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Simple Summary: Tuberculosis still causes 1.5 million deaths annually and is mainly caused
by Mycobacterium tuberculosis complex strains belonging to three evolutionary modern lineages
(Lineages 2–4). While Lineage 2 and Lineage 4 virtually conquered the world, Lineage 3 is par-
ticularly successful in Northern and Eastern Africa, as well as in Southern Asia, the suspected
evolutionary origin of these strains. Here, we sought to understand how Lineage 3 strains came to the
African continent. To this end, we performed routine genotyping to characterize over 2500 clinical
isolates from 38 countries. We then selected a representative collection of 373 isolates for a whole-
genome analysis and a modeling approach to infer the geographic origin of different sublineages.
In fact, the origin of Lineage 3 could be located in India, and we found evidence for independent
introductions of four distinct sublineages into North/East Africa, in line with known ancient ex-
changes and migrations between both world regions. Our study illustrates that the evolutionary
history of humans and their pathogens are closely connected and further provides a systematic
understanding of the genomic diversity of Lineage 3, which could be important for the development
of new tuberculosis vaccines or new therapeutics.

Abstract: Mycobacterium tuberculosis complex (MTBC) Lineage 3 (L3) strains are abundant in world
regions with the highest tuberculosis burden. To investigate the population structure and the global
diversity of this major lineage, we analyzed a dataset comprising 2682 L3 strains from 38 countries
over 5 continents, by employing 24-loci mycobacterial interspersed repetitive unit-variable number
of tandem repeats genotyping (MIRU-VNTR) and drug susceptibility testing. We further combined
whole-genome sequencing (WGS) and phylogeographic analysis for 373 strains representing the
global L3 genetic diversity. Ancestral state reconstruction confirmed that the origin of L3 strains
is located in Southern Asia and further revealed multiple independent introduction events into
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North-East and East Africa. This study provides a systematic understanding of the global diversity
of L3 strains and reports phylogenetic variations that could inform clinical trials which evaluate the
effectivity of new drugs/regimens or vaccine candidates.

Keywords: Mycobacterium tuberculosis; MTBC; Lineage 3; back to Africa

1. Introduction

With nearly 10 million incident cases and 1.5 million deaths worldwide in 2020,
tuberculosis (TB) remains the leading cause of death among humans due to a single
pathogen [1]. The vast majority of new TB cases each year occur in South-East Asia (43%),
Africa (25%), and the Western Pacific (18%), posing a significant public health risk to the
affected countries and health care systems [1]. As an additional challenge for TB control, in
2020, nearly half a million cases of rifampicin (RMP)-resistant (RR) TB were reported, out
of which 78% were multidrug resistant (at least isoniazid (INH) and RMP resistant) [1].

Bacteria of the Mycobacterium tuberculosis complex (MTBC), the causative agents of
TB, are classified into eight human-adapted (L1–L9) and animal-adapted phylogenetic
lineages [2–5]. Globally, strains of L2, L3, and L4 are the most widely spread [6–8]. The
epidemic success of L2 strains in Eurasia has been associated with drug resistance and
hypervirulence, whereas L4 strains appear to be composed of ecologically distinct sublin-
eages. These L4 sublineages include geographically widespread generalist clades causing
disease in many different human populations, and geographically restricted specialist
clades, closely associated with their sympatric host populations [6–9].

Although L3 strains constitute a major TB burden for high-incidence regions in South
Asia, as well as North and East Africa, and are also potential drivers of the MDR TB
epidemic in some parts of the world [2,3,10–14], a clear understanding of the population
structure of this main MTBC lineage is lacking. Previous studies suggested an origin for
L3 strains in South Asia, followed by dispersal to North and East Africa, likely via close
economic and cultural interactions between South-East Asia and East Africa in the Common
Era [10,15]. However, no study is available that combines a comprehensive phylogenetic
framework with phylogeographic inference to provide robust insights into the genetic
background and global spread of L3 strains.

To address this knowledge gap, we leveraged a collection of 2682 clinical L3 strains
from 38 countries to define the global population structure and phylogenetic roots of L3
strains. We further investigated the geographical dispersal of L3 strains and determined
their potential associations with drug-resistant TB.

2. Results
2.1. Global Population Structure of MTBC L3 Strains

In this study, we analyzed a total of 2682 clinical L3 strains (one per patient) from
38 different countries, of which 25.9% (n = 695) originate from 16 countries in Africa,
32.8% (n = 881) from 12 countries in Asia, 18.9% (n = 506) from 8 countries in Europe,
12.6% (n = 337) from Canada, and 9.8% (n = 263) from Australia (Supplementary Table S1).
Inclusion criteria were a 24-loci MIRU-VNTR pattern classified as L3 (i.e., Delhi/CAS) using
the MIRU-VNTR nomenclature at http://www.miru-vntrplus.org, accessed on 6 August
2020. Overall, 63.8% (1710/2682) of the L3 strains analyzed were either from population-
based or cross-sectional studies, of which 1036/2,682 (38.6% overall) had phenotypic drug
susceptibility testing (pDST) data available (Supplementary Table S1).

We first constructed a minimum spanning (MS) tree based on 24-loci MIRU-VNTR
data of 2682 clinical strains to define major L3 clonal complexes (L3-CC), assigned a
nomenclature code (MLVA MTBC 15–9), and estimated the clustering rate among identified
L3-CCs (i.e., proportion of strains with identical genotypes) [16,17].

http://www.miru-vntrplus.org
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In total, we identified 1596 different MLVA 15-9 codes, of which 1322 were assigned
to a single strain only (Supplementary Table S1). Overall, we identified 1206 strains in
274 clusters, with cluster sizes varying from 2 to 103 strains, including the largest cluster
in each of the five L3-CCs: A1 (n = 78), B1 (n = 103), C1 (n = 25), D1 (n = 29), E1 (n = 21)
(Figure 1). We then defined L3-CCs based on the topology of the MS tree, which reveals
the structure of relatedness of genotyping patterns by minimizing the weights of the edges
between genotypes (Figure 1). Each of the five major above-defined L3-CCs appears as one
parental node surrounded by successive layers of descending genotypes. Genotype groups
showing a more scattered distribution in the MS tree and lacking a clearly visible structure
likely represent the genetic background of L3 strains and were not further assigned to
a clonal complex and in the following are termed L3-BG, i.e., L3 genetic background
(Figure 1).
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complexes (L3-CCs) and diverse strains representing the L3 background diversity (L3-BG) are color
coded. Node size reflects the number of strains with identical 24-loci MIRU-VNTR patterns. Branch
length proportional to the number of allele differences between two nodes. Solid lines indicate 1, 2,
or 3 allele differences, gray dashed lines represent 4 allele differences, and gray dotted lines represent
5 or more allele differences.

Stratified to the five L3-CCs, the proportions of clustered strains (i.e., two or more
MTBC strains from different patients and exhibiting identical genotyping patterns [17])
ranged from 28.8% (190/659) in L3-CC3 to 7.6% (255/342) in L3-CC2 (Figure 2a). Strains of
L3-CC1, L3-CC4, and L3-CC5 showed intermediate proportions of clustering rates, with
L3-CC3 exhibiting the lowest proportion of clustered strains (Fisher’s exact test p < 0.001).
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Figure 2. Molecular clusters and drug resistance among L3 clonal complexes (CC). Proportions of
clustered strains (A) and rifampicin-resistant (RR) and multidrug-resistant (MDR) strains (B) within
L3 clonal complexes (CC) and within diverse strains representing the genetic background (L3-BG).

We further considered pDST data for strains derived from population-based or cross-
sectional studies (1036/2682, 38.6%) and with available pDST results for INH and RIF. Of
these, 93.9% (973/1,036) were RIF susceptible, and 6.1% (63/1036) were either RR or MDR.
Proportions of RR/MDR strains among L3-CC1 to L3-CC5 were as follows: 10.1% (34/335),
7.3% (8/110), 1.6% (4/248), 6.8% (3/44), and 0.0% (0/35), respectively, with no significant
differences (Fisher’s exact test p ≥ 0.059) (Figure 2b, Supplementary Table S1). Half (n = 31)
of the RR/MDR strains occurred in three countries in Northern and Eastern Africa, namely
Ethiopia, Kenya, and Sudan.
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Out of 274 clusters, 137 (50%) comprised strains that were found in 2 to 12 different
countries, suggesting a relatively recent cross-border spread of different L3 strains (Supple-
mentary Table S2). The spatial distribution of L3-CCs shows certain L3-CCs dominating
in Southern Asia and Northern and Eastern Africa. While Europe shows a higher strain
diversity, Australia and Northern America resemble the distribution of L3-CCs in Southern
Asia (Figure 3, Supplementary Table S3). Specifically, we observed high proportions of di-
verse strains representing L3-BG, as well as L3-CC3, in Southern Asia, namely Afghanistan,
India, Pakistan, and Nepal, as well as in Iran, Australia, and Canada. L3-CC1 strains are
dominant in Northern Africa and the Arabian Peninsula, whereas L3-CC2 strains are highly
prevalent in Eastern Africa. In Ghana and in Senegal, we identified mostly L3-BG strains
(Figure 3, Supplementary Table S3).
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2.2. Genome-Based Phylogeny of MTBC L3

To analyze the global phylogeny and geographical origin of MTBC L3 strains at a
higher resolution, we selected 152 representative strains from all L3-CCs and L3-BG for
an initial WGS analysis (Supplementary Figure S1, Supplementary Table S4). The selected
strains comprised 4.6% (34/743) of L3-CC1, 7.6% (26/342) of L3-CC2, 6.4% (42/659) of
L3-CC3, 5.8% (10/173) of L3-CC4, 6.1% (6/99) of L3-CC5, and 5.1% (34/666) L3-BG strains
(Supplementary Table S4). To represent the global diversity of the L3 population as best
as possible, we included 51 strains from 10 African countries, 84 strains from 10 Asian
countries, and 17 strains from Europe, and included five Lineage 2 strains as an outgroup.
Next, we calculated a maximum-likelihood (ML) tree based on a concatenated sequence
alignment of 12,262 single-nucleotide polymorphisms (SNPs) (Supplementary Figure S2).

In the ML phylogeny, we defined 12 clades that correlated well with the MIRU-VNTR-
based L3-CCs and/or country of origin, and we defined signature SNPs specific for all
strains of each clade (Supplementary Table S4). We then screened for these signature SNPs
in a previously published L3 strain dataset from Napier et al. (n = 3406) [18]. Overall,
2916/3406 (85.6%) L3 strains in this dataset could be classified with the signature SNPs
defined above, while 490/3406 strains (14.4%) remained unclassified. To further extend
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the genetic diversity in our L3 reference set and the related WGS-based phylogeny, we
combined our initial L3-CC- and country-of-origin-based selection (n = 152), with 221 strains
from Napier et al., including 107 strains with and 114 strains without signature SNPs,
respectively (Supplementary Table S5).

The resulting ML phylogeny then comprised 373 clinical L3 isolates from 38 countries
(Figure 4). The L3 tree topology is characterized by a star-like expansion with short internal
and long terminal branches and several multifurcations (i.e., more than two branches
descending from one node). The highlighted clades and the overall topology remained
stable using Lineage 2 strains as an outgroup (Supplementary Figure S2). There are very few
indications for genetic bottleneck events (i.e., long internal branches) in the evolutionary
history of L3 strains. The phylogeny is thus rather indicative of an ancient population
expansion into different parts of the globe originating from a single common ancestor.
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Figure 4. Global phylogeny of MTBC Lineage 3 strains. Midpoint-rooted maximum-likelihood (ML)
tree based on 26,536 concatenated single-nucleotide polymorphisms (SNPs) and 373 L3 strains. The
first outer ring provides a color code for the L3 subgroups defined by Napier et al. (18). Subsequent
outer rings indicate clades for which we determined signature SNPs. Gray and red dots indicate
branches with at least 99% bootstrap support; red dots further indicate branches for which we propose
signature SNPs.

2.3. MTBC L3 Origin and Ancestral State Reconstruction

Lastly, we examined with a joint maximum likelihood estimation ancestral state
reconstruction of the likely geographical origin of MTBC L3 strains and possible continent
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transition events of particular L3 clades [19]. As expected, South Asia was predicted
to be the origin of the common ancestor of all L3 strains, with a likelihood of 90.2%
(Figure 5). However, one of the ancestral clades in the ML phylogeny, Clade 3.3, has a
recent common ancestor that most likely originated in Eastern Africa (56.0%, Figure 5).
This may suggest a very early introduction of L3 strains into Africa in the evolutionary
history of this lineage. The observed geographical split of L3-CC1 and L3-CC2 around the
Horn of Africa (Figure 3) is further confirmed by our ancestral state reconstruction. Clade
3.5.1 (associated with L3-CC1) shows a pronounced bottleneck effect in the ML phylogeny
and a likely origin in North-East Africa (86.5%), particularly in Sudan (Figure 5). More
recent introductions according to the ML phylogeny were observed for Lineage 3.1 strains.
Specifically, Clade 3.1.3.1 (associated with L3-CC5), as well as Clade 3.1.1.1 (associated with
L3-CC2), have predicted origins in Eastern Africa, with likelihoods of 99.8% and 71.9%,
respectively (Figure 5). In summary, we confirm the likely origin of L3 strains in Southern
Asia and found evidence of at least four independent introductions of individual L3 clades
into East and North-East Africa.
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The scale bar indicates nucleotide substitutions per site. Four clades with a predicted African common
ancestor are indicated and their pie charts are shown enlarged for better visibility, as well as for
the root.
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3. Discussion

Based on a large-scale analysis of classical genotyping data (24-loci MIRU-VNTR),
we developed a first view of the global population structure and spatial distribution of
MTBC L3 strains. Whole-genome-based analysis further revealed the global phylogeny
and geographical expansion patterns. While we confirm the South Asian origin of L3, we
furthermore provide new evidence for at least four independent introduction events into
East and North-East Africa in the evolutionary history of this important modern MTBC
lineage. Moreover, our findings provide signature SNPs that describe up to 85% of the
global L3 genetic diversity, which will be important for clinical trials and pharmaceutical
studies that need to take the phylogenetic diversity of MTBC strains into account.

3.1. Phylogeography of MTBC L3

Our ancestral state reconstruction confirms that the progenitor of L3 strains can be
traced back to South Asia, as suggested earlier, but based on a much smaller, less diverse
strain set [20]. Similar to other modern MTBC lineages, the L3 population likely began
to expand in parallel with their human hosts and following ancestral movements out of
Africa towards Eurasia [20]. The following long-term historic expansion in Southern Asia
is reflected by the diverse MIRU-VNTR patterns of strains classified as L3-BG, which are
dominating in India and Nepal [3,13].

Interestingly, our phylogeographic analysis further suggests four independent African
introduction events of individual L3 clades. The earliest introduction event from South-
ern Asia into Eastern Africa is suggested for the evolutionarily ancestral clade 3.3 and is
consistent with known ancient exchanges and migrations between both world regions. As
suggested in a similar scenario for distinct L2 clades [19], three reintroductions occurred
more recently, i.e., Clade 3.5.1 (associated with L3-CC1) mainly in Sudan, Clade 3.1.3.1 (as-
sociated with L3-CC5), and Clade 3.1.1.1 (associated with L3-CC2) in Kenya and Tanzania.
Subsequent strong local expansion of L3-CC1 and L3-CC2 strains is supported by the fact
that both clonal complexes also harbor the largest molecular clusters and the geographical
separation of CC1 and CC2 around the Horn of Africa and particularly in Ethiopia.

The large geographic distribution of L3 strains beyond South Asia and East Africa
likely reflects modern migratory movements. Strains from the largest L3-CC1 cluster
(MLVA Code: 1557-32) were retrieved from patients in Australia, Canada, Eritrea, Ethiopia,
Germany, India, Italy, Nigeria, Sudan, Sweden, and the Netherlands. Strains of the largest
L3-CC2 cluster (MLVA Code: 1064-32) were also identified in 12 different countries in
eight UN geo-regions across four continents, including Asia, Africa, Europe, and North
America. Since the first half of the 20th century, North America, Europe, and Australia
have been connected by extensive movement of workers from low-income countries in
Asia and Africa [21–25]. In recent years, for instance, over half of the immigrant labor force
of Canada and Australia were born in Asia, with nearly 60% of these immigrants born in
China and India [26,27].

3.2. Implication of (MTBC and) L3 Genomic Diversity

Despite the strongly clonal population structure of the MTBC, evidence is accumu-
lating on phylogenetically associated biomedical consequences of the diversity of the
pathogen. This genomic diversity can potentially lead to different pathobiological features,
such as disease severity [28,29] and dormancy [28,30,31], or can affect treatment out-
comes [32], bacterial fitness [33], or resistance levels to anti-TB drugs [34]. (Phylo)genetic
determinants of such pathobiological differences have recently been pointed out. The loss
of the TbD1 genomic region in modern MTBC lineages, comprising L2, L3, and L4, has
been recently suggested to be a key driver of their global epidemic spread, as this loss
causes an increased resistance against hypoxia, oxidative stress, and enhanced virulence
in these strains, relatively to TbD1-intact strains, such as L1 and L7 [35]. Likewise, some
phylogeny-linked SNPs in the esxW gene or deletion in the ppe38 gene have been associated
with increased transmissibility and hypervirulence of the Beijing lineage (L 2.2) [9,36].
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Conversely, mutations in the phoR gene shared by the animal-adapted and M. africanum
L6 lineages have been associated with lower virulence or transmissibility [37]. Here, we
identified signature SNPs that were able to differentiate more than 85% of a global L3 strain
collection. Our extended L3 nomenclature can be combined with existing SNP barcodes for
Mtbc strains [18] and allows a more detailed classification of L3 strains for surveillance or
clinical studies. Furthermore, these clade-specific SNPs can be important for the evaluation
of phenotypic discrepancies between L3 strains such as response to individual antibiotics
or potential new vaccine candidates.

3.3. Limitations

Molecular, phenotypic, and geographical data were collated from different studies
and diverse sampling methods. Thus, the proportions of L3 strains and sizes of molecular
clusters can differ in countries, especially those with only few available datasets. Moreover,
to overcome the bias introduced by collections enriched with rifampicin-resistant strains, we
only considered cross-sectional and population-based cohorts for the analysis of resistance
determinants among clonal complexes.

4. Conclusions

Our findings extend the knowledge of the global genetic diversity of MTBC L3 strains.
By employing large-scale 24-loci MIRU-VNTR data and WGS-based phylogeographic
analysis, we offered a robust explanation of how L3 strains were independently introduced
into North and East Africa and into other regions of the world. The evolutionary success of
this important modern MTBC lineage is likely shaped by ancient cultural exchange and
modern labor migrations from Africa and South Asia to Australia, North America, and
Central Europe. The identified SNP signatures reveal an intriguing genetic diversity of
L3 strains that needs to be considered in clinical trials that evaluate the effectivity of new
drugs/regimens or vaccine candidates.

5. Materials and Methods
5.1. Data Collection

Our study is based on a global collection of 2682 clinical MTBC L3 strains from
38 countries. For patients in Western Europe with a migration background, we used country
of birth as a surrogate. Datasets were compiled from 53 studies. Details on sampling time,
sampling strategies, drug susceptibility patterns, and 24-loci MIRU-VNTR data with MLVA
15–9 genotypes and associated cluster numbers are presented in Supplementary Table S1.

5.2. 24-Loci MIRU-VNTR Typing

The 24-loci MIRU-VNTR typing was conducted according to standardized protocols
published earlier [38]. Briefly, MIRU-VNTR alleles were amplified using the Quadruplex
PCR Kit (Genoscreen, Lille, France) according to the manufacturer’s instructions. Fragment
analysis using the GeneScan™ 1200 LIZ dye as a size standard (Life Technologies, Darm-
stadt, Germany) was carried out on a capillary sequencer 3130xL and 3500xL for the genetic
analyzer. GeneMapper software version 3.7 (Life Technologies, Darmstadt, Germany) was
used to determine the copy number of MIRU-VNTR alleles. We considered strains with a
maximum of one missing locus and classified them as L3 (Delhi/CAS genotype) by phy-
logenetic inference from a reference collection hosted at http://www.miru-vntrplus.org,
accessed on 06 August 2020 [16]. Further, we assigned MLVA MTBC 15-9 codes for strains
with complete MIRU-VNTR profiles. A minimum spanning (MS) tree was calculated based
on 24-loci MIRU-VNTR typing data (a missing locus was treated as its own category)
with BioNumerics v7.6 (Applied Maths (bioMérieux), Sint-Martens-Latem, Belgium) [39].
Strains with identical MLVA MTBC 15-9 codes were combined in a molecular cluster, as a
surrogate marker for recently transmitted strains. Based on the MS tree topology, we se-
lected major nodes that were considered as parental nodes for globally expanding L3 strain
populations, i.e., L3 clonal complexes (L3-CCs). Strains descending from the parental nodes

http://www.miru-vntrplus.org
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(multilocus variants) were assigned to the respective L3 CCs. The remaining strains which
did not show a clear structure were considered as having a diverse L3 genetic background
(L3-BG).

For whole-genome sequencing (see below), we selected strains from the largest nodes
and associated multilocus variants from the MS tree (Supplementary Figure S2). Selection
criteria were equal representation of all defined L3-CCs and L3-BG, inclusion of different
countries, and availability of cultures/DNA at the Research Center Borstel in Germany.

5.3. Whole-Genome Sequencing Analysis

WGS was performed with Illumina (San Diego, CA, USA) technology and Nextera
XT library preparation [40], as instructed by the manufacturer. Strains were sequenced
with a minimum average genome coverage of 50x. Raw read data were processed with
MTBSeq [41] and mapped to the M. tuberculosis H37Rv genome (GenBank ID: NC_000962.3).
Briefly, variants were called if supported by at least four reads in forward and four reads in
reverse orientation, and four reads calling the allele with at least a Phred score of ≥30 and
a minimum allele frequency of 75%.

For phylogenetic analysis, identified single-nucleotide polymorphism (SNP) positions
were combined into a concatenated sequence alignment, complemented with data from
original mappings where necessary [42], excluding positions without a nucleotide call and
positions that failed in the above-mentioned criteria for variant calling in more than 5%
of the samples. Likewise, repetitive regions (e.g., PPE/PGRS genes) and drug-resistance-
associated genes were excluded from the phylogenetic reconstruction [42].

5.4. Phylogenetic Analysis

Maximum-likelihood (ML) trees were calculated with FastTree using concatenated
sequence alignment and a general time-reversible (GTR) substitution model [43]. Inspection
and midpoint rooting of the ML tree were performed with FigTree v1.4.4 software, while
graphical annotation was performed with the online tool EvolView [44] and iTol [45]. Major
phylogenetic clades were defined on the basis of the tree topology, 100% bootstrap support,
a previously defined L3 sublineage nomenclature [46], and considering L3-CCs based on
24-loci MIRU-VNTR data (see above) [16]. Clade-specific SNPs were extracted from the
concatenated sequence alignment. WGS datasets were further inspected for the presence of
the L3-specific deletion RD750 using Integrative Genomics Viewer (IGV) [47].

5.5. Ancestral State Reconstruction

Geographic origin was used as a discrete state in the ancestral state reconstruction
and inferred from patients or sample country of origin and translated to the associated UN
region. Origin of samples sequenced in Europe, the United States of America, and Australia
lacking any patient information was set to “NA” in order to avoid geographical bias from
larger sequencing collaborations. For an ML phylogeny of 373 L3 strains, we selected the
best model of character evolution by calculating the Akaike information criterion for an
equal-rates (ER) model, a symmetric, unordered model (SYM), and an all-rates-different
(ARD) model with fitMk from the R package phytools [48] and computing their Akaike
weights. Scaled likelihoods for each ancestral state were calculated with the best fitting
model ER (aic.w = 0.96) and the ace function from the R package ape and mapped on the
ML phylogeny [49].

5.6. Statistics

Differences between proportions of individual groups were calculated with pairwise
Fisher’s exact tests.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes13060990/s1, Table S1: Metadata and 24-loci mycobacterial
interspersed repetitive units—variable number tandem repeat results for 2682 Mycobacterium tubercu-
losis Lineage 3 strains; Table S2: Mycobacterium tuberculosis Lineage 3 cross-border clusters; Table S3:
Geographical distribution of L3 clonal complexes of 2682 Mycobacterium tuberculosis Lineage 3
strains; Table S4: Signature SNPs for 12 major Mycobacterium tuberculosis Lineage 3 clades; Table S5:
Whole-genome sequencing data and accession numbers of 373 Mycobacterium tuberculosis Lineage
3 strains; Figure S1: Minimum spanning tree based on 24-loci mycobacterial interspersed repetitive
units—variable number tandem repeat results from 2682 Mycobacterium tuberculosis Lineage 3 strains
and selected L3 datasets colored in blue for whole-genome sequencing (WGS) and phylogenetic
inference; Figure S2: Maximum-likelihood phylogeny of 152 Lineage 3 strains from this study with
Lineage 2 strains as outgroup.
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