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Abstract
Recently, we have proposed a general analytical framework,
called Neuro-based Concept Detector (NCD), to interpret the
deep representations of a DNN. Based on the activation patterns
of hidden neurons, this framework highlights the ability of neu-
rons to detect a specific concept related to the final task. Its
main strength is to provide an interpretability tool for any type
of DNN performing a classification task, whatever the applica-
tion domain. Thanks to NCD, we have demonstrated the emer-
gence of phonetic features in the classification layers of a CNN-
based model for French phone classification. The emergence of
this concept, of great interest in the field of clinical phonetics,
has been studied considering healthy speech. Applied to Head
and Neck Cancers, we have shown that this framework auto-
matically reflects the level of impairment of the phonetic fea-
tures produced by a patient, which is supported by the strong
correlations with perceptual assessments performed by clinical
experts. The objective of the work presented here is to validate
the proposed framework by confronting it to new populations of
patients, but with very different pathologies (neurodegenerative
diseases/ Dysarthria and vocal dysfunction/ Dysphonia). The ro-
bustness of the approach to the phonetic content variability of
read text is also studied.
Index Terms: Deep Learning, Interpretability, Speech disor-
ders, Phonetic features, Intelligibility, Head and Neck Cancers,
Dysarthria, Dysphonia.

1. Introduction
Speech and voice disorders impact millions of people and their
ability to communicate. They can be caused by neurodegen-
erative diseases like Parkinson’s disease, strokes, laryngeal or
oropharyngeal cancers (also referring to Head and Neck Can-
cers - HNC), stuttering, or even by a dysfunction of vocal folds.
Perceptual evaluation remains the most widely used method in
clinical practice to assess speech and/or voice disorders [1, 2,
3]. However, this assessment remains a non-trivial task, time-
consuming depending on the degree of precision sought and very
subjective (important intra and inter-expert variability). Clini-
cians are therefore still waiting for objective evaluation tools that
will allow them to better understand the evolution of these dis-
orders in the case of a longitudinal follow-up of patients or to
evaluate the benefits of a therapeutic treatment or a rehabilita-
tion. Automatic speech processing approaches have been seen,
very early, as potential solutions to provide these objective tools
[4]. Studies on the application of automatic approaches are nu-
merous in the literature for the evaluation of voice or speech
disorders. The explosion of deep learning-based approaches in

automatic speech processing has not escaped this field of appli-
cation [5]. Related to voice disorders, we can cite [6, 7, 8, 9]
dedicated to the prediction or classification tasks of diseases, for
instance. Regarding speech disorders, the amount of related work
is even larger, the Parkinson’s disease being one of the main fo-
cuses [10, 11]. As recent studies, we can also cite [12, 13] for the
assessment of speech intelligibility for patients suffering from
HNC. Considering populations of dysarthric patients, [14, 15]
propose deep learning-based approaches for the enhancement of
speech intelligibility while [16, 17] for the assessment of speech
disorder severity. Despite the wide range of work, it is very rare
to see studies involving patient populations with various causes
of speech disorders. From our knowledge, we can mention [18],
involving adults suffering from laryngeal cancers and children
with cleft lip and palate, or [19] involving dysarthric and dys-
phonic speakers, children with cleft lip or palate, speakers with
pathological speech secondary to hearing impairment, laryngec-
tomized and glossectomized speakers.
Recently, we have proposed an original framework, Neuro-
Concept Detector (NCD), for the interpretability of Deep Neural
Networks (DNNs) [20]. This framework highlights the ability of
hidden neurons to detect a specific concept related to the final
task. In our specific context, the focus has been on the phonetic
features related to French phones as target concept. Indeed, the
main objective of that work is to model healthy speech and to
characterize potential deviation within impaired speech in order
to provide relevant information in terms of phonetic feature al-
teration. Experiments conducted within this overall framework
have shown that: (1) we are able to define a set of phonetic fea-
ture detectors on healthy speech; (2) based on this set of phonetic
feature detectors, we designed a special similarity score between
the reference (i.e. healthy speech) and new unseen data (i.e. im-
paired speech). The relevance of this score has been confirmed
on HNC patients [21], since it strongly correlates with perceptual
measures given by clinical experts when considered globally per
speaker all features included; (3) the analysis of local similarity
scores - one score per speaker and per phonetic feature - has led
to very interesting observations, notably the role of the tongue
mobility, pointed out as predominant on observed HNC patients.
The objective of this paper is to validate these observations and
the interest of the proposed methodology on different and varied
populations of patients including dysarthria and dysphonia.

2. The NCD framework

In this section, we briefly describe the general analytic frame-
work, Neuro-Concept Detector (NCD), proposed in [20]. This
framework was designed for the interpretability of the deep rep-
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resentations of a DNN performing a classification task. Based on
the activation patterns of hidden neurons, it highlights the abil-
ity of neurons to detect a specific concept related to the target
task. The focus here is to show the emergence of phonetic fea-
ture detectors. Such a concept is of a great interest in the field
of clinical phonetics since it can be directly associated with the
characteristics of speech disorders.

Consequently, we firstly applied NCD to the fully connected
layers of the CNN-based model proposed in [22], performing
French phone classification. The model was trained on a
first subset of the BREF corpus [23], composed of French
read-speech records. We adopted the definition of the set
of phonetic features, composing and distinguishing French
phones, given in [24]. Relying on a separation between vowels
and consonants, this definition as proposed by [25] is more
phonetically and acoustically pertinent, especially regarding
speech disorders. Here, the notion of phonetic features imposes
a binary status (i.e. equals 1 if the phonetic feature is present
in the phoneme, or 0 if absent). In the following, [+pho-
netic feature] refers to the class of phonemes presenting the
phonetic feature while [-phonetic feature] refers to the class
of phonemes presenting the opposite phonetic feature. Lastly,
in order to explore whether interpretable neurons in terms of
phonetic feature detection exist in the classification layers, a
second subset of the corpus BREF was still implied, that we
consider as our reference for healthy speech. Thus, a represen-
tative subset dedicated to test and referred to BREF-Int, was
selected including almost 82K of frames balanced across phones.

Some basic notations are defined in the following to for-
mulate the score used for this exploration. Let hn,i be the
activation value of the neuron n given the ith input frame of
BREF-Int dataset. A normalized activation an,i is calculated
for each neuron by dividing the initial activation values of the
neuron for different input frames of the dataset by the maxi-
mum value reached over all these values; an,i =

hn,i

hmaxn
where

hmaxn = max hn,j∀j.
Let ABREF

n,k be the set of normalized activations of the neuron n for
all the frames having the phone k as a true label and belonging to
BREF-Int. We note the median activation value of the neuron n
for the phone k as mABREF

n,k
. The score Sn,Tx , quantifying the de-

gree to which a unit detects the presence of a phonetic feature/the
opposite phonetic feature, is therefore calculated for each neuron
n and phonetic feature Tx as follows:

Sn,Tx =
1

|[+Tx]|
∑

k∈[+Tx]

mABREF
n,k

− 1

|[−Tx]|
∑

k∈[−Tx]

mABREF
n,k

(1)
Since phonetic features are binary concepts characterizing vow-
els and consonants separately, the x in the score denotes
the macro-class of either vowels or consonants, v and c re-
spectively (x ∈ [v, c]). Consequently, Tv denotes a vowel
phonetic feature (i.e. Tv ∈ {nasal, back, round, high, low})
and Tc denotes a consonant phonetic feature (i.e. Tc ∈
{sonorant, continuant, nasal, voiced, compact, acute}).

Sn,Tx ∈ [−1; 1], where a strong value close to 1 reflects
that the neuron is a strong detector for the presence of the pho-
netic feature in question while a very low score close to -1 means
that the neuron is a strong detector for the opposite phonetic fea-
ture. A threshold value, indicating whether or not a neuron is
selected as detector, is empirically fixed to ±0.25. Indeed, we
consider that the neuron n is a detector of the presence of pho-
netic feature Tx, noted [+Tx], if Sn,Tx > 0.25. Conversely, if
Sn,Tx < −0.25, then the neuron n is considered as a detector of

the opposite phonetic feature Tx, noted [-Tx]. Experiments con-
ducted in [20] revealed interesting results. Indeed, it showed that
interpretable neurons with phonetic feature encoding properties
emerge in the fully connected layers of the CNN. These detectors
cover all the phonetic features, and additionally increase numeri-
cally when going deeper in layers towards the final classification
layer, ensuring potential discrimination among phone classes.
At this stage, each selected interpretable neuron, n, is being la-
belled with the specific phonetic feature t it detects. Let Nt de-
notes the set of interpretable neurons selected as detectors for the
phonetic feature t across all the examined layers (t is equal to ei-
ther [+Tx] or [-Tx]). Based on these findings, it can be examined
to which extent this set of neurons can be used to extract rel-
evant interpretations on speech alterations in case of disorders.
To this end, a similarity score, named Artificial Neuron-based
Phonological Similarity (ANPS) is specifically defined. Its goal
is to assess how well the acoustic/articulatory characteristics re-
lated to phonetic feature t are produced by speaker s, based on
the corresponding set of detectors. Let ANPSs,t be defined as the
following ratio:

ANPSs,t =

∑
n∈Nt

∑
k∈t mAs

n,k∑
n∈Nt

∑
k∈t mABREF

n,k

(2)

where, similarly to the previously ABREF
n,k , we note As

n,k the set of
normalized activations of the neuron n for all the frames belong-
ing to the phone k and produced by the speaker s. In the same
way, we note mAs

n,k
the median value of this set of normalized

activations. It should be noted that ANPS score can range from
zero to an unbounded maximum value that we constrained to 1
considering that a greater value brings no more information than
a perfect production of the phonetic feature by the speaker in
question. Accordingly, a low score close to 0 implies that the
speech production of the speaker does not exhibit typical acous-
tic characteristics related to the phonetic feature in question.
This scoring approach revealed interesting results on the French
corpus C2SI-LEC as reported in [21]. Recorded within the C2SI
project [26], this corpus includes read speech produced by pa-
tients with HNC and control speakers, coupled with their per-
ceptual evaluations. By generating ANPS scores for these speak-
ers for the different phonetic features, we were able to link the
most deteriorated features, highly correlated to the perceptual
measures, with the role of the tongue, which can be strongly im-
pacted in cancers of oral cavity and oropharynx (i.e. the case of
C2SI patients). On the other side, no perturbation in the vocal
cord vibration was reported within the ANPS scores for the cor-
responding voiceness feature even for patients with very severe
speech degradation. This is consistent with our HNC patient pop-
ulation and would very probably not be the case if the patients in
question had laryngeal cancer.

3. Validation corpora
Various pathologies related to dysarthria or dysphonia are in-
volved in this comparative study. Each pathology is associated
with different populations of patients, described just below.

3.1. Dysarthria

Three types of dysarthrias are included in this study. They are all
associated with neurodegenerative diseases implying three major
neurological systems: the extrapyramidal system with Parkin-
son’s disease, the pyramidal system with Amyotrophic Lateral
Sclerosis, and the cerebellar system with Cerebellar ataxia. Pa-
tients involved were recruited in different hospitals at different
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periods as described below (all patients signed a consent form
when required). All of them were recorded on different speech
production tasks, among which a reading task on the French text
of ”Le cordonnier”, implied in this study. A group of 5 male
and 5 female control subjects is also considered, performing the
same reading task. They were all included in a past research
project [27].

• Group of Parkinson’s disease (PD): composed of two
sub-groups of patients (min./max. age: 48/85 years;
mean/standard deviation: µ=66.7 years/σ=8.6). The first one,
composed of 13 male and 3 female patients issued from the
CCM corpus described in [27], was recorded by Dr. Claude
Chevry-Muller over 30 years (between 1967 to 1997) in Paris.
The second sub-group, composed of 10 male and 5 female pa-
tients, referring to the AHN corpus in [27], was recorded at the
department of Neurology of Aix-en-Provence Hospital (im-
pulsed by Prof. François Viallet). It is worth noting that this
second sub-group performed a double task of reading, com-
prising the same text as the other groups of patients as well as
the reading of the French text ”La chèvre de M. Seguin”.

• Group of Cerebellar Ataxia (CA): composed of two sub-
groups of patients as well. The first one, still referring to the
CCM corpus, includes 6 male and 5 female patients. The sec-
ond sub-group was recorded at the department of Ear, Nose &
Throat (ENT) of the Timone Hospital at Marseille (impulsed
by Dr. Danielle Robert) and includes 7 male and 4 female
patients (min./max.: 32/86 yrs; µ=55.7 yrs/σ=16.3).

• Group of Amyotrophic Lateral Sclerosis (ALS): it was
recorded in the Voice and Speech lab. of the European Hospi-
tal Georges Pompidou in Paris by Dr. Lise Crevier Buchman
and her colleagues. It includes 14 male and 24 female patients
(min./max.: 44/89 yrs; µ=65.4 yrs/σ=9.4).

A perceptual evaluation of speech productions of all patients and
controls was performed at the same time by 11 expert judges (10
speech pathologists and 1 neurologist). This evaluation was done
according to the 9 items of a French perceptual evaluation scale
of dysarthria (GEPD) [28]. Seven speech dimensions - global
dysarthria severity, global speech/voice regularity, speech intelli-
gibility, presence of nasal resonance, palilalia, articulatory accu-
racy and regularity of the speech rate - were rated on a 4 degree
scale (0=normal to 3=severely impaired). Two last dimensions
- melodic fluctuation and speech rate - were rated on a -3 to 3
scale (0 being the normal degree, negative values referring to
hypo-modulation or slow rate of speech respectively). A final
item regarding the presence of a regional accent was evaluated
by experts as this may be very significant for some patients.

Figure 1 provides the mean scores of the different perceptual
items (including the presence of regional accent) on the differ-
ent dysarthric groups and control population. As reported in
[29] on similar patient sub-populations, the ALS group has the
most severely rated speech, with the highest scores for global
dysarthria, speech intelligibility and articulation accuracy. It is
followed by the CA group, and afterwards the PD group on the
same scores. The ALS group also presents the largest presence
of nasal resonance, which is typically due to the weak or ab-
sent closure of velo-pharynx. Although speech rate and speech
melody will not be addressed later, abnormal slow speech rate
is observed on CA and ALS groups, typical of ataxic or flaccid-
spastic dysarthria as opposed to normal or fast observations for
the PD group.

Figure 1: Mean perceptual scores according to 9 GEPD items &
the regional accent per dysarthria group and control speakers.

3.2. Dysphonia

The corpus of dysphonic voices was recorded in the 2000s at the
department of ENT of the Timone Hospital at Marseille. It is
composed of 80 records of female voices, including 20 control
subjects and 60 dysphonic patients, aged from 17 to 50 years
(average 32.2 years) [30]. The set of dysphonic patients under-
went a laryngoscopic examination showing dysphonia essentially
of functional origin mainly due to nodules, oedemas, polyps,
and cysts (gathering 53 patients among 60). All patients were
recorded on a reading task of the French text ”La chèvre de M.
Seguin”. The 80 female speakers were selected among a larger
corpus in order to be equally distributed into the 4 levels of the
Global item of the GRBAS scale [2]: 20 normal/control voices
(i.e. grade G0), 20 voices with mild dysphonia (i.e. grade G1),
20 voices with moderate dysphonia (i.e. grade G2), and 20 voices
with severe dysphonia, but still intelligible (i.e. grade G3). The
GRBAS-based assessment of the larger corpus was performed by
a panel of clinical experts following a consensus decision.

4. Experiments
This section provides a comparative analysis examining to which
extent we can rely on NCD approach and the ANPS score to ex-
tract relevant knowledge related to the specific characteristics of
each pathology: dysarthria (ALS, CA and PD) and dysphonia.

4.1. Comparative analysis based on ANPS scores

At this stage, the analysis is carried out for each pathology based
on ANPS scores computed for each individual phonetic feature
and the concerned patients and control speakers.
For visualization, heatmaps are used to plot ANPS scores, where
the x-axis represents the speakers sorted, by pathology, from the
least severely affected (on the right) to the most severely affected
(on the left) within the same group (according to the global per-
ceptual severity measure), while the y-axis represents the pho-
netic characteristics of the macro-class in question. Due to lim-
ited space, only the heatmap related to the consonant phonetic
features is presented in this paper in figure 2. A sequential scale
shows the progression from the most to the least opaque shades
of red color, representing low to high score values. As a first
global observation, we can clearly mention that cells with high
opacity are concentrated in the left side of each pathology, which
is consistent with the high global severity level of the correspond-
ing patients. The heatmap visualization is also supported by a
Pearson correlation analysis summarized in table 1 between the
different ANPS scores associated with the subset of phonetic fea-
tures as well as the subset of perceptual measures that we con-
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Figure 2: Heatmap showing ANPS scores per consonant phonetic feature (y-axis) and patients grouped by pathology and sorted by
Global Severity within each group (x-axis), in addition to control speakers

Table 1: Most relevant phonetic features regarding correlation
rates between their ANPS scores and perceptual measures

Vowels Consonants
[-nas.] [+bac.] [+rou.] [+hig.] [-con.] [-nas.] [+com.]

G
Se

v. ALS 0.50 0.74 0.59 0.78 0.76 0.74 0.79
CA 0.47 0.60 0.39 0.27 0.37 0.52 0.41
PD 0.71 0.67 0.85 0.73 0.82 0.72 0.74

In
te

ll. ALS 0.60 0.74 0.67 0.67 0.78 0.77 0.84
CA 0.67 0.65 0.47 0.43 0.58 0.61 0.57
PD 0.66 0.64 0.84 0.73 0.81 0.70 0.74

N
as

.R
. ALS 0.76 0.64 0.64 0.75 0.75 0.81 0.55

CA 0.41 0.72 0.40 0.00 0.05 0.33 0.25
PD 0.57 0.56 0.65 0.53 0.63 0.63 0.56

A
rt

ic
. ALS 0.51 0.73 0.60 0.68 0.75 0.70 0.85

CA 0.49 0.63 0.29 0.20 0.29 0.44 0.36
PD 0.67 0.69 0.83 0.76 0.76 0.73 0.71

All correlation values are in absolute value ( those ≥ 0.75 are in bold)

sider as the most relevant according to pathologies.
Although ALS, PD and CA are associated with different types of
dysarthria, it is worth mentioning that they all show difficulties
in the consonant production in terms of articulatory alteration or
consonant imprecision [1]. This reason is behind our choice of
including the consonant feature heatmap.
ALS: It is worth noting that the perceptual measure of the nasal
resonance is mainly correlated with the ANPS scores of patients
suffering from ALS when compared to the rest of pathologies.
More specifically, the phonetic features [-nasal] for the vowel
and consonant macro-classes are among the top two phonetic fea-
tures with which this measure correlates most strongly, with 0.76
and 0.81 respectively. These correlations, visually clear for the
consonant phonetic feature [-nasal] in figure 2 for ALS, suggest
that the ALS patients have a nasal quality voice (i.e. oral phones
are badly nasalized). This finding is altogether consistent with
the high nasal resonance of the patients, perceived by the ex-
pert jury as reported in section 3.1, and with the well-known hy-
pernasality of mixed dysarthria characterizing ALS patients [1].
Furthermore, regarding the imprecision of consonants, which is
one of the characteristics of ALS, it is observed in table 1 that
[+compact] and [-continuous] are strongly correlated with the
articulatory measure of ALS, with values equal to 0.85 and 0.75
respectively.
PD: the imprecision of consonants is also an important feature
in Parkinson’s disease and usually includes distortions due to the
reduction of articulatory movements notably. In particular, this
imprecision is observable in the table through the strong corre-
lation of the feature [-continuant] with related perceptual mea-
sures, such as global severity, intelligibility and articulation ac-
curacy. This can be notably explained by the parkinsonian re-
duced capacity of completing articulatory occlusion [31].
CA: Surprisingly, while the cerebellar patients show rather simi-
lar patterns to the other dysarthric groups on the heatmap, no cor-
relation score with the perceptual assessments exceeds 0.7 value.
Further patient-by-patient analysis is required here to better un-
derstand ANPS scores obtained and their consistency with per-
ceptual measures and related dysarthria characteristics.

Dysphonia: Since dysphonia is a voice disorder, we can clearly
notice in figure 2 that almost none of the phonetic features related
to the place or manner of articulation are significantly impaired,
as this would be the case with speech disorders, considering the
most affected patients. We would have expected the phonetic fea-
ture [+voiced] to be affected, almost within G2 and G3 patients.
However, three patients only exhibit very low scores (less than
0.5) for that feature. When checking the corresponding record-
ings, it turns out that two of these patients have the most severe
voice disorders (compared with other patients rated G3). Indeed,
they are characterized by a weak and whispered speech as well
as some large difficulties to produce speech (vocal fatigue).

4.2. ANPS and phonetic content variability

So far, we have demonstrated the capacity of our approach to re-
flect some speech impairments, depending on the speech pathol-
ogy observed. At this stage, our aim is to study the robustness of
the approach to the variability of phonetic content. To this end,
we observe the ANPS scores of the (AHN) PD patients described
in section 3.1, who were involved in a double reading task on
two different texts. Given the set of independent paired ANPS
scores (xi,j , yi,j), ∀j, i = 1, .., 15 where j refers to the phonetic
feature produced by the ith patient on ”La chèvre de M. Seg.”
and ”Le cordonnier” texts respectively, considering vowels and
consonants macro-classes independently . The Wilcoxon signed
rank test is applied to identify whether a significant difference ex-
ists between the matched pairs. Results with a p-value=0.015 and
p-value=4x10−4 for vowel and consonant macro-classes resp.
show a significant difference between scores, which means that
the proposed scores are not independent from the text and re-
lated phonetic content (which is not so surprising). A preliminary
analysis tends to show that the phonetic features are not equally
affected by the text used. Further analysis is therefore required.

5. Conclusion
Although our model was trained on healthy speech for the task of
phone classification and had never received any prior information
about pathological speech, we have shown that we are able to ex-
tract relevant knowledge related to the specific characteristics of
some pathologies, like ALS and the Parkinson’s disease consid-
ered in this paper. Thus, despite the variability in speech produc-
tion we can observe between patients, typical observations can
be made in a similar way to the ones reported for the HNC can-
cers in our previous work. To the best of our knowledge, there
is no study in the scientific literature that highlighted the capac-
ity of an automatic tool to generate interpretations not only on
different types of dysarthria, but also on cancers and dysphonia.
Nonetheless, we are aware that further studies, focusing more on
the interpretation of these results from a clinical point of view,
must be conducted to complete this validation study.
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