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We formulate an initial and Dirichlet boundary value problem for a semilinear heat equation with logarithmic nonlinearity over a two dimensional rectangular domain. We approximate its solution by employing the standard second order finite difference method for space discretization, and a linearized Backward Euler method, or, a linearized BDF2 method for timestepping. For the linearized Backward Euler finite difference method we derive an almost optimal order error estimate in the discrete L ∞ t (L ∞ x )-norm without imposing mesh conditions, and for the linearized BDF2 finite difference method we establish an almost optimal order error estimate in the discrete L ∞ t (H 1 x )-norm, allowing a mild mesh condition to be satisfied. Finally, we show the efficiency of the numerical methods proposed, by exposing results from numerical experiments. It is the first time in the literature where numerical methods for the approximation of the solution to the heat equation with logarithmic nonlinearity are applied and analyzed.

u(0, x) = u 0 (x) ∀ x ∈ int(D), (1.3) where f ∈ C(Q), u 0 ∈ C(D) with (1.4) u 0 ∂D = 0 and g ∈ C(R) is an odd function given by (1.5) g(s) = 0, s = 0, s ln( s ), s = 0, ∀ s ∈ R, which can be considered as a simplified version of the Flory-Huggins free energy (cf. [START_REF] Flory | Thermodynamics of high polymer solutions[END_REF], [START_REF] Huggins | Solutions of long chain compounds[END_REF]).

It is easily seen that g is not differentiable at zero and it is not locally Lipschitz over any interval containing zero. However, g satisfies the following local one-sided Lipschitz condition (cf. [START_REF] Alfaro | Superexponential growth or decay in the heat equation with a logarithmic non linearity[END_REF]): Proof. First, we observe that (1.6) holds trivially when x y = 0. Assuming that x y = 0, we have (g(x)g(y)) (xy) = (xy) 2 ln( x ) + y (xy) (ln( x )ln( y ))

≤ (xy) 2 ln(c) + y xy ln( x )ln( y ) . (1.7) When x = y , then (1.6) follows, easily, from (1.7). When y < x , then there exists ξ ∈ ( y , x ) such that ln( x )ln( y ) = 1 ξ ( xy ), which, along with (1.7), establishes (1.6) as follows (g(x)g(y)) (xy) ≤ (xy) 2 ln(c) + y ξ xy xy ≤ xy 2 y ξ + ln(c) ≤ xy 2 (1 + ln(c)).

Since (1.6) is symmetric with respect to x and y, it holds also when y > x .

The result of Lemma 1.1 could be used to ensure the uniqueness of the solution to the initial and boundary value problem formulated above, proceeding as follows:

Lemma 1.2. The solution to the initial and boundary value problem (1.1)-(1.5) is unique.

Proof. Let u and w be solutions to the problem (1.1)-(1.5), c > max{e, max Q u , max Q w } and ζ = uw. Then, we have (1.8) ζ t = ∆ζ + (g(u)g(w)) on (0, T ] × int(D).

Taking the L 2 (D)-inner product of both sides of (1.8) by ζ, setting ν(t) = ∫ D ζ 2 (t, x) dx for t ∈ [0, T ], and applying (1.6), we obtain: ν ′ (t) ≤ 2 (1 + ln(c)) ν(t) for t ∈ [0, T ], which, easily, yields that (1.9) ν(t) ≤ e 2 (1+ln(c)) t ν(0) ∀ t ∈ [0, T ].

Since ν(0) = 0, from (1.9) we conclude that ν(t) = 0 for t ∈ [0, T ], which is equivalent to u = w.

For recent mathematical results, related to the problem above, we refer the reader to [START_REF] Chen | Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity[END_REF], [START_REF] Alfaro | Superexponential growth or decay in the heat equation with a logarithmic non linearity[END_REF], [START_REF] Han | Blow-up at infinity of solutions to a semilinear heat equation with logarithmic nonlinearity[END_REF], [START_REF] Kashkynbayev | Non-blow-up and blow-up results to heat equations with logarithmic nonlinearity on stratified groups[END_REF], [START_REF] Dalang | Global solutions to stochastic reaction-diffusion equations with super-linear drift and multiplicative noise[END_REF], [START_REF] Shang | Stochastic heat equations with logarithmic nonlinearity[END_REF] and [START_REF] Pan | Large deviations of stochastic heat equations with logarithmic nonlinearity[END_REF], while the authors are not aware of any published research work dealing with the numerical approximation of the solution to the heat equation with logarithmic nonlinearity. However, there are recent contributions to the numerical approximation of the solution to the logarithmic Schrödinger equation (see, e.g., [START_REF] Bao | Regularized numerical methods for the logarithmic Schrödinger equation[END_REF], [START_REF] Bao | Error estimates of a regularized finite difference method for the logarithmic Schrödinger equation[END_REF], [START_REF] Bao | Error estimates of energy regularization for the logarithmic Schrödinger equation[END_REF], [START_REF] Li | Numerical solution of the regularized logarithmic Schrödinger equation on unbounded domains[END_REF], [START_REF] Cheng | Regularized splitting spectral method for space-fractional logarithmic Schrödinger equation[END_REF], [START_REF] Wang | Galerkin finite element method for damped nonlinear Schrödinger equation[END_REF]), where the authors build-up a numerical method for the underlying partial differential equation after changing it by substituting the logarithmic term g(z) by g ε (z) = s ln(ε + z ), where ε is a, close to zero, positive parameter. The advantage of this change is that the nonlinearity g ε of the new ε-regularized partial differential equation is globally Lipschitz on C with constant O( ln(ε) ), and thus existing techniques can be used to estimate the numerical approximation error which is added to the O(ε) modelling error (see Proposition 2.5 in [START_REF] Bao | Error estimates of a regularized finite difference method for the logarithmic Schrödinger equation[END_REF]) caused by the change of the partial differential equation. However, this approach is not cloudless. Even though that the regularization parameter ε acts as a discretization parameter along with the time-step and the space-mesh width, the convergence analysis of the numerical methods proposed (see [START_REF] Bao | Regularized numerical methods for the logarithmic Schrödinger equation[END_REF], [START_REF] Bao | Error estimates of a regularized finite difference method for the logarithmic Schrödinger equation[END_REF], [START_REF] Bao | Error estimates of energy regularization for the logarithmic Schrödinger equation[END_REF], [START_REF] Cheng | Regularized splitting spectral method for space-fractional logarithmic Schrödinger equation[END_REF]) arrives at error estimates suffering by constants that grow fast to infinity when ε tends to zero. In particular, we refer to Theorem 3.1 in [START_REF] Bao | Error estimates of a regularized finite difference method for the logarithmic Schrödinger equation[END_REF] for the presence of the term ln(ε) 2 in the exponential constant that appears as an outcome of the application of the discrete Gronwall argument, when the error of a second order linearly implicit finite difference method is estimated. We, also, refer to Theorem 1 in [START_REF] Bao | Regularized numerical methods for the logarithmic Schrödinger equation[END_REF], Remark 4.7, Theorem 4.2 and Theorem 4.5 in [START_REF] Bao | Error estimates of energy regularization for the logarithmic Schrödinger equation[END_REF] and Theorem 2 in [START_REF] Cheng | Regularized splitting spectral method for space-fractional logarithmic Schrödinger equation[END_REF] for error estimates of the form O( ln(ε)

τ 1 2 ), O τ ε or O τ 2
ε 3 , when the convergence of linearly implicit splitting time-discrete methods with timestep τ are analysed. Taking into account the O(ε) modelling error, the latter results indicate that the order of convergence can not be improved because higher order of convergence requires higher regularity for the ε-dependent solution of the ε-regularized partial differential equation that introduces a higher power of 1 ε in the error estimate. In particular, the higher possible rate of convergence respect to τ is equal to 1 2 , and can be obtained by choosing ε = τ 1 2 . A similar fact was expected in the results of [START_REF] Bao | Error estimates of a regularized finite difference method for the logarithmic Schrödinger equation[END_REF], but it is hidden under the assumption that higher order derivatives of the ε-dependent solution are uniformly bounded by constants independent of ε (see Theorem 3.1 in [START_REF] Bao | Error estimates of a regularized finite difference method for the logarithmic Schrödinger equation[END_REF]). Thus, the convergence analysis leaves the impression that the time-step and the space-mesh width are fighting against the influence of ε in the race of convergence. However, this situation is not confirmed by the numerical results presented, and motivated our research on the numerical treatment of the logarithmic nonlinearity.

As a first step, we focused on the approximation of the solution to the logarithmic Schrödinger equation, over the two dimensional rectangular domain D, by the Crank-Nicolson finite difference method [START_REF] Paraschis | On the convergence of the Crank-Nicolson method for the logarithmic Schrödinger equation[END_REF]. Observing that g ε is an O(ε) approximation of g over C, and using the Cazenave-Haraux property

Im [ (g ε (z) -g ε (w)) (z -w) ] ≤ z -w 2 ∀ z, w ∈ C, ∀ ε ≥ 0,
along with the B-stability property of the Crank-Nicolson method, we were able to develop a convergence analysis in the discrete L ∞ t (L 2 x )-norm arriving at an almost second order error estimate of the form O(τ 2 ln(τ ) +h 2 1 +h 2 2 ) and of the form O(ε+τ 2 ln(ε) +h 2 1 +h 2 2 ) when g is approximated by g ε in the numerical method (see Theorem 4.1 in [START_REF] Paraschis | On the convergence of the Crank-Nicolson method for the logarithmic Schrödinger equation[END_REF]). (Here, τ is the time-step, and h 1 and h 2 are the mesh-length of a uniform partition of the intervals [a 1 , a 2 ] and [b 1 , b 2 ], respectively.) Thus, we achieved to have the Gronwall constant free of ε and to avoid the presence of negative powers of ε in the error estimate. This is evidence that the error estimates obtained depend on the stability properties of the numerical method employed and on the structure of the convergence analysis.

In the paper at hands, we consider the semilinear heat equation with logarithmic nonlinearity (1.1) over a two dimensional rectangular domain. Since g is not differentiable or Lipschitz on R, we are interested in the approximation of the solution u by an implicit-explicit time-stepping method, in order to avoid the use of iterative methods solving numerically nonlinear systems of algebraic equations. Moving to this direction, after adopting a standard second order finite difference method for space-discretization, we employ for time-stepping a linearized Backward Euler method (see (2.6)-(2.7)), or, a linearized BDF2 method (see (2.8)-(2.11)), to arrive at the (LBEFD) or (LBDF2FD) method, respectively. Both methods are implicit-explicit since they treat the linear part of the equation implicitly and its logarithmic nonlinearity g(u) explicitly. The estimation of their consistency error was done first by approximating g by g τ 2 and then by applying the Taylor formula in a standard way, assuming that the solution u is smooth enough on Q. To build-up a convergence analysis, first we construct a modified version of each numerical method (see Sections 5 and 6), by applying properly a parameter dependent mollifier which is a smooth cut-off of the identity function (cf. [START_REF] Zouraris | On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation[END_REF]). Then, we carry-out an error analysis of the modified version of the proposed numerical methods, which is based on the strong stability property of each method and on a global one-sided Lipschitz condition for the composition of the parameter dependent mollifier into g τ 2 (see Lemma 3.2) and is arriving at almost optimal order error estimates. Finally, we are able to obtain the same error estimates for the proposed methods, because, by construction, when the modified (LBEFD) or (LBDF2FD) approximations are close to the solution u, then they coincide with those of the (LBEFD) or (LBDF2FD) method, respectively. In particular, for the (LBEFD) method, without imposing mesh conditions, we provide an almost optimal order error estimate in the discrete

L ∞ t (L ∞ x )-norm of the form max 0≤n≤N U n -u n ∞,H ≤ C LBEFD τ log(τ ) + h 2 1 + h 2 2 ,
and for the (LBDF2FD) method, after imposing a mild mesh condition (see (6.30)), we establish error estimates, in the discrete L ∞ t (L 2 x ) norm and in the discrete

L ∞ t (H 1 x )-norm, of the form max 0≤n≤N U n -u n 0,H ≤ C LBDF2FD,1 τ 2 log(τ ) + h 2 1 + h 2 2 and max 0≤n≤N U n -u n 1,H ≤ C LBDF2FD,2 τ 2 log(τ ) 2 + (h 2 1 + h 2 2 ) ln(τ ) , where ⋅ ∞,H is a discrete L ∞ (D) norm, ⋅ 0,H is a discrete L 2 (D) norm, ⋅ 1,H is a discrete H 1 (D)
norm, and C LBEFD , C LBDF2FD,1 and C LBDF2FD,2 are constants independent of τ , h 1 and h 2 . We would like to stress that we can obtain similar error estimates, when the finite difference method is coupled with the Backward Euler, the Crank-Nicolson method or the BDF2 method (see, e.g. [START_REF] Paraschis | Backward Euler finite difference approximations of a logarithmic heat equation over a 2D rectangular domain[END_REF]), but we do not claim that convergence results can be derived when the (LBEFD) or the (LBDF2FD) method is applied to approximate the solution to the logarithmic Schrödinger equation. We close this section by giving a synopsis of the paper. In Section 2, we set-up notation, provide a series of helpful results and formulate the implicit-explicit finite difference methods we propose. In Section 3, we give the definition along with the basic properties of some parameter dependent auxiliary functions. Section 4, includes the formulation and the estimation of the consistency error of our numerical methods, and Sections 5 and 6 are dedicated to their the convergence analysis. Finally, we present results from numerical experiments in Section 7.

2. The Implicit-Explicit Finite Difference Methods 2.1. Preliminaries. Let N be the set of all positive integers. For given N ∈ N, we introduce a uniform partition of the time interval [0, T ] with time-step τ ∶= T N and nodes t n ∶= n τ for n = 0, . . . , N . Also, for given J 1 , J 2 ∈ N, we define a uniform partition of [a 1 , a 2 ] with mesh-width h 1 ∶= a2-a1 J1+1 and nodes x 1,i ∶= a 1 + i h 1 for i = 0, . . . , J 1 + 1, along with a uniform partition of [b 1 , b 2 ] with mesh-width h 2 ∶= b2-b1 J2+1 and nodes x 2,j ∶= b 1 +j h 2 for j = 0, . . . , J 2 +1. To simplify the notation, we set

I ∶= {(i, j) ∶ i = 0, . . . , J 1 + 1, j = 0, . . . , J 2 + 1}, I ○ ∶= {(i, j) ∶ i = 1, . . . , J 1 , j = 1, . . . , J 2 }
and ∂I ∶= I I ○ . Then, we introduce the discrete matrix space

X H ∶= (V α ) α∈I ∈ R (J1+2)×(J2+2) ∶ V α = 0 ∀α ∈ ∂I , a discrete Laplacian operator ∆ H ∶ X H ↦ X H by (∆ H V ) (i,j) ∶= V (i-1,j) -2 V (i,j) +V (i+1,j) h 2 1 + V (i,j-1) -2 V (i,j) +V (i,j+1) h 2 2 ∀ (i, j) ∈ I ○ , ∀ V ∈ X H
and the operator

I H ∶ C(D) ↦ X H by (I H [z]) α ∶= z(x 1,α1 , x 2,α2 ) for all α ∈ I ○ and z ∈ C(D). We define on X H a discrete L ∞ (D)-norm ⋅ ∞,H by Z ∞,H ∶= max α∈I ○ Z α for Z ∈ X H , a discrete L 2 (D)-inner product (⋅, ⋅) 0,H by (V, Z) 0,H ∶= h 1 h 2 ∑ α∈I ○ V α Z α for V, Z ∈ X H , and a discrete H 1 (D)- inner product (⋅, ⋅) 1,H by (V, Z) 1,H ∶= h 1 h 2 ⎡ ⎢ ⎢ ⎢ ⎣ J 2 j=1 J 1 i=0 V (i+1,j) -V (i,j) h1 Z (i+1,j) -Z (i,j) h2 + J 1 i=1 J 2 j=0 V (i,j+1) -V (i,j) h1 Z (i,j+1) -Z (i,j) h2 ⎤ ⎥ ⎥ ⎥ ⎦ for V, Z ∈ X H . Also, we denote by ⋅ 0,H and ⋅ 1,H the corresponding norms, i.e. V 0,H ∶= [(V, V ) 0,H ] 1 2 and V 1,H ∶= [(V, V ) 1,H ] 1 2 for V ∈ X H .
Later we will use, the discrete integration by part result

(2.1) (∆ H V, V ) 0,H = -V 2 1,H ∀ V ∈ X H the discrete Poincaré-Friedrichs inequality (2.2) V 0,H ≤ 1 2 min{a 2 -a 1 , b 2 -b 1 } V 1,H ∀ V ∈ X H
. and the following inverse inequality:

Lemma 2.1. For V ∈ X H it holds that (2.3) V ∞,H ≤ L √ h1+h2 V 1,H with L ∶= (a2-a1) (b2-b1) min{a2-a1,b2-b1} 1 2 = [max{a 2 -a 1 , b 2 -b 1 }] 1 2 . Proof. Let V ∈ X H and (i 0 , j 0 ) ∈ I ○ such that V ∞,H = V (i0,j0
) . Since V (0,j0) = V (i0,0) = 0, using the Cauchy-Schwarz inequality, we obtain

V (i0,j0) 2 ≤ (a 2 -a 1 ) h 1 J 1 i=0 V (i+1,j 0 ) -V (i,j 0 ) h1 2 ≤ a2-a1 h2 h 1 h 2 J 2 j=1 J 1 i=0 V (i+1,j) -V (i,j) h1 2 (2.4)
and

V (i0,j0) 2 ≤ (b 2 -b 1 ) h 2 J 2 j=0 V (i 0 ,j+1) -V (i 0 ,j) h2 2 ≤ b2-b1 h1 h 1 h 2 J 1 i=1 J 2 j=0 V (i,j+1) -V (i,j) h2 2 . 
(2.5)

Combining (2.4) and (2.5), we conclude that V 2 ∞,H ≤ (b2-b1) (a2-a1) (a2-a1) h1+(b2-b1) h2 V 2 1,H which, easily, yields (2.3).
Finally, we simplify the notation, by setting

u 1 2 ∶= I H [u( τ 2 , ⋅)], u n ∶= I H [u(t n , ⋅)] for n = 0, . . .

, N , and by defining, for any

W ∈ X H and g ∈ C(R), g(W ) ∈ X H by (g(W )) α ∶= g(W α ) for all α ∈ I ○ .
2.2. Formulation of the numerical methods. For the approximation of the solution u to the problem (1.1)-(1.5), we formulate below two implicit-explicit finite difference methods requiring at every time-step the solution of a linear, block-tridiagonal system of algebraic equations. 2.2.1. The (LBEFD) method. The Linearized Backward Euler Finite Difference (LBEFD) method is an one-step method and its algorithm is as follows:

Step 1. Set (2.6) U 0 ∶= u 0 ∈ X H .
Step 2. For n = 0, . . . , N -1, find

U n+1 ∈ X H such that (2.7) U n+1 -U n = τ ∆ H U n+1 + τ g(U n ) + τ I H [f (t n+1 , ⋅)] .
2.2.2. The (LBDF2FD) method. The Linearized BDF2 Finite Difference (LBDF2FD) method is a two-step method and has the following structure:

Step I.

Set (2.8) Υ 0 ∶= u 0 ∈ X H .
Step

II. Find Υ 1 2 ∈ X H such that (2.9) Υ 1 2 -Υ 0 = τ 2 ∆ H (Υ 1 2 ) + τ 2 g(Υ 0 ) + τ 2 I H f ( τ 2 , ⋅) and then find Υ 1 ∈ X H such that (2.10) Υ 1 -Υ 0 = τ ∆ H Υ 1 +Υ 0 2 + τ g(Υ 1 2 ) + τ I H f ( τ 2 , ⋅) . Step III. For n = 0, . . . , N -2, find Υ n+2 ∈ X H such that (2.11) 3 Υ n+2 -4 Υ n+1 + Υ n = 2 τ ∆ H Υ n+2 + 2 τ g 2 Υ n+1 -Υ n + 2 τ I H [f (t n+2 , ⋅)] .
Remark 2.1. Existence and uniqueness of the (LBEFD) and (LBDF2FD) approximations follows with no conditions on τ , h 1 and h 2 , since for any β > 0, the linear operator G ∶ X H ↦ X H , with

G(V ) ∶= V -β τ ∆ H V for all V ∈ X H , is invertible. The latter is an obvious outcome of the property (G(V ), V ) 0,H = V 2 0,H + β τ V 2 1,H for all V ∈ X H , which is based on (2.1)
. Also, we note that the matrix of the corresponding linear system is symmetric and positive definite. [START_REF] Zouraris | On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation[END_REF]) be an odd function defined by

Auxiliary Functions

3.1. A δ-mollifier. For δ > 0, let n δ ∈ C 1 (R) (see, e.g.
(3.1) n δ (s) ∶= ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ s, if s ∈ [0, δ], q δ (s), if s ∈ (δ, 2δ], 2 δ, if s > 2δ, ∀ s ≥ 0,
where

q δ ∈ P 3 [δ, 2δ] is a polynomial defined by (3.2) q δ (s) ∶= s + (s-δ) 2 (2δ-s) δ 2 > 0 ∀ s ∈ [δ, 2δ].
Some useful properties of the function n δ are exposed in the lemma below. Lemma 3.1. For δ > 0, it holds that

(3.3) n ′ δ (s) ∈ 0, 4 3 ∀ s ∈ R and (3.4) max s∈R n δ (s) = 2δ.
Proof. Since n δ is an odd function, we conclude that n ′ δ is an even function, and thus it is sufficient to investigate the range of n ′ δ on [0, +∞). According to (3.1), we have

(3.5) n ′ δ (s) = 0 ∀ s ∈ [2δ, +∞) and n ′ δ (s) = 1 ∀ s ∈ [0, δ]. Also, from (3.1) and (3.2), we obtain n ′ δ (s) = q ′ δ (s) = δ 2 +(s-δ) (5δ-3s) δ 2 = -3s 2 +8δs-4δ 2 δ 2 ∀ s ∈ [δ, 2δ].
Observing that q ′ δ (δ) = 1, q ′ δ (2δ) = 0 and q ′′ δ (s) ≥ 0 iff s ≤ 4 3 δ, we conclude that q ′ δ is increasing on δ, 4δ Thus, (3.3) follows as a simple outcome of (3.5) and (3.6). Finally, (3.3) yields that n δ is increasing on R, and hence n δ (s) ∈ [0, 2δ] for s ∈ [0, +∞), from which (3.4), easily, follows.

Remark 3.1. Obviously, it holds that n δ (u(t, x)) = u(t, x) for (t, x) ∈ Q, when δ ≥ max Q u . 3.2. An ε-approximation of g. For ε > 0, we define a function g ε ∶ R → R by (3.7) g ε (s) ∶= s ln(ε + s ) ∀ s ∈ R.
It is well-known (see, e.g, Lemma 2.1 and Lemma 2.2 in [START_REF] Paraschis | On the convergence of the Crank-Nicolson method for the logarithmic Schrödinger equation[END_REF]) that

(3.8) sup s∈R g(s) -g ε (s) ≤ ε ∀ ε > 0, and 
(3.9) g ε (x) -g ε (y) ≤ 2 ln(ε) x -y ∀ x, y ∈ [-c, c],
when c > e and ε ∈ 0, 1 2 c . Below, we show that the function g ε ○n δ satisfies the following one-sided Lipschitz condition. Lemma 3.2. Let ε ∈ 0, 1 2e and δ > 0. Then, it holds that (3.10)

(g ε (n δ (x)) -g ε (n δ (y))) (x -y) ≤ 8 3 ln(e + 2 δ) x -y 2 ∀ x, y ∈ R and (3.11) ( g ε (n δ (V )) -g ε (n δ (W )) , V -W ) 0,H ≤ 8 3 ln(e + 2δ) V -W 2 0,H ∀ V, W ∈ X H .
Proof. Let x, y ∈ R with n δ (y) ≤ n δ (x) and S(x, y) ∶= (g ε (n δ (x))g ε (n δ (y))) (xy). The mean value theorem yields that there exist ξ ∈ [ε + n δ (y) , ε + n δ (x) ] and z ∈ [min{x, y}, max{x, y}] such that (3.12) ln(ε y). Now, using (3.13), (3.12), (3.3) and (3.4), we obtain

+ n δ (x) ) -ln(ε + n δ (y) ) = 1 ξ ( n δ (x) -n δ (y) ). and (3.13) n δ (x) -n δ (y) = n ′ δ (z) (x -
S(x, y) = (x -y) (n δ (x) -n δ (y)) ln(ε + n δ (x) ) + n δ (y) (x -y) [ln(ε + n δ (x) ) -ln(ε + n δ (y) )] = (x -y) 2 n ′ δ (z) ln(ε + n δ (x) ) + n δ (y) ξ (x -y) ( n δ (x) -n δ (y) ) ≤ (x -y) 2 n ′ δ (z) ln(e + 2δ) + n δ (y) ξ x -y n δ (x) -n δ (y) ≤ (x -y) 2 n ′ δ (z) ln(e + 2δ) + n δ (y) ε+ n δ (y) n ′ δ (z) x -y 2 ≤ 4 3 x -y 2 (1 + ln(e + 2δ)) . (3.14) 
Since (3.10) is symmetric with respect to x and y, it holds also when n δ (y) > n δ (x) . Finally, (3.11) follows as a simple consequence of (3.10).

Consistency Errors

4.1. Time-discretization consistency error. Let (ρ n ) N -1 n=0 ⊂ X H be defined by (4.1)

u n+1 -u n τ = I H [∆u(t n+1 , ⋅) + g τ 2 (u(t n , ⋅)) + f (t n+1 , ⋅) ] + ρ n , n = 0, . . . , N -1,
and, let (r n ) N n=0 ⊂ X H given by (4.2)

u 1 2 -u 0 (τ 2) = I H ∆u( τ 2 , ⋅) + g(u 0 (⋅)) + f ( τ 2 , ⋅) + r 0 , (4.3) 
u 1 -u 0 τ = I H ∆ u(t1,⋅)+u(t0,⋅) 2 + g τ 2 (u( τ 2 , ⋅)) + f ( τ 2 , ⋅) + r 1 , 3 u n+2 -4 u n+1 +u n 2τ = I H [∆u(t n+2 , ⋅) + g τ 2 (2 u(t n+1 , ⋅) -u(t n , ⋅))] + I H [f (t n+2 , ⋅) ] + r n+2 , n = 0, . . . , N -2. (4.4)
Combining (1.1), (4.1), (4.2), (4.2) and (4.4), we obtain

ρ n = u n+1 -u n τ -I H [u t (t n+1 , ⋅)] -I H [g τ 2 (u(t n , ⋅)) -g τ 2 (u(t n+1 , ⋅)) ] -I H [g τ 2 (u(t n+1 , ⋅)) -g(u(t n+1 , ⋅)) ] , n = 0, . . . , N -1, r 0 = u 1 2 -u 0 (τ 2) -I H u t ( τ 2 , ⋅) -I H [g(u 0 (⋅)) -g τ 2 (u 0 (⋅)) ] -I H g τ 2 (u 0 (⋅)) -g τ 2 (u( τ 2 , ⋅)) -I H g τ 2 (u( τ 2 , ⋅)) -g(u( τ 2 , ⋅)) , r 1 = u 1 -u 0 τ -I H u t ( τ 2 , ⋅) -I H ∆ u(t1,⋅)+u(t0,⋅) 2 -∆u( τ 2 , ⋅) -I H g τ 2 (u( τ 2 , ⋅)) -g(u( τ 2 , ⋅)
) and

r n+2 = 3 u n+2 -4 u n+1 +u n 2τ -I H [u t (t n+2 , ⋅)] -I H [g τ 2 (2 u(t n+1 , ⋅) -u(t n , ⋅)) -g τ 2 (u(t n+2 , ⋅)) ] -I H [g τ 2 (u(t n+2 , ⋅)) -g(u(t n+2 , ⋅)) ] , n = 0, . . . , N -2.
Let c ⋆ ∶= e + 3 max Q u and τ ∈ 0, 1 2 c⋆ . Since τ < 1, we have also τ 2 ∈ 0, 1 2 c⋆ . Then, using the Taylor formula, the mean value theorem, (3.8) (with ε = τ 2 ) and (3.9) (with c = c ⋆ and ε = τ 2 ), we arrive at the following error bounds

(4.5) r 0 ∞,H + max 0≤n≤N-1 ρ n ∞,H ≤ C TC1 τ max Q ∂ 2 t u + τ ln(τ ) max Q ∂ t u + τ 2 , (4.6) r 1 ∞,H ≤ C TC2 τ 2 max Q ∂ 3 t u + τ 2 max Q ∂ 2 t ∆u + τ 2 and (4.7) max 2≤n≤N r n ∞,H ≤ C TC3 τ 2 max Q ∂ 3 t u + τ 2 ln(τ ) max Q ∂ 2 t u + τ 2 .
4.2. Space-discretization consistency error. Let (σ n ) N -1 n=0 ∈ X H be given by (4.8)

u n+1 -u n τ = ∆ H (u n+1 ) + I H [g τ 2 (u(t n , ⋅)) + f (t n+1 , ⋅)] + σ n , n = 0, . . . , N -1,
and let (s m ) N m=0 ⊂ X H be defined by (4.9) 

u 1 2 -u 0 (τ 2) = ∆ H (u 1 2 ) + I H g(u 0 (⋅)) + f ( τ 2 , ⋅) + s 0 , (4.10) 
u 1 -u 0 τ = ∆ H u 1 +u 0 2 + I H g τ 2 (u( τ 2 , ⋅)) + f ( τ 2 , ⋅) + s 1 and 3 u n+2 -4 u n+1 +u n 2τ = ∆ H (u n+2 ) + I H [g τ 2 (2 u(t n+1 , ⋅) -u(t n , ⋅))] + I H [f (t n+2 , ⋅)] + s n+2 , n = 0, . . . , N -2.
s 0 -r 0 = I H ∆u( τ 2 , ⋅) -∆ H (u 1 2 ), s 1 -r 1 = I H ∆ u(t1,⋅)+u(t0,⋅) 2 -∆ H u 1 +u 0 2 , s n+2 -r n+2 = I H [∆u(t n+2 , ⋅)] -∆ H (u n+2 ), n = 0, . . . , N -2.
After using the Taylor formula with respect to the space variables, we, finally, conclude that (4.12) max max

0≤n≤N-1 σ n -ρ n ∞,H , max 0≤n≤N s n -r n ∞,H ≤ C SC h 2 1 max Q ∂ 4 x1 u + h 2 2 max Q ∂ 4 x2 u .

Convergence of the (LBEFD) Method

For δ > 0, the modified (LBEFD) approximations (U n δ ) N n=0 ⊂ X H of the solution u are defined by the steps below.

Step 1:

Set (5.1) U 0 δ ∶= u 0 . Step 2: For n = 0, . . . , N -1, find U n+1 δ ∈ X H such that (5.2) U n+1 δ -U n δ = τ ∆ H U n+1 δ + τ g n δ U n δ + τ I H [f (t n+1 , ⋅)] .
Remark 5.1. Remark 2.1 yields that the existence and uniqueness of the modified (LBEFD) approximations. Also, letting δ ≥ max Q u , it follows that U 0 ∞,H ≤ δ and thus, in view of Remark 3.1, we obtain g(n δ (U 0 )) = g(U 0 ). Then, from (5.2) and (2.7) (with n = 0) we conclude that U 1 δ = U 1 . Let us now discuss the convergence properties of the modified (LBEFD) approximations. and (U m δ⋆ ) N m=0 be the corresponding modified (LBEFD) approximations defined by (5.1)-(5.2). Then, there exists a positive constant C L δ⋆ , independent of τ , h 1 and h 2 , such that

(5.3) max 0≤m≤N u m -U m δ⋆ 0,H + max 0≤m≤N u m -U m δ⋆ ∞,H ≤ C L δ⋆ τ ln(τ ) + h 2 1 + h 2 2 .
Proof. We simplify the notation, by setting e m ∶= u m -U m δ⋆ for m = 0, . . . , N . Also, we use the symbol C to denote a generic non-negative constant that is independent of τ , h 1 , h 2 and δ ⋆ , and may changes value from one line to the other, and the symbol C δ⋆ to denote a generic non-negative constant that depends on δ ⋆ but is independent of τ , h 1 and h 2 , and may changes value from one line to the other. Subtract (5.2) from (4.8), to get, under the light of Remark 3.1, the following error equations:

(5.4)

e n+1 -e n = τ ∆ H e n+1 + τ g τ 2 (n δ⋆ (u n )) -g(n δ⋆ (U n δ⋆ )) + τ σ n , n = 0, . . . , N -1.
Discrete L 2 -error estimate. Take the (⋅, ⋅) 0,H -inner product of both sides of (5.4) with e n+1 and then use (2.1) to arrive at (5.5)

e n+1 2 0,H -e n 2 0,H + e n+1 -e n 2 0,H + 2 τ e n+1 2 1,H ≤ L n 1 + L n 2 + L n 3 , n = 0, . . . , N -1, where L n 1 ∶= 2 τ (σ n , e n+1 ) 0,H , L n 2 ∶= 2 τ g τ 2 (n δ⋆ (u n )) -g τ 2 (n δ⋆ (U n δ⋆ )), e n+1 0,H , L n 3 ∶= 2 τ g τ 2 (n δ⋆ (U n δ⋆ )) -g(n δ⋆ (U n δ⋆ )
), e n+1 0,H . Let n ∈ {0, . . . , N -1}. First, we use the Cauchy-Schwarz inequality, (4.5), (4.12), (2.2) and the arithmetic mean inequality, to have

L n 1 ≤ 2 τ σ n 0,H e n+1 0,H ≤ 2 τ ( σ n -ρ n 0,H + ρ n 0,H ) e n+1 0,H ≤ C τ h 2 1 + h 2 2 + τ ln(τ ) e n+1 1,H ≤ C τ τ ln(τ ) + h 2 1 + h 2 2 2 + τ 2 e n+1 2 
1,H .

(5.6) Also, we use the Cauchy-Schwarz inequality, (3.11) (with δ = δ ⋆ and ε = τ 2 ), (3.4), (3.3), the arithmetic mean inequality and (3.9) (with c = 2δ ⋆ and ε = τ 2 ), to get

L n 2 = 2 τ g τ 2 (n δ⋆ (u n )) -g τ 2 (n δ⋆ (U n δ⋆ )), e n+1 -e n 0,H + 2 τ g τ 2 (n δ⋆ (u n )) -g τ 2 (n δ⋆ (U n δ⋆ )), e n 0,H ≤ 2 τ g τ 2 (n δ⋆ (u n )) -g τ 2 (n δ⋆ (U n δ⋆ )) 0,H e n+1 -e n 0,H + 16 3 τ ln(e + 2δ ⋆ ) e n 2 0,H ≤ τ 2 g τ 2 (n δ⋆ (u n )) -g τ 2 (n δ⋆ (U n δ⋆ )) 2 0,H + e n+1 -e n 2 0,H + C δ⋆ τ e n 2 0,H ≤ 16 τ 2 ln(τ ) 2 max R n ′ δ⋆ 2 e n 2 0,H + e n+1 -e n 2 0,H + C δ⋆ τ e n 2 0,H ≤ C τ 2 ln(τ ) 2 e n 2 0,H + e n+1 -e n 2 0,H + C δ⋆ τ e n 2 0,H ≤ C δ⋆ τ (1 + τ ln(τ )
2 ) e n 2 0,H + e n+1e n 2 0,H .

(5.7)

Finally, we use the Cauchy-Schwarz inequality, (2.2), (3.8) (with ε = τ 2 ) and the arithmetic mean inequality, to obtain

L n 3 ≤ 2 τ g τ 2 (n δ⋆ (U n δ⋆ )) -g(n δ⋆ (U n δ⋆ )) 0,H e n+1 0,H ≤ C τ 3 e n+1 1,H ≤ C τ 5 + τ 2 e n+1 2 1,H . (5.8) 
Observing that 0 < τ ln(τ ) 2 ≤ 4 e 2 and combining (5.5), (5.6), (5.7) and (5.8), we conclude that

e n+1 2 0,H ≤ (1 + C δ⋆ τ ) e n 2 0,H + C δ⋆ τ τ ln(τ ) + h 2 1 + h 2 2 2
, n = 0, . . . , N -1.

Finally, we apply a standard discrete Gronwall argument and use that e 0 = 0, to arrive at (5.9) max 0≤m≤N e m 0,H ≤ C δ⋆ τ ln(τ

) + h 2 1 + h 2 2 .
Discrete L ∞ -error estimate. Let n ∈ {0, . . . , N -1} and α = (α 1 , α 2 ) ∈ I ○ such that e n+1 α = e n+1 ∞,H . Multiplying both sides of (5.4) with e n+1 α , we obtain

1 + 2τ h 2 1 + 2τ h 2 2 (e n+1 α ) 2 = e n α e n+1 α + τ h 2 1 e n+1 (α1-1,α2) + e n+1 (α1+1,α2) e n+1 α + τ h 2 2 e n+1 (α1,α2-1) + e n+1 (α1,α2+1) e n+1 α + τ g τ 2 (n δ⋆ (u n α )) -g(n δ⋆ ((U n δ⋆ ) α )) e n+1 α + τ [(σ n α -ρ n α ) + ρ n α ] e n+1
α , which, easily, yields that (5.10)

e n+1 α 2 + e n+1 α -e n α 2 ≤ e n α 2 + Λ 1,n α + Λ 2,n α + Λ 3,n α + Λ 4,n α , where Λ 1,n α ∶= 2 τ ( σ n α -ρ n α + ρ n α ) e n+1 α , Λ 2,n α ∶= 2 τ g τ 2 (n δ⋆ (u n α )) -g τ 2 (n δ⋆ ((U n δ⋆ ) α )) (e n+1 α -e n α ), Λ 3,n α ∶= 2 τ g τ 2 (n δ⋆ (u n α )) -g τ 2 (n δ⋆ ((U n δ⋆ ) α )) e n α , Λ 4,n α ∶= 2 τ g τ 2 (n δ⋆ ((U n δ⋆ ) α )) -g(n δ⋆ ((U n δ⋆ ) α
)) e n+1 α . Using (4.5), (4.12), (3.8) (with ε = τ 2 ) and the arithmetic mean inequality, we have

Λ 1,n α ≤ C τ τ ln(τ ) + h 2 1 + h 2 2 e n+1 ∞,H ≤ C τ τ ln(τ ) + h 2 1 + h 2 2 2 + τ 4 e n+1 2
∞,H (5.11) and

Λ 4,n α ≤ C τ 3 e n+1 ∞,H ≤ C τ 5 + τ 4 e n+1 2 ∞,H .
(5.12)

Applying (3.10) (with δ = δ and ε = τ 2 ) along with (3.3), (3.4), we conclude that

Λ 3,n α ≤ C τ ln(e + 2δ ⋆ ) (e n α ) 2 ≤ C δ⋆ τ e n 2
∞,H .

(5.13) Also, (3.3), (3.9) (with c = 2δ ⋆ and ε = τ 2 ) and the arithmetic mean inequality yield (5.14)

Λ 2,n α ≤ 2 τ g τ 2 (n δ⋆ (u n α )) -g τ 2 (n δ⋆ ((U n δ⋆ ) α )) e n+1 α -e n α ≤ 8 τ ln(τ ) max
Since 0 < τ ln(τ ) 2 ≤ 4 e 2 , using (5.10), (5.11), (5.12), (5.13) and (5.14), we arrive at

(1 -τ 2 ) e n+1 2 ∞,H ≤ (1 + C δ⋆ τ ) e n 2 ∞,H + C δ⋆ τ τ ln(τ ) + h 2 1 + h 2 2 2
for n = 0, . . . , N -1. Since τ < 1 and e 0 = 0, a standard Gronwall argument yields

(5.15) max 0≤m≤N e m ∞,H ≤ C δ⋆ τ ln(τ ) + h 2 1 + h 2 2 .
Thus, (5.3), easily, follows from (5.9) and (5.15).

Next, we present a convergence result for the (LBEFD) method.

Theorem 5.2. 

Let δ ⋆ = e + 3 max Q u , τ ∈ 0,
C L δ⋆ τ ln(τ ) + h 2 1 + h 2 2 ≤ δ⋆ 2 , then U m = U m
δ⋆ for m = 0, . . . , N , and (5.17) max

0≤m≤N u m -U m 0,H + max 0≤m≤N u m -U m ∞,H ≤ C L δ⋆ τ ln(τ ) + h 2 1 + h 2 2 .
Proof. Using that δ ⋆ > 3 max Q u , along with (5.3) and (5.16), for n = 1, . . . , N -1, we obtain

U n δ⋆ ∞,H ≤ u n -U n δ⋆ ∞,H + u n ∞,H < C L δ⋆ τ ln(τ ) + h 2 1 + h 2 2 + δ⋆ 3 ≤ δ⋆ 2 + δ⋆ 3 < δ ⋆ , which, under the light of (3.1), yields n δ⋆ U n δ⋆ = U n δ⋆ for n = 1, . . . , N -1.
Combining the latter relation with (5.1)-( 5.2) and (2.6)-(2.7), we conclude that U m δ⋆ = U m for m = 0, . . . , N , and the error estimate (5.17) follows from (5.3).

Convergence of the (LBDF2FD) Method

For δ > 0, the modified (LBDF2FD) approximations (Υ n δ ) N n=0 ⊂ X H of the solution u are defined as follows:

Step I:

Set (6.1) Υ 0 δ ∶= u 0 , Υ 1 2 δ ∶= Υ 1 2 and find Υ 1 δ ∈ X H by (6.2) Υ 1 δ -Υ 0 δ = τ ∆ H Υ 1 δ +Υ 0 δ 2 + τ g(n δ (Υ 1 2 δ )) + τ I H f ( τ 2 , ⋅) .
Step II:

For n = 0, . . . , N -2, find Υ n+2 δ ∈ X H such that (6.3) 3 Υ n+2 δ -4 Υ n+1 δ + Υ n δ = 2 τ ∆ H Υ n+2 δ + 2 τ g n δ 2 Υ n+1 δ -Υ n δ + 2 τ I H [f (t n+2 , ⋅)] .
Remark 6.1. The existence and uniqueness of the modified (LBDF2FD) approximations follows from Remark 2.1.

Let us investigate below the convergence of the modified (LBDF2FD) approximations.

Lemma 6.1. Let δ ⋆ = 2 (e + 3 max Q u ), τ ∈ 0, 1 4 δ⋆ , Υ 1 2
∈ X H be specified by (2.9) and Υ 1 δ⋆ ∈ X H be specified by (6.2). Then, there exist constants C B,1 > 0, C B,2 > 0 and C B,3 > 0, independent of τ , h 1 and h 2 , such that (6.4)

u 1 2 -Υ 1 2 ∞,H ≤ C B,1 τ 2 ln(τ ) + τ h 2 1 + τ h 2 2 , (6.5 
)

u 1 -Υ 1 δ⋆ 0,H ≤ C B,2 τ 3 ln(τ ) 2 + τ h 2 1 + τ h 2 2 and (6.6) u 1 -Υ 1 δ⋆ 1,H ≤ C B,3 τ 1 2 τ 2 ln(τ ) 2 + h 2 1 + h 2 2 .
Proof. Set e 1 2 ∶= u 1 2 -Υ 1 2 and e 1 ∶= u 1 -Υ 1 δ⋆ . Combining (6.1), (2.9), (4.9), (6.2) and (4.10), we get the following error equations (6.7) e 1 2 = τ 2 ∆ H (e 1 2 ) + τ 2 (s 0r 0 ) + r 0 and (6.8)

e 1 = τ 2 ∆ H (e 1 ) + τ [g τ 2 (u 1 2 ) -g(n δ⋆ (Υ 1 2 δ⋆ ))] + τ (s 1 -r 1 ) + r 1 .
Proceeding as in the proof of Theorem 5.1 and using (4.5) and (4.12), we arrive at (6.9)

e 1 2 ∞,H ≤ C τ 2 ln(τ ) + τ h 2 1 + τ h 2 2
. Also, taking the (⋅, ⋅) 0,H -inner product of (6.8) with e 1 , and then applying (2.1), the Cauchy-Schwarz inequality and (3.1), we obtain (6.10)

e 1 2 0,H + τ 2 e 1 2 1,H ≤ K 1 + K 2 + K 3 , where K 1 ∶= τ g τ 2 (n δ⋆ (u 1 2 )) -g τ 2 (n δ⋆ (Υ 1 2 )) 0,H e 1 0,H , K 2 ∶= τ g τ 2 (n δ⋆ (Υ 1 2 )) -g(n δ⋆ (Υ 1 2 )) 0,H e 1 0,H , K 3 ∶= τ s 1 -r 1 0,H + r 1 0,H
e 1 0,H . Using (4.12), (4.6), (3.8) (with ε = τ 2 ), (3.4), (3.3), (3.9) (with c = 2δ ⋆ and ε = τ 2 ) and (6.9), we get (6.11)

K 2 + K 3 ≤ C τ 3 + τ (h 2 1 + h 2 2 ) e 1 0,H and 
K 1 ≤ C τ ln(τ ) max R n ′ δ⋆ e 1 2 0,H e 1 0,H ≤ C τ ln(τ ) e 1 2 ∞,H e 1 0,H ≤ C τ 3 ln(τ ) 2 + τ 2 ln(τ ) (h 2 1 + h 2 2 ) e 1 0,H ≤ C τ 3 ln(τ ) 2 + τ (h 2 1 + h 2 2 ) e 1 0,H . (6.12) 
Now, from (6.10), (6.11) and (6.12), we arrive at (6.13)

e 1 0,H ≤ C τ 3 ln(τ ) 2 + τ (h 2 1 + h 2 2 ) and (6.14) e 1 1,H ≤ C τ 5 2 ln(τ ) 2 + τ 1 2 (h 2 1 + h 2 2 ) .
Thus, (6.4), (6.5) and (6.6) follows, respectivelty, from (6.9), (6.13) and (6.14).

Theorem 6.1. Let δ ⋆ = 2 (e + 3 max Q u ), τ ∈ 0, 1 4δ⋆ 
and (Υ m δ⋆ ) N m=0 be the modified (LBDF2FD) approximations defined by (6.1)-(6.3). Then, there exist constants C F,1 δ⋆ > 0 and C F,2 δ⋆ > 0, independent of τ , h 1 and h 2 , such that

(6.15) max 0≤m≤N u m -Υ m δ⋆ 0,H ≤ C F,1 δ⋆ τ 2 ln(τ ) + h 2 1 + h 2 2 and (6.16) max 0≤m≤N u m -Υ m δ⋆ 1,H ≤ C F,2 δ⋆ τ 2 ln(τ ) 2 + (h 2 1 + h 2 2 ) ln(τ ) .
Proof. We simplify the notation, by setting e m ∶= u m -Υ m δ⋆ for m = 0, . . . , N . We will use the symbol C to denote a generic non-negative constant that is independent of τ , h 1 , h 2 and δ ⋆ , and may changes value from one line to the other, and the symbol C δ⋆ to denote a generic non-negative constant that depends on δ ⋆ but is independent of τ , h 1 and h 2 , and may changes value from one line to the other. Also, we recall the following well-known algebraic identity:

(6.17) 2 (3 a -4 b + c) a = a 2 + 2a -b 2 -b 2 -2b -c 2 + a -2b + c 2 ∀ a, b, c ∈ R,
which is related to the G-stability property of the BDF2 method (see, e.g. [START_REF] Thomée | Galerkin Finite Element Methods for Parabolic Problems[END_REF], [START_REF] Emmrich | Two-step BDF time discretisation of nonlinear evolution problems governed by monotone operators with strongly continuous perturbations[END_REF]). Combining (6.3) with (4.11), we arrive at the corresponding error equations:

3 e n+2 -4 e n+1 + e n = 2 τ ∆ H e n+2 + 2 τ s n+2 + 2 τ g τ 2 (n δ⋆ (2u n+1 -u n )) -g(n δ⋆ (2Υ n+1 δ⋆ -Υ n δ⋆ )) (6.18) 
for n = 0, . . . , N -2.

Discrete L 2 -error estimate. Take the (⋅, ⋅) 0,H -inner product of both sides of (6.18) with 2e n+2 and then use (2.1) and (6.17) to arrive at

e n+2 2 0,H + 2e n+2 -e n+1 2 0,H = -e n+2 -2e n+1 + e n 2 0,H -4 τ e n+2 2 1,H + e n+1 2 0,H + 2e n+1 -e n 2 0,H + Λ n 1 + Λ n 2 + Λ n 3 , n = 0, . . . , N -2, (6.19) 
where

Λ n 1 ∶= 4 τ s n+2 , e n+2 0,H , Λ n 2 ∶= 4 τ g τ 2 (n δ⋆ (2 u n+1 -u n )) -g τ 2 (n δ⋆ (2 Υ n+1 δ⋆ -Υ n δ⋆ )), e n+2 0,H , Λ n 3 ∶= 4 τ g τ 2 (n δ⋆ (2 Υ n+1 δ⋆ -Υ n δ⋆ )) -g(n δ⋆ (2 Υ n+1 δ⋆ -Υ n δ⋆ )
), e n+2 0,H .

Let n ∈ {0, . . . , N -2}. Using the Cauchy-Schwarz inequality, (4.7), (4.12), (2.2) and the arithmetic mean inequality, it follows that

Λ n 1 ≤ 4 τ s n+2 0,H e n+2 0,H ≤ 4 τ s n+2 -r n+2 0,H + r n+2 0,H e n+2 0,H ≤ C τ h 2 1 + h 2 2 + τ 2 ln(τ ) e n+2 1,H ≤ C τ τ 2 ln(τ ) + h 2 1 + h 2 2 2 + τ 2 e n+2 2 1,H . (6.20) 
Applying the Cauchy-Schwarz inequality and combining (3.11) (with δ = δ ⋆ and ε = τ 2 ), (3.4), (3.3), the arithmetic mean inequality and (3.9) (with c = 2δ ⋆ and ε = τ 2 ), we obtain 

Λ n 2 = 4 τ g τ 2 (n δ⋆ (2 u n+1 -u n )) -g τ 2 (n δ⋆ (2 Υ n+1 δ⋆ -Υ n δ⋆ )), e n+2 -2 e n+1 + e n 0,H + 4 τ g τ 2 (n δ⋆ (2 u n+1 -u n )) -g τ 2 (n δ⋆ (2 Υ n+1 δ⋆ -Υ n δ⋆ )), 2 e n+1 -e n 0,H ≤ 4 τ g τ 2 (n δ⋆ (2 u n+1 -u n )) -g τ 2 (n δ⋆ (2 Υ n+1 δ⋆ -Υ n δ⋆ )) 0,H e n+2 -2 e n+1 + e n 0,H + C τ ln(e + 2δ ⋆ ) 2 e n+1 -e n 2 0,H ≤ 4 τ 2 g τ 2 (n δ⋆ (2 u n+1 -u n )) -g τ 2 (n δ⋆ (2 Υ n+1 δ⋆ -Υ n δ⋆ ))
+ C δ⋆ τ τ 2 ln(τ ) + h 2 1 + h 2 2 2 , n = 0, . . . , N -2.
Then applying a standard discrete Gronwall argument and using that e 0 = 0, we get max 0≤m≤N e m 0,H ≤ C δ⋆ e 1 0,H + τ 2 ln(τ

) + h 2 1 + h 2 2
which, along with (6.5), yields (6.15).

Discrete H 1 -error estimate. Take the (⋅, ⋅) 0,H -inner product of both sides of (6.18) with -2∆ H e n+2 and then use (2.1) and (6.17) to arrive at

e n+2 2 1,H + 2e n+2 -e n+1 2 1,H = e n+1 2 1,H + 2e n+1 -e n 2 1,H -e n+2 -2e n+1 + e n 2 1,H -4 τ ∆ H e n+2 2 0,H + Z n 1 + Z n 2 + Z n 3 (6.23)
for n = 0, . . . , N -2, where

Z n 1 ∶= -4 τ s n+2 , ∆ H e n+2 0,H , Z n 2 ∶= -4 τ g τ 2 (n δ⋆ (2 u n+1 -u n )) -g τ 2 (n δ⋆ (2 Υ n+1 δ⋆ -Υ n δ⋆ )), ∆ H e n+2 0,H , Z n 3 ∶= -4 τ g τ 2 (n δ⋆ (2 Υ n+1 δ⋆ -Υ n δ⋆ )) -g(n δ⋆ (2 Υ n+1 δ⋆ -Υ n δ⋆ ))
, ∆ H e n+2 0,H . Let n ∈ {0, . . . , N -2}. Using the Cauchy-Schwarz inequality, (4.7), (4.12) and the arithmetic mean inequality, it follows that

Z n 1 ≤ 4 τ s n+2 0,H ∆ H e n+2 0,H ≤ 4 τ s n+2 -r n+2 0,H + r n+2 0,H ∆ H e n+2 0,H ≤ C τ h 2 1 + h 2 2 + τ 2 ln(τ ) ∆ H e n+2 0,H ≤ C τ τ 2 ln(τ ) + h 2 1 + h 2 2 2 + τ 2 ∆ H e n+2 2 0,H . (6.24) 
Using, again, (3.3), (3.4), (3.9) (with c = 2δ ⋆ and ε = τ 2 ), (3.8) (with ε = τ 2 ) and the arithmetic mean inequality, we obtain 

Z n 2 ≤ 4 τ g τ 2 (n δ⋆ (2 u n+1 -u n )) -g τ 2 (n δ⋆ (2 Υ n+1 δ⋆ -Υ n δ⋆ )) 0,H ∆ H e n+2 0,H ≤ C τ ln(τ ) max R n ′ δ⋆ 2 e n+1 -e n 0,H ∆ H e n+2 0,H ≤ C τ ln(τ ) 2 e n+1 -e n 0,H ∆ H e n+2 0,H ≤ C τ ln(τ ) 2 ( e n+1 2 0,H + e n 2 0,H ) + τ 2 ∆ H e n+2 2 0,H (6.25) and Z n 3 ≤ 4 τ g τ 2 (n δ⋆ (2 Υ n+1 δ⋆ -Υ n δ⋆ )) -g(n δ⋆ (2 Υ n+1 δ⋆ -Υ n δ⋆ )) 0,H ∆ H e n+2 0,H ≤ C τ 3 ∆ H e n+2 0,H ≤ C τ 5 + τ 2 ∆ H e n+2
L (h 1 + h 2 ) -1 2 τ 2 ln(τ ) 2 + (h 2 1 + h 2 2 ) ln(τ ) ≤ δ⋆ 6 , then Υ m = Υ m
δ⋆ for m = 0, . . . , N , and

(6.31) max 0≤m≤N u m -Υ m 0,H ≤ C F,1 δ⋆ τ 2 ln(τ ) + h 2 1 + h 2 2 and (6.32) max 0≤m≤N u m -Υ m 1,H ≤ C F,2 δ⋆ τ 2 ln(τ ) 2 + (h 2 1 + h 2 2 ) ln(τ ) .
Proof. The assumption δ ⋆ > 6 max Q u , along with (6.4), (6.29), (6.16), (2.3) and (6.30), yields

Υ 1 2 ∞,H ≤ u 1 2 -Υ 1 2 ∞,H + u 1 2 ∞,H < C B,1 τ 2 ln(τ ) + τ (h 2 1 + h 2 2 ) + δ⋆ 6 ≤ δ⋆ 2 + δ⋆ 6 < δ ⋆ , and 2 Υ m+1 δ⋆ -Υ m δ⋆ ∞,H ≤ 2 u m+1 -Υ m+1 δ⋆ ∞,H + u m -Υ m δ⋆ ∞,H + 2 u m+1 -u m ∞,H ≤ L (h 1 + h 2 ) -1 2 2 u m+1 -Υ m+1 δ⋆ 1,H + u m -Υ m δ⋆ 1,H + 3 max Q u < 3 C F,2 δ⋆ L (h 1 + h 2 ) -1 2 τ 2 ln(τ ) 2 + (h 2 1 + h 2 2 ) ln(τ ) + 3 δ⋆ 6 ≤ δ⋆ 6 + δ⋆ 2 < δ ⋆ , m = 0, . . . , N -2, which, along with (3.1), yields n δ⋆ (Υ 1 2 δ⋆ ) = Υ 1 2 δ⋆ and n δ⋆ (2 Υ m+1 δ⋆ -Υ m δ⋆ ) = 2 Υ m+1 δ⋆ -Υ m
δ⋆ for m = 0, . . . , N -1. Thus, from (2.8)-(2.11) and (6.1)-( 6.3), we conclude that Υ m δ⋆ = Υ m for m = 0, . . . , N , and the error estimates (6.31) and (6.32) follow as a natural outcome of (6.15) and (6.16), respectively.

Numerical Results

We have implemented the proposed numerical methods (LBEFD) and (LBDF2FD) in Python 3.7.0 programs, where we solve the resulting linear systems of algebraic equations using the usual Conjugate Gradient method, by applying the subroutine cg of the library scipy.sparse.linalg.

When the exact solution to the problem is known, we test the performance of our finite difference methods by computing the discrete

L ∞ t (L 2 x )-error E 0 (N, J 1 , J 2 ) ∶= max 0≤n≤N U n -u n 0,H , the discrete L ∞ t (H 1 x )-error E 1 (N, J 1 , J 2 ) ∶= max 0≤n≤N U n -u n 1,H and the discrete L ∞ t (L ∞ x )-error E ∞ (N, J 1 , J 2 ) ∶= max 0≤n≤N U n -u n ∞,H
. Then, after choosing ν ∈ N, a function f ∶ (0, +∞) ↦ (0, +∞) 3 and (N, J 1 , J 2 ) = f(ν), we compute the experimental order of convergence with respect to ν, corresponding to given values ν 1 and ν 2 of ν, by using the formula: ln [E (f(ν 1 )) E (f(ν 2 ))] ln(ν 2 ν 1 ), where E = E 0 , E 1 or E ∞ . In particular, we choose f(ν) = (ν, √ ν, √ ν) in the (LBEFD) method and f(ν) = (ν, ν, ν) in the (LBDF2FD) method. 1, and confirm an experimental order of convergence with respect to ν of first order for the (LBEFD) method and of second for the (LBDF2FD) method.

(LBEFD) method

Example 1 ν E 0 (f(ν)) Rate E ∞ (f(ν)) Rate 200 7.033(-2) -1.393(-1) -400 3.583(-2) 0.97 7.138(-2) 0.96 800 1.883(-2) 0.92 3.761(-2) 0.92 1600 9.413(-3) 1.00 1.882(-2) 0.99 3200 4.880(-3) 0.94 9.769(-3) 0.94 (LBDF2FD) method Example 1 ν E 0 (f(ν)) Rate E 1 (f(ν)) Rate 20 6.304(-2) -5.581(-1) -40 1.677(-2) 1.90 1.489(-1) 1.90 80 4.309(-3) 1.96 3.828(-2) 1.95 160 1.089(-3) 1.98 9.684(-3) 1.98 320 2.739(-4) 1.99 2.434(-3) 1.99 Table 1. with a 1 = 0, a 2 = 1, a 3 = 0.5 and a 4 = 0.25, to be the exact solution to the problem (1.1)-(1.5).

Computing again the numerical approximation errors we conclude a first order experimental order of convergence for the (LBEFD) method and a second one for the (LBDF2FD) method.

(LBEFD) method Example 2 ν E 0 (f(ν)) Rate E ∞ (f(ν)) Rate 200 3.435(-3) -1.208(-2) -400 1.766(-3) 0.95 6.336(-3) 0.93 800 9.299(-4) 0.92 3.406(-3) 0.89 1600 4.659(-4) 0.99 1.708(-3) 0.99 3200 2.412(-4) 0. which is an exact solution to (1.1) [START_REF] Alfaro | Superexponential growth or decay in the heat equation with a logarithmic non linearity[END_REF]. It is easily seen that u GS has almost compact support on Q and thus we can consider it as the solution to the problem (1.1)-(1.5) with initial condition u 0 . In the numerical experiments we compute approximations of u GS posting the corresponding computational errors on Table 3. We observe, again, a first order experimental order of convergence for the (LBEFD) method and a second one for the (LBDF2FD) method which seems to be more robust.

(LBEFD) method Example 3 ν E 0 (f(ν)) Rate E ∞ (f(ν)) Rate 800 9.160(-4) -8.470(-3) -1600 4.566(-4) 1.00 4.413(-3) 0.94 3200 2.351(-4) 0.95 2.321(-3) 0.92 6400 1.164(-4) 1.01 1.162(-3) 0.99 (LBDF2FD) method Example 3 ν E 0 (f(ν)) Rate E 1 (f(ν)) Rate 40 4.529(-4) -9.553(-3) -80 1.153(-4) 1.97 2.448(-3) 1.96 160 2.914(-5) 1.98 6.195(-4) 1.98 320 7.326(-6) 1.99 1.558(-4) 1.99

Table

For the approximation of the solution to the semilinear heat equation with logarithmic nonlinearity over a two dimensional rectangular domain, we propose the (LBEFD) method and the (LBDF2FD) method, which are described in Section 2. The convergence of both numerical methods is established by proving almost optimal order error estimates. Results from numerical experiments for both methods confirm their expected order of convergence and expose their efficiency. Future research plans, includes the investigation of higher order numerical methods and extending properly the framework developed here.

1 . 1 .

 11 The initial and boundary value problem.Let T > 0, D ∶= [a 1 , a 2 ] × [b 1 , b 2 ] ⊂ R 2 , Q ∶= [0, T ] × D and u ∶ Q → Rbe the solution of the following initial and boundary value problem: u t = ∆u + g(u) + f on (0, T ] × int(D), (1.1) u(t, x) = 0 ∀ (t, x) ∈ (0, T ] × ∂D, (1.2)

Lemma 1 . 1 .

 11 For c > e, it holds that(1.6) (g(x)g(y)) (xy) ≤ (1 + ln(c)) xy 2 ∀ x, y ∈ [-c, c].

3 and decreasing on 4δ 3 , 3 ∀

 333 2δ . Since n ′ δ 4δ 3 = 4 3 , we, easily, arrive at (3.6) n ′ δ (s) ∈ 0, 4 s ∈ [δ, 2δ].

(4. 11 )

 11 Then, subtracting (4.8) from (4.1), (4.9) from (4.2), (4.10) from (4.3) and (4.11) from (4.4), we obtain σ nρ n = I H [∆u(t n+1 , ⋅)] -∆ H (u n+1 ), n = 0, . . . , N -1,

Theorem 5 . 1 .

 51 Let δ ⋆ = e + 3 max Q u , τ ∈ 0, 1 4δ⋆

≤2 + e n+1 α -e n α 2 ≤

 2 C δ⋆ τ 2 ln(τ ) 2 e n α C δ⋆ τ (τ ln(τ ) 2 ) e n 2 ∞,H + e n+1 α e n α 2 .

7. 1 .

 1 Example 1. Let T = 1, D = [0, 1] × [0, 1] and load f such that the function u(t, x) = 1 2 exp(2 + sin(2πt)) sin(2πx 1 ) sin(2πx 2 ) to be the exact solution to the problem (1.1)-(1.5). The errors we computed are shown on Table

7. 2 .+ x 5 2 ) 4 i=1(x 1 -

 241 Example 2. Let T = 1, D = [0, 1] × [0, 1]and load f such that the function u(t, x) = 100 e t (x5 1 a i )(x 2a i ),

7. 3 .2 1 +x 2 2 4∀2 1 +x 2 2 4∀

 322 Example 3. Let T = 2, D = [-8, 8] × [-8, 8], f = 0 and initial condition u 0 (x) ∶= exp -x x ∈ D, which is almost zero on the boundary of D. Obviously u 0 is the value at t = 0 of the functionu GS (t, x) = exp 1e tx x ∈ R 2 ,

  + e n+2 -2 e n+1 + e n 2 0,H + C δ⋆ τ 2 e n+1e n 2 + e n+2 -2 e n+1 + e n 2 0,H + C δ⋆ τ 2 e n+1e n 2 ≤ C τ 2 ln(τ ) 2 2 e n+1e n 2 0,H + e n+2 -2 e n+1 + e n 2 0,H + C δ⋆ τ 2 e n+1e n 2 ≤ C δ⋆ τ (1 + τ ln(τ ) 2 ) 2 e n+1e n 2 0,H + e n+2 -2 e n+1 + e n 2 0,H .

	Applying again the Cauchy-Schwarz inequality, along with (2.2), (3.8) (with ε = τ 2 ) and the
	arithmetic mean inequality, we get
		Λ n 3 ≤ 4 τ g τ 2 (n δ⋆ (2 Υ n+1 δ⋆ -Υ n δ⋆ )) -g(n δ⋆ (2 Υ n+1 δ⋆ -Υ n δ⋆ )) 0,H e n+2	0,H
	(6.22)	≤ C τ 3 e n+2	1,H
		≤ C τ 5 + τ 2 e n+2 2 1,H .
	Since τ ln(τ ) 2 ≤ 4 e 2 , an obvious outcome of (6.19), (6.20), (6.21) and (6.22), is the following
	inequality		
	e n+2 2 0,H + 2e n+2 -e n+1 2 0,H ≤ (1 + C δ⋆ τ ) e n+1 2 0,H + 2e n+1 -e n 2 0,H
	(6.21)			2 0,H
				0,H
		≤ C τ 2 ln(τ ) 2 max R	n ′ δ⋆	2 2 e n+1 -e n 2 0,H 0,H
				0,H

Acknowledgments

G. E. Zouraris acknowledges the support of The University of Crete via a Sabbatical Leave (2022-2023).