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Abstract The paper tackles the problem of clustering

multiple networks, directed or not, that do not share the

same set of vertices, into groups of networks with simi-

lar topology. A statistical model-based approach based

on a finite mixture of stochastic block models is pro-

posed. A clustering is obtained by maximizing the in-

tegrated classification likelihood criterion. This is done

by a hierarchical agglomerative algorithm, that starts

from singleton clusters and successively merges clus-

ters of networks. As such, a sequence of nested clus-

terings is computed that can be represented by a den-

drogram providing valuable insights on the collection of

networks. Using a Bayesian framework, model selection

is performed in an automated way since the algorithm

stops when the best number of clusters is attained.

The algorithm is computationally efficient, when care-
fully implemented. The aggregation of clusters requires

a means to overcome the label-switching problem of the

stochastic block model and to match the block labels

of the networks. To address this problem, a new tool is

proposed based on a comparison of the graphons of the

associated stochastic block models. The clustering ap-

proach is assessed on synthetic data. An application to

a set of ecological networks illustrates the interpretabil-

ity of the obtained results.
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1 Introduction

Networks are key objects for describing interactions be-

tween individuals or entities in complex systems. Today,

entire collections of networks emerge in more and more

fields of application. To list a few examples, in social

sciences face-to-face contacts among individuals at dif-

ferent time periods are represented as a set of behav-

ioral networks (Isella et al., 2011). In medical research,

a brain connectome is a network describing a patient’s

brain activity (Donnat and Holmes, 2018). In biology,

metabolic networks for hundreds of different bacteria

are available (Weber-Zendrera et al., 2021). In ecology,

foodwebs represent the interactions of species in differ-

ent ecosystems (Poisot et al., 2016).

When analyzing multiple networks, most questions
are related to graph comparison. We may wish to quan-

tify the (dis)similarity between networks, detect out-

liers or some temporal evolution of networks. In general,

it is informative to reduce the dimension of the data by

finding groups of networks sharing similar characteris-

tics. For instance, we may want to automatically group

together patients with the same brain state, or identify

bacteria with roughly the same metabolism, or in the

context of climate change find ecological networks with

similar overall organization. The focus of this work is

on clustering of networks, which are directed or undi-

rected and that may not share the same set of vertices

and may vary in size . We seek a method that partitions

the networks according to their topology.

1.1 Graph comparison

The clustering task requires some notion of graph sim-

ilarity. However, networks have complex structure, and
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so graph comparison is not trivial and similarity or

graph distances can be defined in many ways. A widespread

approach is based on graph embeddings. A graph em-

bedding is a low-dimensional vector representation of

a network encoding structural information about the

network. Traditional embeddings are hand-crafted and

composed of local or global network summary statistics

like the edge density, node degrees and clustering coef-

ficients. Then, graph similarity is defined using the dis-

tance between the embedding vectors, and graph clus-

tering is easily performed using off-the-shelf machine

learning algorithms as k-means or spectral clustering.

Clearly, the clustering result heavily depends on the

chosen embedding.

The machine learning literature proposes many al-

ternative graph embeddings, as for instance graph ker-

nel methods (Gärtner, 2003; Shervashidze et al., 2009),

graph Laplacian methods (Shimada et al., 2016), ex-

tensions of node embeddings (Hamilton et al., 2017),

graph neural networks (Xu et al., 2019; Wu et al., 2021)

and data-driven methods based on graphlets (le Gorrec

et al., 2022). However, in practice it is far from evident

how to choose the most suitable embedding (Botella

et al., 2022).

An alternative to graph embeddings are model-based

approaches. Here a statistical model is introduced and

networks forming a cluster are assumed to be generated

independently from a common probabilistic model. To

put it differently, data are modeled by a finite mixture

model of random graph models and mixture compo-

nents correspond to clusters of networks. The problem

of graph comparison is thus recast as a problem of es-

timating and comparing the probabilistic models that

generated the observed networks (Stanley et al., 2016;

Sabanayagam et al., 2022).

A major advantage of model-based approaches over

graph embeddings is the possibility to quantify uncer-

tainty of the results. For instance, one may compute

the posterior probability for a network to belong to a

given cluster or compare the likelihoods of two cluster-

ings. Furthermore, it provides a natural framework for

model selection, that is, the automated choice of the

best number of clusters.

For graph comparison, two general settings must be

distinguished. In the first case, all networks are defined

on the same set of vertices, as for networks with a tem-

poral dynamic or brain connectomes, where a vertex

always refers to the same brain region. Then graph dis-

tances can be based on local features comparing struc-

tures of node neighborhoods. In the second case, the

sets of vertices are completely different from one net-

work to another, without any correspondence among

the nodes of the different networks. This is the setting

we are interested in and which is far less explored in the

literature. The mangal database (Poisot et al., 2016),

for example, provides hundreds of foodwebs from all

over the globe, where each foodweb describes an ecosys-

tem coming with its own set of species. To compare such

networks, local features are useless, and only the overall

topology of the networks is meaningful.

1.2 Mixture models for sets of networks

Using finite mixtures to perform clustering has a long-

standing tradition (Titterington et al., 1985; McLach-

lan and Peel, 2000), but only recently, this approach has

been explored for graph clustering. To define a mixture

model, a random graph model for the mixture compo-

nents has to be chosen. For networks with constant node

sets, the stochastic block model and generealized linear

models may be used (Stanley et al., 2016; Signorelli and

Wit, 2019), or extensions of measurement error models,

where networks are considered to be perturbations of

some ground-truth graph (Mantziou et al., 2023; Young

et al., 2022). Mukherjee et al. (2017) and Sabanayagam

et al. (2022) propose nonparametric models, where the

distribution of the mixture components is estimated

by a graphon estimate. Shortcomings of the latter ap-

proach include the restriction to undirected graphs and

the lack of interpretation, since analyzing graphons is

not convenient.

In this paper, a new mixture model is proposed. As

we desire an interpretable model, we choose the popular

stochastic block model (SBM) (Nowicki and Snijders,

2001) for the mixture components. The SBM is a highly

flexible model, which accommodates a large variety of

heterogeneous graph topologies as often encountered in

applications. A further advantage is the interpretability

of the parameters of a SBM. Many model variants exist

(see Matias and Robin (2014) for a review), which un-

derlines the relevance of SBM. In particular, extensions

of the SBM for sets of networks include repeated mea-

surements of a ground-truth SBM network (Le et al.,

2018), a mixture of SBMs with fixed nodes (Stanley

et al., 2016), and networks that are generated by SBMs

with varying parameters (Chabert-Liddell et al., 2022).

The SBM is a discrete latent variable model and pa-

rameter estimation is challenging due to its involved de-

pendence structure. Several inference algorithms have

been proposed like variational EM-algorithms (Daudin

et al., 2008), MCMC methods (Nowicki and Snijders,

2001; Peixoto, 2014), a pseudo-likelihood approach (Amini

et al., 2013), a Bayesian approach based on the inte-

grated classification likelihood (ICL) (Côme and La-

touche, 2015), spectral clustering (Rohe et al., 2011)
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and, more recently, a variational autoencoder using neu-

ral networks (Mehta et al., 2019). None of them is per-

fect, some are time-consuming and not scalable to large

networks, others are fast, but provide unstable results.

1.3 Graph clustering algorithms

A simple clustering approach is based on graph dis-

tances. That is, one computes a similarity matrix for

the pairwise comparison of the networks and then a

clustering is derived via spectral clustering (Mukherjee

et al., 2017; Sabanayagam et al., 2022). This approach

does not account for the uncertainty of estimates and

lacks a natural model selection device.

In a mixture model the clustering task becomes an

inference problem, since cluster labels correspond to

latent variables of the model. In general model-based

clustering, EM-type algorithms (McLachlan and Kr-

ishnan, 2008), MCMC (Liu, 2008) and hierarchical ag-

glomerative algorithms (Fraley and Raftery, 2002) are

traditionally used to jointly infer cluster labels and model

parameters. In the case of graph clustering, for mix-

tures of networks with a constant node set, EM algo-

rithms are developed (Stanley et al., 2016; Signorelli

and Wit, 2019) as well as Gibbs samplers (Young et al.,

2022; Mantziou et al., 2023). Among these methods

only the one by Mantziou et al. (2023) includes the

inference of the number of clusters in the algorithm

by using a sparse finite mixture in a Bayesian frame-

work (Frühwirth-Schnatter and Malsiner-Walli, 2019).

All other methods have the disadvantage that they re-

quire the specification of the number of clusters. Then

model selection is performed in an exploratory way by

running the algorithm with different numbers of clus-

ters and then comparing the solutions with an appro-

priate criterion.

In the present work, we explore the development of a

hierarchical agglomerative algorithm. Starting from an

oversegmented clustering with singleton clusters, clus-

ters are successively merged to larger clusters while

optimizing some criterion. Interestingly, the algorithm

provides a whole cluster hierarchy that can be visual-

ized by a dendrogram and intermediate clusterings are

easily inspected. If the criterion includes a penalization

of the number of clusters, the algorithm automatically

stops when any further cluster aggregation results in

a deterioration of the objective. Thus, model selection

is performed automatically. Such penalized criterions

are naturally obtained by using Bayes factors (Robert,

2007).

For our mixture model of SBMs, we follow the line

of research initiated by Côme and Latouche (2015) that

consists in choosing the integrated classification likeli-

hood (ICL) as the objective for the hierarchical agglom-

erative algorithm. We show that the algorithm can be

implemented efficiently and assess its performance by

numerical experiments.

1.4 Block-label matching

In our algorithm an interesting issue is encountered dur-

ing the aggregation of two clusters. Indeed, merging

clusters amounts to combine the corresponding SBMs.

However, due to the label-switching problem in the

SBM, this is not simple. Using the graphon functions

(Lovász and Szegedy, 2006) of the SBMs, we propose

a new tool to match block labels in a computationally

efficient way. This tool should also be of interest be-

yond our clustering algorithm, whenever two SBMs are

compared and the problem of label-switching occurs.

1.5 Contributions

The contributions of the paper are as follows.

– A finite mixture model of SBMs is introduced for

sets of networks that do not share the same vertices

and not even the same number of vertices, applying

to both directed and undirected graphs (Section 2).

– A hierarchical agglomerative algorithm to cluster

networks and estimate model parameters is devel-

oped (Section 3 and 4).

– We propose a new tool to match block labels of two

SBMs (Section 5).

– A numerical study assesses the performance of the

algorithm and illustrates its utility on a collection

of foodwebs (Section 6).

2 Mixture of stochastic block models

In this section we first recall the definition of the clas-

sical SBM for a single network. Then we introduce the

mixture of SBMs for a collection of networks without

vertex correspondence. Throughout the paper we con-

sider directed binary networks without self-loops, but

extensions to other types of networks are straightfor-

ward.

2.1 Stochastic block model for a single network

Consider a network with n vertices. Denote (π,γ) the

parameters of a SBMwithK blocks, where π = (π1, . . . , πK) ∈
(0, 1)K are the block proportions with

∑
k∈JKK πk = 1
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and γ = (γk,l)k,l ∈ (0, 1)K×K the connectivity ma-

trix. Let Z = (Z1, . . . , Zn) ∈ JKKn be a vector of in-

dependent discrete latent variables for the nodes, with

P(Zi = k) = πk for all k ∈ JKK and i ∈ JnK. Condi-
tionally on the node labels Z, the observed adjacency

matrix A = (Ai,j)1≤i,j≤n ∈ {0, 1}n×n verifies

A|Z =
⊗
i ̸=j

Ai,j |Zi, Zj =
⊗
i ̸=j

B
(
γZi,Zj

)
,

where B(γ) is the Bernoulli distribution. We denote the

distribution of A by SBMn (π,γ) .

2.2 Mixture of SBMs for a collection of networks

Now we consider a collection of networks modeled by a

finite mixture model, where each mixture component is

a SBM. That is, networks belonging to the same cluster

are independent realizations of the same SBM.

Formally, let A = {A(m),m ∈ JMK} be a collec-

tion of M networks, where A(m) = (A
(m)
i,j )1≤i,j≤n(m) ∈

{0, 1}n(m)×n(m)

denotes the adjacency matrix of the m-

th network. Networks may have different numbers n(m)

of vertices and no correspondence among the nodes

is assumed. We introduce independent discrete latent

variables U = (U (1), . . . , U (M)) ∈ JCKM defining a par-

titioning of the M networks into C ≥ 1 clusters. Denote

pc = P(U (m) = c), c ∈ JCK the cluster proportions and

p = (p1, . . . , pC) ∈ (0, 1)C . Now, let (π(c),γ(c)), c ∈
JCK be parameters of C different SBMs. The associ-

ated numbers of blocks, say Kc, are not constrained to

be equal. We assume that all networks in cluster c are

independent realizations of the SBM with parameter

(π(c),γ(c)), that is, conditionally on U ,

A|U =

M⊗
m=1

A(m)|U (m)

=

M⊗
m=1

SBMn(m)

(
π(U(m)),γ(U(m))

)
.

Denote θ =
(
p, {(π(c),γ(c)), c ∈ JCK}

)
the parameters

of the mixture model, and note that θ is identifiable

only up to label switching. That is, switching cluster

labels always results in the same probability distribu-

tion ofA. In addition, in every SBM, the node labels are

also identifiable only up to label switching. We adapt

the notation of the node labels by adding superscript
(m), that is, Z(m) = (Z

(m)
1 , . . . , Z

(m)

n(m)), and also denote

Z = {Z(m),m ∈ JMK}.

3 Clustering and estimation using the ICL

criterion

In a mixture of SBMs, graph clustering becomes the

recovery of the latent variables U from the data A. We

develop a clustering algorithm by maximizing the so-

called integrated classification likelihood criterion (ICL),

defined as the log-likelihood function of the complete

data, that is, the observations and the latent variables.

Traditionally, this criterion has been used for model se-

lection in various latent variable models, often in con-

nection with the EM algorithm (Biernacki et al., 2000).

More recently, Côme and Latouche (2015) showed that

the ICL can also be used for directly estimating the

latent variables. Compared to alternative approaches

like EM, an unequivocal advantage is that model se-

lection is performed automatically. Here we adapt the

approach to mixtures of SBMs. In this section, the ICL

is first introduced for a single cluster, then defined for

our mixture model.

3.1 ICL criterion for a single cluster

In this subsection A is assumed to be a collection of

i.i.d. networks of a SBM with K blocks and parameters

(π,γ). Considering a Bayesian framework, let p(π,γ)

be a prior distribution on the SBM parameters and de-

fine the ICL criterion as

ICLsbm(A,Z) = log(p(A,Z))

= log

(∫
p(A,Z|π,γ)p(π,γ)d(π,γ)

)
.

Interestingly, by integrating out the model parameters,

the criterion only depends on the observations A and

the latent nodel labels Z. The value of Z optimizing

the ICL, that is,

Ẑ = argmax
Z

ICLsbm(A,Z),

corresponds to the node labels maximizing the posterior

distribution of Z and hence is a natural estimate of the

latent variables. Using the following prior

p(π,γ) = p(π)×
∏

k,l∈JKK2
p(γk,l)

= Dir(π;α1, . . . , αK)×
∏

k,l∈JKK2
Beta(γk,l; ηk,l, ζk,l),

where α1, . . . , αK , ηk,l, ζk,l are hyperparameters of the

Dirichlet and the Beta distributions, the ICLsbm has

closed-form expression. For simplicity, hyperparameters

for all priors are set to identical values, that is, α = αk,

η = ηk,l and ζ = ζk,l for (k, l) ∈ JKK2. To state the
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ICLsbm, we use the one-hot encoding for node labels

Z
(m)
i = (Z

(m)
i,1 , . . . , Z

(m)
i,K ) ∈ {0, 1}K and the following

count statistics for the m-th network

s
(m)
k =

∑
i∈JnK

Z
(m)
i,k , a

(m)
k,l =

∑
i ̸=j

Z
(m)
i,k Z

(m)
j,l A

(m)
i,j ,

b
(m)
k,l =

∑
i ̸=j

Z
(m)
i,k Z

(m)
j,l (1−A

(m)
i,j ),

where s
(m)
k is the number of vertices assigned to block

k, a
(m)
k,l the number of edges that link a vertex of block

k with a vertex in block l and b
(m)
k,l is the number of

pairs with a vertex of block k and a vertex in block l

that are not connected. Moreover, denote

sk =
∑

m∈JMK

s
(m)
k ,ak,l =

∑
m∈JMK

a
(m)
k,l ,bk,l =

∑
m∈JMK

b
(m)
k,l .

With these notations at hand, the ICL is given by

ICLsbm(A,Z)

=
∑

(k,l)∈∈JKK2
log

(
Γ (η + ak,l)Γ (ζ + bk,l)

Γ (η + ζ + ak,l + bk,l)

)

+
∑

k∈JKK

log (Γ (α+ sk)) +K2 log

(
Γ (η + ζ)

Γ (η)Γ (ζ)

)

+ log

(
Γ (Kα)

Γ
(
Kα+

∑
m n(m)

))−K log (Γ (α)) .

3.2 ICL criterion for a mixture of SBMs

In a mixture of SBMs, there are two types of latent

variables, namely the clustering U of the networks and

the node labels Z. The ICL is then defined as

ICLmix(A,U ,Z) = log(p(A,U ,Z))

= log

(∫
p(A,U ,Z|θ)p(θ)dθ

)
,

where p(θ) is a prior on the model parameters. The

values (Û , Ẑ) that maximize the ICL are convenient

estimates of the graph clustering and the node labels.

They are defined as

(Û , Ẑ) = argmax
U,Z

ICLmix(A,U ,Z). (1)

Again we consider classical independent conjugate pri-

ors given by

p(θ) = p(p)
∏

c∈JCK

p(π(c))p(γ(c))

= Dir(p;λ1, . . . , λC)
∏

c∈JCK

Dir(π(c);α1, . . . , αKc)

×
∏

(k,l)∈JKcK2
Beta(γ

(c)
k,l ; ηk,l, ζk,l),

where λc, αk, ηk,l, ζk,l are hyperparameters. Let Ic be

the set of indices of networks belonging to cluster c, that

is, Ic = {m ∈ JMK : U (m) = c} for c ∈ JCK, and denote

A(c) = {A(m),m ∈ Ic} and Z(c) = {Z(m),m ∈ Ic}.
Then, one can show that the ICL can be rewritten as

ICLmix(A,U ,Z)

=
∑

c∈JCK

ICLsbm(A(c),Z(c)) + log

(∫
p(U|p)p(p)dp

)
.

The last term on the right-hand side has closed form

given by

log

(∫
p(U|p)p(p)dp

)
= log

(
Γ (Cλ)

(Γ (λ))CΓ (Cλ+M)

)
+
∑

c∈JCK

log (Γ (λ+ |Ic|)) .

The ICL criterion is not exactly a similarity measure

that compares clusters of networks, but it is a model-

based likelihood criterion that defines what the best

clustering is.

4 Hierarchical clustering algorithm

First the general structure of the new clustering algo-

rithm is presented. Then we give more details on some

parts of the algorithm.

4.1 General structure of the algorithm

To solve the discrete optimization problem given by (1),

we propose a greedy hill-climbing algorithm. The algo-

rithm is initialized by a mixture of M SBMs by setting

U (m) = m for m ∈ JMK, that is, every network forms a

cluster on its own. Then, at every iteration, two clusters

are combined to a single larger cluster. More precisely,

for any pair of clusters (c, c′) ∈ JCK2, the ICL variation

∆c,c′ is evaluated defined as

∆c,c′ = ICLmix(A,Uc∪c′ ,Zc∪c′)− ICLmix(A,U ,Z),

where U and Z are the current latent variables and

Uc∪c′ and Zc∪c′ the ones obtained by merging the clus-

ters c and c′. Finally, the cluster aggregation yielding

the largest ICL increase is actually performed. The al-

gorithm stops automatically when the ICL would de-

crease if any further clusters are merged. The granular-

ity of the final clustering Û depends on the data and on

the hyperparameters λc, see Section 6.2 for a discussion

of this point.

The algorithm also requires initial values for the la-

tent node labels Z. We propose to adjust a simple SBM
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Fig. 1: Illustration of the non-identifiability of block la-

bels in the SBM on two networks with similar topology.

Colors indicate the block labels Z(m).

to each network A(m) yielding an estimate (π(m),γ(m))

of the SBM parameters as well as node labels Z(m). Our

implementation uses the variational EM algorithm of

the R package blockmodels (Leger, 2016), which per-

forms an automatic selection of the number of SBM

blocks by running the algorithm several times with dif-

ferent numbers of blocks and comparing those solutions

using a classical ICL-type criterion.

The aggregation of two clusters raises an issue re-

lated to the non-identifiability of the block labels in a

SBM. In fact, it occurs that node labels in the two clus-

ters do not refer to the same type of blocks as illustrated

in Figure 1. Here, once the community is in red, once

in black indicating that different block labels are used

for the same type of block. However, in our algorithm,

for a given cluster, node labels must designate the same

SBM block in every network. If this is not the case, it is

necessary to relabel the nodes before merging the clus-

ters. In Section 5 we develop a new tool to find the best

correspondence of the block labels of two SBMs.

After merging two clusters, the current node labels

can be further improved by searching the maximum of

ICLmix in Z, while keeping the clustering U fixed. This

amounts to maximize the term ICLsbm for the newly

created cluster. We propose an adaptation of the pro-

cedure by Côme and Latouche (2015) to fit a SBM to

a single network. Roughly, for every node we test if

changing its node label increases the ICL or not. See

Section 4.2 for details.

Algorithm 1 summarizes the entire clustering algo-

rithm. It provides the best clustering Û , node labels

Ẑ and also parameter estimates for the SBM of every

cluster.

Algorithm 1 Agglomerative algorithm for graph clus-

tering

Input: Collection of networks A.
Set U(m) = m for m ∈ JMK and set C = M .
for m ∈ JMK do

Fit a SBM to A(m) yielding parameters (π(m), γ(m))
and node labels Z(m).
end for
Set Z = {Z(m),m ∈ JMK} and θ = {(π(c), γ(c)), c ∈ JCK}.
while C > 1 do

for (c, c′) ∈ JCK2 do
Compute ∆c,c′ according to Section 4.3.

end for
Choose (c1, c2) such that ∆c1,c2

= maxc,c′ ∆c,c′ .
if ∆c1,c2

> 0 then
Set U(m) = min{c1, c2} for all m ∈ Ic ∪ Ic′ .
Update Z and θ according to Algorithm 3.
Set C = C − 1.

else
exit while

end if
end while
Output: Clustering U = {U(m),m ∈ JMK}, node labels
Z, SBM parameters {(π(c), γ(c)), c ∈ JCK}.

4.2 Update of node labels

After aggregating two clusters and relabeling the nodes,

we can further improve node labels Z(c) of the new

cluster c by maximizing the associated ICL criterion

ICLsbm. We propose an adaptation of the algorithm by

Côme and Latouche (2015), that fits a SBM to a sin-

gle network, to multiple networks. Indeed, the proposed

procedure is an algorithm to adjust one SBM to a col-

lection of i.i.d. networks. The idea is to randomly choose

a vertex and search its best block assignment in terms

of the ICL. So, one by one, node labels are changed

until no other swap would further improve the ICL. In

the context of graph clustering, the convergence of this

procedure is fast, since the current node labels are very

good initial points.

For notational convenience, we drop superscript (c)

of A(c) and Z(c) and simply write A and Z, as all com-

putations in this section only involve quantities related

to the cluster under consideration. Now, an iteration

of the procedure consists of the following steps. First,

select a network indice, say m∗ ∈ JMK, and one of its

vertices, say i∗ ∈ Jn(m)K. Denote g = Z
(m∗)
i∗ the current

block assignment of i∗. For any block h ∈ JKK compute

the impact on the ICL of moving node i∗ to block h,

that is,

∆→h
m∗,i∗ = ICLsbm(A,Z→h

m∗,i∗)− ICLsbm(A,Z),

where Z denotes the current node labels with Z
(m∗)
i∗ =

g, and Z→h
m∗,i∗ the labels after moving node i∗ to block

h, that is, Z
(m∗)
i∗ = h. Finally, we choose the best block



Model-based clustering of multiple networks with a hierarchical algorithm 7

assignment as

h∗ = arg max
h∈JKK

∆→h
m∗,i∗ ,

and set Z
(m∗)
i∗ = h∗.

For the efficient computation of the ICL changes

∆→h
m∗,i∗ , two cases have to be distinguished: moving node

i∗ to block h (i) does not empty block g; (ii) does empty

block g and so the number of blocks K diminishes.

First case: K does not change. First, a look on the evo-

lution of the count statistics s
(m∗)
k , a

(m∗)
k,l and b

(m∗)
k,l in-

duced by the swap shows that some of them only change

by a simple additive term and the others remain identi-

cal. In particular, the count statistics that are affected

by the swap can be efficiently updated from their cur-

rent values. Likewise, only a small part of the terms of

the criterion ICLsbm are affected leading to a formula

with few terms for a fast evaluation of the ICL variation

∆→h
m∗,i∗ . See the Appendix for all details.

Second case: K changes. Moving the last vertex i∗ to

another block, diminishes the number K of blocks by

one. Before giving the formula of ∆→h
m∗,i∗ in this case,

we have a closer look on the ICL criterion to better

understand its dependency on the model size K. Let

us compare the value of the ICL for a SBM with K

blocks containing an empty block to the ICL value of

the same data, but with the SBM where the empty

block is deleted, that is, a SBM with K−1 blocks. The

relation is given by

ICLsbm(K) = ICLsbm(K − 1)+

log
Γ (Kα)

Γ ((K − 1)α)
+ log

Γ ((K − 1)α+
∑

m n(m))

Γ (Kα+
∑

m n(m))
. (2)

The second and third term on the right-hand side are

a penalty or the price to pay for using a larger model

containing an empty block. Thus, by maximizing the

ICL, parsimonious models are automatically favored.

Now, the change of the ICL ∆→h
m∗,i∗ is exactly the same

term as in the first case, whereK does not change, given

in (6) in the Appendix, plus the penalty term given in

(2).

The whole procedure to update node labels is sum-

marized in Algorithm 2. In the implementation in the

graphclust package, iterations are grouped together to

epochs, where during one epoch all nodes of all networks

are visited exactly once in a random order. The algo-

rithm stops when a given maximal number of epochs is

attained, or when during one epoch no node changed

the block.

Algorithm 2 ICL maximization algorithm for fitting

one SBM to multiple networks

Input: Set of networks A, initial node labels Z.
while not converged do

Select a network m∗ ∈ JMK and one of its vertices i∗ ∈
Jn(m∗)K.

for h ∈ JKK do
Compute the impact ∆→h

m∗,i∗ on the ICL of moving
node i∗ to block h.

end for
Determine the best block assignment h∗ =

argmaxh∈JKK ∆
→h
m∗,i∗ .

Set Z
(m∗)
i∗ = h∗.

end while
Output: Updated node labels Z.

4.3 Efficient computation of ∆c,c′

In view of the computing time, it is important that

the evaluation of ICL variations ∆c,c′ is fast, as it is

done at every iteration for every pair of clusters (c, c′).

An inspection of the above expression reveals that only

the last two terms depend on the current number of

clusters C. In addition, the other terms do not change

from one iteration to another if both c and c′ have not

been changed in the previous iteration, that is, if none

of them is the result of the latest cluster aggregation.

Hence, for those clusters the new value of ∆c,c′ is the

previous value plus constant κC defined as

κC =− β (Cλ, λ)− log

(
Γ ((C + 1)λ+M)

Γ (Cλ+M)

)
+ β ((C − 1)λ, λ) + log

(
Γ (Cλ+M)

Γ ((C − 1)λ+M)

)
,

where β(x, y) = log
(

Γ (x)Γ (y)
Γ (x+y)

)
is the logarithm of the

Beta function of x and y and C is the number of clus-

ters that has diminished by 1 compared to the previous

iteration. In short, for all pairs of clusters (c, c′) where

both clusters have remained unchanged in the previous

iteration, the update is simply

∆new
c,c′ = ∆old

c,c′ + κC . (3)

However, for all pairs (c, c′), where one of the clus-

ters has been obtained by the last cluster aggregation,

∆c,c′ is computed according to equation (7) in the Ap-

pendix. Moreover, we can avoid the computation of the

statistics s
(m)
k , a

(m)
k,l , b

(m)
k,l for all m at every iteration by

storing them during the entire algorithm and only per-

forming local updates when necessary.

To summarize, at the beginning of the clustering al-

gorithm all sufficient statistics s
(m)
k , a

(m)
k,l , b

(m)
k,l are eval-

uated on the data. Then, for the first iteration ∆c,c′ is

evaluated by equation (7) for all M(M − 1)/2 pairs of
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initial clusters, which can be time-consuming, but may

be parallelized. During the algorithm, when the current

number of clusters is C and a total of C(C−1)/2 terms

∆c,c′ must be computed, only C − 3 of these terms are

obtained via (7), while all other terms are very quickly

updated via (3).

5 Matching of SBM node labels

Given the node labels, say Z(c) and Z(c′), and the SBM

parameters of two clusters of networks, the goal is to

find the best match of the block labels of the two SBMs.

A naive strategy consists in ordering one part of the

SBM parameters, for instance, the block proportions

π1, . . . , πK or the diagonal elements of the connectivity

matrix γ in a monotone order. However, as none of the

parts of the parameter contains all relevant information,

there are always cases where such an approach fails. To

take into account both parts of the parameter (π,γ),

we propose to use the graphon of the SBM as shown in

this section.

5.1 Graphon of a SBM parameter

The graphon, introduced by Lovász and Szegedy (2006),

is a function g : [0, 1]2 → [0, 1] that can be used as a gen-

erative model for exchangeable random graphs includ-

ing SBM. First, generate independent random variables

Ui ∼ U [0, 1] for the vertices i ∈ JnK. Then, condition-
ally on Ui and Uj , draw an edge Ai,j ∼ B(g(Ui, Uj)).

The graphon of the SBM (π,γ) is given by

g(π,γ)(u, v) = γk,l for (u, v) ∈ Rk,l,

where Rk,l = (qk−1, qk]× (ql−1, ql] and qk =
∑

s∈JkK πs,

k ∈ JKK, q0 = 0. Indeed, when Ui ∈ (qk−1, qk], then

Zi = k. The graphon g(π,γ) is a piecewise constant func-

tion depending on the entire SBM parameter. Clearly, it

also depends on the order of the block labels. Changing

the block labels implies the permutation of the piece-

wise constant parts of the graphon as illustrated in Fig-

ure 2.

5.2 Label-dependent distance measure for two SBM

parameters

To compare SBMs with parameters (π(c),γ(c)) and

(π(c′),γ(c′)), consider the L2-distance of their graphons.

Fig. 2: Graphons of a SBM with two different orders of

the block labels.

By the piecewise constant character, the square dis-

tance is a finite sum given by

∥g(π(c),γ(c)) − g(π(c′),γ(c′))∥
2
2

=

∫
[0,1]2

(g(π(c),γ(c))(u, v)− g(π(c′),γ(c′))(u, v))
2d(u, v)

=
∑

k,l,k′,l′

(
γ
(c)
k,l − γ

(c′)
k′,l′

)2
|Rk,l,k′,l′ |, (4)

where |Rk,l,k′,l′ | denotes the area of Rk,l,k′,l′ defined as

Rk,l,k′,l′ =
{(

q
(c)
k−1, q

(c)
k

]
∩
(
q
(c′)
k′−1, q

(c′)
k′

]}
×{(

q
(c)
l−1, q

(c)
l

]
∩
(
q
(c′)
l′−1, q

(c′)
l′

]}
,

This distance is zero if and only if parameter values

are identical ((π(c),γ(c)) = (π(c′),γ(c′))) as well as the

order of the blocks. Thus, it is a label-dependent dis-

tance measure. Furthermore, the graphon distance is

well-defined even when the number of blocks of the two

models differ.

5.3 Matching SBM blocks

Our tool to match block labels of two SBM parameters

consists in finding the permutations yielding the small-

est graphon distance. More precisely, let Kc and Kc′ be

the number of blocks in (π(c),γ(c)) and (π(c′),γ(c′)),

resp. Denote by SK the set of all permutations of JKK
and a parameter with permuted blocks by

σ(π,γ) =
(
(πσ(1), . . . , πσ(K)), (γσ(k),σ(l))k,l

)
.

We define permutations σ̂c and σ̂c′ as the solutions of

the minimization

min
σ1∈S

K(c) ,σ2∈S
K(c′)

∥gσ1(π(c),γ(c)) − gσ2(π(c′),γ(c′))∥2.

The solution is not unique, as for any τ ∈ SK(c) the

minimum is also attained with the permutations τ ◦ σ̂c

and τ ◦ σ̂c′ .
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Algorithm 3 Graph cluster aggregation

Input: Two sets of networks A(c) and A(c′) with asso-
ciated node labels Z(c) and Z(c′) and SBM parameters
(π(c), γ(c)) and (π(c′), γ(c′)).
Step 1 Find the permutations σ̂c and σ̂c′ as described in
Section 5.4 giving the best match of blocks of (π(c), γ(c))
and (π(c′), γ(c′)).
Step 2 Reorder node labels: Z(c) ← σ̂c(Z(c)) and Z(c′) ←
σ̂c′(Z(c′)).
Step 3 Update the node labels Zc∪c′ by the ICL maxi-
mization Algorithm 2.
Step 4 Compute the SBM parameter (π(c∪c′), γ(c∪c′))
associated with Ac∪c′ and Zc∪c′ according to (3).
Output: Node labels Zc∪c′ and parameter
(π(c∪c′), γ(c∪c′)) for the new cluster.

For the practical computation of σ̂c and σ̂c′ , an

exhaustive exploration of all permutations SK(c) and

SK(c′) is feasible when the number of blocksKc andKc′

are not too large. However, we propose a general simpli-

fication based on an identifiability property of graphons

(Bickel and Chen, 2009) which states that if an undi-

rected random graph model admits a graphon such that

its marginal ḡ =
∫
g(u, v)dv is strictly monotone, then

the graphon is identifiable. As the SBM graphon is

piecewise constant, strict monotonicity does not hold.

Nevertheless, we introduce the canonical graphon de-

noted by gcan as the permutation of the SBM param-

eters such that its marginal ḡ is monotone decreasing.

Hence, instead of exploring all possible permutations of

the block labels, we choose as σ̂c and σ̂c′ the permu-

tations providing the canonical representation of the

graphons. In the directed case, where the marginals

ḡ(u) =
∫
g(u, v)dv and ¯̄g(v) =

∫
g(u, v)du are not the

same, a reasonable adaptation is to first order blocks

according one marginal, say ḡ. Then, if ḡ is constant

over two SBM blocks, order these two blocks such that

the other marginal ¯̄g is decreasing over these two blocks.

5.4 Relabeling nodes during cluster aggregation

Let us summarize all steps to relabel nodes when merg-

ing two clusters. First, estimate the SBM parameters

for both clusters by the maximum a posterior estima-

tor defined by

(π̂(c), γ̂(c)) = arg max
(π,γ)

p((π,γ)|A(c),Z(c)),

with simple closed-form expressions given by

π̂
(c)
k =

∑
m∈Ic

s
(m)
k + α− 1∑

m∈Ic
n
(m)
k +K(α− 1)

, (5)

γ̂
(c)
k,ℓ =

∑
m∈Ic

a
(m)
k,ℓ + η − 1∑

m∈Ic
(a

(m)
k,ℓ + b

(m)
k,ℓ ) + η + ζ − 2

, k, ℓ ∈ JKcK.

Fig. 3: Proportion of data sets on which the number of

SBM blocks is estimated to be 3 (blue) or not. Boxplots

of the graphon distances of the estimated SBM and the

true one (red) and boxplots of the ARI of the node

labels (cyan). All results on 100 data sets.

Next, the permutations σ̂c and σ̂c′ to obtain the

canonical representations of the associated graphons

are determined and the node labels Z(c) and Z(c′) are

updated accordingly by

Z(ℓ)
update = (σ̂ℓ(Z

(j)), j ∈ Iℓ), with

σ̂ℓ(Z
(j)) = (Z

(j)
σ̂ℓ(1)

, . . . ,Z
(j)

σ̂ℓ(n(j))
), ℓ ∈ {c, c′}, j ∈ Iℓ.

Finally, Algorithm 2 is applied to further improve

the node labels of the newly created cluster. All steps

of aggregating two clusters are given in Alogirhtm 3.

6 Numerical Study

We conduct numerical experiments to assess the perfor-

mance of our clustering algorithm, which is by the way

available on CRAN via the R package graphclust.

6.1 Estimation accuracy

Before studying the cluster performance of our algo-

rithm, we first investigate the estimation accuracy of

model parameters and latent variables. This is done in

an asymptotic setting, where the size of the collection

increases. Here, data come from a mixture with a sin-

gle component, that is, networks are i.i.d. realizations

from the same SBM. Concretely, we consider a SBM

with 3 blocks, block proportions π = (0.3, 0.3, 0.4) and
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(a) Estimated number of clusters

(b) ARI of network clusters

Fig. 4: Monte-Carlo simulation results for our hierarchi-

cal algorithm, GCS and Mukherjee’s method for vary-

ing number of nodes n and different collection sizes M .

connectivity matrix given by

γ =

0.1 0.3 0.5

0.1 0.5 0.1

0.1 0.5 0.6

 .

From the connectivity probabilities γ it is clear that the

nodes in block 2 are difficult to distinguish from those

in block 3. Only small networks with 8 to 13 vertices

are simulated, such that it is probable that a single net-

work does provide enough evidence for the presence of

3 distinct blocks. Indeed, fitting a SBM to each of the

networks by a standard estimation algorithm with an

automatic selection of the number of blocks, as imple-

mented in the R package blockmodels, mainly yields

SBM estimates with 2 blocks only. This can be seen

from the results in Figure 3 for collections containing

only one network (M = 1).

Now, for collections of different sizes (M between

1 and 1000), we apply a variant of our hierarchical

algorithm that has no stopping criterion, merging all

networks to a single cluster. Contrary to a one-by-one

analysis of the networks, we observe that our approach

that typically starts with initial SBMs with 2 blocks is

able to discover the richer true SBM with 3 blocks by

progressively aggregating clusters. That is, our method

is able to combine and exploit information coming from

several networks in order to improve parameter estima-

tion. More precisely, Figure 3 displays the proportion

of 100 simulated data sets for every collection size M

on which the procedure correctly selects a SBM with

3 blocks at the end of the algorithm (blue). Obviously,

this proportion increases with M , and for collections

with 500 networks the 3 SBM blocks are always cor-

rectly identified.

A finer evaluation of the estimation accuracy is given

by the distance of the graphon of the estimated SBM

parameters and the true SBM, as defined in Section 5.4.

This is a valid comparison even when the number of

blocks are not the same, which is the case for small

sample sizes. We see that the graphon distance (red

boxplots in Figure 3) steadily decreases when provid-

ing more and more data to the algorithm, meaning that

the estimation accuracy is improved.

Finally, the estimated node labels Ẑ can be com-

pared to the true ones by the adjusted Rand index

(ARI) (Hubert and Arabie, 1985). The ARI (cyan box-

plots) is strictly increasing in the sample size M indi-

cating that the fit gets better and better. However, in-

terestingly, the ARI does not tend to 1, that is, adding

networks to the collection does not necessarily improve

the estimation of the block labels. Indeed, this is ex-

pected, since even with the knowledge of the true SBM

parameter, a small network may not provide enough

information for an accurate block assignment of all its

nodes. For a consistent estimation of the node labels, it

would be necessary that the number of nodes in each

network increases.

6.2 Graph clustering

Now we assess the performance of the new clustering al-

gorithm on data from a 4-component SBM mixture. We

consider two sample sizes M ∈ {20, 100} and three dif-

ferent mean numbers of vertices nmean ∈ {30, 100, 300}
per network, with large variations of the sizes n(m) of

the individual networks around nmean.

First, let us have a look on the estimated num-

ber of clusters on 100 simulated data sets displayed in

Figure 4 a). When networks are small (nmean = 30),

the cluster number is often underestimated (for both,

M ∈ {20, 100}), that is lower than 4. Increasing the net-

work size generally leads to more estimated clusters. We

also see that increasing the collection size M has not

the same effect as increasing the number of nodes nmean.
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Fig. 5: Penalty term as a function of hyperparameter λ

for different collection sizes M and number of clusters

C.

However, on large collections with many nodes per net-

work, the method tends to overestimate the number of

clusters. This indicates that, in some sens, the model

selection may not be optimal and the term in the ICL

that penalizes models with large numbers of clusters

may not be large enough. This penalty term is a func-

tion of hyperparameter λ and a closer look on the term

helps to understand that the phenomenon is not sim-

ply due to a badly chosen value of λ, which is set to

0.5 in the simulations. Indeed, Figure 5 shows that

the penalty term log
(
Γ (Cλ)/[(Γ (λ))CΓ (Cλ+M)]

)
is

nearly constant on the interval [0.2, 1] for any collection

size M and any number of clusters C, whereas close to

0, the penalty term increases exponentially fast. Thus,

the calibration of hyperparameter λ is very difficult.

More precisely, on the flat part all values yield virtu-

ally the same number of clusters, while on the steep

part the slightest variation in λ leads to very different

numbers of clusters. This has also been confirmed by

additional simulations. We conclude that the model se-

lection device is not exact, but still gives a rough idea

of the right number of clusters. An improvement of the

criterion (or a more convenient choice of the priors) to

obtain a consistent estimate of the number of clusters

is left for future work.

For a finer analysis of the clustering result we con-

sider the ARI of the obtained clustering in compari-

son to the true cluster labels U in the SBM mixture

model. Figure 4 b) illustrates that the clustering ob-

tained with the hierarchical method (red boxplots) gets

consistently better when more data are presented to the

algorithm. On large collections and/or large network

sizes, the clustering tends to be perfect. This indicates

that, although the number of clusters may be overes-

timated, some of the mixture components may simply

be split into smaller components.

Finally, a comparison to alternative graph-distance

methods is in order. The first alternative is the cluster-

ing approach by Mukherjee et al. (2017) based on graph

moments (blue boxplots). For the second method, we

use an approach based on our graphon distance. More

precisely, first a SBM is fit to every single network, then

a similarity matrix with the graphon distance for all

pairs of networks is computed, to which finally a spec-

tral clustering algorithm is applied to derive a clus-

tering. SBM parameters are obtained by the package

blockmodels (which are also the initial values of the

new hierarchical procedure). We refer to this method as

the graphon spectral clustering (GSC) approach (green

boxplots). Both GSC and Mukherjee’s method require

the specification of the number of clusters, which is set

to 4 here. Recall that in the literature alternative clus-

tering algorithms are rare for the setting of directed

networks without node correspondence.

According to Figure 4 b) the hierarchical method

clearly outperforms the others in all settings but one,

which is the setting of a large collection of small net-

works. Moreover, the model-based hierarchical approach

benefits the most of presenting more data to the algo-

rithm by an important increase of the ARI, while the

other methods only do slightly better. For the alterna-

tive methods it is not even certain whether their ARI

will converge to 1 or they will saturate before then. This

is in accordance with our understanding of distance-

based approaches, where the estimation uncertainty is

not taken into account and networks are only analyzed

separately. We conclude that model-based approaches

as ours, where a likelihood criterion is considered and a

common descriptor of each cluster is computed using all

data associated with one cluster, have a real advantage

over graph-distance methods.

6.3 Robustness to model assumptions

In practice, model assumptions are never completely

satisfied. Here, robustness is investigated in two set-

tings: in the first, data come from small-world models

rather than from a mixture of SBMs, in the second

a collection of graphs containing a substantial part of

outliers is considered.

For a small-world model, we consider the directed

preferential attachment model (Bollobás et al., 2003)

and generate 100 networks from a three-component mix-

ture. Parameters are such that networks of all compo-

nents have between 32 and 35 vertices and edge den-

sities range from 0.22 to 0.28. The main difference be-

tween the three component models resides in different

network topologies, since in one model nodes with more

out-going than in-coming edges are added, in another it
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Fig. 6: Mixture of small-world models. Comparison of

different approaches in terms of the ARI.

Fig. 7: Dendrogram of the clustering by our hierarchi-

cal algorithm. In the bar below, green is the dominant

cluster, red and orange the networks in the two inter-

mediate clusters and all outliers are purple.

is the inverse and in the third model as many out-going

than in-coming edges are added in average.

On these data our hierarchical clustering algorithm

is compared to the GSC approach and to the graph mo-

ment clustering method of Mukherjee et al. (2017) with

2, 3, 4 and 5 graph moments, respectively. The number

of clusters is set to three for all methods except ours,

where the number of clusters is selected automatically.

In more than 50% of the data sets, our method cor-

rectly estimates the number of clusters to be 3. The

ARI of all methods are displayed in Figure 6 and show

that our SBM mixture approach outperforms the other

methods by far. We also see that GSC does better than

all graph moment algorithms.

Next, we consider data containing a substantial part

of outliers. A large part of the networks are drawn from

a 3-component SBM mixture, consisting of a dominant

cluster and two clusters of intermediate size. Outlier

networks are simulated by first generating a SBM pa-

rameter at random and then drawing one network from

this SBM. In other words, every outlier has an individ-

ual SBM parameter. Finally, the simulated collection of

100 networks, each with 50 nodes, contains 19 outliers.

Figure 7 shows the dendrogram of the clustering ob-

tained with our procedure. The hierarchical algorithm

detects 16 clusters. The largest cluster (65 networks)

contains only networks generated from the dominant

mixture component. Furthermore, 88% of the networks

generated by the 3-component SBM mixture (i.e. 71

networks) belong to clusters that are almost pure (more

than 90% of the networks from one mixture compo-

nent). Furthermore, 68% of the outliers (13 networks)

are in clusters that do not contain any data from the

mixture model. Thus, the algorithm is able to make a

distinction between data from the mixture model and

most of the outliers.

In terms of the ARI, our algorithm attains a value

of 0.95, which is considerably larger than the ARI of

0.065 for the GSC procedure with the same number of

clusters, that is 16. Varying the number of clusters, the

highest ARI for GSC is achieved with 4 clusters and

reaches the value 0.72, which is still far below the ARI

of the model-based approach.

We conclude that our approach gives very satisfy-

ing results when the data contains outliers or noisy ob-

servations. By the way, this scenario is inspired by the

model estimated on the collection of foodwebs analyzed

in Section 6.4 and thus supports the validity of the re-

sults obtained for this application.

6.4 Application to ecological networks

The mangal database (Poisot et al., 2016) provides a

huge collection of ecological networks available via the

R package rmangal. We extract the 187 networks, where

interactions among different taxa (vertices) are of the

type predation. The median number of vertices per food-

web is 19 (ranging from 5 to 708) and the median num-

ber of edges 32 (ranging from 4 edges to 27, 745). Our

goal is the identification of foodwebs that have the same

network structure regardless of the taxa or the size of

the foodwebs. Is there any kind of universal topology

of foodwebs? How many different organization forms of

an ecosystem exist, and how can they be described and

compared?
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Fig. 8: Graphon of SBM parameter of the dominant

cluster with in-coming and out-going probabilities on

the sidebars.

Our agglomerative cluster algorithm applied to these

foodwebs discovers 17 clusters. There is a dominant

cluster containing 115 networks (61%), 5 clusters of

intermediate size (6 to 14 networks) and none of the

remaining 11 clusters contains more than 4 networks.

Figure 8 represents the SBM parameter associated

with the dominant cluster. It contains six blocks, block

proportions are in the range [0.06, 0.28], half of the

connectivity parameters γk,l are lower than 0.01 and

the largest connectivity parameters is 0.87. To inter-

pret the different blocks, we consider the probabilities

of in-coming and out-going edges for a node in block

k ∈ JKK defined as

dink =
∑

l∈JKK

πlγl,k, doutk =
∑

l∈JKK

πlγk,l.

A large value of dink indicates that the species in block k

are often eaten by other species, while a large doutk rep-

resents species that often eat other species. We define a

vegetarian behavior by a low probability to eat others

(say doutk ≤ 0.05) and a significant probability of being

victim (dink ≥ 0.05). Our model contains two vegetarian

blocks representing 43% of the species. Likewise, we de-

fine predators by a significant probability to eat others

(doutk ≥ 0.05) and few chance to be eaten (dink ≤ 0.05).

Then 18% of the species (two blocks) are predators.

The remaining 39% are somewhere in the middle of the

food pyramid with both good chances to be eaten and

to eat others (dink ≥ 0.05, doutk ≥ 0.05). So this is the

typical structure of most foodwebs in the database.

To compare this topology to others, consider, for in-

stance, the cluster containing the largest network with

708 nodes. The adjusted SBM has 29 blocks, which is

explained by the very large network size. The ques-

tion is whether this SBM is a kind of finer version

of the SBM of the dominant cluster or whether there

is a significant difference. Here block proportions lie

in [0.004, 0.14], two third of the connectivity parame-

ters γk,l are lower than 0.01 and the maximal value

is 0.91. Furthermore, 53% of the species are vegetar-

ians, 24% are predators and 7% are in-between. The

remaining 16% are networks with very few interactions

(dink ≤ 0.015, doutk ≤ 0.015) and such inactive species

are absent in the dominant cluster. Thus, it is clear

that this network structure is very different from the

dominant cluster.

Clusters can also be compared in terms of the graphon

distance among the associated SBM parameters. Fig-

ure 10 displays the values of the observed graphon dis-

tances for all pairs of clusters in the model. The mean

value is 0.23, corresponding to a significant difference

between the SBM parameters, since the maximal graphon

distance is 1 (the maximal values is the distance be-

tween the graphons constant to 0 and 1, respectively).

It is instructive to represent the clustering in con-

necection with the geographic location of the foodwebs

(Figure 9). Foodwebs of the dominant cluster (lightblue

circles) are present all over the globe and correspond

indeed to some global or universal structure of ecosys-

tems. Interestingly, also the intermediate clusters are

all spread over several continents. This means that dif-

ferent types of graph topology are not related to a par-

ticular geographic region. We conclude that the results

of our algorithm provide many insights on the structure

of foodwebs and raise new questions in ecology.

Finally, the clustering may be compared to the one

obtained, for instance, by Mukherjee’s graph moments

method. The ARI of −0.03 indicates that the two clus-

terings are completely different. A closer look reveals

that the Mukherjee clustering is also composed of a

dominant cluster containing 153 networks, but only 92

of them are common to the dominant cluster of the

SBM mixture. Moreover, there are 3 intermediate clus-

ters with 5, 6 and 8 networks, respectively, which are

almost completely included in the dominant SBM clus-

ter. All other clusters contain only 1 or 2 networks,

that can be considered as outliers. A visualisation of

the Mukherjee clustering on a map show that there are

no geographic cluster either, but the geographic distri-

bution of the clusters is not the same as for the SBM

mixture (see Figure 11 in the Appendix).

7 Conclusion

We have developed an approach to cluster networks ac-

cording to their graph topologies. To the best of our

knowledge, this is the first parametric mixture model

for networks that do not share the same set of vertices

neither the same number of vertices and that applies

to both directed and undirected graphs. We illustrated
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Fig. 9: Geographical representation of the clustering of the foodwebs.

Fig. 10: Graphon distances between SBMs of all pairs

of clusters for the foodweb mixture model.

that a model-based approach, where a description of

each cluster is computed, outperforms clustering meth-

ods based on a graph distance between networks, since

our model inherently takes into account the estimation

uncertainty. Another advantage of our hierarchical al-

gorithm is the automated selection of the number of

clusters, which is done in a single run of the algorithm

contrary to EM-type algorithms, where different num-

bers of clusters must be explored separately. Moreover,

a finite mixture of SBMs is a highly interpretable model,

which is important in practical applications as illus-

trated for ecological networks. Finally, we propose a

new tool to match the block labels of two SBMs, which

may be useful in other contexts.

In future work, to accommodate a wider spectrum

of applications, this model may be extended to mix-

tures of SBMs with degree correction or including co-

variates. This requires a modification of the ICL crite-

rion, namely the choice of appropriate prior distribu-

tions such that the ICL criterion has closed-form ex-

pression and estimation remains feasible.

As in our experiments the number of clusters tends

to be overestimated on huge datasets, another impor-

tant issue, which is out of the scope of this paper, is a

general analysis of the ICL approach and its validity as

a model selection device.
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Isella L, Stehlé J, Barrat A, Cattuto C, Pinton JF, den

Broeck WV (2011) What's in a crowd? Analysis of

face-to-face behavioral networks. Journal of Theoret-

ical Biology 271(1):166–180

Le CM, Levin K, Levina E (2018) Estimating a network

from multiple noisy realizations. Electronic Journal

of Statistics 12(2):4697 – 4740

Leger JB (2016) Blockmodels: A R-package for estimat-

ing in latent block model and stochastic block model,

with various probability functions, with or without

covariates

Liu J (2008) Monte Carlo strategies in scientific com-

puting. Springer Verlag, New York, Berlin, Heidel-

berg

Lovász L, Szegedy B (2006) Limits of dense graph se-

quences. Journal of Combinatorial Theory, Series B

96(6):933–957

Mantziou A, Lunagomez S, Mitra R (2023) Bayesian

model-based clustering for multiple network data

Matias C, Robin S (2014) Modeling heterogeneity in

random graphs through latent space models: a selec-

tive review. Esaim Proc & Surveys 47:55–74

McLachlan G, Krishnan T (2008) The EM algorithm

and extensions, 2nd edn. Wiley series in probability

and statistics, Wiley

McLachlan G, Peel D (2000) Finite Mixture Models.

Wiley Series in Probability and Statistics, Wiley-

Interscience

Mehta N, Duke LC, Rai P (2019) Stochastic blockmod-

els meet graph neural networks. In: Proceedings of

the 36th International Conference on Machine Learn-

ing, vol 97, pp 4466–4474

Mukherjee SS, Sarkar P, Lin L (2017) On clustering

network-valued data. In: Advances in Neural Infor-

mation Processing Systems, vol 30

Nowicki K, Snijders TAB (2001) Estimation and pre-

diction for stochastic blockstructures. Journal of the

American Statistical Association 96(455):1077–1087

Peixoto T (2014) Efficient Monte Carlo and greedy

heuristic for the inference of stochastic block mod-

els. Physical Review E 89(1)

Poisot T, Baiser B, Dunne JA, Kéfi S, Massol Fc, Mou-
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8 Appendix

8.1 Details on the update of the node labels

Here we present the details on the efficient computation

of the ICL changes ∆→h
m∗,i∗ , in the case when moving

node i∗ to block h does not empty block g.

Changes in the statistics. Let s
(m∗)
k be the count statis-

tic before the swap and s⃗
(m∗)
k its value after the swap.

We use the same notation for all other statistics. Clearly,

s⃗
(m∗)
g = s

(m∗)
g −1 and s⃗

(m∗)
h = s

(m∗)
h +1, while the other

terms remain unchanged. Define

δk,·i∗ =
∑
i ̸=i∗

Z
(m∗)
i,k A

(m∗)
i,i∗ , δℓ,i∗· =

∑
j ̸=i∗

Z
(m∗)
j,ℓ A

(m∗)
i∗,j .

Then, for any k, ℓ ∈ JKK,

a⃗
(m∗)
k,ℓ = a

(m∗)
k,ℓ − 1k=gδℓ,i∗· + 1k=hδℓ,i∗·

− 1ℓ=gδk,·i∗ + 1ℓ=hδk,·i∗ .

When considering the matrix (a
(m∗)
k,ℓ )k,ℓ, only the g-th

and h-th row and the g-th and h-th column change

when moving i∗ from g to h. We introduce the number

of possible dyads from nodes in block k to nodes in

block ℓ in graph m defined as

r
(m)
k,ℓ =

∑
i̸=j

Z
(m)
i,k Z

(m)
j,ℓ =

{
s
(m)
k s

(m)
ℓ if k ̸= ℓ

s
(m)
k (s

(m)
k − 1) if k = ℓ

Then b
(m)
k,ℓ = r

(m)
k,ℓ − a

(m)
k,ℓ and

r⃗
(m∗)
k,ℓ = r

(m∗)
k,ℓ − s

(m∗)
ℓ 1k=g + s

(m∗)
ℓ 1k=h − s

(m∗)
k 1ℓ=g

+ s
(m∗)
k 1ℓ=h + 21k=g,ℓ=g − 1k=g,ℓ=h − 1k=h,ℓ=g.

and b⃗
(m∗)
k,l = r⃗

(m∗)
k,l − a⃗

(m∗)
k,l . For any m ̸= m∗, the statis-

tics remain unchanged, that is, a⃗
(m)
k,l = a

(m)
k,l , b⃗

(m)
k,l =

b
(m)
k,l and r⃗

(m)
k,l = r

(m)
k,l . Finally, we define function Ψ :

R+ × Z → R as

Ψ(a, z) = log

(
Γ (a+ z)

Γ (a)

)
1{a+ z > 0}.

First case: K does not change. Suppose that i∗ is not

the last vertex in block g, that is,
∑

m

∑
i Z

(m)
i,g > 1.

Then, moving node i∗ to another block h does not

empty block g and the number of blocks K remains

unchanged. In this case, the ICL variation is given by

∆→h
m∗,i∗

=
∑

(k,ℓ)∈Ig,h

{
log

(
Γ (η +

∑
m a⃗

(m)
k,l )Γ (ζ +

∑
m b⃗

(m)
k,l )

Γ (η + ζ +
∑

m r⃗
(m)
k,l )

)

− log

(
Γ (η +

∑
m a

(m)
k,l )Γ (ζ +

∑
m b

(m)
k,l )

Γ (η + ζ +
∑

m r
(m)
k,l )

)}

+
∑

k∈{g,h}

{
log

(
Γ (α+

∑
m

s⃗
(m)
k )

)

− log

(
Γ (α+

∑
m

s
(m)
k )

)}

=
∑

(k,ℓ)∈Ig,h

{
Ψ

(
η +

∑
m

a
(m)
k,l , a⃗

(m∗)
k,l − a

(m∗)
k,l

)

+ Ψ

(
ζ +

∑
m

b
(m)
k,l , b⃗

(m∗)
k,l − b

(m∗)
k,l

)

−Ψ

(
η + ζ +

∑
m

r
(m)
k,l , r⃗

(m∗)
k,l − r

(m∗)
k,l

)}

+ log

(
α+

∑
m s

(m)
h

α+
∑

m s
(m)
g − 1

)
, (6)

where Ig,h =
{
(k, ℓ) ∈ JKK2, k ∈ {g, h} or ℓ ∈ {g, h}

}
.



Model-based clustering of multiple networks with a hierarchical algorithm 17

Fig. 11: Geographical representation of the clustering of the foodwebs obtained with Mukherjee’s method.

8.2 Details on the efficient computation of ∆c,c′

Here it is shown how to evaluate ∆c,c′ efficiently. De-

note Uc∪c′ the cluster labels afte merging clusters c

and c′, that is, U
(m)
c∪c′ = min{c, c′} if m ∈ Ic ∪ Ic′

and U
(m)
c∪c′ = U (m) otherwise. Likewise, denote Zc∪c′

the node labels after aggregation and relabeling with

Z(ℓ)
c∪c′ = {σ̂ℓ(Z

(j)), j ∈ Iℓ} for ℓ ∈ {c, c′}, where σ̂ℓ are

the permutations that match the block labels. For con-

venience, denote by β(x, y) = log
(

Γ (x)Γ (y)
Γ (x+y)

)
the loga-

rithm of the Beta function of x and y. Moreover, for

any c ∈ JCK, (k, l) ∈ JKcK, denote

s
(c)
k =

∑
m∈Ic

s
(m)
k , a

(c)
k,l =

∑
m∈Ic

a
(m)
k,l , b

(c)
k,l =

∑
m∈Ic

b
(m)
k,l .

Then∆c,c′ = ICLmix(A,Uc∪c′ ,Zc∪c′)−ICLmix(A,U ,Z)

is given by

∆c,c′ =
∑
(k,ℓ)

β

(
η + a

(c)

σ̂−1
c (k),σ̂−1

c (l)
+ a

(c′)

σ̂−1

c′ (k),σ̂−1

c′ (l)
(7)

+b
(c)

σ̂−1
c (k),σ̂−1

c (l)
+ b

(c′)

σ̂−1

c′ (k),σ̂−1

c′ (l)

)
−
∑
(k,ℓ)

β
(
η + a

(c)
k,l , ζ + b

(c)
k,l

)
−
∑
(k,ℓ)

β
(
η + a

(c′)
k,l , ζ + b

(c′)
k,l

)
+
∑
k

log

(
Γ (α+ s

(c)

σ̂−1
c (k)

+ s
(c′)

σ̂−1

c′ (k)
)

)
− log

(
Γ (α+ s

(c)
k )
)

− log
(
Γ (α+ s

(c′)
k )

)
+ log

(
Γ (λ+ |Ic|+ |Ic′ |)

Γ (λ+ |Ic|)Γ (λ+ |Ic′ |)

)
.

+ log

Γ (Kcα+
∑

m∈Ic
n(m))Γ (Kc′α+

∑
m∈Ic′

n(m))

Γ
(
Kmaxα+

∑
m∈Ic∪Ic′

n(m)
)


+K2

minβ(η, ζ) +Kmin log (Γ (α))

+ β ((C − 1)λ, λ) + log

(
Γ (Cλ+M)

Γ ((C − 1)λ+M)

)
,

whereKmax = max{Kc,Kc′} andKmin = min{Kc,Kc′}
are the maximal and minimal number of blocks in the

clusters c and c′.
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8.3 Supplement to the analysis of ecological networks

Figure 11 illustrates the clustering of the foodwebs ob-

tained with the alternative graph moments method by

Mukherjee et al. (2017). The obtained clustering is vir-

tually very different from the one obtained by our graph

clustering procedure.


