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Regularization for

Wasserstein Distributionally Robust Optimization

Waïss Azizian∗† Franck Iutzeler† Jérôme Malick‡

Abstract

Optimal transport has recently proved to be a useful tool in various machine learning

applications needing comparisons of probability measures. Among these, applications of dis-

tributionally robust optimization naturally involve Wasserstein distances in their models of

uncertainty, capturing data shifts or worst-case scenarios. Inspired by the success of the reg-

ularization of Wasserstein distances in optimal transport, we study in this paper the regular-

ization of Wasserstein distributionally robust optimization. First, we derive a general strong

duality result of regularized Wasserstein distributionally robust problems. Second, we refine

this duality result in the case of entropic regularization and provide an approximation result

when the regularization parameters vanish.

1 Introduction

Optimal transport (OT) has a long history and exciting recent developments, notably around
applications in machine learning and data science; we refer to the monographs Villani (2003),
Santambrogio (2015), Peyré et al. (2019), and Merigot and Thibert (2021). One of the key technical
properties at the core of recent success of OT in these applications is the use of regularization, and
specifically entropic regularization, opening the way to efficient computational schemes (see e.g.,
Cuturi (2013)) to get theoretically-grounded approximations of the Wasserstein distances.

Distributionally robust optimization (DRO) has recently been formulated using OT metrics and
has proven to be useful in machine learning (see e.g., Kuhn et al. (2019)). But regularization has
still to be studied and used in this context. In this paper, we propose a study of regularization
in Wasserstein distributionally robust optimization (WDRO), inspired from several recent develop-
ments in OT, namely Genevay et al. (2016), Carlier et al. (2017), Genevay et al. (2019), and Paty
and Cuturi (2020).

1.1 Distributionally robust optimization with Wasserstein neighborhoods

DRO is a popular approach in optimization under uncertainty. We briefly present here the ideas
and the notation that we will use; we refer to the celebrated paper Esfahani and Kuhn (2018) and
the survey paper Kuhn et al. (2019) for more details and for applications in machine learning.
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Standard approaches in stochastic optimization consider minimizing the expectation of a random
loss with respect to some input distribution or available data points: For an objective fθ : Ξ → R

defined on a sample space Ξ and depending on parameters θ ∈ Θ, this consists in considering

min
θ∈Θ

Eξ∼P[fθ(ξ)] .

Here P is a fixed probability distribution on Ξ; in practice, it is typically an empirical distribution
P = 1

n

∑n
i=1δξi stemming from data samples (ξi)

n
i=1.

A DRO counterpart of this problem is to minimize the expectation of the loss with respect
to a set of probability distributions close to P. More precisely, we choose a neighborhood U(P)
of P (called the ambiguity set or the distributional uncertainty region) in the set of probabilities
measures on Ξ, denoted by P(Ξ) and consider the worst possible expectation of the objective in
this neighborhood. The resulting problem is thus of the form

min
θ∈Θ

F (θ) where F (θ) := sup
Q∈U(P)

Eξ∼Q[fθ(ξ)] . (1)

A natural way to define the ambiguity set U(P) is to consider a ball centered at P with radius ρ > 0
controlling the required level of robustness. When using the Wassertein distance to define the ball,
this gives so-called Wasserstein DRO problems (WDRO).

For a cost function c : Ξ×Ξ→ R+, the Wasserstein distance between two probability distribu-
tions P,Q ∈ P(Ξ) is defined as

Wc(P,Q) = inf
{
E(ξ,ζ)∼π c(ξ, ζ) : π ∈ P(Ξ× Ξ), π1 = P, π2 = Q

}
,

where π1 and π2 denote the first and second marginals of the coupling probability, or transport
plan, π defined on Ξ× Ξ. A WDRO problem thus has the form (1) with the ambiguity set

U(P) = {Q ∈ P(Ξ) :Wc(P,Q) ≤ ρ} . (2)

When the the objective fθ exhibits a simple structure, this problem reformulates as a tractable
convex optimization problem; see e.g., Kuhn et al. (2019). This is exploited in several applica-
tions, for instance: logistic regression (see e.g., Yu et al. (2021)), support vector machines (see e.g.,
Shafieezadeh-Abadeh et al. (2019)), or ℓ1-regression (see e.g., (Chen and Paschalidis, 2020)). An-
other argument supporting a WDRO approach for machine learning applications is that it provides
generalization guarantees, see e.g., Esfahani and Kuhn (2018); An and Gao (2021).

1.2 Contributions, related works, and outline

In this paper we study regularization in the context of Wasserstein distributionally robust opti-
mization. First, we propose a unified framework for double regularization of the WDRO objective
function (both in the objective and in the constraint). We then provide a strong duality result
with general convex regularization functions. This result can be seen as the analogue for WDRO
of the general result of Paty and Cuturi (2020) for OT. Second, we refine our analysis in the case
of the entropic regularization and obtain an explicit expression for the dual problem. Furthermore,
we provide approximation guarantees when the regularization parameters are driven to 0, adapting
the reasoning from Carlier et al. (2017). These results can be seen as analogues for WDRO of
results of Genevay et al. (2019) for the entropic-regularized OT. Note however, that the reasoning
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and results used OT do not directly apply in the context of WDRO. Indeed, in OT, the entropic
regularization depends on (the product of) the two marginal distributions whereas, in WDRO, the
second marginal is not fixed but rather an optimization variable, which makes the analysis different
and more involved. This distinction is further discussed in the beginning of Section 3.

Up to our knowledge, regularization in the context of WDRO has not been investigated on its
own, as we do in this paper.1 Nevertheless, let us mention the two recent papers related to our
developments: Blanchet and Kang (2020) and Wang et al. (2021). In Blanchet and Kang (2020),
an entropic smoothing of a specific WDRO dual function is introduced and used for computational
purposes. Such dual smoothing implicitly corresponds to a regularization of the associated primal
problem, but this link is not formally made. In contrast, the preprint Wang et al. (2021) (which
appeared while we were preparing this manuscript) shares similar spirit as our work. The entropic
regularization of WDRO is proposed and analyzed, with a special focus on computational aspects.
This is complementary to our work which provides a theoretical study of general regularizations as
well as approximation guarantees for the entropic regularization. We will come back more precisely
on the connections between our results and those of Blanchet and Kang (2020) and Wang et al.
(2021) in Remark 1.

The outline of this paper is the following. The introduction ends below with the definition of the
framework of this paper. In Section 2, we provide a duality result for a general double regularization,
together with an illustration in the case when the transport cost is used a regularization function.
In Section 3, we focus our analysis to the entropic regularization to get refined expressions and an
explicit control of the quality of the approximation of the underlying WDRO problem.

1.3 Set-up, notation, and assumptions

The framework of this paper is the following. With Ξ a subset of R
d, P a reference probability

distribution over Ξ, and f : Ξ → R the underlying objective function (we drop the dependence in
θ to simplify the notation), we consider the sup problem in the objective function of (1) with the
Wasserstein ball of radius ρ as an ambiguity set (2). Our objective thus writes:

sup{Eξ∼Qf(ξ) : Q ∈ P(Ξ), Wc(P,Q) ≤ ρ} .

We reformulate the above problem, in a concise way, using only couplings as

sup
π∈PP(Ξ×Ξ): Eπc≤ρ

Eπ2
f (WDRO)

where PP(Ξ× Ξ) is the set of probability distributions on Ξ× Ξ having P as a first marginal

PP(Ξ× Ξ) := {π ∈ P(Ξ× Ξ) : π1 = P}.

When the space Ξ is compact, we have that the topological dual of C(Ξ×Ξ), the set of continuous
functions on Ξ× Ξ, is exactlyM(Ξ× Ξ), the set of finite signed measures over Ξ× Ξ by the Riesz
representation (Rudin, 1987, Th. 2.14). We denote by 〈·, ·〉 the duality pairing between C(Ξ × Ξ)
andM(Ξ× Ξ):

{

M(Ξ× Ξ)× C(Ξ× Ξ) −→ R

(π, ϕ) 7−→ 〈π, ϕ〉 :=
∫
ϕ dπ .

1Let us mention that studying “regularization for WDRO” as we propose here should not be confused with studying
“the regularizing effect of WDRO on learning problems”, which is a separate field of study (see e.g., Blanchet et al.
(2019); Shafieezadeh-Abadeh et al. (2019))
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When establishing general duality results, we will also make a constant use of the convex con-
jugate of a function F : C(Ξ× Ξ)→ R ∪ {+∞} defined as

F ∗ :

{

M(Ξ× Ξ) −→ R ∪ {+∞}

π 7−→ supϕ∈C(Ξ) 〈π, ϕ〉 − F (ϕ) ,

as well as the preconjugate of a function G :M(Ξ× Ξ)→ R ∪ {+∞} defined as

G∗ :

{

C(Ξ× Ξ) −→ R ∪ {+∞}

ϕ 7−→ supπ∈M(Ξ) 〈π, ϕ〉 −G(π) .

In presence of convexity, these two operations are dual one another; see e.g., Clason and Valkonen
(2020, Rem. 5.2). More precisely, we have that (F ∗)∗ = F when F is lower semi-continuous (l.s.c.),
convex, and proper, and (G∗)

∗ = G when G is weakly-⋆ l.s.c., convex, and proper. Furthermore,
the following duality result will be instrumental in our developments; it is a reformulation (Bot
et al., 2009, Th. 3.2.6), adapted to our purposes.

Lemma 1.1 (General Fenchel duality). Consider a compact subset X ⊂ R
d, a function h ∈ C(X ),

and two functions F,G : M(X ) → R ∪ {+∞} convex weakly-⋆ l.s.c. proper. If there exists ϕ ∈
domF∗ ∩ (h− domG∗) such that F∗ is continuous at ϕ, then

sup
π∈M(X )

〈π, h〉 − F (π)−G(π) = inf
ϕ,ψ∈C(X ):ϕ+ψ=h

F∗(ϕ) +G∗(ψ) .

Proof. First, the right-hand side (RHS) can be rewritten as

inf
ϕ,ψ∈C(X ):ϕ+ψ=h

F∗(ϕ) +G∗(ψ) = inf
ϕ∈C(X )

F∗(ϕ) +G∗(h− ϕ) .

Then, since F is convex weakly-⋆ l.s.c., we get that F = (F∗)
∗ and that F∗ is proper, convex, and

l.s.c.; see (Clason and Valkonen, 2020, Rem. 5.2). The same holds for G.
We can thus apply the duality result from (Bot et al., 2009, Th. 3.2.6) with F∗ and G∗(h− ·) as

primal functions that are proper convex functions, and C(X ) as primal space. Indeed, the regularity
assumption of the lemma exactly gives the regularity condition (RC id

1 ) of this result. Hence,

inf
ϕ∈C(X )

F∗(ϕ) +G∗(h− ϕ) = sup
π∈M(X )

−(F∗)
∗(− π)− (G∗(h− ·))

∗(π)

= sup
π∈M(X )

−F (− π)−G(− π)− 〈π, h〉 .

Carrying out the change of variable π ← − π then concludes the proof. �

2 Regularization of the WDRO objective function

In this section, we study (WDRO) objectives with additional regularization functions both in the
constraints Eπc ≤ ρ and in the objective Eπ2

f . For two arbitrary convex functions R,S :M(Ξ ×
Ξ)→ R ∪ {+∞}, the regularized objective we consider is

sup
π∈PP(Ξ×Ξ): Eπc+S(π)≤ρ

Eπ2
f −R(π). (R-WDRO)
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We give in Theorem 2.1 the expression of the dual of this problem, under the following assumptions.

Assumption 1. (i) Ξ ⊂ R
d is convex and compact;

(ii) f : Ξ→ R and c : Ξ× Ξ→ R+ are both continuous;

(iii) For all ξ in Ξ, c(ξ, ξ) = 0.

The dual expression for (R-WDRO) with general R and S is the analogue for WDRO of the
main result of Paty and Cuturi (2020) which gives the dual of the OT problem regularized by a
general convex function.

The formulation of the dual of the regularized problem can also be seen as a generalization of
the existing one for the non-regularized case (R = S = 0), see e.g., Blanchet and Murthy (2019);
Gao and Kleywegt (2016). Note however that the duality results in these two papers rely on weaker
assumptions; in particular, Ξ is not assumed to be compact and f , c are only upper- and lower-
semicontinuous respectively. In the following result, these assumptions are needed to handle general
regularizations.

Theorem 2.1 (Strong duality for doubly-regularized WDRO). Let Assumption 1 hold and take
two convex, proper, and weakly-⋆ l.s.c. functions R,S :M(Ξ×Ξ)→ R∪ {+∞}, such that R+S is
also proper. If the primal problem (R-WDRO) is strictly feasible (i.e., if there exists π ∈ PP(Ξ ×
Ξ) ∩ domR such that Eπc+ S(π) < ρ), then we have

val (R-WDRO) = inf
λ≥0

inf
ϕ∈C(Ξ×Ξ)

λρ+ Eξ∼P

[

sup
ζ∈Ξ

f(ζ)− λc(ξ, ζ) − ϕ(ξ, ζ)

]

+ (R + λS)∗(ϕ) , (3)

and there exists a primal optimal solution π⋆ ∈ PP(Ξ× Ξ) and an optimal dual parameter λ⋆ ≥ 0.

We prove this theorem by carefully combining two standard duality results (the Lagrangian
duality theorem in Banach spaces Peypouquet (2015) and the Fenchel duality theorem recalled in
Lemma 1.1) with a powerful theorem for exchanging minimization/integration of Rockafellar and
Wets (1998).

Proof. The first step of the proof consists in applying the Lagrangian duality theorem of Peypouquet
(2015, Thm. 3.68). Let us carefully check its assumptions. First note that Slater’s condition holds
by assumption, so we only need to check that the primal problem has at least a solution. This
is the case by the following arguments: (i) the problem is feasible by assumption; (ii) P(Ξ × Ξ)
is weakly-⋆ sequentially compact (see e.g., Brezis (2010, Cor. 3.30)); (iii) the constraint set {π ∈
PP(Ξ×Ξ) : Eπc+S(π) ≤ ρ} is weakly-⋆ closed (since S is weakly-⋆ l.s.c. and the constraint π1 = P
is weakly-⋆ closed); and (iv) the objective π 7→ E(ξ,ζ)∼π[f(ζ)− λc(ξ, ζ)] − R(π) is weakly-⋆ upper
semi-continuous (u.s.c.) by assumption. As a result, we have Lagrangian duality and existence of a
dual solution

val (R-WDRO) = inf
λ≥0

sup
π∈P(Ξ×Ξ):π1=P

E(ξ,ζ)∼π[f(ζ) − λc(ξ, ζ)]− (R + λS)(π) + λρ (4)

The next step is to write the inner sup as an inf. For concision, let us introduce Tλ := R + λS
and Fλ(ξ, ζ) := f(ζ)− λc(ξ, ζ). The sup over π, for a fixed λ ≥ 0, thus writes

sup
π∈P(Ξ×Ξ):π1=P

E(ξ,ζ)∼π[f(ζ)− λc(ξ, ζ)] − Tλ(π) = sup
π∈M(Ξ×Ξ)

〈π, Fλ〉 − ιPP(Ξ×Ξ)(π)− Tλ(π)

5



where ιPP(Ξ×Ξ) is the indicator function in the sense of convex analysis, i.e., for π ∈ M(Ξ × Ξ),
ιPP(Ξ×Ξ)(π) = 0 if π ∈ P(Ξ× Ξ) and π1 = P, and +∞ otherwise.

Now, we want to apply the duality result of Lemma 1.1 with F ← ιPP(Ξ×Ξ), G ← Tλ, and
h← Fλ. To do so, we need to derive the (pre)conjugates of ιPP(Ξ×Ξ) and Tλ.

By the disintegration theorem, any coupling π(dξ, dζ) can be written as P(dξ)Q(dζ|ξ) with Q
conditional probability on Ξ. Therefore,

(ιPP(Ξ×Ξ))∗(ϕ) = sup
{
E(ξ,ζ)∼πϕ(ξ, ζ) : π ∈ P(Ξ× Ξ), π1 = P

}

= sup
{
Eξ∼PEζ∼Q(·|ξ)ϕ(ξ, ζ) : Q(·|·) conditional probability on Ξ

}

≤ Eξ∼P

[

sup
ζ∈Ξ

ϕ(ξ, ζ)

]

.

We now proceed to the reverse inequality, noting that a measurable map ζ : Ξ → Ξ induces a
conditional probability Q(·|ξ) = δζ(ξ). Hence,

(ιPP(Ξ×Ξ))∗(ϕ) = sup
{
Eξ∼PEζ∼Q(·|ξ)ϕ(ξ, ζ) : Q(·|·) conditional probability on Ξ

}

≥ sup {Eξ∼Pϕ(ξ, ζ(ξ)) : ζ : Ξ→ Ξ measurable}

where the final sup is finite since Ξ is assumed to be compact, and ϕ to be continuous. Now, let
us define N as the Ξ × R

d −→ R ∪ {+∞} mapping defined as N(ξ, ζ) = −ϕ(ξ, ζ) if ζ ∈ Ξ and +∞
otherwise. Since ϕ is continuous and Ξ is closed, N is jointly l.s.c., and, as a consequence, it is a
normal integrand by (Rockafellar and Wets, 1998, Ex. 14.31). So we can apply (Rockafellar and
Wets, 1998, Thm. 14.60) to get that

inf {Eξ∼P − ϕ(ξ, ζ(ξ)) : ζ : Ξ→ Ξ measurable} = Eξ∼P

[

inf
ζ∈Ξ
−ϕ(ξ, ζ)

]

.

Inverting the signs, we have showed both upper and lower-inequalities, which means that

(ιPP(Ξ×Ξ))∗(ϕ) = Eξ∼P

[

sup
ζ∈Ξ

ϕ(ξ, ζ)

]

for any ϕ ∈ C(Ξ× Ξ),

and thus dom(ιPP(Ξ×Ξ))∗ = C(Ξ × Ξ). Also, ϕ ∈ C(Ξ × Ξ) 7→ supζ∈Ξ ϕ(·, ζ) ∈ C(Ξ) is 1-Lipschitz
w.r.t. the norm of the uniform convergence so (ιPP(Ξ×Ξ))∗ is continuous on its domain.

Moreover, since Tλ is convex, proper and weakly-⋆ l.s.c., Tλ∗ is proper and therefore domT∗ 6= ∅.
Thus, Lemma 1.1 can be used and gives that

sup
π∈P(Ξ×Ξ):π1=P

E(ξ,ζ)∼π[f(ζ)− λc(ξ, ζ)] − T (π) = inf
ϕ∈C(Ξ×Ξ)

Eξ∼P sup
ζ∈Ξ

f(ζ)− λc(ξ, ζ) − ϕ(ξ, ζ) + Tλ∗(ϕ) ,

which, combined with (4), leads to the claimed result. �

As an illustration of this duality result, let us consider the case when the transport cost itself is
used a regularization. In this case, the expression of the dual simplifies as follows. This expression
will be used in the analysis of the next section.

Corollary 2.2 (Duality for cost-regularized WDRO). Let Assumption 1 hold and take ε, δ > 0.
Then we have

sup
π∈PP(Ξ×Ξ) :Eπc+δ Eπc≤ρ

Eπ2
f − εEπc = inf

λ≥0
λρ+ Eξ∼P sup

ζ∈Ξ
f(ζ)− (ε+

(
1 + δ)λ

)
c(ξ, ζ) .
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Proof. Define R : π ∈ M(Ξ × Ξ) 7→ ε〈π, c〉, S : π ∈ M(Ξ × Ξ) 7→ δ〈π, c〉 which are convex, proper
and weakly-⋆ continuous by construction. The preconjugate of their sum is (R+λS)∗ = ι{(ε+λδ)c}.
Moreover, the primal is strictly feasible thanks to the transport plan π(dξ, dζ) = P(dξ) δξ(dζ).
Thus, we can apply Theorem 2.1 to get the expression. �

3 Entropic regularization

In this section, we specialize and refine the study of the previous section in the case entropic
regularization, i.e., when the Kullback-Leibler (KL) divergence is used a regularizing function.
This regularization is defined for two signed measures with finite variations µ, ν as

KL(µ|ν) =

{∫
log dµ

dν dµ if µ and ν are non-negative and µ≪ ν

+∞ otherwise
.

This kind of regularization is very popular in computational OT, where it enables the derivation
useful approximations of the Wasserstein distance, as, for example the so-called Sinkhorn distance:

inf
π∈P(Ξ×Ξ):π1=P,π2=Q

Eπc+ εKL(π |P⊗Q) for P,Q ∈ P(Ξ) given. (5)

When Ξ is compact, the dual of this problem is given in Genevay et al. (2016, Prop. 2.1)

sup
f∈C(Ξ)

EPf − εEξ∼P log
(

Eζ∼Qe
f(ξ)−c(ξ,ζ)

ε

)

. (6)

In Section 3.1, we establish a similar result for WDRO. But let us point out here a technical
difficulty arising from the WDRO framework compared to OT. The KL divergence (5) is taken
w.r.t. the measure P⊗Q, which does not restrict the set of feasible transport plans (if π ∈ P(Ξ×Ξ)
satisfies π1 = P and π2 = Q, π is indeed absolutely continuous w.r.t. P⊗Q). In WDRO however,
only one marginal of the transport plans π is fixed and the support of the optimal coupling can be
arbitrary, so that the same regularization as in (5) cannot directly be used.

We thus propose to regularize (WDRO) with KL using a base coupling π0 with first marginal
(π0)1 = P and consider

sup
π∈PP(Ξ×Ξ): Eπc+δKL(π |π0)≤ρ

Eπ2f − εKL(π |π0). (E-WDRO)

The choice of π0 restricts the set of transport plans to those that are absolutely continuous w.r.t.
π0. We see in Section 3.2 that this restriction has a very limited impact since a natural choice of π0

still provides a good approximations of the original problem (WDRO) when the regularization
parameters ε, δ vanish.

3.1 Duality for the entropy-regularized problem

We derive here a duality theorem for (E-WDRO) involving the KL regularization with an arbitrary
base coupling π0 ∈ PP(Ξ × Ξ). The obtained result naturally involves the same features as in (6).
Note also that a similar result for WDRO (in the case of the KL-regularization in constraints only)
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appears in (Wang et al., 2021, Thm. 1), based on arguments specific to the KL divergence. Here
we derive our duality result with double KL regularizations, by building on Theorem 2.1 with

R(π) = εKL(π |π0) and S(π) = δKL(π |π0). (7)

Theorem 3.1 (Strong duality for entropy-regularized problems). Let Assumption 1 hold, take
ε, δ > 0, and fix an arbitrary π0 ∈ PP(Ξ× Ξ). If the primal problem (E-WDRO) is strictly feasible
(i.e., if there exists π such that Eπ0

c+ δKL(π |π0) < ρ), then

val (E-WDRO) = inf
λ≥0

λρ+ (ε+ λδ)Eξ∼P log
(

Eζ∼π0(·|ξ)e
f(ζ)−λc(ξ,ζ)

ε+λδ

)

, (8)

and there exists a primal optimal solution π⋆ ∈ PP(Ξ× Ξ) and an optimal dual parameter λ⋆ ≥ 0.

The interest of using the entropy as a regularization appears when comparing (8) to the general
dual (3). We see that there is no inf on ϕ and moreover the inner sup is replaced by a smoothed
approximation (of the log-sum-exp type).

Remark 1 (Two closely related results). We observe that the expression (8) is proposed in Blanchet
and Kang (2020), independently from KL/regularization considerations, in a specific context of
semi-supervised learning with a finite set Ξ and the uniform distribution over Ξ for π0.

The most closely related work is Wang et al. (2021) which proposes and analyses a KL regu-
larization of WDRO. In particular, a very similar dual expression is given. The main difference is
that we study here a double regularization with an arbitrary π0, while the paper considers only
a regularization of the Wasserstein distance (R = 0) with a specific π0. Also, our duality result
holds under stronger assumptions (including a Slater-like assumption), which additionally provides
existence of primal and dual optimal solutions.

Proof. First, we can check that R and S as defined in (7) do satisfy the regularity conditions of
Theorem 2.1: R and S are proper (since they are non-negative and R(π0) = S(π0) = 0); R and S are
convex by (Feydy et al., 2019, Prop. 6); R and S are weakly-⋆ l.s.c. by (Feydy et al., 2019, Prop. 8).
Moreover, (Feydy et al., 2019, Prop. 7) tells us that KL(·|π0) is the conjugate of ϕ 7→ 〈π0, e

ϕ − 1〉
which is convex, proper and l.s.c., so that we get

(R+ λS)∗ : ϕ 7→ (ε+ λδ)
〈

π0, e
ϕ

ε+λ δ − 1
〉

.

We can then apply Theorem 2.1 with the regularizations defined in (7) to get

val (E-WDRO) = inf
λ≥0

λρ+ inf
ϕ∈C(Ξ×Ξ)

Eξ∼P

[

sup
ζ∈Ξ

f(ζ)− λc(ξ, ζ) − ϕ(ξ, ζ)

]

+ (ε+ λδ)〈π0, e
ϕ

ε+λδ − 1〉

︸ ︷︷ ︸

(a)

.

For a fixed λ ≥ 0, we can simplify the expression of the term (a) above by introducing τ := ε+λδ,
defining Fλ : (ξ, ζ) 7→ f(ζ)−λc(ξ, ζ) ∈ C(Ξ×Ξ), and carrying out the change of variable ϕ← Fλ−ϕ.
We thus obtain

(a) = inf
ϕ∈C(Ξ×Ξ)

Eξ∼P

[

sup
ζ∈Ξ

f(ζ)− λc(ξ, ζ) − ϕ(ξ, ζ)

]

+ τ Eπ0

[

e
ϕ
τ − 1

]

= inf
ϕ∈C(Ξ×Ξ)

Eξ∼P

[

sup
ζ∈Ξ

ϕ(ξ, ζ)

]

+ τ Eπ0

[

e
Fλ−ϕ

τ − 1
]

. (9)
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The rest of the proof is devoted to the reformulation of the term (a) expressed as (9). In order to
get rid of the supremum in this expression, we restrict the minimization to C(Ξ) instead of C(Ξ×Ξ):

val (9) ≤ inf
g∈C(Ξ)

Eξ∼P [g(ξ)] + τE(ξ,ζ)∼π0

[

e
Fλ(ξ,ζ)−g(ξ)

τ − 1
]

. (10)

Let us prove that the inequality above is actually an equality. Fix a bivariate function ϕ ∈ C(Ξ×Ξ)
and consider the univariate function gϕ := supζ∈Ξ ϕ(·, ζ). Then, since −ϕ(ξ, ζ) ≥ −gϕ(ξ), we have

Eξ∼P

[

sup
ζ∈Ξ

ϕ(ξ, ζ)

]

+ τEπ0

[

e
Fλ−ϕ

τ − 1
]

≥ Eξ∼P [gϕ(ξ)] + τE(ξ,ζ)∼π0

[

e
Fλ(ξ,ζ)−gϕ(ξ)

τ − 1
]

. (11)

However, gϕ is not continuous in general but only l.s.c., hence we cannot lower bound the RHS
of (11) by the RHS of (10). To remedy this issue, we approximate gϕ with continuous functions
defined for k ≥ 1 by

gϕk (ξ) := inf
ζ∈Ξ

gϕ(ζ) + k‖ξ − ζ‖ .

Since gϕ is l.s.c., the functions (gϕk ) converge pointwise to gϕ when k goes to +∞, see e.g., (Rockafel-
lar and Wets, 1998, Ex. 9.11). Moreover, these functions are uniformly bounded by supξ∈Ξ |g

ϕ(ξ)|,
thus Lebesgue’s dominated convergence implies that

Eξ∼P

[

sup
ζ∈Ξ

ϕ(ξ, ζ)

]

+ τEπ0

[

e
Fλ−ϕ

τ − 1
]

≥ Eξ∼P [gϕ(ξ)] + τE(ξ,ζ)∼π0

[

e
Fλ(ξ,ζ)−gϕ(ξ)

τ − 1
]

= lim
k→+∞

Eξ∼P [gϕk (ξ)] + τE(ξ,ζ)∼π0

[

e
Fλ(ξ,ζ)−g

ϕ
k

(ξ)

τ − 1

]

≥ inf
g∈C(Ξ)

Eξ∼P [g(ξ)] + τE(ξ,ζ)∼π0

[

e
Fλ(ξ,ζ)−g(ξ)

τ − 1
]

. (12)

Combining (10) and (12) gives that

(a) = inf
g∈C(Ξ)

Eξ∼P [g(ξ)] + τE(ξ,ζ)∼π0

[

e
Fλ(ξ,ζ)−g(ξ)

τ − 1
]

(13)

The final step of the proof consists in solving the above minimum over g. Indeed, the objective

g 7→ Eξ∼P [g(ξ)] + τE(ξ,ζ)∼π0

[

e
Fλ(ξ,ζ)−g(ξ)

τ − 1
]

is convex and differentiable on C(Ξ). As a consequence, the critical points are minimizers. The
gradient at a continuous function g ∈ C(Ξ) lives inM(Ξ) and is given by

P(dξ) −

(∫

Ξ

e
Fλ(ξ,ζ)−g(ξ)

τ π0(dζ|ξ)

)

P(dξ). (14)

Thus the continuous function

g⋆ : ξ 7→ τ log

(∫

Ξ

e
Fλ(ξ,ζ)

τ π0(dζ|ξ)

)

9



is a solution of (13). We get

(a) = Eξ∼P

[

τ log

(∫

Ξ

e
Fλ(ξ,ζ)

τ π0(dζ|ξ)

)]

+ τEξ∼P

[∫

Ξ

e
Fλ(ξ,ζ)−g⋆(ξ)

τ π0(dζ|ξ) − 1

]

︸ ︷︷ ︸

=0 (by nullity of the gradient in (14) for g⋆)

which in turn gives the desired expression (8). �

The proof of this result thus relies on basic optimization rationale and explicit calculus, from
the expression of Theorem 2.1. Let us note that an alternative proof could be obtained from duality
formulas for variational inference; see (Lee, 2021, Thm. 2.1) which is itself inspired by Boucheron
et al. (2005, Lem. 1).

3.2 Approximation error of entropy-regularized problems

In this section, we study the behavior of the approximation error of (E-WDRO) as the regularization
parameters vanish to 0. To quantify this approximation, we specify the cost c and the reference
measure π0. Specifically, we consider that the cost c is a norm to some power p ≥ 1

c(ξ, ζ) = ‖ξ − ζ‖p (15)

and that the reference measure π0 ∈ PP(Ξ× Ξ) is taken, for some σ > 0, as

π0(dξ, dζ) ∝ P(dξ)1ζ∈Ξ e
− c(ξ,ζ)

2p−1σ dζ . (16)

For example, when c(ξ, ζ) = ‖ξ−ζ‖p2 with p ∈ {1, 2}, π0(·|ξ) is a Laplace or a Gaussian distribution
(which is easy to sample from for any ξ ∈ Ξ). We also slightly strengthen Assumption 1 by assuming
that Ξ is a convex body and that the functions are Lipschitz continuous.

Theorem 3.2 (Approximation for entropic regularization). Let the following conditions hold:

(i) the objective f : Ξ→ R and the cost c : Ξ× Ξ→ R+ are Lipschitz continuous;

(ii) the cost c and the coupling π0 are taken as (15) and (16) with σ > 0 such that Eπ0
c < ρ;

(iii) the set Ξ ⊂ R
d is compact, convex, with nonempty interior.

Then, as the regularization parameters ε, δ > 0 go to zero, we have

0 ≤ val (WDRO)− val (E-WDRO) ≤ O

(

d (ε+ λδ) log
1

ε+ λδ

)

where λ := 2 supΞ |f |
ρ−Eπ0

c is an explicit dual bound.

This result is the analogue for (WDRO) of quantitative bounds for (5) established in Genevay
et al. (2019) in the context of OT. The core of the proof consists in introducing a block approxi-
mation of the optimal transport plan, following Carlier et al. (2017). In our situation, we modify
this approximation scheme to take into account the fact that the second marginals of the transport
plans π are not fixed. We also need to introduce an auxiliary regularized problem. Thus the proof
of Theorem 3.2 requires several original steps, as described in the next section.

10



3.3 Proof of the approximation theorem

This section is devoted to the proof of Theorem 3.2. In fact, we state and prove a slightly more
detailed result, formalized in the next theorem, and we show afterwards how Theorem 3.2 can
be derived as a consequence. The following theorem can indeed be seen as a global version of
Theorem 3.2, with explicit constants and slightly more general assumptions. To simplify the reading,
we denote by the optimal solution of the entropy-regularized problem.

F ε,δρ (f) = sup
π∈PP(Ξ×Ξ): Eπc+δKL(π |π0)≤ρ

Eπ2
f − εKL(π |π0) .

Theorem 3.3 (Extended approximation theorem). Take a radius ρ > 0, regularization parameters
ε, δ > 0, and suppose that the following conditions hold:

(i) The objective f : Ξ→ R and the cost c : Ξ×Ξ→ R+ are Lipschitz continuous, and that their
respective Lipschitz constants satisfy ε ≤ Lip(f) and δ ≤ Lip(c) ;

(ii) The cost c and the coupling π0 are taken as (15) and (16) with σ > 0 such that Eπ0
c < ρ;

(iii) The set Ξ ⊂ R
d is compact, convex, and satisfies (for B(ξ,∆) the ball for ‖ · ‖)

V := inf
ξ∈Ξ,0<∆≤d

vol(Ξ ∩ B(ξ,∆))

∆d
> 0 . (17)

Then, we have,

F 0,0
ρ

1+δ/σ
(f)− (ε+ λδ)

(

d+ d log

(
L

(ε+ λδ)d

)

+ C +
1

σ

(
(ε+ λδ)d

L

)p
)

−
ερ

σ + δ

≤ F ε,δρ (f) ≤ F 0,0
ρ (f) .

where λ = 2 supΞ |f |
ρ−Eπ0

c , L = Lip(f)+λLip(c), and C = min
{

log vol(Ξ)
V , log Iσ

V

}

with Iσ = σ
d
p
∫

Rd e
− ‖ζ‖p

2p−1 dζ.

The proof of this result requires a few preliminary steps. First, we provide in Lemma 3.4 a
simple approximation result for the cost -regularized problem

Gε,δρ (f) = sup
π∈PP(Ξ×Ξ): Eπc+δEπc≤ρ

Eπ2
f − εEπc . (18)

Next, we bound in Lemma 3.5 the dual optimal solution of the entropy-regularized problem F ε,δρ (f).
Finally, for a fixed dual variable, we compare in Lemma 3.6 the values of the Lagrangians of
the entropy-regularized problem and the cost -regularized one, which is the most technical part of
the proof. After these three lemmas, we prove the approximation result in the extended version
(Theorem 3.3), and show how the initial version (Theorem 3.2) can be derived from it.

Lemma 3.4 (Approximation for cost-regularization). Let Assumption 1 hold and take ε, δ > 0.
Then, the following bound hold

G0,0
ρ

1+δ
(f)−

ερ

1 + δ
≤ Gε,δρ (f) ≤ G0,0

ρ (f) .

11



Proof. Since the cost function is non-negative, we directly have Gε,δρ (f) ≤ G0,0
ρ (f). From Corol-

lary 2.2, we write the cost-regularized function Gε,δρ (f) of (18) as follows

Gε,δρ (f) = inf
λ≥0

λρ+ Eξ∼P

[

sup
ζ∈Ξ

f(ζ)− (ε+ (1 + δ)λ)c(ξ, ζ)

]

= inf
λ′≥ε

λ′ − ε

1 + δ
ρ+ Eξ∼P

[

sup
ζ∈Ξ

f(ζ)− λ′c(ξ, ζ)

]

(with λ′ = ε+ (1 + δ)λ)

≥ inf
λ′≥0

λ′ − ε

1 + δ
ρ+ Eξ∼P

[

sup
ζ∈Ξ

f(ζ) − λ′c(ξ, ζ)

]

≥
−ερ

1 + δ
+ inf
λ′≥0

λ′
ρ

1 + δ
+ Eξ∼P

[

sup
ζ∈Ξ

f(ζ)− λ′c(ξ, ζ)

]

= sup
π∈PP(Ξ×Ξ):Eπc≤

ρ
1+δ

Eπ2f −
ερ

1 + δ
= G0,0

ρ
1+δ

(f)−
ερ

1 + δ
,

where the last line follows again from Corollary 2.2 with ε = δ = 0. �

Lemma 3.5 (Upper-bound on dual solutions). Under the assumptions of Theorem 3.1, the optimal
solution λ⋆ of the dual problem of F ε,δρ (f) is bounded as follows

λ⋆ ≤ λ =
2 supΞ |f |

ρ− Eπ0c
. (19)

Proof. Theorem 3.1 gives the existence of λ⋆, which, by definition, minimizes

g : λ 7→ λρ+ (ε+ λδ)Eξ∼P log
(

Eζ∼π0(·|ξ)e
f(ζ)−λc(ξ,ζ)

ε+λδ

)

.

On the one hand, g(λ⋆) is upper bounded as

g(λ⋆) ≤ g(0) = εEξ∼P log
(

Eζ∼π0(·|ξ)e
f(ζ)
ε

)

≤ sup
Ξ
|f | .

On the other hand, thanks to Jensen’s inequality, g(λ⋆) is lower-bounded as

g(λ⋆) ≥ λ⋆ρ+ E(ξ,ζ)∼π0
[f(ζ)− λ⋆c(ξ, ζ)] ≥ λ⋆(ρ− Eπ0

c)− sup
Ξ
|f | .

Combining the two inequalities gives (19). �

Lemma 3.6 (Approximation bound for the Lagrangians). Under the assumptions of Theorem 3.3,
consider

F ε,δρ (λ, f) = sup
π∈PP(Ξ×Ξ)

E(ξ,ζ)∼π[f(ζ)− λc(ξ, ζ)] − (ε+ λδ)KL(π |π0),

and G
ε
σ ,

δ
σ

ρ (λ, f) = sup
π∈PP(Ξ×Ξ)

E(ξ,ζ)∼π[f(ζ)− λc(ξ, ζ)] −
(ε+ λδ

σ

)

c(ξ, ζ).

Then we have, for a fixed ∆ ∈ (0, d] and with Iσ(ξ) :=
∫

Ξ e
− c(ξ,ζ)

2p−1σ dζ,

G
ε
σ ,

δ
σ

ρ (λ, f) ≤ F ε,δρ (λ, f) + (Lip(f) +λLip(c))∆ + (ε+ λδ)

(
∆p

σ
−log

(
V∆d

)
+ Eξ∼P log Iσ(ξ)

)

.
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Proof. We start by reformulating G
ε
σ ,

δ
σ

ρ (λ, f). By continuity and compactness, the function ζ 7→
f(ζ) − (λ + (ε + λδ)/σ)c(ξ, ζ) has a maximizer on Ξ for every ξ. By (Rockafellar and Wets,
1998, Thm. 14.37), we get that there exists a measurable map ζ⋆ : Ξ → Ξ such that ζ⋆(ξ) ∈
argmaxζ∈Ξ f(ζ)− (λ+ (ε+ λδ)/σ)c(ξ, ζ) for any ξ ∈ Ξ. Then,

π⋆(dξ, dζ) := P(dξ) δζ⋆(ξ)(dζ)

is an optimal solution, and therefore

G
ε
σ ,

δ
σ

ρ (λ, f) = Eπ⋆Fλ −
ε+ λδ

σ
Eπ⋆c. (20)

Now define B
∆(ξ) := B(ζ⋆(ξ),∆) and π∆ ∈ PP(Ξ× Ξ) such that

π∆ ∝ 1ζ∈B∆(ξ) π0(dξ, dζ) .

Note first that we have

Eπ⋆Fλ − Eπ∆Fλ = Eξ∼PEζ∼π∆(·|ξ)[Fλ(ξ, ζ
⋆(ξ))− Fλ(ξ, ζ)] ≤ (Lip(f) + λLip(c))∆ , (21)

since Fλ is
(
Lip(f) + λLip(c)

)
-Lipschitz continuous and the support of π∆(·|ξ) is B

∆(ξ). Now, we
proceed to bound KL(π∆ |π0) by first noticing that

KL(π∆ |π0) = Eξ∼PEζ∼π∆(·|ξ) log

(
dπ∆(ζ|ξ)

dπ0(ζ|ξ)

)

= −Eξ∼P log

(
∫

Ξ∩B∆(ξ)

e−
c(ξ,ζ)

2p−1σ dζ

)

+ Eξ∼P log

(∫

Ξ

e−
c(ξ,ζ)

2p−1σ dζ

)

(22)

We focus on lower-bounding
∫

Ξ∩B∆(ξ)
e−

c(ξ,ζ)

2p−1σ dζ. First, note that by the triangular inequality

(and since p ≥ 1), for any ξ, ζ ∈ Ξ,

c(ξ, ζ)

2p
≤
c(ξ, ζ⋆(ξ)) + c(ζ⋆(ξ), ζ)

2
.

If, in addition, ζ is in B
∆(ξ), this bound becomes c(ξ,ζ)

2p−1 ≤ c(ξ, ζ⋆(ξ)) + ∆p. Hence, we have

∫

Ξ∩B∆(ξ)

e−
c(ξ,ζ)

2p−1σ dζ ≥ e−
c(ξ,ζ⋆(ξ))+∆p

σ vol(Ξ ∩ B
∆(ξ)) ≥ e−

c(ξ,ζ⋆(ξ))+∆p

σ V∆d ,

where V is defined in (17). Plugging the above lower and upper bounds into (22) yields

KL(π∆ |π0) ≤
Eξ∼Pc(ξ, ζ

⋆(ξ)) + ∆p

σ
− log

(
V∆d

)
+ Eξ∼P log Iσ(ξ)

=
Eπ⋆c+∆p

σ
− log

(
V∆d

)
+ Eξ∼P log Iσ(ξ) . (23)
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Finally, putting (20), (21), and (23) together gives,

G
ε
σ ,

δ
σ

ρ (λ, f) = Eπ⋆Fλ −
ε+ λδ

σ
Eπ⋆c

= Eπ∆Fλ − (ε+ λδ)KL(π∆ |π0) + (Eπ⋆Fλ − Eπ∆Fλ) +

(

(ε+ λδ)KL(π∆ |π0)−
ε+ λδ

σ
Eπ⋆c

)

≤ F ε,δρ (λ, f) + (Lip(f) + λLip(c))∆ + (ε+ λδ)

(
∆p

σ
− log

(
V∆d

)
+ Eξ∼P log Iσ(ξ)

)

which is the claimed inequality. �

We have now all the ingredients to establish the extended version of the approximation result.

Proof of Theorem 3.3. First, notice that by Lemma 3.4, we have that

F 0,0
ρ

1+δ/σ
(f)−

ερ

σ + δ
= G0,0

ρ
1+δ/σ

(f)−
ερ

σ + δ
≤ G

ε
σ ,

δ
σ

ρ (f).

Thus, using the bound at λ fixed, given by Lemma 3.6 and the upper-bound (19), we get

G
ε
σ ,

δ
σ

ρ (f) ≤ inf
0≤λ≤λ

G
ε
σ ,

δ
σ

ρ (λ, f)

≤ inf
0≤λ≤λ

F ε,δρ (λ, f) + (Lip(f) + λLip(c))∆ + (ε+ λδ)

(
∆p

σ
− log

(
V∆d

)
+ Eξ∼P log Iσ(ξ)

)

≤ F ε,δρ (f) +
(
Lip(f) + λLip(c)

)
∆+ (ε+ λδ)

(
∆p

σ
− log

(
V∆d

)
+ Eξ∼P log Iσ(ξ)

)

.

Minimizing the above bound over ∆ > 0, we get that the optimal value ∆⋆ is of the form ∆⋆ =
(ε+λδ)d

L +O((ε+λδ)p+1), with L = Lip(f)+λLip(c), as introduced in the statement of the theorem.

As a consequence, we set ∆ = (ε+λδ)d
L in the bound above, which becomes

G
ε
σ ,

δ
σ

ρ (f) ≤ F ε,δρ (f) + (ε+ λδ)

(

d+ d log

(
L

(ε+ λδ)d

)

+ Eξ∼P log Iσ(ξ) + log
1

V
+

1

σ

(
(ε+ λδ)d

L

)p
)

.

There is only left to bound the term in Eξ∼P log Iσ(ξ). On one hand, we have e−
c(ξ,ζ)

2p−1σ ≤ 1 so that
∫

Ξ

e−
c(ξ,ζ)

2p−1σ dζ ≤ vol(Ξ).

On the other hand, we also have (using the change of variable ζ′ = σ− 1
p (ζ − ξ) to get Iσ)

∫

Ξ

e−
c(ξ,ζ)

2p−1σ dζ ≤

∫

Rd

e−
‖ξ−ζ‖p

2p−1σ dζ = Iσ

This makes the constant C appear in the bound and thus ends the proof. �

We finish by explaining how the main theorem, Theorem 3.2, stems from Theorem 3.3. On the
left-hand side (LHS) of the inequality in Theorem 3.3, the unregularized objective has radius ρ

1+δ/σ ,

instead of simply ρ in F 0,0
ρ (f) = val (WDRO). Thus, we compare in the next lemma the optimal

values for these two parameters.
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Lemma 3.7 (Comparing optimal values). Under the assumptions of Theorem 3.3,

F 0,0
ρ (f) ≤ F 0,0

ρ
1+δ/σ

(f) +O(δ) .

Proof. We first apply (Santambrogio, 2015, Theorem 5.27) to get a constant-speed geodesic for the

p-Wasserstein distance connecting P and Q, which is Wc(P,Q)
1
p with our notation. This means

that there exists a family of probability distributions (Qt)t∈[0,1] such that Q0 = Q, Q1 = P and, for
any t ∈ [0, 1],

Wc(P,Qt)
1
p = (1 − t)Wc(P,Q)

1
p and Wc(Qt,Q)

1
p = tWc(P,Q)

1
p .

We apply these equations with Q such that Wc(P,Q) ≤ ρ and t = 1− (1 + δ/σ)−
1
p to obtain

Wc(P,Qt) ≤
ρ

1 + δ/σ
and Wc(Q,Qt) ≤ t

pρ = O(δ).

Note that the first inequality above yields

EQt
f ≤ sup

π∈PP(Ξ×Ξ):Eπc≤
ρ

1+δ/σ

Eπ2
f = F 0,0

ρ
1+δ/σ

(f), (24)

We now use the Kantorovich-Rubinstein inequality (e.g., Villani (2003, Thm. 1.14)) to write

EQf − EQt
f ≤ W1(Q,Qt) Lip(f) ≤ Wc(Q,Qt)

1
p Lip(f) ,

where for the second inequality we used that the p-Wasserstein distance is always greater than or
equal to the 1-Wasserstein distance (e.g., Villani (2003, §7.1.2)). Together with (24), this yields:

EQf ≤ EQt
f +O(δ) ≤ F 0,0

ρ
1+δ/σ

(f) +O(δ) .

Taking the supremum over all Q such that Wc(P,Q) ≤ ρ allows us to conclude. �

With the help of the previous lemma, the proof of Theorem 3.2 comes easily from Theorem 3.3.

Proof of Theorem 3.2. We start with checking that the fact that Ξ is a compact convex body
(condition (iv) in Theorem 3.2) implies that V > 0 (condition (iv) in Theorem 3.3). Introduce, for
ξ ∈ Ξ, the function

νξ : ∆ 7→
vol(Ξ ∩ B(ξ,∆))

∆d
= vol

(
1

∆
(Ξ− ξ) ∩ B(0, 1)

)

.

Since Ξ is convex, we easily get that νξ is non-increasing. Thus we can lower-bound the constant
V as follows, using diam(Ξ) := supξ,ζ∈Ξ‖ξ − ζ‖ the diameter of Ξ.

V = inf
ξ∈Ξ,0<∆≤d

νξ(∆) ≥ inf
ξ∈Ξ,0<∆≤max(d,diam(Ξ))

νξ(∆)

= inf
ξ∈Ξ

vol(Ξ ∩ B(ξ,max(d, diam(Ξ)))

(max(d, diam(Ξ))d
≥

vol(Ξ)

(max(d, diam(Ξ))d
> 0.

So we get V > 0 which is condition (iv) in Theorem 3.3. Thus we can apply Theorem 3.3 and
Lemma 3.7. Noting that F ε,δρ (f) = val (E-WDRO) and F 0,0

ρ (f) = val (WDRO), and combining the
obtained bound with Lemma 3.7 gives the result. �
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4 Conclusion, perspectives

Inspired by the success of regularization in OT, we proposed and studied a regularization scheme
for WDRO problems. We derived the expression of the dual objective function in the general case
as well as a refined one in the particular setting of the entropic regularization. In addition, we
showed that the difference between the original WDRO problem and the entropic one is properly
controlled by the regularization parameters.

Finally, since regularization in OT has shown attractive computational advantages and statistical
benefits, an interesting direction would be to investigate whether similar gains hold for regularization
in WDRO.
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