Riemann Invariants or the Rankine-Hugoniot conditions.

Notice that eq. (3.2) can be rewritten also in terms of the primitive state variables
W = (Π, v):

Wτ + Ã(W)Wx = 0, (3.14)

– 8 –
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where

Ã(W) =


(
1 + c2

s
c2

)
v

(
1 + c2

s
c2

)
Π

c2
s

Π

(
1

1+ c2
s
c2

− v2

c2

) (
1− c2

s
c2

)
v

 . (3.15)

Since conservative and primitive variables are related by a linear transformation dU = Λ dW
with

Λ =
[

1 0
v Π

]
Λ−1 =

[
1 0
− v

Π
1
Π

]
(3.16)

it is easy to show that A(U) = Λ Ã(W)Λ−1. This implies that the Jacobian matrix, whether
written in terms of primitive variables or conservative ones, has identical eigenvalues, while
the corresponding eigenvectors are related by a linear transformation. Therefore, the Riemann
problem admits the same wave structure in the two formulations.

In this case the right eigenvectors are given by

R̃+ =

 (
1 + c2

s
c2

)
Π

− c2
s
c2 v + cs

√
1− v2

c2

 , R̃− =

 (
1 + c2

s
c2

)
Π

− c2
s
c2 v − cs

√
1− v2

c2

 , (3.17)

while the left eigenvectors read as

L̃+ =

 1
2
(
1 + c2

s
c2

)
Π

1 +
c2
s
c2 v

cs

√
1− v2

c2

 , 1
2cs
√

1− v2

c2

 ,
L̃− =

 1
2
(
1 + c2

s
c2

)
Π

1−
c2
s
c2 v

cs

√
1− v2

c2

 , −1
2cs
√

1− v2

c2

 (3.18)

In appendix A we derive the relations between the state variables across different wave
patterns.

3.2 Structure of the solution in 3D

In the previous section we discussed the Riemann problem in 1D. As we will show here this
provides the basis to solve the Riemann problem in 3D. In fact, let us consider eqs. (2.11)
and (2.12) without source terms in Cartesian coordinates. In terms of the conservative variable
these can be written in a state-vector form:

U + A(U)Ux + B(U)Uy + C(U)Uz = 0, (3.19)
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with U = (Π,Πvx,Πvy,Πvz) where vx, vy and vz are the components of the peculiar velocity
vector along x, y and z respectively, and

A(U) =


0 1 + c2

s
c2 0 0

c2
s

1+ c2
s
c2

− v2
x 2vx 0 0

−vxvy vy vx 0
−vxvz vz 0 vx

 , B(U) =


0 0 1 + c2

s
c2 0

−vxvy vy vx 0
c2
s

1+ c2
s
c2

− v2
y 0 2vy 0

−vyvz 0 vz vy

 ,

C(U) =


0 0 0 1 + c2

s
c2

−vxvz vz 0 vx
−vyvz 0 vz vy
c2
s

1+ c2
s
c2

− v2
z 0 0 2vz

 .

The eigenvalues of these matrices are:

λ1 = v − cs

√
1− v2

c2

λ2,3 = v

λ4 = v + cs

√
1− v2

c2

with v = vx, vy and vz for A, B and C respectively. Hence, the 3D case can be seen as the
composition of three advections with the same structure of the Riemann problem.

Let us consider the advection equations along the x-direction. The eigenvalues λ1,4
are real and distinct and associated to the genuinely non-linear characteristic fields that
correspond to shock and rarefaction waves, while λ2,3 are linearly degenerate and describe
a contact discontinuity. Moreover, the eigenvalues λ1,4 are identical to the 1D case, so that
the solution for Π and vx will be the same as the one derived in appendix A. The right
eigenvectors read as

R1 =



1 + c2
s
c2

vx − cs
√

1− v2
x
c21 + vxcs

c2
√

1− v
2
x
c2

 vy1 + vxcs

c2
√

1− v
2
x
c2

 vz


, R4 =



1 + c2
s
c2

vx + cs

√
1− v2

x
c21− vxcs

c2
√

1− v
2
x
c2

 vy1− vxcs

c2
√

1− v
2
x
c2

 vz


,

R2 =


0
0
1
0

 , R3 =


0
0
0
1

 , (3.20)

As can be seen from the eigenvectors R2 and R3 only the transverse velocity components
change across the contact wave. The wave structure is depicted in figure 3. In appendix B we
derive the expressions for the transverse velocities across different wave patterns.
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x

τ

λ4
λ2,3

λ1

x0

ΠL

vx;L
vy;L
vz;L

ΠR

vx;R
vy;R
vz;R

Π∗ v∗x

v∗y;L
v∗z;L

v∗y;R
v∗z;R

Figure 3. Structure of the solution of the 3D Riemann problem along the x dimension. λ1,4 are
genuinely non-linear fields and can be either shock or rarefaction waves (thick lines). All state
variables change across these waves. λ2,3 are linearly degenerate fields and are associated to a contact
discontinuity (thick dashed line). Only the transverse velocities vy and vz change across this wave.

4 Riemann solvers

4.1 Exact Riemann solver

Having derived relations between primitive state variables WL, WR and W∗ across the differ-
ent wave patterns, we can derive an exact solution of the RP for dark fluids as given by eq. (3.2).
Since the solution for the transverse velocities is trivial we will focus here on the 1D case.

The first step consists in determining the value of Π∗ in the star region of figure 2. We
have expressed the velocity v∗ in terms of Π∗ and the known states WL, WR for all possible
wave patterns. Thus, equating these relations for the left and right waves, Π∗ is the root of
the algebraic equation

fL(Π∗,WL)− fR(Π∗,WR) = 0, (4.1)

where

fL(Π,WL) =
{
fLs(Π,WL) if Π > ΠL (shock)
fLr(Π,WL) if Π ≤ ΠL (rarefaction)

(4.2)

with fLs(Π,WL) and fLr(Π,WL) given by eq. (A.18) and eq. (A.7) respectively, while

fR(Π,WR) =
{
fRs(Π,WR) if Π > ΠR (shock)
fRr(Π,WR) if Π ≤ ΠR (rarefaction)

(4.3)

with fRs(Π,WR) and fRr(Π,WR) given by eq. (A.22) and eq. (A.12) respectively. Eq. (4.1)
can be solved for Π∗ to the desired level of accuracy using standard numerical root-finder
schemes. Solving for Π∗ completely determines the nature of the waves. The value of v∗
can then be computed from one of the functions fL(Π∗,WL) or fR(Π∗,WR). Once the state
W∗ is known, the solution of the Riemann problem across the entire spatial interval can be
sampled at any given time as following:
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• in the region to the left of the discontinuity, corresponding to x− x0 < v∗τ :

– if ΠL > Π∗ the left wave is a rarefaction, then

W(x, τ) =


(ΠL, vL) if x− x0 < sHLrτ

(ΠLfan, vLfan) if sHLrτ < x− x0 < sTLrτ

(Π∗, v∗) if x− x0 > sTLrτ

(4.4)

where vLfan is given by solving eq. (A.8) and ΠLfan is given by eq. (A.9).
– if ΠL < Π∗ the left wave is a shock, then

W(x, τ) =
{

(ΠL, vL) if x− x0 < sLsτ

(Π∗, v∗) if x− x0 > sLsτ
(4.5)

where sLs is given by eq. (A.17).

• in the region to the right of the discontinuity corresponding to x− x0 > v∗τ :

– if ΠR > Π∗ the right wave is a rarefaction, then

W(x, τ) =


(Π∗, v∗) if x− x0 < sTRrτ

(ΠRfan, vRfan) if sTRrτ < x− x0 < sHRrτ

(ΠR, vR) if x− x0 > sHRrτ

(4.6)

where vRfan is given by solving eq. (A.13) and ΠRfan is given by eq. (A.14).
– if ΠR < Π∗ the right wave is a shock, then

W(x, τ) =
{

(Π∗, v∗) if x− x0 < sRsτ

(ΠR, vR) if x− x0 > sRsτ
(4.7)

where sRs is given by eq. (A.21).

We construct an exact Riemann solver as in [43]. We first solve eq. (4.1) using the
Newton-Raphson method. The value of Π∗ is obtained to a given level of accuracy ε through
an iteration procedure

Π∗(i) = Π∗(i−1) −
f [Π∗(i−1)]
f ′[Π∗(i−1)]

, (4.8)

where f(Π∗) = fL(Π∗,WL) − fR(Π∗,WR) and f ′(Π∗) = df/dΠ|∗ (the derivatives can be
computed analytically). The iteration continues until the desired accuracy is reached

|Π∗(i) −Π∗(i−1)|
|Π∗(i) + Π∗(i−1)|

<
ε

2 . (4.9)

An initial guess value is necessary to start the iteration. Thus, the computation of the solution
requires several iterations if the initial guess is too far off the solution. To address this point
we use an adaptive scheme to optimize the initial guess using approximate Riemann solvers
described in section 4.2.

– 12 –



J
C
A
P
0
5
(
2
0
2
3
)
0
0
1

Test ΠL vL ΠR vR

1 1.0 0.0 0.125 0.0
2 1.0 −0.0003 1.0 0.0003
3 0.3 0.0001 0.3 −0.0001

Table 1. Initial data for three test problems with exact solution.

0.0 0.5 1.0 1.5 2.0
x

0.2

0.4

0.6

0.8

1.0 cs = 10 3

cs = 10 4

0.0 0.5 1.0 1.5 2.0
x

0.0

0.2

0.4

0.6

0.8

1.0

v

1e 3

Figure 4. Exact solution of Test 1 for Π (left panel) and v (right panel) at time τ = 600 for cs = 10−3

(blue solid line) and 10−4 (red dashed line) respectively.
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x
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cs = 10 4

0.0 0.5 1.0 1.5 2.0
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2

3

v

1e 4

Figure 5. As in figure 4 for Test 2.

In table 1 we quote the initial data for three standard test cases of the RP in arbitrary
units. Notice that the equation of state of the fluid only enters via the source terms in the
equations for Π and u (equation (2.11)), and thus does not appear in the RP test cases. Test
1 is the standard Sod test [45], whose solution consists of a left rarefaction and a right shock.
Test 2 has a solution consisting of two rarefaction waves, while Test 3 consists of two shocks.
We consider two different values of the speed of sound: cs = 10−3 and 10−4. We set the initial
discontinuity at x0 = 1 and sample the solution in the interval 0 < x < 2 at time τ = 600.
We set the accuracy of the Newton-Raphson method to ε = 10−6.

The exact solutions to Test 1, 2 and 3 are shown in figures 4, 5 and 6 respectively. In
the case of Test 1 we can clearly see the opening of the rarefaction fan moving from right to
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0.0 0.5 1.0 1.5 2.0
x

0.6
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1.2
cs = 10 3

cs = 10 4

0 1 2
x

1.0

0.5

0.0

0.5

1.0

v

1e 4

Figure 6. As in figure 4 for Test 3.

left and the shock wave propagating to the right. For Test 2 we notice the opening of the two
rarefaction fans propagating to the left and to the right respectively, while in the case of Test
3 we can see the density and velocity profile of the colliding shock waves. It is worth noting
that these solutions only depend on the value of the sound speed, and are independent of the
equation of state.

4.2 Approximate Riemann solvers

While the Riemann problem can be solved using an exact solver as the one described in sec-
tion 4.1, for any practical application such as cosmological simulations this is computationally
too expensive since it requires solving iteratively algebraic equations at each cell of the spatial
domain of integration. For this reason, in this section, we present some approximate solvers.
Let us notice here that in cosmological simulations one can combine different Riemann solvers
in an adaptive fashion, where the more accurate and more expensive solvers are only used in
case of large gradients, while the cheaper ones are used for smooth flow configurations, which
represent the vast majority of the field.

4.2.1 Primitive variables Riemann solver

Let us consider the characteristic equations of the advection equation eq. (3.14) in primitive
variables:

L̃± · dW = 0, (4.10)

where L̃± are the left eigenvectors eq. (3.18) and dW = (dΠ, dv). These read:

dΠ
Π +

1 + c2
s
c2

cs

dv√
1− v2

c2 + vcs
c2

= 0 along dx/dτ = λ+ (4.11)

dΠ
Π −

1 + c2
s
c2

cs

dv√
1− v2

c2 − vcs
c2

= 0 along dx/dτ = λ−. (4.12)

Following the derivation presented in [43], we can connect the star state to the left and
right states by integrating these equations along the direction of the characteristics. We can
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simplify the solution by defining the quantities:

C+ =
1 + c2

s
c2

cs

Π√
1− v2

c2 + vcs
c2

, (4.13)

C− =
1 + c2

s
c2

cs

Π√
1− v2

c2 − vcs
c2

, (4.14)

and approximating them as constant in time. This means that we can compute their value at
the foot of the characteristic by only using the known left and right state variables. We can
then connect the star state to the left (right) state by integrating eq. (4.11) (eq. (4.12)) along
the characteristic of speed λ+ (λ−). This gives:

ΠL + C+,LvL = Π∗ + C+,Lv∗, (4.15)
Π∗ − C−,Rv∗ = ΠR − C−,RvR. (4.16)

Solving the linear system of eqs. (4.15) and (4.16) we finally obtain the approximate state
variables in the star region:

Π∗ = C+,LΠR + C−,RΠL + C−,RC+,L(vL − vR)
C−,R + C+,L

(4.17)

v∗ = ΠL −ΠR + C+,LvL + C−,RvR
C−,R + C+,L

(4.18)

We refer to these solutions as the Linear Primitive Variable Riemann Solver (LPVRS).
An alternative approximation can be found by defining:

C+ =
1 + c2

s
c2

cs

1√
1− v2

c2 + vcs
c2

, (4.19)

C− =
1 + c2

s
c2

cs

1√
1− v2

c2 − vcs
c2

. (4.20)

Integrating eq. (4.11) (eq. (4.12)) along the characteristic of speed λ+ (λ−) in this case gives:

ln ΠL − ln Π∗ = −C+
L vL + C+

L v
∗, (4.21)

ln Π∗ − ln ΠR = C−R v
∗ − C−R vR, (4.22)

and the approximate state variables in the star region are:

v∗ = C+
L vL + C−R vR + ln ΠL − ln ΠR

C+
L + C+

R
, (4.23)

Π∗ = exp
[
C+

L ln ΠR + C−R ln ΠL + C+
L C
−
R (vL − vR)

C+
L + C+

R

]
. (4.24)

We refer to this second approximation as the Primitive Variable Riemann Solver (PVRS).
Notice that, unlike the LPVRS case, we no longer approximate Π as being constant along the
characteristic.
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To find a simple solution for the state variables inside the rarefaction fan we make the
approximation that

√
1− v2

c2 ≈ 1 and expand the functions gLr and gRr given by equations (A.5)
and (A.10) to first order. This gives:

vfan
L = x− x0

τ
+ cs (4.25)

Πfan
L = exp

(
log ΠL + vL

cs
+ vLcs

c2 −
vfan

L
cs
− vfan

L cs
c2

)
(4.26)

vfan
R = x− x0

τ
− cs (4.27)

Πfan
R = exp

(
log ΠR −

vR
cs
− vRcs

c2 + vfan
R
cs

+ vfan
R cs
c2

)
(4.28)

We compare the results of these approximations to the exact solution for the tests in
table 1 in figures 7–9. We can see that the PRVS performs very well in the case of rarefactions,
where the solution is indistinguishable from the exact one, and only slightly misestimates Π∗
in the presence of shock waves. On the other hand, the LPVRS gives a larger error on the
value of Π∗ in all the tests and on the value of v∗ in Test 1, especially for the larger value of
cs. While the PVRS approximation gives better results with respect to the LPVRS in all the
tests, it is however susceptible to numerical instabilities, given its non-linear nature.

4.2.2 Harten, Lax and van Leer Riemann solver
The Harten, Lax and van Leer (HLL) Riemann solver approximates the solution as a system of
two waves that separate three constant states. The intermediate state is found by averaging the
exact solution between the fastest waves that travel to the left and right of the discontinuity [for
a more detailed explanation see 43]. Given an estimate of these velocities sL and sR, the HLL
solver approximates the flux directly as:

F =


FL if x− x0 ≤ sLτ

FHLL if sLτ ≤ x− x0 ≤ sRτ

FR if x− x0 ≥ sRτ

(4.29)

where
FHLL = sRFL − sLFR + sLsR(UR −UL)

sR − sL
. (4.30)

The main advantage of this solver is its efficiency since it gives an estimate of the flux that
involves only a few basic operations.

To test this solver we employ the simple estimates:

sL = min

vL − cs

√
1− v2

L
c2 , vR − cs

√
1− v2

R
c2

 , (4.31)

sR = max

vL + cs

√
1− v2

L
c2 , vR + cs

√
1− v2

R
c2

 . (4.32)

We verified that using more complex estimates for the speed does not significantly improve the
accuracy of the solution, so that it is not worth spoiling the efficiency of this approximation.
Since this solver gives an approximation for the flux, its performance is best shown using a
Godunov solver. We compare the results of the tests in table 1 using the MUSCL-Hancock
method described in section 5.1 with PVRS and HLL Riemann solvers in figures 10–12. We
can see that the HLL solver performs almost identically to PVRS in these tests.
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Figure 7. Solution of Test 1 for Π (left panel) and v (right panel) at time τ = 600 for cs = 10−3

(blue) and 10−4 (red) respectively for the exact solver (continuous line), LPVRS (dashed line) and
PVRS (dotted line).
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Figure 8. As in figure 7 for Test 2.

0.0 0.5 1.0 1.5 2.0
x

0.3

0.4

0.5

0.6

0.7

0.8 cs = 10 3

cs = 10 4

0.0 0.5 1.0 1.5 2.0
x

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

v

1e 4
Exact
LPVRS
PVRS

Figure 9. As in figure 7 for Test 3.
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Figure 10. Solution of Test 1 for Π (left panel) and v (right panel) at time τ = 600 for cs = 10−3

(blue) and 10−4 (red) for the exact Riemann solver (continuous line) and the MUSCL-Hancock method
with PVRS (dotted line) and HLL Riemann solver (dashed line) respectively. Bottom panels: the
absolute difference between the numerical and the exact solution with opposite signs for the two
Riemann solvers to better see the distinction.
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Figure 11. As in figure 10 for Test 2.
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Figure 12. As in figure 10 for Test 3.
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5 Finite volume conservative methods

Let us consider the problem of solving eq. (3.1) numerically, provided with a set of initial
and boundary conditions. The first step consists in discretizing the time interval into a
finite number of time-steps τn of size ∆τ and the spatial domain in a finite number of cells
Ii = [xi− 1

2
, xi+ 1

2
] of size ∆x = L/M , where i = 1, . . . ,M and L is the size of the spatial domain

of integration. This choice of spatial discretization is what characterizes finite volume methods,
where the state Ui is regarded as a volume average of the variable U over the cell Ii. In the
following we will denote the numerical approximation of U in the cell Ii at time τn as Un

i .
A numerical solution of eq. (3.1) can be obtained by using the operator splitting approach,

where the system is split into a purely advection problem with Uτ + F(U)x = 0 and an
ordinary differential equation (ODE) Uτ = S(U). In such a case, one solves the PDE
associated to the advection equations and then uses the solution to solve the ODE with a
method that matches the order of accuracy of the solution of the advection problem such
as to retain the same level of accuracy globally. In the following we focus on the solution of
the advection equations, while the solution to the ODE will be implemented into the full
cosmological simulation code that we will present in future work.

Following standard textbook presentations [see e.g. 43], the numerical solution to the
advection problem can be obtained using a conservative scheme, such as that introduced by
Godunov [37]:

Un+1
i = Un

i + ∆τ
∆x

[
Fi− 1

2
− Fi+ 1

2

]
, (5.1)

where the Fi± 1
2
are inter-cell fluxes at the boundaries of the i-th cell given by

Fi± 1
2

= Fi± 1
2
[Ui±1/2(0)], (5.2)

where Ui+1/2(0) is the solution of the Riemann problem RP (Un
i ,Un

i+1) at x/t = 0 and
Ui−1/2(0) is the solution of the Riemann problem RP (Un

i−1,Un
i ) at x/t = 0. The size of

the time-step ∆τ satisfies the condition ∆τ ≤ ∆x/snmax, where snmax is the maximum wave
velocity at time τn in the spatial domain of integration. This condition ensures that no wave
in the solution of the Riemann problem travels more than the size of the cell ∆x in the
time interval ∆τ . A time step satisfying the above condition can be set by introducing the
Courant-Friedrichs-Lewy (CFL) coefficient Ccfl, such that

∆τ = Ccfl
∆x
snmax

, (5.3)

with 0 < Ccfl < 1.
Notice that using piecewise constant data as initial condition for the Riemann problem,

this method gives solutions that are only first order accurate in space and time. However,
higher-order accuracy in space and/or time can be achieved by reconstructing the state
variables using a truncated Taylor expansion and then use the reconstructed state as input
for the Riemann solver. Here, we will derive working examples of some of these higher-order
schemes such as the Monotonic Upstream-Centered Scheme for Conservation Laws (MUSCL-
Hancock), the Piecewise Linear Method (PLM) and the Piecewise Parabolic Methods (PPM).

We test these schemes against the exact solutions of the Sod, the two rarefaction, and
the two shock waves tests, which we have presented in section 4. Moreover, as we expect
some of these schemes to improve the calculation of the flow in smooth regions rather than at
discontinuities, we perform a pure advection test, which we discuss in section 5.4.
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Hereafter, we use the Primitive Variables Riemann Solver (PVRS) described in sec-
tion 4.2.1. We set Ccfl = 0.9 and estimate the maximum wave velocity as

snmax = max
i
{|vni |+ cs}, (5.4)

which provides a very good approximation in the case of rarefaction waves, though it may
underestimate the speed of propagation in the case of shocks.

We assume periodic boundary conditions for the advection test:

Πn
1 = Πn

M , vn1 = vnM , (5.5)

while for the other test we assume transmissive boundary conditions:

Πn
M+1 = Πn

M , vnM+1 = vnM (5.6)

so that the boundaries do not affect the propagation of waves.

5.1 MUSCL-Hancock method

As already mentioned, Godunov’s original scheme, which is based on a piecewise constant
distribution of data, is first-order accurate in both space and time. In a series of seminal
papers [46–48, 48–50] Van Leer presented a modification of Godunov’s method to achieve
higher-order accuracy. The idea is to use the initial piecewise constant data to reconstruct the
distribution of state variables inside cells and extrapolate their values at the cell interfaces.
Then, using the conservation equations these boundary values are evolved by half time-step
to achieve second order accuracy in time. It is these reconstructed values that provide the
initial data for the Riemann problem at the cell interface. While first-order schemes are
guaranteed to preserve the monotonicity of the solution by Godunov’s theorem, this is not
the case for higher-order methods. In fact, the data reconstruction inside cells may generate
local extrema that lead to spurious numerical oscillations in the solution. We thus need to
impose monotonicity constraints on the reconstructed states, as we will see below.

The MUSCL-Hancock method introduced by Van Leer1 [51] is based on a linear recon-
struction of the data distribution inside cells. The algorithm consists of the following step:

• Starting with the initial piecewise constant data Un
i , the left and right cell boundary

value are linearly extrapolated as

Un
i,L = Un

i −
1
2∂Ui , Un

i,R = Un
i + 1

2∂Ui , (5.7)

where ∂Ui denotes the slope of the linear interpolation in the i-th cell, whose determi-
nation will be described below.

• Evolve Un
i,L and Un

i,R by a time ∆τ/2 using the conservative update

Ūn+1/2
i,L = Un

i,L + 1
2

∆τ
∆x

[
F(Un

i,L)− F(Un
i,R)

]
, (5.8)

Ūn+1/2
i,R = Un

i,R + 1
2

∆τ
∆x

[
F(Un

i,L)− F(Un
i,R)

]
. (5.9)

1In [51] the idea behind this scheme is attributed to S. Hancock, see also [52], from which the acronym of
MUSCL-Hancock method.
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Figure 13. MUSCL-Hancock (circles) vs. Exact solution (lines) of Test 1 for Π (left panel) and
v (right panel) at time τ = 600 units for cs = 10−3 (blue solid line) and 10−4 (red dashed line)
respectively. In the bottom panel the absolute difference between the numerical and exact solution.
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Figure 14. As in figure 13 for Test 2.

• Solve the Riemann Problem at inter-cell boundary with piecewise constant data Ūn+1/2
i,L

and Ūn+1/2
i,R :

Uτ + F(U)x = 0, (5.10)

with initial conditions

U(x, 0) =

Ūn+1/2
i,L if x < 0

Ūn+1/2
i+1,R if x > 0

(5.11)

A key point concerns the evaluation of the slopes ∂Ui, which must satisfy monotonicity
constraints. We implement the MUSCL-Hancock scheme with the MINMAX slope limiter
which reads as:

∂Ui = 1
2
[
sign(Un

i −Un
i−1) + sign(Un

i+1 −Un
i )
]
×min

(
|Un

i −Un
i−1|, |Un

i+1 −Un
i |
)
. (5.12)

In figures 13, 14 and 15 we plot the numerical solutions (dotted lines) to test cases given
in table 1 obtained with the MUSCL-Hancock method against the exact solutions at τ = 600
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Figure 15. As in figure 13 for Test 3.

units for cs = 10−3 (solid blue lines) and cs = 10−4 (dash red lines) respectively. In the bottom
panels we plot the absolute value of the difference between the numerical and exact solutions.

Overall the scheme performs rather well. A zoom on the value of Π near the shocks in
figures 13 and 15 reveals that shock waves are spread over ∼ 3 cells, rather than having the
zero-width of the exact solution. On the other hand, the speed is correctly estimated as can
be see on the right panels, thus indicating that the average shock position is well determined
by the numerical scheme. Another characteristic feature of the solutions of Test 1 and 3 near
the shocks is the absence of spurious oscillations. In the case of rarefaction waves, larger
errors occur near the head and the tail as can be seen from figures 13 and 14, discontinuities
are spread over ∼ 10 cells. The numerical solution converges to the exact by increasing the
spatial resolution of the grid.

5.2 Piecewise Linear Method (PLM)

This scheme, introduced by Colella [53], builds upon the MUSCL method and uses a linear
reconstruction of the data to achieve second order accuracy in both space and time. We will
follow the implementation presented in the lecture notes by M. Zingale [54] to which we refer
the reader for a clear summary of higher-order reconstruction methods of non-linear advection
equations.

The basic idea is to obtain left and right inter-cell states as a Taylor expansion of the
primitive variables to first-order in ∆x/2 to displace from the cell-centered value to the
interface, and to first-order in ∆τ/2 to evolve the states to mid-point in time. A crucial
aspect of this scheme is the so called characteristic tracing step, where only the waves that
travel towards the interface are selected during the reconstruction process. This ensures that
the correct flow of information is preserved.

These states are constructed as:

Π̄n+1/2
i,L = Πn

i + 1
2
[
Π̃−i + Π̃+

i

]
, Π̄n+1/2

i+1,R = Πn
i+1 −

1
2
[
Π̃−i+1 + Π̃+

i+1

]
, (5.13)

with

Π̃±i =


(
1− ∆τ

∆xλ±(vi)
) (
L̃±1,i R̃

±
1,i∂Πi + L̃±2,i R̃

±
1,i∂vi

)
if λ±(vi) ≥ 0

0 otherwise
(5.14)
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Figure 16. PLM (circles) vs. Exact solution (lines) of Test 1 for Π (left panel) and v (right panel)
at time τ = 600 units for cs = 10−3 (blue solid line) and 10−4 (red dashed line) respectively. In the
bottom panel the absolute difference between the numerical and exact solution.

and for the velocity:

ṽ±i =


(
1− ∆τ

∆xλ±(vi)
) (
L̃±1,i R̃

±
2,i∂Πi + L̃±2,i R̃

±
2,i∂vi

)
if λ±(vi) ≥ 0

0 otherwise
(5.15)

where L̃±1 and L̃±2 are the elements of the left eigenvectors eq. (3.18) and R̃±1 and R̃±2 are the
elements of the right eigenvectors eq. (3.17).

The characteristic tracing is evident because we put to 0 the contributions to Π̃±i and
ṽ±i when the wave λ± is moving away from the interface that we are considering.

In this scheme we also need to enforce monotonicity of the solution. To achieve this we
compute the slope ∂Wi = {∂Πi, ∂vi} using the SUPERBEE slope limiter:

∂Wi =
[
sign(Wn

i −Wn
i−1) + sign(Wn

i+1 −Wn
i )
]
×

×min
[
|Wn

i −Wn
i−1|, |Wn

i+1 −Wn
i |,

1
2max

(
|Wn

i −Wn
i−1|, |Wn

i+1 −Wn
i |
)]
. (5.16)

In figures 16, 17 and 18 we plot the PLM numerical solutions (dotted lines) to test
cases given in table 1 against the exact solutions at τ = 600 units for cs = 10−3 (solid blue
lines) and cs = 10−4 (dash red lines) respectively. In the bottom panels we plot the absolute
value of the difference between the numerical and exact solutions. We can see only minor
differences with the respect to the results obtained with the MUSCL-Hancock method shown
in figures 13, 14 and 15. In particular we may notice that the former is less accurate than
MUSCL-Hancock in resolving rarefaction waves, while it performs better in the case of shocks.

5.3 Piecewise Parabolic Method (PPM)

Originally introduced by Colella & Woodward [55], this scheme achieves second-order accuracy
using a parabolic reconstruction of the data with characteristic tracing. We refer again to
Zingale’s notes [54] for a clear summary of PPM in the case of non-linear advection equations.
The expressions of the parabolic reconstruction of primitive variables with characteristics
tracing step in the case of dark fluids are quite lengthy and here we only present the results
of the numerical tests of table 1 shown in figures 19, 20 and 21 (dotted lines) against the
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Figure 17. As in figure 16 for Test 2.
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Figure 18. As in figure 16 for Test 3.

0.2

0.4

0.6

0.8

1.0 cs = 10 3

cs = 10 4

0.0 0.5 1.0 1.5 2.0
x

0.00

0.05

|d
iff

|

0.0

0.2

0.4

0.6

0.8

1.0

v

1e 3
cs = 10 3

cs = 10 4

0.0 0.5 1.0 1.5 2.0
x

0.0

2.5

|d
iff

|

1e 5

Figure 19. PPM (circles) vs. Exact solution (lines) of Test 1 for Π (left panel) and v (right panel)
at time τ = 600 units for cs = 10−3 (blue solid line) and 10−4 (red dashed line) respectively. In the
bottom panel the absolute difference between the numerical and exact solution.
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Figure 20. As in figure 19 for Test 2.
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Figure 21. As in figure 19 for Test 3.

exact solutions at τ = 600 units for cs = 10−3 (solid blue lines) and cs = 10−4 (dash red lines)
respectively. In the bottom panels we plot the absolute value of difference between the exact
and the numerical solutions.

5.4 Advection test for higher-order schemes

We consider a pure 1D advection problem and advect an initial Gaussian density profile

Π(x, 0) ≡ Π0(x) = 1 + e−
(x−x0)2

σ2 , (5.17)

located at x0 = 0.5 with σ = 0.1 that moves with constant speed v = 0.1 toward the
positive values of the x-axis. The exact solution to the advection equation is simply Π(x, τ) =
Π0(x− v · τ).

We solve numerically the 1D advection equation for the initial density profile Π0(x) in
the case of cs = 10−3 with periodic boundary condition using the MUSCL-Hancock method,
the PLM and PPM schemes previously discussed. The results are shown in figure 22, where
we plot the exact solution at time τ = 5 (blue solid line) and that obtained using MUSCL-
Hancock (blue points), PLM (red points) and PPM (green points). The bottom panel shows
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Figure 22. Advection of a Gaussian density profile (located at x0 = 0.5 at the initial time) moving
at constant speed v = 0.1 at time τ = 5 units for cs = 10−3. Shown in the plot are the exact solution
(blue solid line) and the numerical solutions obtained using the MUSCL-Hancock (blue points), PLM
(red points) and PPM (green points) schemes respectively. In the bottom panel we plot the absolute
difference between the exact and the numerical solutions.

the absolute difference with respect to the exact solution. We can see the improvement in
accuracy of the PPM scheme compared to the PLM and MUSCL-Hancock methods.

6 Conclusions

A dynamical form of dark energy is expected to lead to dark energy inhomogeneities whose
properties are characterized by an effective speed of sound parameter. Cosmological ob-
servations of the cosmic microwave background as well as large scale structure have so far
left the dark energy speed of sound unconstrained. However, ongoing and future galaxy
surveys may have the potential to constrain this parameter, especially in the case of dark
energy models with small sound speed values for which dark energy perturbations can become
significant at small scales and late time. The detection of the effects of such inhomogeneities
can provide smoking gun evidence against the cosmological constant paradigm, thus unveiling
the dynamical nature of this exotic component. Nevertheless, this requires the availability of
theoretical predictions capable of following the gravitational collapse of the coupled system of
dark matter and dark energy throughout the non-linear regime of cosmic structure formation.

The gravitational collapse of dark matter density fluctuations can be followed using the
standard N-body method. However, this is not the case for a dark energy fluid characterized
by a negative equation of state and a non-vanishing sound speed. This is because in a given
cosmological volume the mass of the particles tracing the clustering dark energy field is not
conserved, rather it varies in space and time in a way that cannot be determined by the
N-body equations of motion in a closed form. In contrast, it is possible to directly solve
the Euler equations describing the evolution of the dark energy fluid using hydrodynamical
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methods. Matter and dark energy perturbations are mutually coupled gravitationally via the
Poisson equation for the gravitational potential.

Finite volume conservative methods have been developed in a vast literature to numer-
ically solve hydrodynamic equations. These are implemented in established cosmological
simulation codes that simulate the gravitational collapse of baryonic fluids. Hence, the use of
such methods to solve the dark energy fluid equations can facilitate their implementation in
simulation codes, thus allowing to perform full cosmological simulations of clustering dark en-
ergy models. One of the most widely adopted conservative numerical schemes is the Godunov
method. This relies on the solution of the Riemann Problem of the advection part of the
hydrodynamic equations considered. As such, the use of such a method to solve the dynamics
of dark energy fluctuation in a cosmological simulation code requires the derivation of exact
and approximate solutions that are specific to the form of the dark energy fluid equations.

In this work we have presented a reformulation of the Euler equations describing a dark
energy fluid in a quasi-conservative form of hyperbolic partial differential equations with
source terms. We have derived the exact solution of the Riemann Problem associated with the
advection part of these equations in the non-relativistic limit with a small non-vanishing speed
of sound. Physically, this corresponds to finding the wave structure of dark fluid perturbations
propagating in a non-expanding background in the absence of gravitational interactions.

We have constructed a number of approximate solvers of the RP specific to the dark
energy fluid equations and tested their accuracy against exact solutions of standard test cases,
such as the Sod test, the propagation of two rarefaction waves and two shock waves. The
use of such approximate solvers is necessary to significantly speed up the computation of the
numerical solution of the Euler equations with the Godunov method. We have presented
the equations describing the original formulation of the Godunov method that is first-order
accurate in space and time. We have also derived the formula specific to the Euler equations
of the dark fluid considered here for higher-order schemes based on the Godunov method, such
as the MUSCL-Hancock method, the Piecewise Linear Method and the Piecewise Parabolic
Method. We have tested the accuracy of these methods against exact solutions of standard
test cases considered for the RP as well as an advection test.

In a follow-up work we will present the full cosmological simulation code, where we
account for the cosmological source terms as well as the gravitational interaction and test the
numerical solution in 3D.

To conclude, this work lays down the first stepping stone to constrain the speed of sound
of Dark Energy perturbations using large-scale-structure data and opens the way to learning
more about the Dark Energy phenomenon.
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A Elementary wave solutions in 1D

A.1 Rarefaction waves

We can use the Riemann invariants eq. (3.6) to relate a known state to the left (right) of
a rarefaction wave to that on the right (left). These relations can be written in terms of
primitive variables as:

dΠ
Π =

(
1 + c2

s
c2

)
dv

cs

√
1− v2

c2 − c2
s
c2 v

(λ = λ+) (A.1)

dΠ
Π =

(
1 + c2

s
c2

)
dv

−cs
√

1− v2

c2 − c2
s
c2 v

(λ = λ−) (A.2)

and can be integrated analytically to obtain:

ln Π− c

cs
arcsin

(
v

c

)
+ ln

√1− v2

c2 −
vcs
c2

 = const. (λ = λ+)

(A.3)

ln Π + c

cs
arcsin

(
v

c

)
+ ln

√1− v2

c2 + vcs
c2

 = const. (λ = λ−) (A.4)

which express the conservation of these quantities across the waves associated to the charac-
teristic fields λ+ and λ− respectively.

A.1.1 Left rarefaction

Let us consider a left rarefaction wave associated with λ−-field. Using the Riemann invariant
eq. (A.4) we can relate the known state UL to the unknown state in the star region U∗ shown
in figure 2. It is useful to introduce the auxiliary function

gLr(v) ≡ c

cs
arcsin

(
v

c

)
+ ln

√1− v2

c2 + vcs
c2

 , (A.5)

hence from eq. (A.4) we obtain

gLr(v∗) = ln ΠL
Π∗ + gLr(vL). (A.6)

This implicit relation can be inverted to obtain

v∗ = fLr(Π∗,WL), (A.7)

where we have denoted with fLr the inverse function g−1
Lr .

The rarefaction wave is enclosed in a region delimited by the head of the wave moving
with speed sHLr = λ−(vL) and the tail with speed sTLr = λ−(v∗). The evolution of this region,
also dubbed rarefaction fan, can be obtained by integrating the equation dx/dτ = λ−(v)
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along the characteristic with initial condition x(0) = x0 (the location of the discontinuity at
initial time). This gives

x− x0
τ

= λ−(vLfan), (A.8)

which can be inverted to obtain vLfan(x) at any given time. ΠLfan(x) inside the fan is then
obtained using the generalized Riemann invariant eq. (A.4):

ln ΠLfan(x) = ln ΠL + gLr(vL)− gLr(vLfan(x)). (A.9)

A.1.2 Right rarefaction
Let us now consider a right rarefaction wave associated with the characteristic field λ+. Using
the Riemann invariant eq. (A.3) we can relate the known state UR to the right of the wave
to the unknown state in the star region U∗ shown in figure 2. Let us introduce the auxiliary
function

gRr(v) ≡ − c

cs
arcsin

(
v

c

)
+ ln

√1− v2

c2 −
vcs
c2

 , (A.10)

from eq. (A.4) we obtain
gRr(v∗) = ln ΠR

Π∗ + gRr(vR). (A.11)

This implicit relation can be inverted to obtain

v∗ = fRr(Π∗,WR), (A.12)

where we have denoted with fRr the inverse function g−1
Rr .

The right rarefaction fan is delimited by the head of the wave moving with speed
sHRr = λ+(vR) and the tail with speed sTRr = λ+(v∗). The evolution of the fan region is
given by solving dx/dτ = λ+(v) with x(0) = x0 (the location of the discontinuity at initial
time):

x− x0
τ

= λ+(vRfan), (A.13)

this can be inverted to infer vRfan(x). Then, using the Riemann invariant eq. (A.3) we obtain
ΠRfan(x) inside the fan:

ln ΠRfan(x) = ln ΠR + gRr(vR)− gLr(vRfan(x)). (A.14)

A.2 Shock waves
We can use the RH conditions in eq. (3.7) to relate a known state to the left (right) of the
shock to that unknown to the right (left).

A.2.1 Left shock
Let us consider a shock moving from right to left separating the known initial state UL from
the unknown state U∗ in the star region represented in figure 2. Using eq. (3.7) we have a
system of algebraic equations which reads as(

1 + c2
s

c2

)
(ΠLvL −Π∗v∗) = sLs(ΠL −Π∗) (A.15)

c2
s

1 + c2
s
c2

(ΠL −Π∗) + (ΠLv
2
L −Π∗v∗2) = sLs(ΠLvL −Π∗v∗). (A.16)
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This is an algebraic system of two equations and three unknowns (Π∗, v∗, sLs). We can solve
for sLs and v∗ to find

sLs

1 + c2
s
c2

= ΠLvL

ΠL + c2
s
c2 Π∗

−

√√√√√ Π2
Lv

2
L(

ΠL + c2
s
c2 Π∗

)2 −
ΠLv2

L

ΠL + c2
s
c2 Π∗

+ Π∗c2
s(

ΠL + c2
s
c2 Π∗

) (
1 + c2

s
c2

) (A.17)

v∗ ≡ fLs(Π∗,WL) = ΠL
Π∗ vL −

sLs

1 + c2
s
c2

ΠL −Π∗
Π∗ , (A.18)

where sLs is the negative root of the quadratic equation obtained from eqs. (A.15) and (A.16),
consistently with the fact that the left shock moves from the right to the left.

A.2.2 Right shock

Let us consider a shock moving from the left to the right separating the known initial
state UR from the unknown state U∗ in the star region represented in figure 2. Using the
Rankine-Hugoniot conditions we obtain the system of algebraic equations(

1 + c2
s

c2

)
(Π∗v∗ −ΠRvR) = sRs(Π∗ −ΠR) (A.19)

c2
s

1 + c2
s
c2

(Π∗ −ΠR) + (Π∗v∗2 −ΠRv
2
R) = sRs(Π∗v∗ −ΠRvR). (A.20)

This is an algebraic system of two equations and three unknowns (Π∗, v∗, sRs), solving for sRs
and v∗ we find

sRs

1 + c2
s
c2

= ΠRvR

ΠR + c2
s
c2 Π∗

+

√√√√√ Π2
Rv

2
R(

ΠR + c2
s
c2 Π∗

)2 −
ΠRv2

R

ΠR + c2
s
c2 Π∗

+ Π∗c2
s(

ΠR + c2
s
c2 Π∗

) (
1 + c2

s
c2

) (A.21)

v∗ ≡ fRs(Π∗,WR) = ΠR
Π∗ vR + sRs

1 + c2
s
c2

Π∗ −ΠR
Π∗ , (A.22)

where sRs is the positive root of the quadratic equation obtained from eqs. (A.19) and (A.20),
consistently with the fact that the right shock moves from the left to the right.

B Elementary wave solutions in 3D

B.1 Rarefaction waves

Defining:
f1,4 (vx) = 1± vxcs

c2
√

1− v2
x
c2

(B.1)

the Riemann Invariants for the λ1,4 eigenvalue are given by:

dΠ
1 + c2

s
c2

= d(Πvx)
λ1

= d(Πvy)
vy f1,4 (vx) = d(Πvz)

vz f1,4 (vx) . (B.2)
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From the first equality we see that the Riemann invariant for Π and vx remain the same as
the 1D case. To find the values of vy across the wave we can solve:

dΠ
1 + c2

s
c2

f1,4 (vx) = d(Πvy)
vy

(B.3)

By eliminating Π using the first equality we can get to an equation that relates vy to vx:

−vx ± cs
√

1− v2
x
c2

c2 − v2
x ± csvx

√
1− v2

x
c2

dvx = dvy
vy

(B.4)

which can be integrated to give:
vy
c

± csvx
c2 +

√
1− v2

x
c2

= const. (B.5)

Similarly, for the third component of the velocity vz:
vz
c

± csvx
c2 +

√
1− v2

x
c2

= const. (B.6)

We can then find the values of the transverse velocities in the star region as:

v∗y;L,R = vy;L,R
± csu∗

c2 +
√

1− v∗
x

2

c2

± csvx;L,R
c2 +

√
1− v2

x;L,R
c2

(B.7)

v∗z;L,R = vz;L,R
± csv∗

x
c2 +

√
1− v∗

x
2

c2

± csvx;L,R
c2 +

√
1− v∗

x
2

c2

(B.8)

Similarly, to find the solution inside the rarefaction fan we make use of the Riemann Invariants
and compute:

vfan
y;L,R = vy;L,R

± csvfan
x;L,R
c2 +

√
1− vfan

x;L,R
2

c2

± csvx;L,R
c2 +

√
1− v2

x;L,R
c2

(B.9)

vfan
z;L,R = vz;L,R

± csvfan
x;L,R
c2 +

√
1− vfan

x;L,R
2

c2

± csvx;L,R
c2 +

√
1− v2

x;L,R
c2

(B.10)

B.2 Shock waves
The Rankine-Hugoniot conditions in this case read:(

1 + c2
s

c2

)
(ΠL,Rvx;L,R −Π∗v∗x) = sL,R;s(ΠL,R −Π∗) (B.11)

ΠL,Rv
2
x;L,R −Π∗v∗x

2 ± c2
s

1 + c2
s
c2

(ΠL,R −Π∗) = sL,R;s(ΠL,Rvx;L,R −Π∗v∗x) (B.12)

ΠL,R vx;L,R vy;L,R −Π∗v∗xv∗y = sL,R;s(ΠL,R vy;L,R −Π∗v∗y) (B.13)
ΠL,R vx;L,R vz;L,R −Π∗v∗xv∗z = sL,R;s(ΠL,R vz;L,R −Π∗v∗z) (B.14)
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Again we see that the solution for Π and vx remains identical to the 1D case, while we can
easily solve equations (B.13) and (B.14) to find:

v∗y;L,R = ΠL,R vy;L,R
sL,R;s − vx;L,R
Π∗(sL,R;s − v∗x) (B.15)

v∗z;L,R = ΠL,R vz;L,R
sL,R;s − vx;L,R
Π∗(sL,R;s − v∗x) (B.16)
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