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Incidence, a Scoring Positional Game on Graphs *

Positional games have been introduced by Hales and Jewett in 1963 and have been extensively investigated in the literature since then. These games are played on a hypergraph where two players alternately select an unclaimed vertex of it. In the Maker-Breaker convention, if Maker manages to fully take a hyperedge, she wins, otherwise, Breaker is the winner. In the Maker-Maker convention, the rst player to take a hyperedge wins, and if no one manages to do it, the game ends by a draw. In both cases, the game stops as soon as Maker has taken a hyperedge. By denition, this family of games does not handle scores and cannot represent games in which players want to maximize a quantity.

In this work, we introduce scoring positional games, that consist in playing on a hypergraph until all the vertices are claimed, and by dening the score as the number of hyperedges a player has fully taken. We focus here on Incidence, a scoring positional game played on a 2-uniform hypergraph, i.e. an undirected graph. In this game, two players alternately claim the vertices of a graph and score the number of edges for which they own both end vertices. In the Maker-Breaker version, Maker aims at maximizing the number of edges she owns, while Breaker aims at minimizing it. In the Maker-Maker version, both players try to take more edges than their opponent.

We rst give some general results on scoring positional games such that their membership in Milnor's universe and some general bounds on the score. We prove that, surprisingly, computing the score in the Maker-Breaker version of Incidence is PSPACE-complete whereas in the Maker-Maker convention, the relative score can be obtained in polynomial time. In addition, for the Maker-Breaker convention, we give a formula for the score on paths by using some equivalences due to Milnor's universe. This result implies that the score on cycles can also be computed in polynomial time.

Introduction 1.Positional games

Positional games have been introduced by Hales and Jewett in 1963 [START_REF] Hales | Regularity and positional games[END_REF] and popularized by Erd®s and Selfridge in 1973 [START_REF] Erdös | On a combinatorial game[END_REF]. Interest in them has increased due to the large number of games they can handle.

In the standard denition of positional games, the board is a hypergraph on which two players alternately select an unclaimed vertex. In the Maker-Breaker convention, if Maker manages to claim all the vertices of a hyperedge, he wins, otherwise, Breaker is the winner. In the Maker-Maker convention, the rst player, if any, who takes a hyperedge wins. If no player manages to claim all the vertices of a hyperedge, the game ends by a draw.

Maker-Maker games are often considered as harder than Maker-Breaker games, since the objective of trying to ll a hyperedge and controlling at the same time that the opponent does not win, is hard to meet.

Positional games are nite perfect information two-players games. As such, there exists a winning strategy for one of the players or both players can insure a draw. The main issue is then to compute, for a given hypergraph, which player has a winning strategy. This problem has been proven to be PSPACEcomplete for both conventions, even if all the hyperedges have size at least 11 by Schaefer [START_REF] Thomas | On the complexity of some two-person perfect-information games[END_REF]. This result was recently improved to hypergraph with hyperedges of size at least 6 by Rahman and Watson [START_REF] Md | 6-uniform maker-breaker game is pspace-complete[END_REF]. On the other side, Galliot et al. proved that the winner can be computed in polynomial time on 3-uniform hypergraphs [START_REF] Galliot | Structural tools for the makerbreaker game. application to hypergraphs of rank 3: strategies and tractability[END_REF].

In practice, positional games are studied in specic hypergraphs. Historically, they are almost always derived from hypergraphs built from a grid or a complete graph (see for example the reference books [START_REF] Beck | Combinatorial games: tic-tac-toe theory[END_REF][START_REF] Hefetz | Positional games[END_REF]). More recently, some positional games played on hypergraphs derived from general graphs have been studied. For such games, Maker aims at building a structure in a given graph, and Breaker aims at preventing him to do so. The structure could be, for example, a copy of a graph H (H-Game [START_REF] Kronenberg | h-games played on vertex sets of random graphs[END_REF]) or a dominating set (Maker-Breaker domination game [START_REF] Duchene | Makerbreaker domination game[END_REF]).

Scoring games

In parallel to the study of positional games, scoring games have been introduced in the 1950s by Milnor [START_REF] Milnor | Sums of positional games[END_REF] and Hanner [START_REF] Hanner | Mean play of sums of positional games[END_REF]. Their study was almost forgotten until the 2000s, when dierent formalisms for such games have been introduced by Ettinger [Ett96], Stewart [START_REF] Stewart | Scoring play combinatorial games[END_REF], or Larsson, Nowakowski and Santos [START_REF] Larsson | When waiting moves you in scoring combinatorial games[END_REF]. The survey paper [START_REF] Larsson | Scoring combinatorial games: the state of play[END_REF] summarizes these dierent approaches.

In scoring games, two players, usually Left and Right, alternate moves with a score adjoined to the game. Each move of a player can modify this score, Left aims at maximizing the score at the end of the game, while Right tries to minimize it. Since scoring games are also nite perfect information games, if both players play optimally, the score at the end of the game is well-dened and only depends on who starts.

Despite the fact that scoring games were less studied, mainly due to the diculty to build a general framework for them, particular scoring games on graphs have still been introduced recently. One can cite the game Influence introduced by Duchêne et al. in 2021 [DGP + 21] which has been proven PSPACEcomplete in 2022 [START_REF] Duchêne | Bipartite instances of inuence[END_REF], or the largest connected subgraph game, introduced by Bensmail et al., rstly as a scoring connection game [START_REF] Bensmail | The largest connected subgraph game[END_REF], and then as a Maker-Breaker connection game [BFMI + 22]. In [START_REF] Larsson | Scoring combinatorial games: the state of play[END_REF], there is a list of other particular scoring games on graphs that have been recently studied.

Scoring positional games and outline of the paper

In the current paper, we introduce a general scoring version of positional games. Left and Right alternately select vertices of a hypergraph until all the vertices are selected. Points are given when a hyperedge is fully selected by a player. In the Maker-Maker convention, both players get points and the score is the dierence between the number of hyperedges taken by Left and Right. In the Maker-Breaker version, the score is only the number of hyperedges taken by Left.

Outline of the paper. In Section 2, after giving a formal denition of these games, we provide some general results on them. In particular, we prove that they belong to Milnor's universe and that determining the score is PSPACE-complete in the two conventions. In the rest of the paper, we explore the game Incidence that corresponds to the subcase of 2-uniform hypergraphs (or equivalently to graphs).

In Section 3, we prove that, unlike for standard positional games, the Maker-Maker version of Incidence is the easiest one since computing the score is linear in this case. Then we focus on the Maker-Breaker version of Incidence. In Section 4, we give some general bounds on the score as well as some nice properties to deal with twin vertices. This allows us to calculate the exact value of the score for complete binary trees. The next section shows that computing the score in Maker-Breaker convention is PSPACEcomplete but xed-parameter-tractable when parameterized by the neighbourhood diversity of the graph (introduced in [Lam10]), which implies in particular that it is also FPT when parameterized by vertex cover. The last section is dedicated to the study of paths and cycles. We prove some equivalence relations between paths, which lead to a closed formula for paths and cycles. In particular, we can compute exactly the score for a path of length n, which is equal to n/5 + c where c only depends on n mod 5.

2 General results on scoring positional games It is well-known in scoring game theory that these notions exist and are well-dened (by considering the game tree of all the possible moves). Note that in the Maker-Maker convention, by symmetry of the roles of both players, we have that Ls(H) = -Rs(H), so computing Ls(H) will be of sucient interest.

In the Maker-Breaker convention, we have that Ls(H) and Rs(H) are nonnegative values by denition.

In addition, it will be helpful to consider the scores obtained after some vertices have been claimed.

A position of a scoring positional game is a triplet P = (H, V L , V R ) such that V L and V R are disjoint subsets of vertices. The set V L corresponds to the vertices claimed by Left whereas V R correspond to the vertices claimed by Right. The set of remaining vertices will be generally denoted by V F . We have

V F = V \ (V L ∪ V R ).
For both conventions, we will denote by Ls(P ) (resp. Rs(P )) the score of H if Left has already claimed the vertices of V L , and Right the vertices of V R , when Left (resp. Right) starts. When V F = ∅, the scores at a position P can be recursively dened as follows:

Ls(P ) = max x∈V F Rs(H, V L ∪ {x}, V R ) Rs(P ) = min x∈V F Ls(H, V L , V R ∪ {x}).
When V F = ∅, the score depends on the convention. In Maker-Maker convention,

Ls(P ) = Rs(P ) = |{e ∈ E|e ⊆ V L }| -|{e ∈ E|e ⊆ V R }|
whereas in Maker-Breaker convention, we have

Ls(P ) = Rs(P ) = |{e ∈ E|e ⊆ V L }|.
In the literature, there are few games that can be seen as scoring positional games. The famous Dots and Boxes games [START_REF] Berlekamp | The dots and boxes game: sophisticated child's play[END_REF], that has recently be proven PSPACE-complete by Buchin et al. [START_REF] Buchin | Dots & boxes is pspace-complete[END_REF],

could be an example, with the additional constraint that a player is forced to move again each time he gets points. By removing this constraint, we get a pure example of the above denition (in the Maker-Maker convention), and the game is known as Picarête [START_REF] Blanc | A deletion game on graphs:le pic arête[END_REF]. More recently, the Constructor-Blocker game introduced by Patkos et al. [START_REF] Patkós | The constructor-blocker game[END_REF] in 2022, in which Constructor aims at maximizing the number of copies of a graph H with a forbidden graph F , can be seen as a scoring positional game when F is empty.

Incidence In most of this paper, we will mainly focus on an example of scoring positional game that is called Incidence. It corresponds to the game played on a hypergraph where all hyperedges are of size two. In others terms, this game can be dened as follows on a simple graph G = (V, E). Alternately, two players claim an unclaimed vertex of V . When all the vertices have been taken, the score of a player is dened as the number of edges in the subgraph of G induced by the vertices he claimed.

Hence, in both conventions, Left (that is always Maker) aims at collecting points by claiming the two extremities of an edge. The main dierence concerns the role of Right, that aims at touching the maximum number of edges (hence prohibiting a maximum number of points for Left) in the Maker-Breaker convention. See Figure 1 for an example of computations of the score at the end of a game. 

Milnor's universe

In 1953 [START_REF] Milnor | Sums of positional games[END_REF] This leads to the notion of equivalence of games:

Denition 1 (Milnor [Mil53]). Two scoring games G 1 and G 2 are equivalent (write

G 1 ≡ G 2 ) if for any game G, we have Ls(G + G 1 ) = Ls(G + G 2 ) and Rs(G + G 1 ) = Rs(G + G 2 ).
In other terms, one can always exchange G 1 and G 2 in any sum of games if they are equivalent. In particular, games that are equivalent to the empty game can be removed from any sum of games.

Games belonging to Milnor's universe form an Abelian group with the sum operator [START_REF] Milnor | Sums of positional games[END_REF]. In particular, this implies that every game G in Milnor's universe admits an inverse, i.e. a game G such that G + G ≡ 0 (where 0 is the empty game). More precisely, this inverse corresponds to the negative of G,

i.e. the game where the roles of Left and Right are exchanged, together with their scores.

Moreover, proving equivalence in Milnor's universe is greatly simplied, thanks to the next lemma.

Lemma 2 (Milnor [Mil53]). For any games G and H that are dicotic nonzugzwang, we have: Ls(G-H) = Rs(G -H) = 0 if and only if G and H are equivalent.

In addition, sums of games in Milnor's universe can be bounded as follows:

Lemma 3 (Milnor [Mil53]). Let G and H be two dicotic nonzugzwang games, we have

Rs(G) + Rs(H) ≤ Rs(G + H) ≤ Ls(G) + Rs(H) ≤ Ls(G + H) ≤ Ls(G) + Ls(H).
In what follows, we will show that scoring positional games belong to Milnor's universe. Yet, the negative of a game cannot be dened in the Maker-Breaker convention, as the scores of Maker and Breaker can not be interchanged naturally, by asymmetry of the denition of the score. Therefore, we have decided to embed scoring positional games in a more general family that will be called partisan scoring positional games. The term partisan is derived from standard combinatorial games [START_REF] Berlekamp | The dots and boxes game: sophisticated child's play[END_REF],

meaning that Left and Right may have dierent moves (and also dierent ways of scoring points).

A partisan scoring positional game is played on a hypergraph H whose hyperedges are either colored blue, red or green. The two players, Left and Right, alternatively claim vertices of H. The score of Left corresponds to the blue and green hyperedges she claimed, whereas the score of Right corresponds to the red and green ones. As previously, the score of the game (Ls(H ) and Rs(H), depending on who starts) is the dierence between the score of Left and Right.

Partisan scoring positional games include both Maker-Maker and Maker-Breaker scoring positional games. Even more, the convention can be omitted, as it is deduced by the colors of the hypergraph.

Indeed, if all the hyperedges are green, it means that both players can win any hyperedge, which corresponds to the Maker-Maker version. If all the hyperedges are blue, it corresponds to the Maker-Breaker convention, as only Left can get points. According to this denition, the negative of a partisan scoring positional game is well-dened, as it suces to exchange the colors blue and red in the hyperedges, as well as the vertices already chosen by Left and Right (if any).

We will now give several general results about partisan scoring positional games. By inclusion, these results will also concern scoring positional games. First, we will prove that they belong to Milnor's universe and thus satisfy Lemma 2. Lemma 4. Partisan scoring positional games belong to Milnor's universe.

Proof. Let H = (V, E) be a hypergraph with hyperedges colored blue, red and green, and V L , V R ⊂ V be vertices already claimed by Left and Right respectively such that V L ∩ V R = ∅.

A partisan scoring positional game is dicotic: if V L ∪ V R = V , then no moves are available, neither for Left nor for Right. Otherwise, let v ∈ V \ {V L ∪ V R } . Both Left and Right are allowed to play v as it is an unclaimed vertex. Therefore, the game is dicotic.

A partisan scoring positional game is nonzugzwang: We need to prove that Ls(

H, V L , V R ) ≥ Rs(H, V L , V R ). Let k = Rs(H, V L , V R ) with V L , V R vertices already claimed in H by Left and Right respectively. If V L ∪ V R = V , we have Ls(H, V L , V R ) = Rs(H, V L , V R ) = k
as there is no move available in H. Otherwise, let S be an optimal strategy for Left when Right starts. We dene a strategy S for Left when she starts as follows:

Left considers an arbitrary unclaimed vertex v 0 of the graph, and plays the vertex she would have played in S if Right plays v 0 .

Whenever, Right plays a vertex w in V \ {v 0 }, she plays the vertex she would have played in S if Right has played w in S after having played v 0 on rst move.

If Right plays v 0 , she considers an arbitrary unclaimed vertex v 1 in the graph, and continues this strategy by supposing that Right has played v 1 instead of v 0 . More generally, when Right claims the vertex v , she considers an unclaimed vertex v +1 and considers that Right has claimed v +1 instead.

At the end, if she needs to consider that Right has played a vertex v and no other vertex is available, she plays v . Following this strategy, all the vertices Left would have played in S if Right has played the vertices v i s she has considered, have been played in S by Left. Similarly, the vertices that Right have played in S are a subset of the one he would have played in S. Therefore, as S was an optimal strategy in H when Right starts, this strategy ensures that Left scores at least k = Rs(H, V L , V R ). Finally, we have

Ls(H, V L , V R ) ≥ k = Rs(H, V L , V R )
, and the game is nonzugzwang.

As the game is nonzugzwang and dicotic, it belongs to Milnor's universe.

As a consequence, this result applies also to scoring positional games and, in particular, the game Incidence. We will use this result in Section 6 to solve Incidence on paths.

Algorithmic complexity

We now prove that deciding if the Left scores of a scoring positional game is PSPACE-complete in both conventions. This result is a direct consequence of the PSPACE-complexity of (non-scoring) positional games.

Maker-Breaker Positional Game

Instance: A hypergraph H, P ∈ {Maker, Breaker}. Output: True if Maker wins the Maker-Breaker positional game played on H with rst player P .

Maker-Breaker Positional Game has been proved to be PSPACE-complete by Schaeer [START_REF] Thomas | On the complexity of some two-person perfect-information games[END_REF] for 11-uniform hypergraphs (all the hyperedges have size 11). This result was recently improved to 6-uniform hypergraphs by Rahman and Watson [START_REF] Md | 6-uniform maker-breaker game is pspace-complete[END_REF].

Theorem 5 ([RW21]

). Maker-Breaker Positional Game is PSPACE-complete even restricted to 6-uniform hypergraphs.

Maker-Breaker Positional Game can easily be reduced to the two following problems on scoring positional games.

Maker-Breaker Scoring Positional Game

Instance: A hypergraph H, an integer k, a rst player P ∈ {Lef t, Right}. Output: True if the P score in the scoring positional game played on H with Maker-Breaker convention is at least k, false otherwise.

Maker-Maker Scoring Positional Game

Instance: A hypergraph H, an integer k. Output: True if the Left score in the scoring positional game played on H with Maker-Maker convention is at least k, false otherwise. Corollary 6. Maker-Breaker Scoring Positional Game is PSPACE-complete even restricted to 6-uniform hypergraphs, P = Lef t and k = 1.

Maker-Maker Scoring Positional Game is PSPACE-complete even restricted to 7-uniform hypergraphs and k = 1.

Proof. Since both games are played in |V (H)| turns, they belong to PSPACE according to Section 6.1 in [START_REF] Robert | Games, puzzles, and computation[END_REF].

Let H be a 6-uniform hypergraph and assume Left is the rst player. We have Ls(H) ≥ 1 in the Maker-Breaker convention if and only if Maker wins the Maker-Breaker positional game (without score) played on H with Maker as rst player. Thus, by Theorem 5, Maker-Breaker Scoring Positional Game is PSPACE-complete even restricted to 6-uniform hypergraphs, k = 1 and P = Lef t. Consider now H the 7-uniform hypergraph obtained from H by adding a universal vertex v 0 : each hyperedge of H is extended to contain v 0 . There exists an optimal strategy in the Maker-Maker convention that starts by claiming v 0 . Then the other player cannot score any point. Then, we have Ls(H ) ≥ 1 if and only if Maker wins playing second in the Maker-Breaker positional game (without score) played on H. Thus, by Theorem 5, Maker-Maker Scoring Positional Game is PSPACE-complete even restricted to 7-uniform hypergraphs and k = 1.

We will complete the results of Corollary 6 in next sections by proving that Maker-Breaker Scoring Positional Game is still PSPACE-complete for 2-uniform hypergraphs (Theorem 18). This will imply that Maker-Maker Scoring Positional Game is PSPACE-complete for 3-uniform hypergraphs. To complete the picture, we will give a linear algorithm to solve Maker-Maker Scoring Positional Game in 2-uniform hypergraphs (Theorem 11).

Bounds in Maker-Maker convention

In this subsection, we give an easy bound on the score in Maker-Maker convention, using the maximal degree of the hypergraph. Let H be a hypergraph. The degree of a vertex v of H is the number of hyperedges containing v. We denote by ∆(H) the maximal degree of H. Lemma 7. Let H be a hypergraph. In the Maker-Maker scoring positional game on H, we have -∆(H) ≤

Rs(H) ≤ 0 ≤ Ls(H) ≤ ∆(H).
Proof. As noticed in Section 2.1, we have Ls(H) = -Rs(H) in the Maker-Maker convention since players have symmetric roles. Since the game is nonzugzwang, we also have Ls(H) ≥ Rs(H) which implies that Rs(H) ≤ 0 ≤ Ls(H).

To prove the upper bound with ∆(H), we just need to prove that Ls(H) ≤ ∆(H). Let v 0 be the rst vertex played in an optimal strategy. Consider the hypergraph H obtained from H by removing v 0 and all the hyperedges containing it. If the second player applies the optimal strategy for H during the rest of the game, he will score at least Rs(H ) ≤ 0 on it and the nal score will be at most |{e|v 0 ∈ e}| + Rs(H ). Thus, we have Ls(H) ≤ deg(v 0 ) + Rs(H ) ≤ ∆(H).

We do not think that the upper bound in Lemma 7 is tight if the hypergraph is simple (i.e. there are no two hyperedges that contain exactly the same vertices). Actually, the best example we know in this case is a hypergraph H having a universal vertex x, a hyperedge with x alone and ∆ -1 hyperedges of size 2 containing x and another unique vertex, see Figure 2. For this hypergraph, Ls(H) = ∆(H)+1 2 . Besides, we will prove that for 2-uniform hypergraphs (i.e. graphs), the score is at most ∆(H)/2 (see Corollary 13. We believe that this bound remains true in any hypergraph: Conjecture 8. Let H be a simple hypergraph. In the Maker-Maker scoring positional game on H, we have Ls(H) ≤ ∆(H) + 1 2 .

Bounds in Maker-Breaker

In Maker-Breaker convention, the bound from Lemma 7 is not valid anymore. Indeed, the score can actually be linear with the number of vertices of the hypergraph, even if the maximal degree is constant. 

P (H, V L , V R ) = e∈E,e∩V R =∅ 2 -|e\V L | .
In this function, only hyperedges not played by Right are considered, and we only count the number of free vertices in the edge. Note that at the beginning of the game, P (H, ∅, ∅)

= e∈E 2 -|e| . At the end of the game, V = V L ∪ V R and P (H, V L , V R ) = |{e ∈ E|e ∩ V R = ∅}| is the nal score.
Furthermore, when a vertex v is played by Maker (respectively Breaker), the potential is increasing (resp. decreasing) by the quantity

δ P (H, V L , V R , v) = e|e∩V R =∅,v∈e 2 -|e\V L | .
Let S be a strategy for Maker consisting in maximizing P at each move, i.e. Maker chooses the vertex v that maximizes δ P (H, V L , V R , v). We prove that this strategy provides the desired bound. Suppose rst that Maker starts. Suppose V L and V R have already been played by Maker and Breaker respectively. Let v L the vertex played by Maker according to S and v R the vertex played by Breaker after this move. As Maker has played v L and not v R , we have, before v L was played, δ P (H,

V L , V R , v L ) ≥ δ P (H, V L , V R , v R ).
However, δ P (H, V L ∪ {v L }, V R , v R ) might be larger than δ P (H, V L , V R , v R ) after v L was played if there exist some hyperedges that contain both v L and v R . We actually have:

δ P (H, V L ∪ {v L }, V R , v R ) = δ P (H, V L , V R , v R ) + e∩V R =∅,v L ,v R ∈e 2 -|e\V L | ≤ δ P (H, V L , V R , v R ) + (H) 4 .
Last inequality comes from the fact that e \ V L must contain v L and v R and thus has size at least 2.

Therefore, we have

P (H, V L ∪ {v L }, V R ∪ {v R }) = P (H, V L , V R ) + δ P (H, V L , V R , v L ) -δ P (H, V L ∪ {v L }, V R , v R ) ≥ P (H, V L , V R ) - (H) 4 .
As there is n moves in the game by applying this step n 2 times for each pair of moves (recall that we consider here that Maker starts), we have at the end of the game Ls(H)

≥ P (H, V L , V R ) ≥ P (H, ∅, ∅) - n 2 × (H)
4 , as required.

Suppose now that Breaker starts and considers this strategy for him (i.e. choosing the vertex v that maximizes δ P (H, V L , V R , v)). Suppose V L and V R have already been played by Maker and Breaker respectively. Let v R be the vertex played by Breaker according to S and let v L be the vertex answered by Maker. We have δ

P (H, V L , V R , v R ) ≥ δ P (H, V L , V R , v L ). Note that here, δ P (H, V L , V R ∪ {v R }, v L )
cannot increase after the move of Right, as it does not change the size of the hyperedges (it can only decrease if some edges containing v L also contains v R ). Therefore, after these two moves, we obtain

P (G, V L ∪ {v L }, V R ∪ {v R }) ≤ P (G, V L , V R ).
By applying this result from V L = V R = ∅ to the end of the game, we obtain P (H, V L , V R ) ≤ P (H, ∅, ∅) for any sets V L and V R obtained after Right applies S. In particular, when the game ends, this strategy ensures that Rs(H)

≤ P (H, ∅, ∅) = e∈H 2 -|e| .
From now on and until the end of the paper, we will focus on the game Incidence, i.e. the scoring positional game played on a graph.

Maker-Maker Incidence is polynomial

In this section, we provide a linear time algorithm to compute the score of Maker-Maker Incidence.

A natural idea, while playing Incidence, is that high degree vertices are interesting to play rst, as they enable to score many points with their multiple adjacent edges. Therefore, a simple strategy for both players would be to play greedily by always picking an available vertex of highest degree. We here prove that this strategy is optimal.

Later in Section 5, we will prove that Maker-Breaker Incidence is PSPACE-complete, which induces that Maker-Maker Scoring Positional Game is PSPACE-complete on 3-uniform hypergraphs.

Theorem 11. Let G be a graph with n vertices. Let d 1 ≥ ... ≥ d n be the degree of the vertices in decreasing order. For the game Maker-Maker Incidence played on G, we have

Ls(G) = 1 2 i odd d i - i even d i .
In particular, the score can be computed in linear time.

Proof. Let G = (V, E) be a graph. Denote by v 1 , . . . , v n the vertices of G of degree d 1 , . . . , d n respectively, and arranged such that 

d 1 ≥ d 2 ≥ • • • ≥ d n . Denote by s = 1 2 ( i odd d i - i even d i ).
-e R = 1 2 ( v f ∈V L d l - vr∈V R d r ).
Now we provide a strategy for Left that proves that Ls(G) ≥ s. The same argument works for Right and leads to Ls(G) ≤ s. Consider that Left claims at each turn the free vertex of highest degree. During her rst turn, she claims a vertex of degree d 1 , during the second turn, she claims either a vertex of degree d 2 or d 3 , both having a value of at least d 3 , . . . , during here k-th turn, she will claim a vertex of degree d k , d k+1 , . . . or d 2k-1 , each of them have a value of at least d 2k-1 . In the end, she will have played n 2 vertices, and the k-th of them will be of degree at least d 2k-1 . Reciprocally, the highest degree played by Right has value at most d 2 , the second highest has value at most d 4 and so on. Therefore, by using the result of the claim, the score obtained by this strategy is at least s.

The above score can be computed in linear time because it does not require to sort the list of the vertices, but only to know the number of vertices of any degree, which is bounded by n -1.

Corollary 12. Let n ∈ N. Denote by P n the path of order n. In Maker-Maker Incidence, we have Ls(P n ) = -Rs(P n ) = 0 if n is even and Ls(P n ) = -Rs(P n ) = 1 if n is odd.

Proof. P n has exactly n -2 vertices of degree 2 and two vertices of degree 1. Therefore, if n is even, an optimal strategy gives n 2 -1 vertices of degree two and one vertex of degree one to each player, which provides a draw. If n is odd, Left has one more vertex of degree 2 to play, and her score is then 1.

Corollary 13. Let G be a graph of maximal degree ∆. In Maker-Maker Incidence, we have Ls(G) ≤ ∆ 2 . Proof. Let G be a graph of maximal degree ∆. Up to add an isolated vertex, suppose it has an even number of vertices. Denote by d 1 , d 2 , . . . , d 2n its degrees written in decreasing order. We have Ls(G) =

1 2 n i=1 (d 2i-1 -d 2i ) = ∆ 2 - n i=1 (d 2i -d 2i+1 ), by setting d 2n+1 = 0. For any 1 ≤ i ≤ n, we have d 2i ≥ d 2i+1 .
Hence, each term of the sum is nonnegative, and nally, we have Ls(G) ≤ ∆ 2 .

General results on Maker-Breaker Incidence

In the rest of the paper, we focus on the Maker-Breaker version of Incidence. Contrary to the Maker-Maker version of this game, a greedy strategy is not always optimal. Thus, studying this game is much more challenging. In this section, we give some general results on this version. We start with a direct application of the bound given for general scoring positional games in Theorem 10.

Corollary 14. Let G be a graph with n vertices and m edges. In the Maker-Breaker Incidence game, Ls(G) ≥ m 4 -n 8 , and Rs(G) ≤ m 4 . These bounds are tight.

Proof. This is a direct application of Theorem 10. Since the hypergraph is 2-uniform and simple, for each pair of vertices, there is at most one edge containing the two vertices. Thus we have (G) = 1. While playing Incidence, some moves are equivalent: playing one or the other will not change the nal score. This is in particular the case when two vertices have the same neighbourhood (up to the vertices already played). An interesting fact in this case is that, in Maker-Breaker convention, we can assume that each player will take exactly one of the two vertices. More formally, let G = (V, E) be a graph and P = (G, V L , V R ) some position of the game on G. Let v 1 , v 2 be two free vertices. Vertices v 1 , v 2 are said to be equivalent in P if and only if we have N

(v 1 ) ∩ V F \ {v 2 } = N (v 2 ) ∩ V F \ {v 1 } and |N (v 1 ) ∩ V L | = |N (v 2 ) ∩ V L |.
Note that the rst equality is a set equality, while the second one only is on cardinals.

Lemma 15. Let G = (V, E) be a graph and let P = (G, V L , V R ) be a position of the game. Let v 1 , v 2 be equivalent vertices in P . In Maker-Breaker Incidence, we have

Ls(P ) = Ls(G, V L ∪ {v 1 }, V R ∪ {v 2 }) and Rs(P ) = Rs(G, V L ∪ {v 1 }, V R ∪ {v 2 }).

Proof. We prove both results by induction on |V

F | = |V \ (V L ∪ V R )|
, the number of free vertices. The result is clear if there are only two free vertices v 1 and v 2 as each player will claim one of them, and they will have the same number of neighbors in V L at the end. Let P = (G, V L , V R ) be a position with |V F | ≥ 3, and let v 1 , v 2 ∈ V F be equivalent vertices in P .

We rst prove that Ls(P ) = Ls(G, V L ∪ {v 1 }, V R ∪ {v 2 }). Let x be an optimal move for Left in P . If x ∈ {v 1 , v 2 }, we have Ls(P ) = Rs(G, V L ∪ {v 1 }, V R ). Indeed, exchanging the roles of v 1 and v 2 is possible since they will score exactly the same number of points at the end. Using the recursive denition of the scores we have, Rs(G,

V L ∪ {v 1 }, V R ) ≤ Ls(G, V L ∪ {v 1 }, V R ∪ {v 2 }). Otherwise, we have Ls(P ) = Rs(G, V L ∪ {x}, V R ). Vertices v 1 and v 2 are still equivalent in (G, V L ∪ {x}, V R ). By induction, Rs(G, V L ∪ {x}, V R ) = Rs(G, V L ∪ {v 1 , x}, V R ∪ {v 2 }). According to the recursive denition of the score, Ls(G, V L ∪ {v 1 }, V R ∪ {v 2 }) ≥ Rs(G, V L ∪ {v 1 , x}, V R ∪ {v 2 }). Finally, in both cases, Ls(P ) ≤ Ls(G, V L ∪ {v 1 }, V R ∪ {v 2 }).
We now prove the other inequality. Let x be an optimal move for Left in (G,

V L ∪ {v 1 }, V R ∪ {v 2 }). We have Ls(G, V L ∪ {v 1 }, V R ∪ {v 2 }) = Rs(G, V L ∪ {v 1 , x}, V R ∪ {v 2 }). By induction, since v 1 and v 2 are still equivalent in (G, V L ∪ {x}, V R ), we have Rs(G, V L ∪ {v 1 , x}, V R ∪ {v 2 }) = Rs(G, V L ∪ {x}, V R ).
Using the recursive denition of the score, Ls(P

) ≥ Rs(G, V L ∪ {x}, V R ), which leads to Ls(P ) ≥ Ls(G, V L ∪ {v 1 }, V R ∪ {v 2 }). Finally, we have proved Ls(P ) = Ls(G, V L ∪ {v 1 }, V R ∪ {v 2 }).
We now turn to the proof of Rs(P ) = Rs(G, V L ∪ {v 1 }, V R ∪ {v 2 }). Let x be an optimal move for Right in P . If x ∈ {v 1 , v 2 }, we have Rs(P ) = Ls(G, V L , V R ∪ {v 2 }). Indeed, exchanging the roles of v 1 and v 2 is possible since they will score exactly the same number of points at the end. Using the recursive denition of the scores, we have Ls(

G, V L , V R ∪ {v 2 }) ≥ Rs(G, V L ∪ {v 1 }, V R ∪ {v 2 }). Otherwise, we have Rs(P ) = Ls(G, V L , V R ∪ {x}). Vertices v 1 and v 2 are still equivalent in (G, V L , V R ∪ {x}). By induction, Ls(G, V L , V R ∪ {x}) = Ls(G, V L ∪ {v 1 }, V R ∪ {v 2 , x}). According to the recursive denition of the score, Rs(G, V L ∪ {v 1 }, V R ∪ {v 2 }) ≤ Ls(G, V L ∪ {v 1 }, V R ∪ {v 2 , x}). Finally, in both cases, Rs(P ) ≥ Rs(G, V L ∪ {v 1 }, V R ∪ {v 2 }).
We now prove the other inequality. Let x be an optimal move for Right in (G,

V L ∪ {v 1 }, V R ∪ {v 2 }). We have Rs(G, V L ∪ {v 1 }, V R ∪ {v 2 }) = Ls(G, V L ∪ {v 1 }, V R ∪ {v 2 , x}). By induction, since v 1 and v 2 are still equivalent in (G, V L , V R ∪ {x}), we have Rs(G, V L ∪ {v 1 }, V R ∪ {v 2 , x}) = Rs(G, V L , V R ∪ {x}).
Using the recursive denition of the score, Rs(P ) ≤ Ls(G, V L , V R ∪ {x}), which leads to Rs(P

) ≤ Rs(G, V L ∪ {v 1 }, V R ∪ {v 2 }).
Finally, we have proved Rs(P

) = Rs(G, V L ∪ {v 1 }, V R ∪ {v 2 }).
Note that, this result is only true for equivalent vertices. In general, a good move for Left is not necessarily a good move for Right. For instance, in Figure 3, if Left starts by playing u, the score is 4, and if she starts by playing any other vertex, the score is at most 3, thus her only optimal move is u. If Right starts by playing v, the score is 2, but if he starts by playing any other vertex, the score is at least 3. Hence, his only optimal move is v.

u v

Figure 3: A graph G for which Ls(G) = 4 with unique optimal move u and Rs(G) = 2 with unique optimal move v.

Lemma 15 is actually very useful to deal with similar vertices. We illustrate its power by computing the score for complete binary trees. A complete binary tree of depth k is a rooted tree such that each vertex at depth j < k has exactly two children (and by denition of the depth, each vertex at depth k is a leaf ).

Corollary 16. Let T k be a complete binary tree of depth k ≥ 1. The scores in Maker-Breaker Incidence are Ls(T k ) = 2 k-1 and Rs(T k ) = 2 k-1 -1.

Proof. Let T k be a complete binary tree of depth k. Its leaves are pairwise equivalent. By Lemma 15, we can assume that one leaf other two is given to each player. Then, their parents are pairwise equivalent since the unique free vertex there are adjacent is their father and they are all adjacent to exactly one vertex in V L . Thus we can again apply Lemma 15 and attribute one vertex of depth k-1 other two to each player. Going on this reasoning until we each the root, for any pair of vertices having the same parent, Maker and Breaker both get one of them. Then the root is claimed by the rst player. Finally, the number of edges taken by Maker satises Ls(T k ) = Ls(T k-1 ) + Rs(T k-1 ) + 1 and Rs(T k ) = Ls(T k-1 ) + Rs(T k-1 ).

Since Ls(T 0 ) = Rs(T 0 ) = 0, we obtain by induction the result.

Complexity of Maker-Breaker Incidence

In this section, we rst prove that Maker-Breaker Incidence is PSPACE-complete. Then, we consider the parameterized complexity of Maker-Breaker Incidence and prove that it is xed parameter tractable when parameterized by the neighborhood diversity.

Maker-Breaker Incidence is PSPACE-complete

Reductions in (positional games) are often made from POS CNF (see for example

). In our cases, we need to deal with scores and not only a structure. To handle this problem, we use a quantied version of Max-2-SAT that we proved to be PSPACE-complete using 3-QBF.

Q-Max-2-SAT

Instance: A quantied boolean formula on the form ϕ = Q 1 x 1 , . . . , Q n x n , ψ(x 1 , x 2 , ...x n ), with Q i ∈ {∀, ∃} and ψ a 2-CNF formula on x 1 , ..., x n , an integer k

Output: True if at least k clauses of the formula are satised. False otherwise.

3-QBF

Instance: A quantied boolean formula

Φ = Q 1 x 1 , . . . , Q n x n , ψ(x 1 , x 2 , ...x n ), with Q i ∈ {∀, ∃} and ψ a 3-CNF formula on x 1 , ..., x n Output: True i Φ is true. Theorem 17. Q-Max-2-SAT is PSPACE-complete. Proof. The proof of PSPACE-completeness of Q-Max-2-SAT is similar to the proof of NP-completeness of Max-2-SAT from Papadimitriou [Pap94].
First, Q-Max-2-SAT is in PSPACE, as any valuation can be computed in polynomial space. Therefore, by a min-max argument, it is possible to compute the number of satised clauses in polynomial space.

We provide a reduction from 3-QBF. C i = {(l 1 ), (l 2 ), (l 3 ), (d i ), (¬l 1 ∨ ¬l 2 ), (¬l 1 ∨ ¬l 3 ), (¬l 2 ∨ ¬l 3 ), (¬d 1 ∨ l 1 ), (¬d 1 ∨ l 2 ), (¬d 1 ∨ l 3 )}

Let φ = Q 1 x 1 , . . . , Q n x n ψ(x 1 , x 2 , ...x n ) be a 3-QBF formula on m clauses. For each clause c i = l i 1 ∨ l i 2 ∨ l i 3 of ψ,
Claim: Given any valuation of the literals l i 's, if c i is satised, then there exists a valuation of d i such that exactly seven clauses in C i are satised. Otherwise, at most six clauses of C i are satised for any valuation of d i Proof: The proof of the claim is a case analysis depending on the number of literals l i that are true in c i (since the literals play a symmetric role). The following tabular gives the number N C of clauses in C i that are satised depending on the number N L of literals l i that are true and the valuation of d i .

N L 0 0 1 1 2 2 3 3 d i F T F T F T F T N C 6 4 7 6 7 7 6 7 Let ϕ = Q 1 x 1 , . . . , Q n x n , ∃d 1 , . . . , ∃d n , m i=1 10 j=1 C j i and let k = 7m.
If φ is true, then, for any valuation obtained by the Q i 's that makes ψ true, there exists a valuation for each d j such that there are exactly seven clauses satised in each set C j . Thus, by taking this valuation for each d j , we have that k = 7m clauses satised in ϕ.

Reciprocally, if φ is false, then for any valuation provided by the Q i s, there exists a clause C j that is not satised. Therefore, at most six clauses in C j are satised. For the other clauses, at most seven of them are satised. Thus the total number of satised clauses in ϕ is at most 7m -1 = k -1.

Finally, the formula ϕ of Q-Max-2-SAT has at least 7m clauses satised if and only if φ is True. Up to add a variable in all the clauses of size 1 and quantifying it with a ∀, we can suppose that all the clauses of ϕ have size 2.

We now turn to the main proof of this section -that is the proof of the complexity of Maker-Breaker Proof of Theorem 18. First, Maker-Breaker Incidence is in PSPACE as the game last at most |V | moves and the score is at most |E|. Thus, it can be computed in polynomial space, according to Section 6.1 in [START_REF] Robert | Games, puzzles, and computation[END_REF].

We prove that Maker-Breaker Incidence is PSPACE-complete by a reduction from Q-Max-2-SAT. In this proof, we consider a quantied formula as a two-player game. We rst assume that the formula has the form ∃x 2n ∀x 2n-1 ∃x 2n-2 , . . . ∀x 1 ψ , i.e. that the quantiers ∃, ∀ are alternating and starting with a quantier ∃. This can be done for any quantied formulas by adding some vertices with the desired quantier that are put in no clause, and thus that does not change the number of clauses that are satised. The rst player, Satiser, tries to satisfy the formula by choosing the values of the even variables x 2k (i.e. that are quantied by an ∃-quantier) while the second player, Falsier, tries to spoil the formula and turn it to False by choosing the values of the odd variables x 2k-1 (i.e. that are quantied by a ∀-quantier). This classical technique to transform a quantied formula into a game has been used for instance by Rahman and Watson [START_REF] Md | 6-uniform maker-breaker game is pspace-complete[END_REF] to show the PSPACE-completeness of Maker-Breaker positional games.

Denote ψ = m j=1 (l j 1 ∨ l j 2 ) for l j 1 , l j 2 some literals. We build a graph G = (V, E) as follows (see Figure 4):

For each variable x i , we create 6mi + 3 vertices. These vertices induce three stars of center v i , v i and v i , and with 2mi leaves each. We will denote by V i the set {v i , v i , v i }.

We consider a function f dened by f (x i ) = v i and f (¬x i ) = v i . For each clause C j = l j 1 ∨ l j 2 , we add an edge e j = (f (l j 1 ), f (l j 2 )).

The number of vertices outside sets V i (i.e. the number of leaves) is N = 2n i=1 6mi = 6mn(2n + 1). Thus the total number of vertices in G is N + 6n and the total number of edges is N + m, which is polynomial in the size of ϕ. An example of reduction is provided in Figure 4 with m = 3 and n = 2.

Consider a game of Maker-Breaker Incidence on G with Right starting. Using Lemma 15, for every 1 ≤ i ≤ 2n, the leaves connected to vertices v i , v i and v i respectively, are equivalent. Thus, half of them can be given to Left and the other half to Right. Since there are an even number of leaves for each star, the only free vertices after this operation are the 6n vertices in sets V i for 1 ≤ i ≤ n. Let P 0 = (G, V 0 L , V 0 R ) be this position, and denote by V 0 F the set of free vertices in this position. By

Lemma 15, we have Rs(G) = Rs(P 0 ).

Now, if 1 ≤ j < i ≤ 2n, for any v * i ∈ V i and v * j ∈ V j , we have |N (v * i ) ∩ V 0 L | = mi, |N (v * j ) ∩ V 0 L | = mj and |N (v * j ) ∩ V 0 F | ≤ m. Therefore, by Lemma 19 we have v * i ≥ P0 v * j . Moreover, as N ( v i ) ∩ V 0 F = ∅, we also have v i ≥ P0 v i and v i ≥ P0 v i .
Hence, in any optimal strategy in P 0 with Right starting, the vertices are played in n rounds, from round = n to = 1, with the following six steps in each round:

1. One vertex chosen by Right among {v 2 , v 2 } 2. The other vertex among {v 2 , v 2 } is taken by Left.

3. The vertex v 2 is taken by Right.

4. One vertex among {v 2 -1 , v 2 -1 } is taken by Left.

5. The second vertex in {v 2 -1 , v 2 -1 } is taken by Right.

6. The vertex v 2 -1 is taken by Left.

This way, Left will obtain exactly N = n =1 (2 m + 2(2 -1)m) = 3mn(n + 1) -2mn edges in the stars and maybe some other edges in the clause edges. Let k = N + m -k + 1.

We will prove that Rs(G) ≥ k at Maker-Breaker Incidence if and only if Falsier wins at Q-Max-2-SAT on (ϕ, k).

Claim: If Satiser has a strategy to satisfy k clauses in ϕ, then Rs(G) < k .

v 4 variable x 4 positive v 4 negative v 4 v 3 variable x 3 v 3 v 3 v 2 variable x 2 v 2 v 2 v 1 variable x 1 v 1 v 1 Figure 4: Reduction of ∃x 4 ∀x 3 ∃x 2 ∀x 1 (¬x 2 ∨ x 3 ) ∧ (x 1 ∨ x 3 ) ∧ (¬x 3 ∨ ¬x 4 )
Proof: We suppose that Satiser has a winning strategy S in (ϕ, k). We consider that both Right and Left play optimally in G and thus we can assume that the game is played in P 0 and respects the previous order.

Consider the following strategy for Right. At each round from

= n to = 1, Right takes a decision only at Step 1. If Satiser would turn x 2i to True in the game played on ϕ, then Right plays v 2i , otherwise, he plays v 2i . Then, Steps 2 and 3 are determined. At Step 4, if Left plays v 2i-1 then Right considers that Falsier has turned x 2i-1 to False, otherwise he considers she has turned it to True. Then again, Steps 5 and 6 are determined. By following this strategy, the underlying value obtained for ϕ is exactly the value that Satiser would obtain by playing according to S. Thus, at least k clauses are satised in ϕ.

Note that for a literal l j , the vertex f (l j ) is taken by Right if and only if l j is True in the game of Q-Max-2-SAT. Let C j = l j 1 ∨ l j 2 be a clause. If Left has claimed the two extremities of e j , it means that Left has played f (l j 1 ) and f (l j 2 ). Therefore, the underlying values of l j 1 and of l j 2 are both False, and C j is not satised in ψ. Hence, Left claims at most m -k edges e j . Finally, Left claimed at most k -1 edges and we have Rs(G) < k . Claim: If Falsier has a strategy such that at most k -1 clauses are satised in φ, then Rs(G) ≥ k . Proof: We now suppose that Falsier has a winning strategy S in (ϕ, k). We consider that both Right and Left play optimally in G and thus we can assume that the game is played in P 0 and respects the previous order. Consider the following strategy for Left. At each round from

= n to = 1, Left takes

Step 2: Remove all the edges included in V L and set k ← k -|e ⊂ V L |. Then remove from G all the vertices in V R that cannot count for any point. This transformation do not change the outcome of I. At this moment, G only contains free vertices or vertices claimed by Left, and any edge has at least one free extremity. In Figure 5(c), it consists in removing the 16 edges on which the two endpoints are claimed by Left, and to remove the red vertices and their incident edges. Therefore, k is decreased from 30 to 14.

Step 3: Let r the number of free vertices in P , we have r ≤ w. Let v 1 , . . . , v r be these vertices. For

1 ≤ i ≤ r, let p i = |N (v i ) ∩ V L |
and order the vertices such that p 1 ≥ p 2 ≥ • • • ≥ p r . While there exists an integer i such that p i > p i+1 + r (with p r+1 = 0), by Lemma 19, there exists an optimal strategy in which the vertices v 1 , . . . , v i are played before the vertices v i+1 , . . . , v r . On these vertices, Left will score at least p i at each Left move. Therefore, we can do the following transformation. Let s = p i -p i+1 -r for any 1 ≤ j ≤ i, set p j ← p j -s and set k ← k -s i 2 . Repeat Step 3 until we have p i ≤ p i+1 + r for all 1 ≤ i ≤ r. In particular, we have after these operations p 1 ≤ r 2 . In Figure 5(d), it happens only once, as p 1 = 8, p 2 = 3 and w = 4. Therefore, we set p 1 = 7 and k is decreased from 14 to 13.

Step 4: Let U = {u 1 , . . . , u p1 } be p 1 new vertices and transform (G, V L , ∅) into ((G \ V L ) ∪ U, U, ∅), and, for 1 ≤ i ≤ r, connect the vertex v i to any p i vertices in U . This transformation do not change the outcome of the game, since only the number of neighbors in V L matters when a vertex is played. In Figure 5(e), we have p 1 = 7. Thus, U contains seven vertices and each remaining uncolored vertex v i is connected to p i of these seven vertices.

Finally, if k ≥ r 3 , as there are at most r 3 edges in the nal graph, we can just transform P into a trivial False instance like the empty graph with k = 1. Thus, we can assume that k ≤ r 3 .

The instance obtained has p 1 + r ≤ r 2 + r ≤ w 2 + w vertices, at most r * p 1 ≤ r 3 ≤ w 3 edges, k ≤ r 3 ≤ w 3 and the same outcome as the input. Finally, this new instance has cubic size in w and thus Maker-Breaker Incidence has a cubic kernel.

Corollary 23. Let G be a graph of order n and neighborhood diversity w. In Maker-Breaker Incidence Ls(G) and Rs(G) can be computed in time O(w 2 w! + n 2 ) Proof. We can compute the kernel in time n 2 , and then try all the possible games by testing all the moves in time w 2 w!.

Note that the cubic size of the kernel is mostly due to the w 2 vertices that are already claimed by Left. As these vertices cannot be played any longer, by giving weight to the vertices, it is possible to have a quasilinear kernel by storing only the number of neighbors of each vertex that are already claimed by Left instead of vertices themselves.

Paths and cycles

We here give the exact values of the score for Maker-Breaker Incidence played on paths and cycles.

For that purpose, we will consider the equivalence properties of Milnor's universe detailed in Section 2. In particular, the notion of negative will be required, implying to consider the partisan version of Incidence. More precisely, in this section, instances of Maker-Breaker Incidence will correspond to paths or cycles where the edges are either colored all blue (i.e. only Left can get points) or all red (i.e.

only Right can get points). The notations are dened as follows: P L n : path of order n where all the edges are colored blue. We denote the vertices of P L n by {v 0 , . . . , v n-1 } P R n : path of order n where all the edges are colored red. We denote the vertices of P R n by {v 0 , . . . , v n-1 }

By denition, we have that P L n = -P R n . 

Equivalences of paths

We rst give the main result about the equivalence between paths modulo 5. To present it, we introduce a usual notation in scoring game theory: for k ∈ Z, we dene by k the game with no option and where Left has a score of k points. Thus, in Maker-Breaker Incidence, the game 1 is equivalent to P L 2 in which Left has claimed the two vertices and -1 is equivalent to P R 2 in which Right has claimed the two vertices. Note that for any game G and any integer k, we have G ≡ k if and only if Ls(G) = Rs(G) = k.

The main theorem of this section states that paths of order at least 6 are equivalent to paths having ve vertices less, with a dierence of one in the score. This result remains true if an extremity of the path is already colored.

Theorem 24. Let n ≥ 1 be an integer. We have P L n+5 ≡ P L n + 1 and P R n+5 ≡ P R n -1.

Let n ≥ 2 be an integer. We have (P L n+5 , {v 0 }, ∅) ≡ (P L n , {v 0 }, ∅) + 1 and (P R n+5 , ∅, {v 0 }) ≡ (P R n , ∅, {v 0 }) -1.

The rest of this subsection will be dedicated to the proof of this theorem. Let n ≥ 2 be an integer. In Maker-Breaker Incidence, we have Rs(P L n+5 + P R n , {v 0 }, {v 0 }) ≥ 1.

This proof will be done by induction. Therefore, to handle the small cases, the scores of rst paths will be required. They are recorded in Figure 6 and Figure 7 and can be easily checked by hand.

n 1 2 3 4 5 6 7 8 9 10 Ls(P L n ) 0 0 1 1 1 1 1 2 2 2 Rs(P L n ) 0 0 0 0 0 1 1 1 1 1

Figure 6: First scores in short paths n 1 2 3 4 5 6 7 8 9 10 11 Ls((P L n , {v 0 }, ∅)) 0 1 1 1 1 2 2 2 2 2 3 Rs((P L n , {v 0 }, ∅)) 0 0 0 0 1 1 1 1 1 2 2 Proof. In order to prove that Rs(P L n+5 + P R n ) ≥ 1 (Rs(P L n+5 + P R n , {v 0 }, {v 0 }) ≥ 1 resp.), we provide a strategy for Left by induction. If 1 ≤ n ≤ 5 (2 ≤ n ≤ 6 resp.), a computation can verify that the result is true.

If n ≥ 6 (n ≥ 7 resp.), we consider the rst move of Right:

If Right plays a vertex v i for 0 ≤ i ≤ n -1 (1 ≤ i ≤ n -1 resp.), Left answers by playing the vertex v i . The resulting position is (P L n+5 + P R n , {v i }, {v i }) ((P L n+5 + P R n , {v 0 , v i }, {v 0 , v i }) resp.), which is equivalent to (P L i+1 + P R i+1 , {v i }, {v i }) + (P L n+5-i + P R n-i , {v 0 }, {v 0 }) ((P L i+1 + P R i+1 , {v 0 , v i }, {v 0 , v i }) + (P L n+5-i +P R n-i , {v 0 }, {v 0 }) resp.). As we have (P L i+1 +P R i+1 , {v i }, {v i }) ≡ 0 ((P L i+1 + P R i+1 , {v 0 , v i }, {v 0 , v i }) ≡ 0 resp.) and (P L n+5-i + P R n-i , {v 0 }, {v 0 }) satises the induction hypothesis, and therefore the score is at least one.

If Right plays a vertex v i for 0 ≤ i ≤ n -1 (1 ≤ i ≤ n -1 resp.), Left answers by playing the vertex v i . The resulting position is (P L n+5 + P R n , {v i }, {v i }) ((P L n+5 + P R n , {v 0 , v i }, {v 0 , v i }) resp.), which is equivalent to (P L i + P R i ) + (P L n+5-(i+1) + P R n-(i+1) ) ((P L i + P R i , {v 0 }, {v 0 }) + (P L n+5-(i+1) + P R n-(i+1) ) resp.). As we have (P L i + P R i ) ≡ 0 ((P L i + P R i , {v 0 }, {v 0 }) ≡ 0 resp.) and (P L n+5-(i+1) + P R n-(i+1) )

satises the induction hypothesis, the score is at least one.

If Right plays a vertex v i for n ≤ i ≤ n+4. Left answers by playing v i-5 , which exists as n ≥ 6 (n ≥ 7 resp.). The resulting position is (P L n+5 + P R n , {v i-5 }, {v i }) ((P L n+5 + P R n , {v 0 , v i-5 }, {v 0 , v i }) resp.), which is equivalent to (P L i +P R i-5 )+(P L n-1-i +P R n-1-i ) ((P L i +P R i-5 , {v 0 }, {v 0 })+(P L n-1-i +P R n-1-i ). Here, we have (P L n-1-i + P R n-1-i ) ≡ 0 and (P L i + P R i-5 ) ((P L i + P R i-5 , {v 0 }, {v 0 }) resp.) satises the induction hypothesis as n + 4 ≥ i ≥ n ≥ 6 (i ≥ n ≥ 7 resp.) and therefore the score is at least one. This strategy ensures that Rs(P L n+5 + P R n ) ≥ 1 (Rs(P L n+5 + P R n , {v 0 }, {v 0 }) ≥ 1 resp.).

Strategy for Right when Left starts

When Left starts, the induction made in the previous proof cannot be applied. Indeed, from the position (P L n+5 + P R n , {v 0 }, {v 0 }), Left can in one move make the position be (P L n+5 + P R n , {v 0 , v n+3 }, {v 0 }) and no move of right can transform it into a position handled by the induction hypothesis. Therefore, another strategy is required. We will consider a strategy for Right that consists, for the leftmost vertices of both paths, in mimicking any move of Left on the other path, and that ensures some minimal properties on the moves played on the rightmost vertices. We introduce the following lemma to handle the rightmost vertices.

Figure 1 :

 1 Figure 1: An endgame of Incidence. In Maker-Maker convention the score of the position is 2 while it is 4 in Maker-Breaker convention.

Figure 2 :

 2 Figure 2: A hypergraph satisfying Ls(H) = ∆(H) + 1 2 in Maker-Maker convention

  We will prove that Ls(G) = s. Before proving the value of the score, we prove the following claim: Claim: Denote by V L the vertices claimed by Left, and by V R the vertices claimed by Right at the end of a game played on G. The score obtained is 1 2 ( v l ∈V L d l -vr∈V R d r ). Proof: Denote by e L (resp. e R ) the number of edges where both endpoints were claimed by Left (resp. Right) and by e 0 the number of edges which have one extremity claimed by each player. By denition, the score is e L -e R . Now, by a double counting argument, we have v l ∈V L d l = 2e L + e 0 , and vr∈V R d r = 2e R + e 0 . Therefore, the score of the game is e L

Furthermore, each edge

  has size 2, thus e∈G 2 -|e| = m 4 . For tightness, consider rst a graph G that is a complete graph of order 8k, with k ∈ N. The lower bound gives Ls(G) ≥ 8k 2 4 -k = 4k 2 . By playing randomly, Left takes 4k vertices and each pair of vertices scores one point. Thus Ls(G) = 4k 2 Consider the graph H made by a disjoint union of 2k paths on three vertices. Left playing second can take k central vertices and one leaf for each central vertex he has taken. This strategy gives at most k points to Left which is equal to the upper bound m 4 given in the statement.

  we introduce a new variable d i and construct a set C i of 10 clauses C 1 i , . . . , C 10 i of at most 2:

  (a) A graph to kernelize. Set k = 30. (b) Step 1, k = 30. p 1 = 8 p 2 = 3 p 4 = 2 p 3 = 3 (c) Step 2, 16 edges removed, k = 30 -16 = 14 p 1 = 7 p 2 = 3 p 4 = 2 p 3 = 3 (d) Step 3, p1 has decreased by 1. k = 13.(e) Step 4, each vertex vi has pi blue neighbors.

Figure 5 :

 5 Figure 5: Example of a kernelization. Vertices in the same circle have same type. An edge between two circles means that all the edges between the vertices of the two circles are in the graph. Blue and red vertices are given to Left and Right respectively. We start with n = 22 and after Step 1 r = 4.

  6.1.1 Strategy for Left when Right startsLemma 25. Let n ≥ 1 be an integer. In Maker-Breaker Incidence, we have Rs(P L n+5 + P R n ) ≥ 1.

Figure 7 :

 7 Figure 7: First scores in short paths with an extremity claimed by Left

  2.1 DenitionsScoring positional games are played on hypergraphs by two players, Left and Right, with the same rules as for standard positional games. The only dierence lies in the winning convention. In a scoring positional game, the game ends when all vertices have been claimed. The score of a player is then dened as the number of hyperedges he manages to take. In the Maker-Maker convention, each player tries to maximize his score. In the Maker-Breaker convention, Maker (identied as Left) tries to maximize her score while Breaker (identied as Right) aims at minimizing the score of Maker.

More formally, as for any scoring game, two scores are dened depending on which player starts. Let H = (V, E) be a hypergraph. We dene the score of H as follows:

in the Maker-Maker convention, Ls(H) (resp. Rs(H)) as the dierence between the scores of Left and Right when Left starts (resp. when Right starts) and both players play optimally. in the Maker-Breaker convention, Ls(H) (resp. Rs(H)) as the score of Left when Left (resp. Right) starts and both players play optimally.

  Next, we derive a general tight bound, based on the same principle used to prove the Erdös-Selfridge criterion[START_REF] Erdös | On a combinatorial game[END_REF]. Some tight examples will be given in Section 4 for 2-uniform hypergraphs (see Corollary 14).Theorem 9 (Erd®s, Selfridge, 1973[START_REF] Erdös | On a combinatorial game[END_REF]). Let H = (V, E) be a hypergraph. If main idea to prove this theorem is that if the hyperedges are large enough, Breaker will have the time to play in all of them before Maker can ll one. A similar idea can be introduced when dealing with scores by computing how many hyperedges Breaker can touch. The strategy used relies on a greedy strategy by introducing a potential function, as it was done by Erd®s and Selfridge. Let H be a hypergraph. We denote by (H) the maximum number of hyperedges that contain a xed pair of vertices. More formally, (H) = maxx,y∈V 2 |{e ∈ E|x, y ∈ e}|.Theorem 10. Let H = (V, E) be a hypergraph. In the Maker-Breaker convention, we have Ls(H) ≥

	e∈E	2 -|e| -n (H) 8 , and Rs(H) ≤

e∈E 2 -|e| < 1, then Breaker wins on H when he starts. If e∈E 2 -|e| < 1 2 , then Breaker wins on H when Maker starts. The e∈E 2 -|e| .

Proof. Let (H, V L , V R ) be any position of a Maker-Breaker scoring positional game. We introduce the potential function:

* This research was supported by the ANR project P-GASE (ANR-21-CE48-0001-01).
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Incidence.

Maker-Breaker Incidence

Instance: A graph G, an integer k, a player P ∈ {Left, Right}. Output: True i the P score of G is at least k.

Theorem 18. Maker-Breaker Incidence is PSPACE-complete.

The construction provided in the proof will require some tools to order the moves of both player. Let P = (G, V L , V R ) be a game position of Incidence. Let u and v be free vertices. We say that v dominates u in P and write v ≥ P u if in any position obtained from P , it is always more interesting to play v than u. More formally, v ≥ P u if for any V L , V R such that V L ⊂ V L and V R ⊂ V R , V L ∩ V R = ∅ and u, v / ∈ V L ∪ V R , we have Rs(G, V L ∪ {u}, V R ) ≥ Rs(G, V L ∪ {v}, V R ) and Ls(G, V L ∪ {u}, V R ) ≤ Ls(G, V L ∪ {v}, V R ).

Lemma 19. Let G = (V, E) be a graph and P = (G, V L , V R ) a position of Maker-Breaker Incidence. Let u, v be two free vertices such that

Proof. Let S be a strategy in (G, V L , V R ) that plays u before v. We dene a strategy S that plays v before u as follows:

While S wants to claim a vertex w = u, claim w.

If S wants to claim u while v is unclaimed, claim v instead, and still consider that u is claimed in S.

When S wants to claim v, if it is already claimed, claim u instead. If the opponent has claimed u, consider that he has claimed v, and continue to follow S.

Following this strategy, according to the moves of the opponent, all the vertices claimed by S are claimed by S , with only a dierence on u and v if they are not claimed by the same player.

If S was a strategy for Left, by following S , each edge that does not contain u nor v that was claimed by S is claimed by S , and reciprocally. Concerning the edges containing u or v, Left has scored at most By following this strategy, the underlying value obtained for ϕ is exactly the value that Falsier would obtain by playing according to S. Thus, it would satisfy at most k -1 clauses in ϕ. As before, if a clause l j 1 ∨ l j 2 is not satised in ϕ it means that both vertices f (l j 1 ) and f (l j 2 ) are taken by Left and thus Left got the edge. Thus Left claims at least N + m -k + 1 edges in the game G and Rs(G) ≥ k .

Remark 20. Note that, up to add a useless variable in ϕ, ϕ could start by a ∀-quantier, implying that Maker-Breaker Incidence is PSPACE-complete even if Left starts. Corollary 21. 3-uniform Maker-Maker Scoring Positional Game is PSPACE-complete.

Proof. The proof is similar to the second part of the proof of Corollary 6. From a graph G = (V, E) of Maker-Breaker Incidence, we consider the instance of 3-uniform Maker-Maker Scoring Positional Game obtained by adding a universal vertex v 0 . Consider the hypergraph H = (V ∪ {v 0 }, {e ∪ {v 0 }|e ∈ E}). When Left starts, any optimal strategy starts by playing v 0 , otherwise Right plays it and the score will be at most 0. Then we are left to a Maker-Breaker position as Right cannot score any point, but starts. Finally the Left score of H in Maker-Maker convention is equal to the Right score of G in Maker-Breaker convention, which is PSPACE-complete to compute.

Complexity parameterized by the neighborhood diversity

Neighborhood diversity is a graph parameter introduced by Lampis [START_REF] Lampis | Algorithmic meta-theorems for restrictions of treewidth[END_REF] to generalize FPT algorithms parameterized by vertex cover to larger classes of graphs. Let G be a graph. We say that two vertices u and v have the same type if N (v) \ {u} = N (u) \ {v}. The graph G has neighborhood diversity at most w if there exists a partition of V into at most w sets such that the vertices in each set have all the same type. Note that each set must induce a clique or an independent set. Furthermore, if a graph has bounded vertex cover, then it has bounded neighborhood diversity.

A decision problem has a kernel for a parameter w, if for any parameterized instance (P, w) of the problem, there exists an instance (P , w ) and a computable function f , such that P reduces to P in polynomial time in (|P |, w) and such that |P |, |w | ≤ f (w). If f (w) = O(w 3 ), the kernel is said to be cubic. If f (w) = O(w log(w)), the kernel is said to be quasilinear. Having a kernel implies that the problem is xed-parameter tractable for this parameter.

Theorem 22. Maker-Breaker Incidence parameterized by the neighborhood diversity w has a cubic kernel.

Proof. In this proof, we will consider as instances of Maker-Breaker Incidence triplets (P, k, Lef t)

where P is a position of Maker-Breaker Incidence played on G (i.e. some vertices are already played). Note that this does not change the complexity of the problem. Indeed, from any position P = (G, V L , V R ) one can obtain a graph G with no vertices played for which the games are equivalent. First remove all the vertices in V R of the graph. Then, duplicate each vertex in V L by creating a twin vertex having the same neighbourhood and free the vertices in V L . By Lemma 15, one can assume that both players will take one vertex in each pair of twins.

Let G = (V, E) be a graph of neighborhood diversity w. Consider a partition (V 1 , . . . , V w ) of V such that the vertices in each part are all of the same type. We provide the following kernelization algorithm.

Let I = ((G, ∅, ∅), k, P ) where P ∈ {Lef t, Right} be an instance of Maker-Breaker Incidence. An example of the dierent steps is provided in Figure 5.

Step 1: While there exists a part V i , 1 ≤ i ≤ w such that there are at least two free vertices u, v ∈ V i , add u to V L and v to V R . By Lemma 15, this transformation does not change the outcome of the game. At the end of Step 1, there are at most w free vertices in G. In Figure 5 Lemma 26. Consider the graph G = P L 6 + {v 0 }. Let v 0 be an extremity of P L 6 . In Maker-Breaker Incidence, Right has a strategy, going second, such that Left claims either v 0 and v 0 without any point, or at most one of {v 0 , v 0 } and she scores at most one point on G.

Proof. Let G = P L 6 + {v 0 }. Recall that v 0 , . . . , v 5 are the vertices of P L 6 . We will describe a strategy for Right playing second such that Left scores no point or such that she does not claim both v 0 and v 0 with If Left plays v 1 , Right answers v 0 . He has claimed one of (v 0 , v 0 ). He then pairs (v 2 , v 3 ) and (v 4 , v 5 ).

With this pairing, Left can score at most one point.

If Left plays v 2 , Right answers v 3 , He then pairs (v 0 , v 1 and v 4 , v 5 ). The only one edge outside the pairing (and therefore that can be claimed by Left) is v 1 , v 2 but with this pairing, Right then plays v 0 and claim one of v 0 , v 0 . Otherwise, Left scores no point.

If Left plays v 3 (v 5 resp.), Right answers v 4 , he then pairs (v 0 , v 0 ) and (v 1 , v 2 ). This way, Left scores at most one point on the edge (v 2 , v 3 ) or (v 0 , v 1 ) but she cannot take both. And Right will be able to take one of v 0 or v 0 . If Left plays v 0 , Right answers v 0 . He has already claimed one of v 0 , v 0 , and the remaining graph is equivalent to P L 5 for which we already know that Left gets at most 1 when she starts.

Lemma 27. Let n ≥ 1 be an integer. In Maker-Breaker Incidence, we have

Let n ≥ 2 be an integer. In Maker-Breaker Incidence, we have

Proof. The proof below holds for the two cases, i.e. if the vertices v 0 and v 0 are already colored or not.

Recall that v 0 , . . . , v n+4 are the vertices of P L n+5 and v 0 , . . . , v n-1 are the vertices of P R n . We provide here a strategy for Right to ensure that the score is at most 1 as follows:

If Left plays a vertex in a pair (v i , v i ) with 0 ≤ i ≤ n -2, Right answers the second vertex of this pair.

If Left plays another vertex, Right follows the strategy of Lemma 26 with

According to this strategy, Right ensures that Left scores the same number of points as him on the subgraph induced by the vertices v i , v i with 0 ≤ i ≤ n -2. On the rest of the graph, from Lemma 26, either Left takes the two vertices v 0 , v 0 and gets no point, which can yield her overall at most one point with the edge (v n-2 , v n-1 ) of P L n+5 . Otherwise, she takes v 0 or the extremity v 0 of the P L 6 and scores one point. In this case, if this extremity corresponds to v n-1 of P R n she does not score a second point, and if this extremity is v n-1 , she can score a point if she also takes v n-2 . But in this case, Right has claimed both v n-2 by the pairing strategy and v n-1 as he has also claimed the other extremity. Thus, Right also scores one point. Finally, Right ensures that the score is at most 1 with this strategy, and we have Ls(P L n+5 + P R n ) ≤ 1.

Proof of Theorem 24 and score on paths

Now we can prove Theorem 24.

Proof. By symmetry, as P L n = -P R n for any n, we only need to prove the result for P L n .

As our game is in Milnor's universe, according to Lemma 2, it is sucient to prove that P L n+5 -

). As the game is nonzugzwang, and according to Lemma 25 and Lemma 27, we have proven 1 ≥

), which corrresponds to the desired result.

From Theorem 24, and since the score on small paths is provided by Figure 6, the score of any path can be computed as follows:

Corollary 28. Let n ≥ 1 be an integer. Denote by n = 5q + r with q and r the quotient and the rest of n divided by 5. In Maker-Breaker Incidence, on the one hand, we have

On the other hand, we have

Union of paths and cycles

We will denote cycles as follows:

C L n : cycle of length n where all the edges are colored blue. C R n : cycle of length n where all the edges are colored red.

Now that the equivalences of paths are known, union of paths can easily be reduced to union of paths of order at most 5. Yet, to deal with such unions, it is not sucient in general to compute the score on them. The problem can be solved by considering new equivalences between small paths.

Lemma 29. In Maker-Breaker Incidence, we have the following equivalences:

Proof. Recall that given a graph G and an integer k, in order to prove that G ≡ k, it is sucient to prove k ≥ Ls(G) and Rs(G) ≥ k.

1. We have Ls(P L 1 ) = Rs(P L 1 ) = 0 and Ls(P L 2 ) = Rs(P L 2 ) = 0 as in both games no edges are taken by a player. This proves, by Lemma 2, that P L 1 = P L 2 = 0 21 2. We prove Ls(2P L 3 ) = Rs(2P L 3 ) = 1. To do that, we just need to prove Ls(2P L 3 ) ≤ 1 and Rs(2P L 3 ) ≥ 1.

Suppose Left starts. If she plays in one path P L 3 , Right claims the middle vertex of the other path and then plays at least one vertex in the P L 3 where Left started. This way, Left scores at most one. Suppose Right starts. He plays in one path P L 3 . By going rst in the second path, Left can score one by playing the middle vertex and after that at least one of its two neighbors.

3. As -P L 3 = P R 3 , we will prove P L 4 + P R 3 = 0. Denote by (v 0 , v 1 , v 2 , v 3 ) the vertices of P L 4 and by (v 0 , v 1 , v 2 ) the vertices of P R 3 Suppose Left starts. If she plays in P R 3 , Right plays v 1 and pairs (v 2 , v 3 ) to ensure that Left cannot score an edge. If Left plays v 0 or v 1 (v 2 or v 3 resp.), Right plays v 2 (v 1 resp.) and pairs (v 0 , v 2 ) and v 1 with the available vertex in {v 0 , v 1 } (in {v 2 , v 3 } resp.). This way, Left and Right scores the same number of edges and this proves Ls(P R 3 + P L 4 ) ≤ 0 Suppose Right starts. Left considers the pairing (v 0 , v 0 ), (v 1 , v 1 ), (v 2 , v 2 ). This way, any point scored by Right is scored by Left. Therefore Rs(P L 4 + P R 3 ) ≥ 0.

4. Let G = 2P L 5 + P L 3 . Denote by v 0 , . . . , v 4 and v 0 , . . . , v 4 the vertices of the two copies of P L 5 and by (u 0 , u 1 , u 2 ) the vertices of P L 3 . Let rst prove Rs(G) ≥ 2. Up to consider only 3 vertices of one copy of P L 5 , we can suppose that the rst move of Right is in a P L 5 and we will prove that Left scores 2 on P L 5 + P L 3 . Suppose Right has played a vertex v i with 0 ≤ i ≤ 4. Left plays v 2 and continues as follows:

If Right plays v 0 or v 1 (v 3 or v 4 resp.), Left plays v 3 (v 1 resp.) and pairs (v 4 , u 1 ) ((v 0 , u 1 ) resp.) and (u 0 , u 2 ).

If Right plays u 0 , u 1 or u 2 , Left plays v 1 and pairs (v 0 , v 3 ).

In both cases, Left scores at least two points. Now we prove Ls(G) ≤ 2. After the rst move of Left, at least one of the two copies of P L 5 has its 5 vertices available. Suppose it is v 0 , . . . , v 4 . Right plays v 2 and pairs (v 0 , v 1 ) and (v 3 , v 4 ), ensuring Left won't score any point on this copy of P L

.

Left plays a second move: If v 2 has not been played yet, Right plays v 2 . Left plays a third move. If the three moves of Left are in P L 3 , Right pairs (v 0 , v 1 ) and (v 3 , v 4 ), ensuring Left does not score any other point. If at least one of them is not in P 3 , Right plays any vertex of P 3 , and know that at least one vertex of (v 0 , v 1 , v 3 , v 4 , u 0 , u 1 , u 2 ) will be available for his next move. Thus, Left cannot score more than two points on the rest of them.

If Left has played v 2 , at least one of v 1 or v 3 is available. Right plays it. By symmetry, suppose it is v 1 . After the next move of Left, at least one of v 3 , v 4 , u 1 will be available. Right plays it, ensuring again that Left cannot score more than 2.

We can now state the equivalence theorem for union of paths.

Corollary 30. Let P 1 , . . . , P N be paths of lengths n 1 , . . . , n N .

Let q 1 , . . . , q N be positive integers and 1 ≤ r 1 , . . . , r N ≤ 5 be integers such that for any 1 ≤ i ≤ N , we have n i = 5q i + r i .

Denote for 1 ≤ i ≤ 5 by N i the number of r j equal to i. In Maker-Breaker Incidence, we have:

Therefore, Ls( N i=1 P i ) and Rs( N i=1 P i ) are computable in linear time.

Proof. By Theorem 24, any path P L 5qi+ri is equivalent to q i + P ri . Then, by Lemma 29, we have P 3 ≡ P 4 , 2P 3 ≡ 1, and 2(2P 5 + P 3 ) ≡ 4P 5 + 2P 3 ≡ 4P 5 + 1 ≡ 4. Thus 4P 5 ≡ 3. Note that these computations are possible thanks to Milnor's universe.

Note that we consider 1 ≤ r i ≤ 5 and not 0 ≤ r i ≤ 4, so q i and r i are not exactly the quotient and the rest of the size of the path by 5.

Corollary 31. Let n ≥ 1. In Maker-Breaker Incidence, there exists a linear time algorithm to compute Ls(C L n ) and Rs(C L n ).

Proof. First, note that Rs(C L n ) = Ls(P L n-1 ). To compute Ls(C L n ), note that all the vertices are symmetric. Therefore, we can suppose that Left rst plays any of them. The next move of Right will make the graph equivalent to (P L k , {v 0 }, ∅) +(P L k , {v 0 }, ∅) with v 0 , v 0 extremities of P L k and P L k and with k + k = n. The score on these graphs can be computed in linear time by using Corollary 30, and therefore, Ls(C L n ) too as, by Theorem 24, at most 5 values are to be considered for the pair (k, k ) according to the equivalences.

Perspectives

In this paper, we introduced positional scoring games in a general framework and then focused on Incidence, which corresponds to the case of 2-uniform hypergraphs. To conclude this paper, we list some relevant open problems.

We have solved Maker-Breaker Incidence on union of paths using game equivalences. Next step would be to study trees.

What is the complexity of Maker-Breaker Incidence when restricted to the class of cographs? Equivalent vertices have an important role and can be easily simplied. This could be a starting point for the study of cographs.

We proved that Maker-Breaker Incidence is xed-parameter tractable using the neighborhood diversity. It would be interesting to nd other parameters for which the problem is FPT. For example, is it FPT parameterized by the score?

The same question applies when considering general hypergraphs. The answer is negative for 6-uniform hypergraphs as it is PSPACE even for k = 1. What about 3-uniform hypergraphs? Since Maker-Breaker Positional Game is polynomial for 3-uniform hypergraphs [START_REF] Galliot | Structural tools for the makerbreaker game. application to hypergraphs of rank 3: strategies and tractability[END_REF], the question makes sense.

We have proved that Maker-Maker Scoring Positional Game is PSPACE-complete even for 3-uniform hypergraphs but provided a linear algorithm for 2-uniform hypergraphs. It might be interesting to look at particular 3-uniform hypergraphs. For example, is it possible to compute the score in the scoring version of the Triangle Game (where players choose edges of a graph and try to construct triangles)? The hypergraph of this game has the particularity to be linear (hyperedges cross on at most one vertex). A more general question would be to nd the complexity of Maker-Maker Incidence on linear 3-uniform hypergraphs.

In Section 2.2, we have introduced partisan scoring positional games to include the two conventions of scoring positional games in a more general denition. Maker-Maker convention corresponds to games with only green hyperedges whereas Maker-Breaker convention corresponds to games with only blue edges. It would be interesting to consider games with both red and blue edges but no green edge.