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Abstract 

The dynamics of flexible beams in confined flows has been a subject of research for many years, as its 

fundamental behaviour is found in many applications, from energy harvesters to musical instruments. Most 

studies are concerned solely with the conditions for linear stability and do not explore the ensuing nonlinear 

behaviour of the system. This is particularly delicate as fluttering beams in confined flows are known to 

often result in dynamics with intermittent impacts between the beam and the side-walls. Here we present a 

nonlinear analytical resolution to a simplified 1-D model, based on a modal beam and bulk-flow equations. 

The model accounts for dissipation through distributed frictional and localised head-loss terms. The latter 

are imposed at the boundary conditions and aims to describe the complex effects occurring outside the 

domain (turbulence, vortex shedding, etc.). The present analytical resolution leads to a compact system for 

linear stability analysis, but also to a nonlinear formulation of the fluid-structure interaction. The inclusion 

of a regularized contact model allows for the computation of the full nonlinear dynamics, including 

intermittent impacts. Linear stability results are compared to previously published results using 2-D CFD 

models, and the relative merits of the model are discussed. A variety of limit cycles, (1) with and without 

impacts, (2) in symmetric and asymmetric configurations and (3) with impacts both at the beam tip and 

along its length, are shown to illustrate the diversity of dynamics encountered. Moreover, we show that, at 

large flow velocities, particular model configurations can lead to aperiodic dynamics, a phenomenon 

reported in several experimental observations. To the authors knowledge, the proposed formulation 

presents, for the first time, a framework for the comprehensive understanding of the nonlinear dynamics 

associated with flexible beams in confined axial flow.  
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1 Introduction 

The static and dynamic instabilities associated with flexible plates subject to axial flow occur in a variety 

of contexts from enhanced heat transfer [1] [2], energy harvesting devices [3] [4], wind musical instruments 

[5] [6] or palatal snoring [7] [8]. The subject has been studied extensively [9] [10], particularly for the case 

of unconfined flows.  

Flexible beams in axial flow present a wide variety of dynamical behaviour. The work of Kornecki et al. 

[11] and Guo & Paidoussis [12] explored the critical flow velocities for plates with various boundary 

conditions and the associated type of instabilities emerging. They studied analytical solutions of 2D models, 

based on inviscid incompressible flow, where instability is caused by perturbation pressures stemming from 

the linearized unsteady Bernoulli equation at the fluid-beam boundary. Results show that plates can lose 

stability by divergence, single-mode flutter or coupled-mode flutter, depending on the support conditions 

at the leading and trailing edges. In summary, their results suggested that plates fixed at both ends first lose 

stability by divergence but can also undergo post-divergent flutter, while plates with one free-end typically 

lose stability either by single-mode or coupled-mode flutter, depending on particular flow-beam 

configurations. 

This work will focus on the particular case of cantilever plates/beams in axial flow, a widely studied 

canonical example of flow-induced vibrations [7] [8] [13] [14]. In these systems, the typical instability is 

of the flutter type. In the work of Shoele & Mittal [2], we find some elucidating results regarding the 

influence of relevant non-dimensional parameters like the fluid-beam mass ratio or the confinement ratio 

(channel height to beam length ratio). Their results show that, at low beam-fluid mass ratios, the instability 

is of the single-mode flutter type, involving the coupling of the first two in-vacuo beam modes. As mass 

ratios increase, the initial single-mode flutter ceases to be the principal instability, and successive “mode-

transitions” occur, whereby multiple higher-order fluttering modes prevail. This type of instability is 

commonly referred to as coupled-mode flutter. Additionally, the effect of confinement is reported to have 

a destabilizing effect, leading to lower critical velocities as well as the emergence “mode-transitions” at 

lower mass ratios.  

More recently, the advances in computational efficiency have enabled the possibility to simulate these fluid-

structure interaction (FSI) systems numerically by solving the Navier-Stokes equations in 2D and 3D 

domains [2] [15]. These FSI models allow a more accurate representation of the physics and provide a 

useful validation tool for simpler analytical models, indicating under which conditions they are able to 

describe more complex 2D/3D phenomena [16]. However useful, Computational Fluid Dynamics (CFD) 

models require considerable computational time, which becomes a handicap when analysing problems 

whose behaviour depends on a wide variety of parameters. Nevertheless, we emphasize the work of Cisonni 

et al. [17] that, despite considerable computational effort (reported 150,000 CPU hours), managed to present 

a wide set of reference solutions describing the variation of stability boundaries in terms of the most 

pertinent non-dimensional parameters: the reduced velocity, mass ratio, confinement ratio and Reynolds 

number. However, for a more thorough parameter mapping, 1D models, based on simplified equations of 

motion, are not only computationally more efficient but also more tractable, and may provide valuable 

insights into the core dynamics of the problem.  

In the context of simplified approaches, we note the work of Nagakura & Kaneko [18] that have used 

leakage flow theory to model the linear stability of a cantilever beam in a confined passage. Based on the 

work by Inada & Hayama [19] [20], they formulate a 1D problem where flow pressure and velocity are 

taken as cross-sectionally averaged. The confinement is restricted to symmetric channels of constant cross-

section, viscous effects are accounted for by a distributed friction term and the energy losses at the trailing 

edge are encapsulated by a localised head-loss term, imposed at the boundary condition. Moreover, Tosi & 

Colonius [16] have positively validated the stability results from a similar simplified model to those of 

direct numerical simulations using the Navier-Stokes equations in a 2D domain. They underline the 

potential of such modelling approaches as stability results converge over a wide range of fluid-beam mass 

ratios and Reynolds numbers, at least for relatively narrow passages. As the confinement ratio (channel 

height to beam length) increases, larger discrepancies are seen.  

By and large, the analytical models developed so far deal solely with the conditions for instability, using 

linearized equations of motions to study the effect of various parameters on the stability boundaries. 



2 

 

Although undeniably a crucial information about the system dynamics, this gives us little insight about the 

ensuing nonlinear behaviour. The analysis of the nonlinear dynamics might by of valuable interest to 

various applications, giving information about the working regimes in wind musical instruments, human 

snoring or in energy harvesting devices.  

In the context of unbounded flows, a number of theoretical and experimental studies can be found, 

illustrating the array of possible limit cycles arising in this type of systems [21] [22] [23] [24]. However, 

for instabilities in a confined passage, nonlinear modelling results and experimental observations have 

demonstrated the regular occurrence of limit cycles with intermittent impacts between the beam and the 

side walls [24] [25] [26] [27]. Hence, the nonlinear modelling becomes a non-trivial task as both the flow 

and the wall-structure contact phenomena need to be accounted for. Nonlinear dynamic studies can be 

found, for example, in the work of Wu and Kaneko [25] using a 1D model as well as in the work of Alben 

[24] using a CFD inviscid 2D model. However, both are constrained by the occurrence of impacts, allowing 

results only in a limited region of the parameter space.  

In this paper, we deal with a simplified 1D model in the spirit of Nagakura & Kaneko’s work [18]. Yet, the 

formal approach to solve the fluid-structure equations is distinct from those developed in [18]. Contrary to 

their work, we admit channel profiles of any shape. More importantly however, we present an analytical 

resolution, based on formal solutions of the flow pressure and velocity fields, that leads not only to a 

compact system for linear stability analysis but also to a fully nonlinear flow formulation. This formulation 

can be used to explore post-instability regimes at very low computational costs. Additionally, to overcome 

the previously mentioned limitations, we add the possibility of contact between the flexible beam and the 

channel walls and illustrate the wide diversity of dynamics encountered, including limit cycles with and 

without intermittent impacts as well as the possibility of aperiodic/chaotic behaviour.  

2 Model description 

The model presented here deals with the fluid-structure interaction of a flexible beam confined by flow on 

each upper and lower sides, as illustrated in Figure 1. The formulation presented in the following is generic, 

in that it can, in principle, be applied to beams with arbitrary boundary conditions. However, for illustrative 

simplicity, in this paper we will deal solely with the particular case of a cantilever beam.  

The flow in each channel is described by bulk-flow equations, where the pressure and velocity fields are 

taken as cross-sectionally averaged. We include distributed dissipation in the form of a Fanning friction 

term to describe boundary-layer/viscous effects. Moreover, localized dissipation at the entrance and exit of 

the domain is added in the form of local head-losses (or pressure losses). The latter are imposed at the 

boundary conditions using a classical quasi-static Bernoulli condition. 

 
Figure 1 – Schematic description of the 1D model. 

2.1 Structural dynamics 

The dynamics of a flexible linear beam are defined in terms of N  modes, decoupled from the fluid. The 

modal parameters: modal masses nm , frequencies n , damping ratios n  and mode shapes ( )n x  can be 

calculated analytically for a beam with uniform cross-section or numerically for beams of any geometry, 

through either the Euler-Bernoulli or Timoshenko 1D linear beam equations. As an example, using Euler-

Bernoulli 1-D beam theory, a cantilevered beam with uniform cross-section will have frequencies defined 

by 
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 2

4n n

EI

mL
 =  (1) 

where EI  is the bending stiffness, m  is the total mass of the beam, L  is the beam length and n  are the 

solutions of the characteristic equation 

 ( ) ( )cos cosh 1 0n n  + =  (2) 

while the modal masses will be 4nm m= , for all modes. For simplicity we consider here a uniform beam 

with length L , width b  and thickness e . The beam displacement is developed as 

 
1

( , ) ( )
N

n n

n

y x t x q t
=

= ( )  (3) 

 and the beam motion is finally described by the following set of N  modal equations  

2( ) 2 ( ) ( ) ( ) , 1, 2n n n n n n n n n nm q t m q t m q t F t n N  + + = =   (4) 

where the modal forces ( )nF t  are given by the projection of the pressure fields 1( , )p x t  and 2 ( , )p x t , 

(associated with the flow in the upper and lower channels, respectively), unto the beam modes, 

0

( ) ( , ) ( ) , 1, 2

L

n nF t b P x t x dx n N=  =     (5) 

where the pressure difference between the two channels is 2 1( , ) ( , ) ( , )P x t p x t p x t = − . As usual, the 

second-order system can also be described by a set of 2N  first-order ODEs in terms of the modal 

displacements ( )nq t  and velocities ( ) ( )n nr t q t=  

 
2

( ) ( )
, 1, 2

( ) 2 ( ) ( ) ( )

n n

n n n n n n n n

q t r t
n N

r t r t q t F t m  

=
=

+ + =
 (6) 

It should be noted that, for simplicity, we have neglected the effect of geometric nonlinearities of the beam. 

Including these nonlinear terms, although inconsequential for a linear stability analysis, could be important 

for the estimation of large amplitude beam oscillations. However, as will be discussed in the following 

section 2.2, the bulk-flow model used here assumes relatively narrow flow confinements. Contrary to 

systems dealing with unconfined flow, beam motion in these configurations is restricted by contact with 

the walls of a narrow channel, and it is therefore less likely that nonlinear geometric effects will be 

paramount, as is the case in unbounded configurations. Nevertheless, including terms describing geometric 

nonlinearities could be incorporated in the model in a straight forward manner, as done in [28] for example, 

in a modal framework.  

2.2 Fluid dynamics 

To derive the incompressible bulk-flow equations, we consider small-to-moderate fluctuating channel 

heights ( , )ch x t , defined in terms of the beam motion 

 
1 1

2 2

( , ) ( ) ( , )

( , ) ( ) ( , )

h x t H x y x t

h x t H x y x t

= −


= +
  (7) 

where 1( )H x  and 2 ( )H x  are the distances from each wall to the position of the beam at rest and the index  

1, 2c =  corresponds to the upper and lower channels, respectively. Because we assume the channel heights 

are small compared to the beam dimension L , the changes in fluid pressure ( , , )cp x y t  and velocity 

( , , )cu x y t  along its cross-section are considered negligible. Then, the flow variables are taken as cross-
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sectionally averaged, ( , )cp x t  and ( , )cu x t . Derivation of the 1D bulk-flow equations under these 

assumptions can be found in [29] for incompressible fluids, as will be assumed here. The continuity and 

momentum equations of the fluid are given, respectively, for each channel 1, 2c = , by  

 ( ) 0c
c c

h
h u

t x

 
+ =

 
  (8) 

 ( ) ( )2 0w bc
c c cc c c c

p
hh u h u

xt x
  

  
+ + + =+    

  (9) 

where   is the fluid’s density, 
w
c  and 

b
c  are the shear stresses at the two interfaces (fluid-wall and fluid-

beam) in each channel. Following the bulk-flow approach, the tangential stresses will be formulated as a 

head-loss model, given by 

 , ,1
| |

2

w b w b
c c c cu u f =  (10) 

where 
w

cf  and 
b

cf  are the Fanning friction coefficients for each interface. To maintain a generic 

formulation, we keep the modular term | |c cu u , instead of its quadratic simplification. This allows for flow 

in both directions, as well as locally reverse flow, which may occur at large amplitude beam motions. 

Additionally, we assume both interfaces have equivalent frictional properties, hence 
w b

c cf f f= = . 

It is well known that the Fanning friction coefficient f  depends on the Reynolds number Re . The literature 

on this topic is vast and several models have been developed to approximate experimental observations 

[30] [31] [32]. The simplest, and most commonly used models, start from the assumption that f  has a 

dependency relation to the Reynolds number, different in laminar and turbulent flows. Typical values of 

f  for smooth surfaces are: 0.001 0.01f   for turbulent flows, and 0.01 1f   for laminar flows [31]. 

Some models combine the two relations (laminar and turbulent) to describe the friction factor in the full 

range of flows, including mixed laminar-turbulent flows (see, for example, the interesting discussion and 

formulation in [33]). These formulations might be of interest to include in the future as they eliminate 

incertitude and guesswork concerning this parameter, however, at the cost of slightly increasing model 

complexity. With that said, for the sake of simplicity we take f  to be constant, which might be more 

reliable in turbulent ranges, where experiments show lower or even negligible dependency [31].  

Aside from the distributed losses, we include as well singular dissipative effects at the boundaries. These 

are enforced at the boundary conditions and aim to encapsulate, in a simplified manner, the energy losses 

occurring outside the domain. The complex phenomena associated with these energy losses is diverse and 

can vary significantly with local geometry (e.g. area constriction/expansion) and flow conditions. However, 

a simple and common approach is to use a quasi-steady Bernoulli relation which includes head-loss terms, 

whose coefficients are typically taken from empirical data. This method is commonly used to treat leakage-

flow instabilities [18] [19] [20]. Here, the boundary conditions are set as if two reference pressure chambers 

(where flow velocity is zero) exist far from the boundaries of the domain. Then, the localized head-loss 

terms will represent energy losses occurring in the path between the reference chambers and the domain 

entrance/exit. The second order system (8)-(9) is then submitted to the following flow boundary conditions 

at 0x =  and x L= :  

 
2

0 0

1 1
(0, ) ( ) (0, ) (0, ) (0, )

2 2
c c c cp t P t u t u t u t K = − −   (11) 

 
21 1

( , ) ( ) ( , ) ( , ) ( , )
2 2

c L c c c Lp L t P t u L t u L t u L t K = − +  (12) 

where 0K  and LK  are the singular head-loss coefficients at the boundaries; 0 ( )P t  and ( )LP t  are the 

imposed pressures at each reference chambers. For the particular case of a cantilevered beam, the head-loss 

coefficient 0K  is bound to have a minimal effect on the dynamics, as it acts on the clamped end of the 

beam. For steady inflow (in the positive x− direction), it acts simply as a control-valve, limiting the flow 
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energy entering the domain.  On the other hand, the turbulent effects expected at the trailing-edge suggest 

that LK  will probably have a significant effect on the coupling dynamics. As a note, Kaneko et al. [34] 

have developed a model using similar head-loss coefficients. In these models, the authors assume values 

equivalent to 1LK =  and 0 0K = . Even though they only explored symmetric configurations, it is worth 

noting that experimental results correlated well with the predicted critical points. Moreover, Tosi and 

Colonius [16], compared the linear stability results stemming from a similar 1D model to simulations of a 

nonlinear 2D model. They showed that, with 0 0K =  and 1LK = , flutter boundaries are remarkably well 

predicted, provided the channel heights remain reasonably small compared to the beam length ( 1 10H L 

, for channels with constant height).  

3 Nonlinear analytical approach using formal solutions 

The analytical resolution presented here is inspired by the work of Antunes & Piteau [29] [35]. In their 

work, analytical expressions for the fluid forces between two parallel plates are derived, leading to a single 

mode nonlinear lumped-parameter formulation, describing the interaction dynamics of a discrete oscillator 

subject to axial flow, including both distributed and singular head-losses. Here, we developed on the same 

idea, and apply it to the coupling of axial flow to a continuous flexible structure.  

Integrating the continuity equation (8) with respect to x  leads us to a formal solution for the velocity fields 

in each channel c : 

 
( ) ( , )

( , )
( , )

c c

c
c

Q t h x t dx
u x t

h x t

−
=


                (13) 

where the “constants” of integration (actually, time domain functions) ( )cQ t  represent the global unsteady 

flow rates (per unit width) in each channel. After replacement of (13) in the momentum equation (9) and 

again integrating with respect to x , we obtain the formal solution for the pressure field in each channel, 

( )

( )

2
' '

2 3 2 3

'
2

3 3

1
2 ( ) 2 ( )

( , ) ( )
( ) ( )

( )

c cc c c c cc
c c

c cc c c c
c c

c c c cc
c

c c

h h dxh dx h h dx h h dxh
Q t Q t

h hh h h h
p x t dx S t

h dx Q t h dx Q th
Q t f

h h



  
  − + − + −  
  = +
  − −
  + +

  
  

  


 

   (14) 

where spatial and temporal derivatives are denoted by an upper dash and dot, respectively. The new 

“constants” of integration ( )cS t  describe the pressure at the entrance of the channels ( ) (0, )c cS t p t= , i.e. 

the pressure after the effect of the localised head-losses at 0x = . Note that the integral terms in (13) and 

(14) correspond to primitives (indefinite integrals) as their constants of integration are combinedly 

encapsulated in ( )cQ t  and ( )cS t .  

From here on, to simplify notation, we define the following auxiliary variables describing the terms in the 

formal solutions 
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( )
( )( )

( )( )

( )( )

2

'

2 3

'

2 3

'

3

1
( , ) ; ( , ) ;

( , ) 2 sign ( ) ;

( , ) 2 sign ( ) ;

1
( , ) sign ( ) ;

c

c c
c c

cc c c

c c c c
c c c

cc
c c c c

c c

c c c c

c

h dx
A x t B x t

h h

h dxh dx h h dx
C x t h f h dx Q t

h h h

h dxh
D x t h f h dx Q t

h h

E x t h f h dx Q t
h

= − =

= − + + −

 
 = − + −
 
 

= + −



 







 (15) 

To enforce the boundary conditions, we replace the formal solutions (13)-(14) into expressions (11)-(12). 

After some algebra, we obtain two expressions for the constant of integration ( )cS t , in terms of  ( )cQ t , 

( )cQ t  and the beam motion ( , ) ( , )c cA x t E x t− . At the leading edge ( 0x = ) we have simply 

 ( )( )( )
2

0 0

1
( ) 1 sign ( ) (0, ) ( )

2
c c c cS t P Q t K B t Q t= − +  (16) 

while at the trailing edge ( x L= ) we get 

 

( )
( )( )

( )

( )

2
2

2

( , ) ( )

( , ) ( , ) ( , ) 1 sign ( , ) ( , ) ( ) ( )

( , )( ) ( )
( , ) 1 sign ( , ) ( , ) ( ) ( )

2

( , )
1 sign ( , ) ( , ) ( )

2

c c

c c c c c c L c

cc L
c c c c L c

c
c c c L

B L t dx Q t

D L t dx A L t B L t A L t B L t Q t K Q t

B L tS t P t
E L t dx A L t B L t Q t K Q t

A L t
A L t B L t Q t K



−

 + + − + 

 = −
 + + − +   

 

+ − +







( , )cC L t dx

 
 
 
 
 
 
 
 
  + 

 

 (17) 

Then, combining (17) and (16), we are able to remove the constant of integration ( )cS t  and obtain two 

(one for each channel) first-order nonlinear ODEs in terms of the unsteady flow rates ( )cQ t , 

 

( )
( )( )

( )( )

( )

2

0
2

2

2

( , ) ( )

( , ) ( , ) ( , ) 1 sign ( , ) ( , ) ( ) ( )

(0, )
( , ) 1 sign ( )

2 ( )
( , )

1 sign ( , ) ( , ) ( )
2

( , )
1 sign ( , )

2

c c

c c c c c c L c

c
c c

c
c

c c c L

c
c c

B L t dx Q t

D L t dx A L t B L t A L t B L t Q t K Q t

B t
E L t dx Q t K

Q t
B L t

A L t B L t Q t K

A L t
A L t B

−

 + + − + 

 
− + 

+ 
  + − +   

+ − +







( ) 0 ( ) ( )
( , ) ( ) ( , ) 0L

c L c

P t P t
L t Q t K C L t dx



−
  + + =  

  (18) 

Replacement of the formal solution for the pressure fields (14) into the beam modal equations (5)-(6), leads 

to a set of 2N  nonlinear ODEs, in terms of the modal components ( )nq t , ( )nr t  and the two unsteady flow 

rates 1( )Q t  and 2 ( )Q t . Together with the two flow rate ODEs (18), they form a closed set of first-order 

nonlinear differential equations describing the 1D fluid-structure model, in the form 

        + = CA x B x  (19) 

where  1 1 1 2( ), ( ), ( ), ( ), ( ), ( )N Nr t r t q t q t Q t Q t=x ,  A  and  B  are (generally dense) matrices of 

size 2 2N + , and  C  is a vector containing constant flow terms. 
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Effectively, we are able to discretize our continuous 1D problem into a set of ODEs. However, there are 

nonlinear terms associated with beam motion (e.g. cA dx ) which contain modal summations in the 

denominator. As these terms cannot be simplified analytically, we do not reach “true” time-space 

separation, in the sense that the formulation does not contain constant spatial operators. These terms need 

to be calculated at each time-step. Despite this fact, the formulation allows for temporal-integrations of the 

nonlinear system at very modest computational times.  

4 Linear stability analysis 

The flow expressions obtained in the previous section can be linearized in order to provide a compact tool 

for linear stability analysis, which is often the primary concern. To linearize the system of the flow nonlinear 

equations we firstly separate the governing variables into their steady (zero-order) and fluctuating (first-

order) components. Here, we adopt the convention ( , ) ( ) ( , )g x t g x g x t= + . Then, by means of a Taylor-

series expansion, we linearize the equations by keeping only the zero-order and first-order components. 

Because under linearized conditions the flow must assume a concrete direction, we will make use of plus-

minus   and minus-plus  signs to distinguish the two scenarios, and avoid duplication of expressions. 

The uppers signs are used for flow in the positive direction ( 0 LP P ) and the lower signs for flow in the 

negative direction ( 0 LP P ). 

4.1 Steady equations (zero-order) 

The steady components of the velocity (13) and pressure (14) fields are given by 

 
2

2

2 3

1 1
( ) ; ( ) 2

2( ) ( ) ( )

c c
c c c c

c c c

Q Q
u x p x Q f dx S

h x h x h x


  
= = − +   

   
   (20) 

Assuming a constant driving pressure, i.e. 0 0( )P t P=  and ( )L LP t P= , we get, according to (11)-(12), the 

following steady boundary conditions at 0x =  and x L= : 

 ( ) ( )2 2
0 0

1 1
(0) 1 (0) ; ( ) 1 ( )

2 2
c c c L L cp P K u p L P K u L = −  = −   (21) 

Proceeding in a similar manner as above, we replace the formal solutions (20) into the boundary conditions 

(21), leading to 

 

2 2
2

0 02 2 3

1 1 1
;

2 2(0) ( ) ( )

c c
c c L L c

c c c

Q Q
S P K S P K Q f dx

h h L h L
  

   
= =        

   
   (22) 

which then gives the expression for the (squared) static flow rate cQ  in each channel 

 
( ) 2 2 2

02

2 2 2 2
0 3

2 (0) ( )

1
(0) ( ) 2 (0) ( )

( )

L c c
c

c L c c c

c x L

P P h h L
Q

h K h L K h h L f dx
h L



=

−
=

  
  + +      



  (23) 

Replacing the expressions for cQ  and cS  into (20) will give us expressions for the steady pressure and 

velocity fields in term of the beam displacement only. Then, the steady pressure difference between the two 

channels 2 1( ) ( ) ( )P x p x p x = −  can be written explicitly. Finally, replacing the expression for the steady 

pressure difference ( )P x  into the beam’s (static) equations leads to 
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( )

2 2 2 0
1 1 2 2 3

1 1 1

2 2 2 2
1 1 0 1 1 3

1
0

2

2 2 2 0
2 2 2 2 3

2 2 2

2
2

1 1
(0) ( ) 2

( ) (0) ( )

1
(0) ( ) 2 (0) ( )

( )

1 1
(0) ( ) 2

( ) (0) ( )

(0)

L

x LL
n

n n

K
h h L f dx

h x h h x

h K h L K h h L f dx
h Lb P P

q
m K

h h L f dx
h x h h x

h



=

  
    

   

  
  + +     −  

=
  

    
   

−








0

2 2 2
2 0 2 2 3

2

( ) for 1,2

1
( ) 2 (0) ( )

( )

L

n

L

x L

x dx n N

K h L K h h L f dx
h L



=

 
 
 
 
 
 
 

= 
 
 
 
     + +        





 

 (24) 

The final steady problem then becomes a system of N  nonlinear algebraic equations whose only variables 

are the modal displacements nq . All other parameters are set: the driving pressure 0 LP P− , the head-loss 

coefficients 0K , LK  and f , the channel profiles 1( )H x  and 2 ( )H x , as well as the beam modal parameters 

nm , n , n  and n x ( ) . This system can be solved numerically, to find the equilibrium beam 

configurations nq . Subsequently, all other steady variables, , , ( ), ( )c c c cQ S u x p x , can be calculated.  

4.2 Linearized equations (first-order) 

In this section, to avoid duplication of expressions, we present derivations for the upper channel only 

( 1)c = , noting that equivalent expressions can be derived for the lower channel ( 2)c = . The fluctuating 

component of the velocity 1( , )u x t  is defined as 

 1 1 1, 1, 1,

1 1

( , ) ( ) ( ) ( ) ( ) ( ) ( )
N N

n n n c n n

n n

u x t Q t F x q t A x Q q t B x
= =

=      (25) 

and the fluctuating pressure ( , )cp x t  is given by 

2
1 1, 1 1, 1,

1 1 11 1

1 1 1 1 1

( )3 ( ) ( )2 ( ) ( ) ( )
( , ) ( )

( )2 ( ) ( ) ( )

N N N

n n n n n n

n n n

q t Q C x dx q t Q D x dx q t A x dx
p x t S t

Q t Q E x dx Q t F x dx

 = = =

 
− − 

= + 
 

+ −  

    

 

   (26) 

where, to simplify notation, the steady auxiliary variables from , ( )c nA x - , ( )c nF x  are defined as 

 

( )

( )
( )

, , ,2 4 3

, 3 2 3

( ) ( ) ( ) ( )
( ) ; ( ) ; ( ) ( ) ;

( ) ( ) ( ) 3 ( )

( )( ) ( ) 1
( ) ( ) ; ( ) ; ( ) ;

( )( ) ( ) ( )

n n n n
c n c n c n c

c c c c

cn n
c n c c c

cc c c

x dx x x x
A x B x C x h x f

h x h x h x h x

h x fx dx x
D x h x f E x F x

h xh x h x h x

   

 


= = = −


= − = =




  (27) 

To the first order, the boundary conditions at 0x =  and x L=  become 

 ( ) ( )0(0, ) 1 (0) (0, ) ; ( , ) 1 ( ) ( , ) ;c c c c L c cp t K u u t p L t K u L u L t = − = −    (28) 

Replacing the expressions for the fluctuating velocity (25) and pressure (26) fields into the boundary 

conditions at 0x = , we get 

 ( )1 0 1 1 1( ) 1 (0) (0) ( )S t K u F Q t= −  (29) 
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and at x L= , we get 

 

( )

( )

( )

2
1 1, 1 1 1,

1

1 1, 1 1,

1

1 1,

1

1 1 1 1 1,

1 1

( ) 3 ( ) 1 ( ) ( )

( ) 2 ( ) 1 ( ) ( )

( ) ( ) ( )

( ) 2 ( ) 1 ( ) ( )

( ) ( )

N

n n L n

n

N

n n L n

n

N

n n

n

L n

q t Q C L dx K u L Q B L

q t Q D L dx K u L A L

S t q t A L dx

Q t Q E L dx K u L F L

Q t F L dx



=

=

=


 − −  




 + − −  


 = +
 

 + − −
 

 +
 

 

 

 












 
 
 
 
 
 
 

 (30) 

Then, combining (29) from (30), we get two linear ODEs (one for each channel) in terms of the fluctuating 

flow rates ( )cQ t  

 

1 1 1 1 1, 1, 1,

1 1 1

2 2 2 2 2, 2, 2,

1 1 1

( ) ( ) ( ) ( ) ( ) 0

( ) ( ) ( ) ( ) ( ) 0

N N N

n n n n n n

n n n

N N N

n n n n n n

n n n

Q t d Q t e q t a q t b q t c

Q t d Q t e q t a q t b q t c

= = =

= = =


+ + + + =





+ − − − =



  

  

 (31) 

where the auxiliary vectors ,c na , ,c nb , ,c nc  and scalars cd , ce , are given by 

  

( )

( )

( ) ( )

2
, , ,

, , ,

, ,

0

3 ( ) 1 ( ) ( )

2 ( ) 1 ( ) ( )

( )

( )

2 ( ) 1 ( ) ( ) 1 (0) (0)

c n c c n L c c c n

c n c c n L c c n

c n c n

c c

c c c L c c c c

a Q C L dx K u L Q B L

b Q D L dx K u L A L

c A L dx

d F L dx

e Q E L dx K u L F L K u F

= − −

= − −

=

=

= − − + 











  (32) 

In order to formulate the fluctuating pressure difference ( , )P x t , we need to replace the expression for 

( )cS t  in the pressure expression (26) of each channel, such that the expression for ( , )P x t  becomes 

dependent solely on the unknown time dependent variables: ( )nq t , ( )nq t , ( )nq t , as well as 1( )Q t , 2 ( )Q t , 

1( )Q t  and 2 ( )Q t . Subsequently, we can project the pressure difference into the beam modal equations. In 

matrix form, the linearized modal forces ( )mF t  are then written as 

 
     

       
, , ,

1, 1 2, 2 1, 1 2, 2

( ) ( ) ( )
( ) for 1,2...

( ) ( ) ( ) ( )

n m n n m n n m n

m

m m m m

q t q t q t
F t m N

Q t Q t Q t Q t

      + +      = =
 − + + − 

  (33) 

where the three matrices, of size N N , and the four vectors, of size N , are given by 
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( )

2 2
, 2 2, 1 1,

0

, 2 2, 1 1,

0

, 2, 1,

0

, 0

0

,

3 ( ) ( ) ( ) ;

2 ( ) ( ) ( ) ;

( ) ( ) ( ) ;

2 ( ) 1 (0) (0) ( ) ;

L

n m n n m

L

n m n n m

L

n m n n m

L

c m c c c c m

c m c

b Q C x dx Q C x dx x dx

b Q D x dx Q D x dx x dx

b A x dx A x dx x dx

b Q E x dx K u F x dx

b F

 

 

 

 



 = − +
 

 = − +
 

 = +
 

 = − 
 

=

  

  

  

 

0

( ) ( )

L

mx dx x dx 
  

  (34) 

Finally, letting the (diagonal) mass, damping and stiffness matrices of  the (uncoupled) beam be M ,  C  

and K , we can build the coupled system by assembling the modal equations together with the two 

linearized flow ODEs (31). In a first-order formulation, we get 

( )      

       

   

   

( )  ( )    

       

   

   

, 1, 2, , , 1, 2,

111, 1 1, 1, 1

2
2

2, 2 2, 2, 2

[ ] [ ] [ ] [ ] [ ]

0
0 0

0 0

T T T T

n m m m n m n m m m
n n

T T T T
n n

m m m

m m m

M C Kr r

q q

QQc d b a e

QQc d b a e

   − − − − −      
      −       + =      
      
         − − −      

0

0 I 0 0 I 0 0 0

0

0

(35) 

This linear system of ODEs, of size 2 2N + , can then be formulated as an eigenvalue problem to infer the 

stability of the system. 

5 Linear stability results and numerical validation 

In this section, with the aim of assessing the viability of the 1D simplified modelling approach and 

validating our results, we compare the linear stability results from our model to reference results. Even 

though the present modelling approach allows for channels of arbitrary shapes ( )cH x , we will consider 

only symmetric channels of constant section, i.e. 1 2( ) ( )H x H x H= = , on which most literature is based 

on. For the same reason, we will analyse configurations with flow in the positive direction only. 

Following reference studies [2] [12] [17], we will present results in terms of the following non-dimensional 

parameters 

 
* * * 0

0 ; ;
fs

s

Le H
U U L M H

EI e L




= = =  (36) 

where 
*U  is a reduced velocity (essentially the inverse of a Strouhal number), 

*M  is the fluid-beam mass 

ratio, and 
*H  is the confinement ratio. In our formulation, 0 1 2(0) (0)H H H= +  and the fluid velocity 0U  

is given by the steady component of the inlet velocity, i.e. 0 1 2 0( )U Q Q H= + . Additionally, the Reynolds 

number Re  is accounted implicitly by the Fanning friction coefficient f . To this end, we note the 

commonly used relation between Reynolds number Re  and the friction coefficient f , established based 

on empirical data of steady flow [31] [32], given by 

 

1
0

0.25
0

12Re for Re Re (laminar)

0.055Re for Re Re (turbulent)

f

f

−

−

 = 


= 

 (37) 
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where 0Re  is the Reynolds number separating laminar from turbulent flow ranges. Based on these relations, 

here we have used an analytical approximation presented by Piteau and Antunes [35], which combines the 

expressions for laminar and turbulent flow, reaching a mixed formulation, applicable in the whole range of 

Reynolds number, given by 

 
1 1 412Re 0.055Ref − −= +  (38) 

Figure 2 compares the relations (37) with the mixed-flow analytical approximation (38). 

 

Figure 2 – (color online) Comparison between Hirs friction model (37) with the continuous analytical 

approximation (38). 

5.1 Comparison to results from original 1D leakage-flow model 

As a starting point to validate the present formulation, we compare stability results to those published by 

Nagakura and Kaneko [18], who presented a similar model, with constant and symmetric channel cross-

sections. We take the same model parameters used in [18]:  the beam has length 200 mmL = , width 

100 mmb = , thickness 0.2 mme = , density 
-38780 kg ms =  , Young’s modulus 

11 21.1 10 N mE =    

and modal damping  =  ; while the fluid has density 31.2 kg mf
−=   , the localised head-loss 

coefficients are taken as 0 0K =  and 1LK = , and the friction coefficient 0.005f = . The channels are 

symmetric and have a constant section of height 2.5 mmH = . This configuration leads to the 

nondimensional parameters 
* 0.136M = , 

* 1/ 40H = . Figure 3 shows results from the two models, 

describing the evolution of the eigenvalues s  in the complex-plane for varying driving pressure (or fluid 

inlet velocity 0U ). We notice that the stability behaviour of the various coupled modes is described 

identically by the two models, asserting the viability of the proposed resolution. 

 
Figure 3 – (color online) Evolution of the eigenvalues of the coupled structure-fluid system as a function 

of driving pressure, shown in the complex-plane. Results from the present model are shown on the right 

while the analogous presented in [18] are on the left. The dotted lines correspond to the frequencies nf  of 

the in-vacuo beam modes.  Note that, following [18], the eigenvalues are normalized by the constant 

4EI mL , where m  is the total mass of the beam. In the right plot, green and red lines represent stable 

and unstable eigenvalues. 
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5.2 Comparison to results from a 2-D viscous model 

To evaluate the potential of the proposed simplified modelling approach, we now compare linear stability 

results to those obtained from models with more involved physics, which are assumed to provide a more 

realistic representation of the system dynamics. Namely, we will refer to the results presented by Cisonni 

et al. [17], which have used a viscous 2D model to calculate various stability maps as a function of the non-

dimensional parameters 
*U , 

*M , 
*H  and Re . In their paper [17], a 2D model is used to solve the 

nonlinear Navier-Stokes equations in the time-domain, including viscous effects. Several parametric 

sweeps were carried out to obtain stability curves in the nondimensional 
* *( )U M  plane, for several 

*( , Re)H  pairings. For each parametric configuration, simulations were run for at least 10 periods of 

oscillations, from which stability conditions and corresponding frequencies were extracted.  

As a first example, Figure 4 shows a typical stability map in the 
* *( )U M  plane, calculated with the present 

model and with the 2-D viscous model. Here, an undamped beam was considered, 0n = , the confinement 

ratio was set at 
* 1/10H =  and the Reynolds number at Re 100= . Note that, in our formulation, the 

Reynolds number is set implicitly following relation (38), which leads to a friction coefficient 0.14f  . 

On the left are the stability boundaries in the 
* *( )U M  plane and on the right the frequencies of the 

corresponding neutrally stable modes. 

 

Figure 4 – (color online) Stability boundary in the 
* *( )U M  plane (left) and the corresponding frequencies 

(right) for a system with confinement 
* 1/10H =  and Reynolds number Re 100= . The 2-D model results 

were retrieved from those presented in [17].  

The cascading stability boundary shown in Figure 4 is a typical result of cantilevered structures subject to 

axial flow, reported in many previous studies, including models which assume inviscid flow (see review in 

[2]). We note that results from the present model agree qualitatively well with those from the 2D model. 

Despite some minor quantitative differences, the overall stability behaviour of the system is well 

encapsulated. Namely, the sharp transitions in the stability curves, associated with the well-known mode-

switching behaviour and illustrated clearly by the abrupt changes in the instability frequency, are well 

represented. This behaviour occurs at increasing mass-ratios, whereby the first unstable mode in the system 

transitions from lower to higher order, i.e. the main unstable (coupled) mode is dominated by (in-vacuo) 

beam modes of progressively higher order. To clarify, Figure 5 illustrates the complex mode shapes 

associated with the various points (a)-(f) indicated in Figure 4. The minor quantitative differences (slight 

vertical and horizontal shifts in the 
* *M U−  plane), are likely explained by the inherent differences in the 

1D and 2D modelling approaches, namely, the explicit vs. implicit account of viscous effects or the 

parabolic vs. constant velocity profiles stemming from explicit/implicit account of boundary layer effects. 
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Figure 5 – (color online) Complex mode-shapes of the neutrally-stable modes associated with the boundary 

points (a)-(f) indicated in Figure 4. The real and imaginary parts of the mode shapes are indicated in blue 

and red, respectively. The grey lines illustrate the actual beam motion associated with the corresponding 

complex mode shapes.  

5.3 The effect of confinement 

Again, following the results from Cisonni et al, we investigate the effects of the confinement. In Figure 6 

we show stability boundaries in the 
* *( , )U M  plane for systems with different confinement ratios 

 *
1 4, 1 8, 1 10H = . Results from our 1D model are shown on the left and results from the 2D viscous 

model of Cisonni et al. on the right.  

 

Figure 6 – (color online) Stability boundary in the ( )* *,U M  plane, for an undamped beam with different 

confinement ratios. The results from our model are shown on the left plot, while the results from Cisonni 

et al. at the right. The Reynolds number was fixed at Re 100=  (in the present model, this implies 0.14f =

).  

The two sets of stability boundaries shown in Figure 6 shows us that the 1D model is able to correctly 

predict the effects of the confinement, as the behavioural trends are well characterised, namely that larger 

confinements 
*H : (1) tend to stabilise de system, particularly for light beams (small 

*M ); and (2) push 

the mode-switching behaviour towards larger mass-ratios. However, we underline that, quantitatively, 

results start to deviate from those of the 2D model for larger confinement ratios. Notice that, at 
* 1/ 4H =

, the first modal-transition occurs at approximately 
* 0.5M =  for the 2D model and at approximately 

* 1M =  for the 1D model. These deviations are not unexpected since the 1-D bulk-flow equations are 

derived on the assumption that channel heights are small compared with the characteristic length of the 

system. Therefore, we expect deviations to increase for larger confinement ratios 
*H . These deviations are 

likely explained by the fact that no explicit account of circulatory flow effects appears in the simplified 1-
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D bulk-flow formulation. While circulatory flow will likely have a minor influence on the flutter instability 

in narrower confinements, this will not be true for wider confinements. In the limiting case of a beam in 

unbounded flow, the derived bulk-flow modelling approach is clearly not suitable.  We also note that, on 

all three cases, the stability for heavier beams ( )* 5M   is underestimated, with the 2D model predicting 

the first instabilities at larger velocities. Regarding lower confinement ratios, the lack of results from the 

2D model for confinement ratios 
* 1/10H   prevents us from a concrete comparison. However, based on 

the trends of the results shown above, it is expected that the 1D model will provide accurate representations 

at smaller confinements.  

6 Time-domain integrations and nonlinear dynamics 

In this section we aim to explore the nature of the nonlinear regimes associated with a linearly unstable 

system through numerical time-domain integration. The set of nonlinear ODEs described in Section 3 was 

solved using MATLAB’s solver ode15i [36], an implicit scheme with variable time-stepping, which 

allowed fast computations by alternating between long and short time-step to account for the naturally stiff 

impact dynamics. Numerical simulations were started with the solutions of the steady configuration nq , 

cQ  as initial conditions, and a small perturbation force was applied to all beam modes to induce eventually 

unstable dynamics. 

6.1 Stability and impact boundaries 

As a first step to characterise the nonlinear behaviour of the system, we examine the role of impacts and 

when they are more likely to occur. For this, a series of numerical time-domain integrations were performed 

in the non-dimensional parametric space 
* *( , )U M . We considered a symmetric configuration with 

confinement ratio 
* 1 10H = , and friction coefficient 0.14f = . The simulations were run for several 

seconds until one of the following scenarios was encountered: (1) oscillations gradually decreased 

converging to the steady solution (linearly stable dynamics), (2) the oscillations grew until a stable limit 

cycle was reached, without the occurrence of impacts, or (3) oscillations grew until the beam eventually 

comes into contact with one of the walls, at which point the simulations were stopped. The difference 

between the latter two scenarios enabled us to estimate an “impact boundary”, that is, a frontier in the 
* *( , )U M plane separating limit cycles with and without impacts. Because contact was not accounted in 

this first study, the beam was described by only 10N =  modes. All modal damping coefficients were set 

to 0.01n = . The resulting map is shown in Figure 7. 
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Figure 7 – (color online) Stability map of a system with confinement ratio 
* 1 10H =  and friction 

coefficient 0.14f = , in the 
* *( , )U M  plane. The linear stability boundary (black line) is compared to the 

limit cycle boundary found by the nonlinear simulations (orange dots). The impact boundary (blue line) 

illustrates the frontier in which unstable dynamics lead to contact between the beam and the confinement 

walls. The nonlinear limit cycles associated with the points marked (1a-c) and (2a-c) will be shown in the 

following sections.   

Firstly, we see that the stability boundary predicted by the linearized system is coherent with the unstable 

dynamics observed in the nonlinear simulations. As for the impact boundary, we note that the regions in 

which limit cycles without impacts occur (grey area) are not extensive. Noticeably, we underline the fact 

that for small mass ratios (heavy beams or light fluids) these regions simply do not exist and the flutter 

instability, however weak, inevitably leads to large amplitude beam motions and eventual contact with the 

side walls. This seems physically plausible as the inertia of heavier beams will tend to outweigh the 

restoring forces from a light fluid.  

At this point is it important to mention that experimental studies on similar systems (with bounded or 

unbounded flow) often report hysteretic behaviour, suggesting the existence of a subcritical bifurcation [8] 

[37] [38]. That is: (1) when the mean flow velocity is gradually increased, an initially static beam will start 

fluttering at a specific critical velocity cU , and on the other hand, (2) when the mean flow velocity is 

gradually decreased, an initially unstable (fluttering) beam will stabilise at a different critical velocity dU . 

This phenomenon remains to this day an open question and modelling efforts generally fail to reproduce 

this behavior. Some authors [37] [38] have suggested that the fluttering instability of cantilever 

plates/beams could actually be supercritical (no hysteresis) and that the hysteresis found in experiments 

could be a product of unaccounted three-dimensional effects, i.e. edge-vortices, torsional motion of the 

plate, etc. Some preliminary numerical studies have been conducted using the current model and no 

hysteresis was found yet. Nevertheless, we believe the present approach could be used in the future as a 

framework for bifurcation studies (using algorithms for the continuation of periodic solutions), which 

would give a more comprehensive view of the nonlinear dynamics of the model, and perhaps clarify some 

of these unanswered questions.  

6.2 Elastic impact model 

The few researchers who explored nonlinear simulations of cantilevered plates in confined axial flow, 

eventually encounter limitations in their solutions, at regimes where the motion of the plate is large enough 

that collisions with the walls become inevitable. Nevertheless, numerous experimental (and modelling) 

observations [7] [8] [26] [24] [39] demonstrate that nonlinear motions regularly present intermittent 

impacts, particularly for cases where the confinement and/or the mass ratio are low.  
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At this point it is worth discussing the nonlinear behavior of the flow in the eminence of a channel 

constriction. Firstly, it must be said that, for systems composed of fluttering cantilever beams, channel 

constriction (or collapse) will generally occur at the beam tip. As one might expect, a local constriction of 

the channel initially leads to an increase of the local velocity and a decrease in local pressure, further 

pushing the beam towards the wall. However, this behavior is eventually limited by the effect of the 

nonlinear flow dissipation terms (frictional effects as well as head-losses at the trailing edge). Moreover, 

as the beam motion becomes very large, its inertia in the direction of a channel wall will cause a “squeeze” 

like effect on the fluid. In the eminence of contact, because the fluid is assumed incompressible, this 

“squeezing” effect will lead to an abrupt, but continuous, decrease in local velocity (and even locally reverse 

flow), at which point, if fluid forces are not strong enough to oppose the beam inertia, contact becomes 

inevitable. Naturally, this phenomenon will be more pronounced in configurations with low mass ratios. 

Additionally, we note that compressibility effects, such as propagating pressure waves, are not accounted 

in our model, and we do not discard the possibility that, in particular scenarios, such effects could have a 

meaningful impact on the dynamics of a real physical system.   

As mentioned in the introduction, the addition of dynamic impacts to the fluid-structure model is a non-

trivial task. Not only do we need to formulate the contact conditions between the beam and the side walls, 

which often implies dynamic constraints (at the displacement, velocity and acceleration levels), but also 

the associated contact conditions for the flow. The latter difficulty relates to the fact that the solutions for 

flow velocity and pressure fields present singularities at the moment of contact, i.e. when the channel height 

0ch = . Moreover, classical penalty methods, reliant on contact interpenetration, are naturally incompatible 

with the flow model. In this paper, we do not aim to find solutions to these delicate issues. However, we 

present a pragmatic approach based on a regularized impact formulation, in the spirit of classical penalty 

methods, that allows us to include impacts in a simple manner that is compatible with the flow formulation.  

Since the fluid equations do not allow for beam penetration on the wall, the impact force is applied on the 

beam just before contact. That is, an impact force ( , )iF x t  is applied in regions of the beam which have 

trespassed a small regularization parameter  , as illustrated in Figure 8. In essence, we allow some flow 

leakage at the moments of “contact”, such that an impact force can applied to the beam without fully 

restricting the flow dynamics.   

 
Figure 8 – Illustration of the beam violation right before contact and corresponding impact force.  

The simplest and most commonly used approaches to describe dynamic impacts between two solids are 

based on the Hertz model, a purely elastic contact model (without dissipation), typically in the form 

 
( , ) if ( , ) 0

( , )
0 otherwise

p
i

i

k v x t v x t
F x t

 
= 


 (39) 

where ik  is an impact stiffness, 1p  , and the violation amplitude is given, in our case, by

( , ) ,cv x t h x t= − ( ) . The sign of ( , )iF x t  is defined for each channel: 0iF   for 2c = ;  0iF   for 1c = . 

These models describe a nonlinear stiffening force proportional to a power p  of the violation amplitude. 

For purely mechanical problems, these types of models are well behaved. However, in our problem, the 

inertial forces of the beam and the fluid forces might, in some cases, dominate over the contrary impact 

force, and penetration occurs nonetheless, i.e. ( , ) 0h x t  . For this reason, we have pragmatically used an 

infinitely stiffening impact force in the form 
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( , )
tan if ( , )

( , ) 2

0 otherwise

i c
i

v x t
k h x t

F x t






   
   =    




 (40) 

where, in this case, penetration is avoided completely as the impact force tends to infinity when 

( , ) 0ch x t → . Figure 9 compares the amplitude of the impact force for various values of  impact stiffness 

ik  with the linear case (Eq. (39) with 1p = ), as a function of the normalized amplitude of violation   . 

 

Figure 9 – (color online) Impact force as a function of the amplitude of violation (when h  ). A linear 

stiffness impact model is compared to the tangential impact model for various values of stiffness ik .  

6.3 Limit cycles without impacts 

To illustrate the character of the limit cycles we start by showing the solutions to a set of configurations 

that lead to stable limit cycles without impacts. The configurations (1a), (1b) and (1c) - red points in Figure 

7 – have a constant mass ratio 
* 0.25M =  and various reduced velocities  *

3.5, 6, 8U = , respectively.  

For each configuration (1a), (1b) and (1c), Figure 10 shows snapshots of the beam motion and Figure 11 

shows the temporal evolution of the modal velocities ( )nr t  and the unsteady flow rates ( )cQ t . Additionally, 

in Figure 12 we show the phase-portrait of the beam tip, the evolution of the tip displacement ( , )y L t , the 

spectra of the tip velocity and average contribution of each (in-vacuo) beam modes to the nonlinear 

oscillations, expressed by the root-mean-square (RMS) value of modal displacements ( )nq t .  

 
Figure 10 – (color online) Snapshots of the beam motion during one cycle for configurations (1a), (1b) and 

(1c). 
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Figure 11 – (color online) Temporal evolution of the modal velocities ( )nr t  (left) and unsteady flow rates 

( )cQ t (right) in the limit cycles associated with configurations (1a), (1b) and (1c). For clarity, time scales 

are normalized by the fundamental period of the corresponding limit-cycle 0T . 

Figure 10 shows that the amplitude of the beam motion tends to increase with increasing velocity 
*U , as 

expected. Moreover, we notice that the beam motion also changes qualitatively. At lower velocities (1a) 

the motion is dominated by the first two in-vacuo beam modes, while at larger velocities (1b-c) the 

contribution of the third beam mode becomes increasingly significant, illustrating a “mode-transition”, 

similar to what was observed in the linear stability results. Moreover, the beam motions in the various limit 

cycles are remarkably similar to the complex mode shapes presented in Figure 5, suggesting that, in these 

cases, the overall motion of the fluttering beam is not altered significantly by the nonlinear fluid forces.  

In Figure 11, the modal velocities again show the appearance of the third beam mode at larger velocities 

(1c). We also note a growing nonlinearity with increasing velocities 
*U  (1b-c), as the oscillations of the 

modal components start to drift from the nearly sinusoidal motions seen in (1a). As expected from a 

symmetric system, the flow rates ( )cQ t  oscillate in phase opposition.  Moreover, they oscillate around a 

value slightly lower than their steady component cQ . This means that the overall mass transport is reduced 

by the fluttering beam, compared to a static scenario. This seems physically plausible as, during flutter, 

some of the energy carried by the flow is transferred to the beam and lost through either structural 

dissipation or increased flow-dissipation effects (either friction along the domain or turbulent effects in the 

trailing edge, modelled by the distributed and localized head-loss terms, respectively). 

The plots in Figure 12 suggest that, without intermittent impacts, the nonlinearity in the beam motion is 

relatively weak. Naturally, the shown spectra contain only odd harmonics, as would be expected from a 

symmetric system. At lower velocities (1a), the motion is nearly sinusoidal, with negligible contributions 

from higher harmonic components while at larger velocities 
*U , higher-order harmonic components 

become more significant, however, still relatively weak compared to the fundamental frequency 

(amplitudes of higher harmonics are typically 20/30 dB below the fundamental).  
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Figure 12 – (color online) Phase-portrait of beam tip (top-left); Root-mean-square (RMS) value of the 

modal displacements (top-right); beam tip displacement (bottom-left) and spectra of the tip velocity 

(bottom-right), for the three configurations (1a), (1b) and (1c). For clarity, time/frequency scales are 

normalized by the fundamental period/frequency of the corresponding limit cycle 0T  and 0f . 

6.4 Limit cycles with impacts 

Here we illustrate a few limit cycles that include intermittent impacts, namely, the solutions for the 

configurations indicated in Figure 7 by points (2a), (2b) and (2c). These configurations have a constant 

mass ratio of 
* 1M =  and various reduced velocities  *

7, 8.5, 10U = , respectively. For these simulations, 

a large number of beam modes was considered, 40N = , to ensure the impact dynamics are well 

represented. In general, the number of considered modes N  should be such that the modal stiffness of the 

highest considered mode is somewhat larger than the impact stiffness at the point of contact ix , that is 

2
i N Nk m  . The effect of the impact stiffness, ik , deserves a meaningful discussion, as it might affect the 

resulting limit cycles. However, we will firstly show some illustrative results and, in a following section, 

we will discuss the role of the impact stiffness and how it affects the resulting nonlinear behaviour. In the 

following simulations, the non-dimensional impact stiffness was taken as 
* 2 7

1 1 10i ik k m= = (normalized 

by the stiffness of the first beam mode) and the non-dimensional regularization parameter 
310H −= .  

Figure 13 shows snapshots of the beam motion and Figure 14 the evolution of the modal velocities ( )nr t  

and the unsteady flow rates ( )cQ t , for the three configurations (2a), (2b) and (2c). In Figure 15 we show 

the phase-portrait of the beam tip, the evolution of the tip displacement ( , )y L t , the spectra of the tip 

velocity and RMS-value of the modal displacements ( )nq t , for all three configurations. Moreover, we show 

in Figure 16 the impact force applied on the beam throughout the limit cycles. The impact force is expressed  

as the spatial integral of ( , )iF x t , normalized by a reference force 
2

0 1F mf H= , where m  is the total mass 

of the beam and 1f  is the frequency of the first in-vacuo beam mode.  
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Figure 13 - (color online) Snapshots of the beam motion during one cycle for configurations (2a), (2b) and 

(2c). 

 
Figure 14 - (color online) Temporal evolution of the modal velocities ( )nr t  (left) and unsteady flow rates 

( )cQ t (right) in the limit cycles associated with configurations (2a), (2b) and (2c). For clarity, time scales 

are normalized by the fundamental period of the corresponding limit-cycle 0T . 

In Figure 13 we notice that, in all cases, intermittent contact occurs solely at the tip of the beam. As the 

velocity 
*U  increases (2b-c), impacts become more violent and the beam motion becomes increasingly 

perturbed, as higher order beam modes are intermittently excited and start playing a more prominent role 

in the overall beam motion. These effects are also seen by the evolution of the modal velocities shown in 

Figure 14 and the RMS-values in Figure 15 . When impacts are relatively weak (2a), the tip simply “grazes” 

the wall and the overall beam motion is not significantly altered compared to the mode shapes estimated 

by the linear stability analysis.  

Similarly, the oscillations of the flow rates become increasingly abrupt in the presence of violent impacts. 

However, it is interesting to note that sharp changes in the unsteady flow-rate (e.g. bottom-right plot in 

Figure 14) do not occur at the moments of contact but rather at the moments when the beam motion rapidly 

shifts from one side of the channel to the other. This effect can be illustrated, for example, by the beam-tip 

motion shown in Figure 15. Here we notice that as impacts become stronger, the  overall contact time also 

becomes larger, meaning as well that the beam-tip will shift sides more abruptly, hence generating sharp 

fluctuations in the flow-rates.  

In Figure 15 we note that the motions become increasingly nonlinear in the presence of stronger impacts. 

The phase-portrait shows more perturbed motions with larger gradients. Naturally, the spectra of the beam 

tip show a large number of high order harmonic components, increasing in amplitude as impacts become 



21 

 

more violent. It is worth noting that, in limit cycles with stronger impacts (2c), the oscillations are not 

strictly periodic. Although the low frequency motions are stable, we notice small high frequency 

perturbations, related to the unsynchronized motion of the intermittently excited higher order beam modes. 

This behaviour is clearly illustrated by the spectra of (2c), where we notice not only an increase in the 

amplitude of the harmonics, but also a visible presence of noise-like spectral behaviour. Nevertheless, these 

motions might be tentatively classified as perturbed periodic oscillations, rather than aperiodic dynamics. 

For illustrative purposes, the time and frequency scales were normalized by the fundamental 

period/frequency of each limit cycle. However, it is worth noting that larger reduced velocities 
*U  led to 

limit cycles with higher fundamental frequency 0f . For reference, the fundamental frequencies 0f  of the 

limit cycles (2b) and (2c) were 11% and 23% larger than the fundamental frequency of the (2a) limit cycle, 

respectively. This is not unexpected since larger velocities 
*U , as well as impacts, will provide additional 

stiffness to the unstable FSI mode. 

The impact forces represented in Figure 16 illustrate the fact that, during each beam-wall interaction, the 

beam tip impacts the wall multiple times. This chattering effect is a typical behaviour of systems with 

impacts in multi-modal structures. In weaker impacts (2a) we notice only a few impacts of decreasing 

strength while in more violent regimes (2b-c) contact is composed of multiple impacts with stronger 

associated forces and an overall longer chattering time.  

 
Figure 15 - (color online) Phase-portrait of beam tip (top-left); root-mean-square (RMS) value of the modal 

displacements (top-right); beam tip displacement (bottom-left) and spectra of the tip velocity (bottom-right, 

for the three configurations (2a), (2b) and (2c). For clarity, time/frequency scales are normalized by the 

fundamental period/frequency of the corresponding limit-cycle 0T  and 0f . 
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Figure 16 – (color online) The evolution of the non-dimensional impact force through the limit-cycles 

associated with configurations (2a), (2b) and (2c). For clarity, time scales are normalized by the 

fundamental period of the corresponding limit cycle 0T .  

6.5 Limit cycles in asymmetric configurations 

To contrast with the symmetric limit cycles shown above, we now considered a similar system where the 

lower channel height is taken as 2 12H H= . The mass ratio is fixed at 
* 1M = , as in (2a-c), and two reduced 

velocities are considered  *
7, 9U = . The following examples illustrate the diversity of behaviour found 

in asymmetric system, leading to limit cycles with either one and two impacts per cycle. Figure 17 shows 

snapshot of the beam motion during the two asymmetric limit cycles. In Figure 18, we see the temporal 

evolution of modal velocities and flow rates. Figure 19 shows the phase portrait of the beam tip, the 

evolution of the tip displacement and the spectra of the tip velocity in the two asymmetric configurations. 

 
Figure 17 – Snapshot of the beam motion in limit cycles with impacts in asymmetric configurations.  

 
Figure 18 – (color online) Temporal evolution of the modal velocities (left) and unsteady flow rates (right) 

in the two asymmetric configurations. For clarity, time scales are normalized by the fundamental period of 

the corresponding limit-cycle 0T . 
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Once again, in the examples shown in Figure 17-Figure 19, impacts occur solely at the tip of the beam. In 

the 
* *( 1 ; 7)M U= =  configuration, impacts occur only at the upper wall (one per cycle) while in the 

* *( 1 ; 9)M U= =  configuration there are two impacts per cycle, on both the upper and lower walls. The 

latter case presents more violent impacts and a more distorted beam motion, which includes significant 

contributions from higher order beam modes. The spectra in Figure 19 now shows both even and odd 

harmonic, as expected from an asymmetric system.  

As expected in asymmetric cases, the overall flow rates are larger in the wider channel, as fluid velocities 

tend to equalize under the same driving pressures. Nonetheless, static flow velocities on the narrower 

channel 1u  will actually be lower than in the wider channel 2u  due to increased flow-dissipation. 

Consequently, the beam will feel larger perturbation pressures from the upper channel, which will push the 

overall beam motion towards the lower channel, as seen clearly in Figure 17. 

 
Figure 19 – (color online) Phase-portrait of the beam tip (left); beam tip displacement (top-right) and spectra 

of the beam tip velocity (bottom-right) for the two asymmetric configurations. For clarity, time/frequency 

scales are normalized by the fundamental period/frequency of the corresponding limit-cycle 0T  and 0f . 

6.6 Limit cycles with impacts at multiple locations 

Now we illustrate a limit cycle where, contrary to the previous, impacts occur not only at the tip of the 

beam. We consider an asymmetric configuration with 2 14H H= , 
* 1M =  and 

* 12U = , with all other 

parameters as before. Figure 20 illustrates the character of the resulting limit cycle. 



24 

 

 

Figure 20 – (color online) Illustration of a limit cycle with impacts both at the tip and along the beam. 

Phase-portrait of the beam tip (top-left); temporal evolution of the impact force (top-right) and the tip 

displacement (centre-right); snapshots of the beam motion (bottom-left) and the spectra of the beam tip 

velocity (bottom-right). For clarity, time/frequency scales are normalized by the fundamental 

period/frequency of the limit cycle 0T  and 0f . 

The results in Figure 20 are qualitatively different from those previously presented. The snapshots of the 

beam motion illustrate how the beam impacts the walls both at the tip and also along the beam ( 0.7)x L 

. In the phase-portrait of the tip motion, we notice that, throughout one cycle, the beam impacts the upper 

wall three times, once in a mid-beam location and twice at the beam tip.  

Curiously, the spectra shows that the first harmonic component is much weaker than the second one. 

Furthermore, the oscillations of the tip displacement and the phase-portrait show the same effect in the 

temporal domain, as the “principal” motion nearly repeats itself within one cycle. These results suggest 

that, in this case, the mid-beam impact might induce some form of period-doubling bifurcation. 

6.7 Aperiodic dynamics 

So far, we have only examined periodic limit cycles at relatively low/moderate reduced velocities 
*U . 

However, at larger reduced velocities, strong fluid forces and violent impacts may lead to aperiodic/chaotic 

dynamics. To illustrate, we now consider a symmetric system, similar to those described in Section 7.3, 

with a mass ratio 
* 0.05M =  and reduced velocity 

* 25U = . Figure 21 illustrates the aperiodicity of the 

fluid-structure dynamics.  
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Figure 21 - (color online) Illustration of aperiodic dynamics in a symmetric system with 
* 0.05M =  and 

* 25U = . Temporal evolution of the flow rates (top-left), the nondimensional impact forces (top-right), the 

modal velocities (centre-left) and the tip displacement (centre-right); snapshots of the beam motion 

(bottom-left) and the spectra of the beam tip velocity (bottom-right). Time and frequency scales are 

normalized by a pseudo-fundamental period/frequency,
*

0T  and 
*

0f . 

Notice that, despite the clear aperiodicity of the motion, there is some form of regularity in the low 

frequency behaviour (see prominence of a low frequency component in the spectra shown in Figure 21). 

For this reason, time and frequency scales are normalized by a pseudo-fundamental period/frequency, 
*

0T  

and 
*

0f , given by the low frequency component with largest magnitude.  

Contrary to the previously shown periodic behaviour, here impacts occur in diverse locations along the 

beam, in the region 0.3 1x L  . The violent impacts at different locations strongly excite higher order 

beam modes, in an irregular manner. Despite this, the oscillations of the first two beam mode contributions 

seem have some form of regularity (see evolution of modal velocities). This relatively stable motion is more 

clearly illustrated by the spectra of the tip velocity, which, despite its wide-band nature, also shows the 

prominence of some frequencies in the low frequency range. In the previous shown example (2c), we 

discussed the presence of small (high frequency) perturbations to the limit cycles. The present dynamics 

might be seen from the perspective that these perturbations cease to have a negligible effect, and now, 

clearly break periodicity.  

6.8 The effect of impact stiffness 

Finally, to assess the role of the impact stiffness on the resulting nonlinear behaviour, we now take one 

example configuration and show the resulting limit cycles calculated with different impact stiffnesses ik . 

The configuration was symmetric, as above, with 
* 1/10H = , 

* 0.1M =  and 
* 8U = . A total of 40 beam 

modes were considered, with uniform modal damping 0.01n = . The impact regularization parameter was 

fixed at 
310H −=  , and the non-dimensional impact stiffness 

* 2
1 1i ik k m = ,  was varied from 

510 to 

810 . Figure 22 shows the phase-portrait of the beam tip, the tip displacement and the spectra of the tip 

velocity for the limit cycles with various values of impact stiffness ik . Additionally, Figure 23 shows the 

impact forces applied on the beam (integrated in space) for the various limit cycles.  
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Figure 22 – (color online) Comparison of limit cycles with intermittent impacts, calculated with various 

impact stiffnesses. The phase-portrait of the beam tip (top-left); the beam tip displacement (top-right); and 

the spectra of the beam tip velocity (bottom). For clarity, time/frequency scales are normalized by the 

fundamental period/frequency of the corresponding limit-cycle 0T  and 0f . 

 
Figure 23 – (color online) The evolution of the non-dimensional impact force (integrated in space) through 

the limit-cycles for using various values of impact stiffness.  For clarity, time scales are normalized by the 

fundamental period of the corresponding limit-cycle 0T . 

The results above show us that the impact stiffness does not seem to affect the overall motion of the limit 

cycle. The phase-portrait of the beam tip shows only minor quantitative differences. From the evolution of 

the beam tip displacement during the impact, we notice that a larger impact stiffness results in very small 

“penetration” and a chattering of higher frequency. As the impact stiffness if softened, penetration becomes 

more pronounced and the chattering effects are smoothened. Despite this, the overall contact time remains 

fairly regular in all 4 cases. These effects are clearly illustrated by the frequency content of the tip motion. 

We notice that low frequency components remain nearly unchanged and noticeable differences are seen 

only at the high-frequencies. This example suggests that, using the current impact model, the choice of 

impact stiffness brings only minor quantitative changes but does not alter the overall dynamics of the 

system, at least in the tested range of impact stiffnesses. Many other configurations were tested (not shown 

here), leading to similar conclusions. However, the possibility of qualitative changes due to varying impact 

stiffness is not discarded and further studies are necessary.   
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7 Conclusions  

In this paper we have presented a framework for the comprehensive study of the nonlinear dynamics of a 

flexible beam subject to axial flow in a confined passage. Previous studies have been constrained by either 

large computational costs associated with 2D CFD models, the lack of a nonlinear flow formulation, and/or 

more importantly, by the occurrence of contact between the beam and the side-walls. Here, a 1D model 

was formulated where the beam is described by its in-vacuo modes and incompressible bulk-flow equations, 

including distributed and localised head-losses, are used for the flow in both channels. An analytical 

resolution, based on the formal solutions for the velocity and pressure fields, is developed and leads to a 

fully nonlinear formulation of the fluid-structure interaction. Moreover, the possibility of contact between 

the beam and the walls is accounted for by a regularized impact model.  

As a preliminary assessment of the potential of the proposed approach, results of linear stability analysis 

were compared to reference results using more realistic 2D CFD models. Overall, results were positively 

validated over a wide range of the non-dimensional parameters (mass ratio and reduced velocity), with only 

minor quantitative differences, at least for relatively narrow passages. At larger confinement ratios H L , 

we notice larger errors, as expected from the simplifying assumptions made in the bulk-flow approach. 

Subsequently, a variety of nonlinear time-domain integrations were performed in order to illustrate the 

diversity of dynamical behaviour occurring in such systems. Firstly, several simulations were performed to 

characterise the nonlinear dynamics for different configurations in the 
* *( , )M U -space. This led to a 

mapping of the nonlinear dynamics, separating the regions where limit cycles with and without impacts 

occur. Results suggest that, for low mass ratios (heavy beams/light fluids), the initial flutter instability 

always leads to contact, likely due to the contrast of the inertia of a heavy beam to that of a light fluid. For 

moderate-to-large mass ratios, there are regions in the 
* *( , )M U -space where limit cycles without impacts 

occur, although these are relatively narrow.  

Finally, several illustrative simulations are shown including limit cycles (1) with and without intermittent 

impacts, (2) in symmetric and asymmetric configurations, and (3) with impacts at the beam tip or along its 

length. Additionally, we show an example where large flow velocities lead to aperiodic/chaotic dynamics. 

The lack of experimental data on the ensuing limit cycles prevents us from a meaningful validation of our 

results, nevertheless, they seem physically plausible and consistent with reported experimental 

observations, at least qualitative. 

To the authors best knowledge, the presented framework allowed, for the first time, the calculations of the 

post-instability behaviour of fluttering beams in confined flow, including vibro-impact dynamics. Future 

work might deal with the refinement of the impact model, to treat flow contact conditions and include 

damping. Moreover, bifurcation analysis using methods for the calculation and continuation of periodic 

solutions can contribute to a more comprehensive understanding of the associated nonlinear dynamics.  
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