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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The Comprehensive Resistance Prediction for Tuberculosis: an International Consortium

(CRyPTIC) presents here a data compendium of 12,289 Mycobacterium tuberculosis global

clinical isolates, all of which have undergone whole-genome sequencing and have had their

minimum inhibitory concentrations to 13 antitubercular drugs measured in a single assay. It

is the largest matched phenotypic and genotypic dataset for M. tuberculosis to date. Here,

we provide a summary detailing the breadth of data collected, along with a description of

how the isolates were selected, collected, and uniformly processed in CRyPTIC partner lab-

oratories across 23 countries. The compendium contains 6,814 isolates resistant to at least

1 drug, including 2,129 samples that fully satisfy the clinical definitions of rifampicin resistant

(RR), multidrug resistant (MDR), pre-extensively drug resistant (pre-XDR), or extensively

drug resistant (XDR). The data are enriched for rare resistance-associated variants, and the

current limits of genotypic prediction of resistance status (sensitive/resistant) are presented

by using a genetic mutation catalogue, along with the presence of suspected resistance-

conferring mutations for isolates resistant to the newly introduced drugs bedaquiline, clofazi-

mine, delamanid, and linezolid. Finally, a case study of rifampicin monoresistance demon-

strates how this compendium could be used to advance our genetic understanding of rare

resistance phenotypes. The data compendium is fully open source and it is hoped that it will

facilitate and inspire future research for years to come.

Introduction

Tuberculosis (TB) is a curable and preventable disease; 85% of those afflicted can be success-

fully treated with a 6-month regimen. Despite this, TB is the world’s top infectious disease

killer (current SARS-CoV-2 pandemic excepted) with 10 million new cases and 1.2 million

deaths estimated in 2019 alone [1]. Furthermore, drug-resistant TB (DR-TB; please see

Table A in S1 File for a list of acronyms used throughout the manuscript) is a continual threat;

almost half a million cases resistant to the first-line drug rifampicin (RR-TB) were estimated,
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with three-quarters of these estimated to be multidrug-resistant (MDR-TB, resistant to first-

line drugs isoniazid and rifampicin) [1]. Worryingly, only 44% of DR-TB cases were officially

notified and just over half of these cases were successfully treated (57%) [1].

To address these issues, the World Health Organisation (WHO) is encouraging the

development of better, faster, and more targeted diagnostic and treatment strategies

through its EndTB campaign [1,2]. Of particular interest is universal drug susceptibility

testing (DST). Conventionally, DST relies on lengthy (4 weeks minimum) culture-based

methods that require strict biosafety conditions for Mycobacterium tuberculosis. The

development of rapid genetics-based assays has decreased diagnostic time to as little as 2

hours through the detection of specific resistance conferring mutations, e.g., the Cepheid

Xpert MTB/RIF test [3,4]. However, assay bias towards specific genic regions can result in

misdiagnosis of resistance, the prescription of ineffective treatment regimens, and subse-

quent spread of MDR disease, as seen during an MDR outbreak in Eswatini [5–7]. Further-

more, detection of rifampicin resistance is used to infer MDR-TB epidemiologically as

rifampicin resistance tends to coincide with resistance to isoniazid [8]. While this modus
operandi is successful at pragmatically identifying potential MDR cases quickly and effec-

tively, it is not generally true that a single path exists for developing MDR or extensively

drug resistant TB (XDR = MDR/RR + resistance to at least 1 fluoroquinolone and either

bedaquiline or linezolid).

Whole-genome sequencing (WGS) has the potential to reveal the entirety of theM. tubercu-
losis genetic resistance landscape for any number of drugs simultaneously while enabling a

more rapid turnaround time and reduction in cost compared to culture-based DST methods

[9]. However, the success of WGS as a diagnostic tool wholly depends on there being a com-

prehensive and accurate catalogue of resistance-conferring mutations for each drug. Recent

advances have shown that genotypic predictions of resistance correlate well with DST mea-

surements for first-line drugs [8]. However, the mechanisms of resistance to second-line drugs

along with the new and repurposed drugs (NRDs) are less well understood despite their

increased administration in clinics as MDR cases climb [1,10].

To address these shortcomings, the Comprehensive Resistance Prediction for Tuberculosis:

an International Consortium (CRyPTIC) has collectedM. tuberculosis clinical isolates world-

wide to survey the genetic variation associated with resistance to 13 antitubercular drugs, spe-

cifically the first-line drugs rifampicin, isoniazid, and ethambutol; the second-line drugs

amikacin, kanamycin, rifabutin, levofloxacin, moxifloxacin, and ethionamide; and the NRDs

bedaquiline, clofazimine, delamanid, and linezolid. Here, we introduce and describe these data

in the form of an open-access data compendium of 12,289 isolates, each of which has had its

genomic sequence determined and DST profile measured [11]. This compendium is the largest

drug screening effort to date forM. tuberculosis in a “one isolate–one microscale assay” format

across defined compound concentration ranges. A sampling process was designed to enrich

for resistant isolates to account for the variable prevalence of resistance found in different

countries and the many rare resistance mutations for several drugs. As a result, the compen-

dium is not suitable for measuring prevalence, or estimating “real-world” error rates of resis-

tance prediction tools; rather, it serves as a resource to accelerate antimicrobial resistance

(AMR) diagnostic development by enriching mutation catalogues for WGS resistance predic-

tion, improving our understanding of the genetic mechanisms of resistance, and identifying

important diagnostic gaps and drug resistance patterns. Indeed, the consortium has begun to

address some of these important issues in recent publications using this very compendium

[12–16].
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Results

The data compendium

The data compendium derives from a collection of 15,211 isolates for which both genomic and

phenotypic data were collected by 23 of the partner countries across the continents of Asia,

Africa, South America, and Europe. This collection will herein be referred to as the “full” data-

set. An overview of the processing of the isolates is presented in Fig 1, and for a full description,

please see Methods.

The 15, 211 isolates originated from 23 different countries (Fig 2). The largest numbers of

isolates were contributed by India (n = 4,004), Peru (n = 2,691), South Africa (n = 2,155), Viet-

nam (n = 1,288), and China (n = 1,121).

Lineage assignment revealed that 99.7% of the 15,211 isolates belong to the 4 mainM. tuber-
culosis lineages (L1 to L4). The pie charts in Fig B in S1 File show the proportion of isolates

among the different lineages (Table D in S1 File) and sublineages (Table E in S1 File) for each

location. Like previous studies, we see a strong association between geolocation and lineage

(Pearson’s chi-squared test, p< 2.2 × 10−16, Fig C in S1 File) [17,18]. The phylogenetic tree in

Fig D in S1 File further highlights the strong population structure of this collection of isolates,

with isolates clustering according to lineage. Typically undersampled in current databases and

biobanks, the L3 isolates in this study represent the largest collection to date [19].

Although the 15,211M. tuberculosis isolates belonging to the full dataset were plated to

determine their minimum inhibitory concentrations (MICs) to 13 antitubercular drugs, regu-

lar quality assurance checks detected problems with plate inoculation and reading in 2 labora-

tories, resulting in the removal of 2,922 isolates. The data compendium therefore represents a

total of 12,289 isolates with matched phenotypic and genotypic data for further analysis (Fig

1). Due to wells being skipped and other phenomena that prevent an MIC being measured,

88.1% of the isolates had a phenotype for all 13 drugs on the plate. For each drug, the number

of isolates with an MIC measurement, and the associated quality of the reading, is presented in

Table 1.

Resistance classification and distribution

Unsurprisingly, given its size and bias towards the collection of resistant isolates, resistance to

each of the 13 drugs is represented within the compendium (Fig 3A). The drugs with the high-

est percentage of resistant isolates are the first-line drugs isoniazid and rifampicin (49.0% and

38.7%, respectively). Of the second-line drugs, levofloxacin had the highest proportion of resis-

tant isolates in the dataset (17.6%) and amikacin the lowest (7.3%). A low proportion of isolates

were resistant to the NRDs, bedaquiline (0.9%), clofazimine (4.4%), delamanid (1.6%), and

linezolid (1.3%).

Of the 12,289 isolates represented by the compendium, 6,814 (55.4%) were resistant to at

least 1 drug (Fig 3B). For the purpose of describing 5 broader resistance categories present in

the dataset, we assumed that all MICs that could not be read had susceptible phenotypes.

These 5 resistance categories comprise the following: isoniazid and rifampicin susceptible with

resistance to another antitubercular drug, isoniazid resistant but rifampicin susceptible, RR/

MDR, pre-XDR (RR/MDR + fluoroquinolone resistance), and XDR (RR/MDR + fluoroquino-

lone resistance + resistance to a group A agent: bedaquiline or linezolid). Consequently, the

calculated prevalence of MDR, XDR, etc., in the dataset (Fig 3) are likely underestimates. Of

the isolates resistant to one or more drugs, 22.8% were resistant to isoniazid and not rifampi-

cin, 68.8% were either RR or MDR, and 8.4% were resistant to at least 1 antitubercular drug,

but notAU : PerPLOSstyle; italicsshouldnotbeusedinwordsforemphasis:Hence; allinstancesofitalicizedwordshavebeenchangedtoregulartextthroughoutthemaunscript:isoniazid or rifampicin (Fig 3B). Of the RR/MDR isolates, 38.8% were pre-XDR and
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3.0% were XDR. Two of the XDR isolates returned a resistant phenotype to all 13 of the drugs

assayed (Table E in S1 File) and therefore could be reasonably described as totally drug resis-

tant (TDR). One such isolate belonged to L4 and was contributed by South Africa, and the

other belonged to L2 with an unknown country of origin contributed by Sweden.

The proportion of drug susceptible isolates collected differed between countries (Fig 3C,

Methods). In countries that contributed more than 100 resistant isolates, each of the broad

phenotypic resistance categories in Fig 3B were seen except for Peru, Vietnam, and Nepal,

which did not contribute any XDR isolates (Fig 3C). Vietnam and Brazil sampled a high pro-

portion of non-MDR/RR resistant phenotypes; 73.9% and 55.1% of resistant isolates

Fig 1. Processing sequencing and minimum inhibitory concentration data for 15,211 Mycobacterium tuberculosis
isolates (“full” dataset). Briefly: Each isolate was DNA sequenced using an Illumina machine and plated onto 96-well

plates (UKMYC5/6) containing 5–10× doubling dilutions of 13 antitubercular drugs for DST. Associated metadata

(including country of origin and processing laboratory) was recorded. DNA variant calling and analysis was performed

using Clockwork and Minos [47]). After 14 days, MIC measurements were taken by a trained scientist using Vizion,

and the plate was photographed to also measure the MIC using the automated AMyGDA software and citizen

scientists from BashTheBug [45]. After quality control procedures, phenotypic MIC data for 2,922 isolates were

removed. The compendium therefore contains 15,211 isolates with WGS data (“full dataset”), 12,289 of which have

matched quality assessed phenotypic data (“data compendium”). The raw sequence, VCFs, MICs, and binary

resistance calls for the data compendium are presented in “CRyPTIC_reuse_table_20211019.csv” via an FTP site (see

Methods), and the raw sequence and VCF files for those samples present in the full dataset are presented in

“CRyPTIC_excluded_samples_20220607.tsv” via the same FTP site (see Methods). The data tables GENOTYPES.csv,

VARIANTS.csv, MUTATIONS.csv, SAMPLES.csv, and PHENOTYPES.csv used for the analyses presented in this

manuscript are also accessible via the FTP site (see Methods). DSTAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1and3 � 6:Pleaseverifythatallentriesarecorrect:, drug susceptibility testing; MIC, minimum

inhibitory concentration; WGS, whole-genome sequencing.

https://doi.org/10.1371/journal.pbio.3001721.g001
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contributed by these countries, respectively, were neither MDR nor RR. For Nepal and India,

an especially high proportion of the MDR/RR isolates contributed were fluoroquinolone resis-

tant (92.9% and 69.8%, respectively), which has been previously observed for this geographical

region [1].

Fig 2. Geographical distribution of 15,211 CRyPTIC Mycobacterium tuberculosis clinical isolates (“full” dataset). The total

number of isolates contributed by each country is depicted. Where the origin of an isolate was not known, the collection site

identity was assigned (this occurred for 269 isolates in Germany, 17 isolates in India, 6 isolates in Peru, 885 isolates in Italy, 510

isolates in South Africa, 357 isolates in Sweden, 208 isolates in Taiwan, 1 isolate in Brazil, and 4 isolates in the UK). The base

layer map was sourced from Natural Earth, which is in the public domain (see http://www.naturalearthdata.com/about/terms-

of-use/), and created using the R packages “ggmap” and “maps” (see github.com/kerrimalone/Brankin_Malone_2022/).

https://doi.org/10.1371/journal.pbio.3001721.g002

Table 1. Quality metrics for phenotype data.

MIC measurements HIGH QUALITY MEDIUM QUALITY LOW QUALITY

INH 12,070 9,519 1,351 1,200

RIF 12,099 8,955 1,356 1,788

EMB 12,158 7,506 1,355 3,297

LEV 12,163 7,774 1,354 3,035

MXF 12,194 6,785 1,353 4,056

AMI 12,072 8,973 1,350 1,749

KAN 12,130 9,333 1,355 1,442

BDQ 12,068 8,536 1,355 2,177

CFZ 12,049 7,763 1,352 2,934

DLM 11,927 8,095 1,349 2,483

LZD 12,189 7,141 1,355 3,693

ETH 12,132 8,821 1,355 1,956

RFB 12,150 10,042 1,352 756

TOTAL 157,401 109,243 17,592 30,566

Stated for each drug is the total number of MIC measurements stratified into “high” quality (at least 2 MIC measurement methods agree), “medium” quality (either

Vizion and AMyGDA disagree, or the scientist recorded a MIC measurement using Vizion but did not store the plate picture), or “low” quality (all 3 MIC

measurements methods disagree) phenotype classifications as described in Methods.

AMI, amikacin; BDQ, bedaquiline; CFZ, clofazimine; DLM, delamanid; EMB, ethambutol; ETH, ethionamide; INH, isoniazid; KAN, kanamycin; LEV, levofloxacin;

LZD, linezolid; MXF, moxifloxacin; RFB, rifabutin; RIF, rifampicin.

https://doi.org/10.1371/journal.pbio.3001721.t001
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Fig 3. Drug phenotype data for the CRyPTIC compendium. (A) Frequency of resistance to each of 13 drugs in the data compendium. The total number of

isolates with a binary phenotype (of any quality) for the corresponding drug is presented in Table 1. (B) Phenotypes of the 12,289 isolates with a binary

phenotype for at least 1 drug. (C) Geographical distribution of phenotypes of 12,289 compendium isolates. Intensity of blue shows the percentage of isolates

contributed that were categorised as susceptible to all 13 drugs (“%S”). Donut plots show the proportions of resistant phenotypes identified in (B) for countries

contributing> = 100 isolates with drug resistance. (D) Proportions of resistance phenotypes in the 4 majorMycobacterium tuberculosis lineages. N is the

number of isolates of the lineage called resistant to at least one of the 13 drugs. The base layer map in (C) was sourced from Natural Earth, which is in the public
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Of the 6,814 resistant isolates, 256 were from L1, 2,886 were from L2, 625 were from L3,

and 3,043 were from L4. All 5 broader categories of resistance were represented in the 4 major

M. tuberculosis lineages (Fig 3D). We note that the relative proportions of resistance categories

will have been influenced by the different local sampling approaches since lineage distributions

are typically geographically distinct (Fig B in S1 File). Bearing this in mind, we observe that in

the compendium, L3 isolates contained the most MDR/RR isolates as a proportion of resistant

isolates (77.6%), L2 isolates contained the most pre-XDR isolates as a proportion of MDR/RR

isolates (54.2%), and L2 contained the most XDR isolates as a proportion of MDR/RR isolates

(4.7%).

Co-occurrence of drug resistance among the compendium isolates

As we measured MICs to 13 drugs in parallel, we can ask whether, and how often, co-occur-

rence of drug resistance occurs among the isolates. We found isolates with all possible 2-drug

resistant combinations in this dataset (Fig 4A and Table G in S1 File). With the exception of

correlations between drugs in the same class (rifabutin versus rifampicin, moxifloxacin versus

levofloxacin), isoniazid resistance was the most strongly associated with resistance to each of

the other drugs. Resistance to any of the drugs was also strongly associated with resistance to

rifampicin. Of the second-line drugs, levofloxacin and moxifloxacin were more commonly

seen as a second resistant phenotype than the injectable drugs kanamycin and amikacin.

Resistance to both drugs in the aminoglycoside class was common in the dataset; 90.4% of

amikacin-resistant isolates were also resistant to kanamycin, although significantly fewer kana-

mycin-resistant isolates were resistant to amikacin (72.0%, p< 0.00001) (Fig 4A). In a similar

fashion, a smaller proportion of RR isolates were resistant to rifabutin than rifabutin-resistant

isolates that were resistant to rifampicin (91.3%, 96.8%, p< 0.00001), while a smaller propor-

tion of levofloxacin-resistant isolates were resistant to moxifloxacin than moxifloxacin-resis-

tant isolates that were resistant to levofloxacin (78.5%, 97.6%, p< 0.00001). Differences in

drugs of the same class are also well documented by in vitro studies [20–22].

Isolates resistant to the NRDs bedaquiline, clofazimine, delamanid, and linezolid were most

likely to also be resistant to isoniazid, followed by rifampicin and rifabutin. The NRDs were

less commonly seen as a second resistance phenotype and the smallest proportional resistance

combinations involved the NRDs (e.g., 1.5% of isoniazid-resistant isolates were bedaquiline

resistant). Within the NRDs, however, co-occurrence of resistance was proportionally higher;

bedaquiline, linezolid, and delamanid resistance was commonly seen with clofazimine resis-

tance (52.4%, 34.2%, and 26.3% of isolates having coresistance with clofazimine, respectively).

Additional antibiotic resistance in isolates with non-MDR or MDR

phenotypic backgrounds

To further investigate drug resistance patterns among the isolates, we examined in more detail

the correlation structure of phenotypes by conditioning on different resistance backgrounds

including isoniazid and rifampicin susceptible, isoniazid resistant and rifampicin susceptible,

rifampicin resistant and isoniazid susceptible, MDR, pre-XDR, and XDR (Fig 4B–4F). We

found that a greater proportion of isolates that were susceptible to isoniazid and rifampicin

domain (see http://www.naturalearthdata.com/about/terms-of-use/), and created using the python library “geopandas” (see github.com/kerrimalone/Brankin_

Malone_2022/). AMI, amikacin; BDQ, bedaquiline; CFZ, clofazimine; CRyPTIC, Comprehensive Resistance Prediction for Tuberculosis: an International

Consortium; DLM, delamanid; EMB, ethambutol; ETH, ethionamide; INH, isoniazid; KAN, kanamycin; LEV, levofloxacin; LZD, linezolid; MDR, multidrug

resistant; MXF, moxifloxacin; pre-XDR, pre-extensively drug resistant; RFB, rifabutin; RIF, rifampicin; RR, rifampicin resistant; XDR, extensively drug

resistant.

https://doi.org/10.1371/journal.pbio.3001721.g003
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Fig 4. Co-occurrence of resistance to 1 drug conditional on resistance to another drug, or to resistance background. (A) The heatmap shows the

probability of an isolate being resistant to Drug 2 if it is resistant to Drug 1, percentages are given in Table F in S1 File. (B-F) Percentage of isolates that are

resistant to another of the 13 drugs in a background of (B) isoniazid susceptible + rifampicin susceptible (but resistant to at least one other antitubercular

drug), (C) isoniazid resistant + rifampicin susceptible, (D) MDR/RR, (E) Pre-XDR, and (F) XDR. Only samples with definite phenotypes for RIF in MDR
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were resistant to the second-line drugs levofloxacin (24.1%), kanamycin (18.1%), moxifloxacin

(13.7%), and amikacin (8.9%) than the first-line drug ethambutol (3.8%) (Fig 4B). The propor-

tion of isolates resistant to clofazimine or levofloxacin was particularly high (32.9% and 24.1%,

respectively), and more isolates were resistant to these 2 drugs than ethambutol in an isonia-

zid-resistant and rifampicin-susceptible background but not in MDR/RR isolates (Fig 4C–4F).

MDR/RR isolates were most commonly resistant (excluding rifabutin) to the first-line drug

ethambutol (46.3%), closely followed by levofloxacin (41.4%). As expected, the proportion of

fluoroquinolone resistance was higher in MDR/RR isolates than non-MDR isolates [23], and

we found a greater proportion of isolates were resistant to levofloxacin than moxifloxacin, a

pattern seen in all other backgrounds (Fig 4C–4F). For the aminoglycosides, a greater percent-

age of MDR/RR isolates were kanamycin resistant (21.8%) than amikacin resistant (18.1%), a

trend seen in all other backgrounds.

For isolates with an XDR phenotype, a higher proportion were resistant to linezolid than

bedaquiline (66.7% compared to 44.6%) and 11.3% of XDR isolates were resistant to both

bedaquiline and linezolid (Fig 4F). XDR isolates were also resistant to the other NRDs, clofazi-

mine (41.3%) and delamanid (18.8%). In non-XDR backgrounds, the most common NRD

resistance seen was clofazimine (Fig 4B–4E).

Genetic-based predictions of resistance

The compendium was sampled in order to collect as broad as possible a representation of resis-

tance mutations and mechanisms—it is therefore expected to be enriched for rare resistance

mutations compared with a prospectively sampled dataset from 1 country. To establish a base-

line measure of how much unexplained resistance there was in the compendium, based on a

standard catalogue of resistance mutations, we compared genetic-based predictions of suscep-

tibility and resistance to the binary phenotypes derived from MICs for 8 drugs and for all iso-

lates in this compendium (FN and VME columns in Table 2). Since these data are enriched for

resistance, the calculated error rates are not representative of how well such a method would

perform in routine clinical use. The results were broadly in line with prior measurements on a

smaller (independent) set [24]. The hybrid catalogue used in this study does not make predic-

tions for rifabutin, linezolid, bedaquiline, delamanid, or clofazimine; indeed, this is one of the

main aims of the consortium and new catalogues published by CRyPTIC, and WHO will

begin to address this shortcoming (Fig 5) [25].

Table 3 shows the top mutations found among isolates phenotypically resistant to first- and

second-line drugs. As expected, rpoB S450L was the most frequent mutation associated with

rifampicin resistance, and katG S315T was the most common mutation associated with isonia-

zid resistance. Mutations in gyrA dominate among fluoroquinolone-resistant isolates; D94G

and A90V are the 2 most frequently occurring mutations for levofloxacin and moxifloxacin.

Resistance to new and repurposed drugs

As previously stated, relatively few isolates are resistant to the NRDs, bedaquiline (n = 109),

clofazimine (n = 525), delamanid (n = 186), and linezolid (n = 156). South Africa contributed

the greatest number of isolates resistant to bedaquiline, clofazimine, and linezolid (Fig 5A),

backgrounds and RIF and INH in non-MDR backgrounds and the additional drug are included. AMI, amikacin; BDQ, bedaquiline; CFZ, clofazimine;

CRyPTIC, Comprehensive Resistance Prediction for Tuberculosis: an International Consortium; DLM, delamanid; EMB, ethambutol; ETH, ethionamide;

INH, isoniazid; KAN, kanamycin; LEV, levofloxacin; LZD, linezolid; MDR, multidrug resistant (resistant to first-line drugs isoniazid and rifampicin); MXF,

moxifloxacin; pre-XDR, pre-extensively drug resistant (MDR/RR + fluoroquinolone resistant); RFB, rifabutin; RIF, rifampicin; RR, rifampicin resistant; XDR,

extensively drug resistant (MDR/RR + resistant to at least 1 fluoroquinolone and either bedaquiline or linezolid).

https://doi.org/10.1371/journal.pbio.3001721.g004

PLOS BIOLOGY A data compendium of Mycobacterium tuberculosis antibiotic resistance

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001721 August 9, 2022 9 / 25

https://doi.org/10.1371/journal.pbio.3001721.g004
https://doi.org/10.1371/journal.pbio.3001721


while China and India contributed the most isolates resistant to delamanid. Since the collec-

tion protocol differed between laboratories, it is not possible to infer any differences in the rel-

ative prevalence of resistance to the NRDs in these countries. The results of a survey of all

nonsynonymous mutations in genes known or suspected to be involved in resistance to these

4 drugs (rv0678,mmpL5, pepQ, ddn, rplC, rrl, etc.) are depicted in Fig 5B–5E [27–31]. Muta-

tions known to be associated with sensitivity were ignored, along with mutations that occurred

at a frequency of�5% among all isolates (as 0.05% of total isolates are resistant to the NRDs).

In contrast to first- and second-line drugs, there are no mutations within a single gene/small

group of genes that can fully explain resistance to any NRD, and indeed no single gene (if

there were, they would be visible as complete rings around the phylotrees in Fig 5). Note that

the role of most of these mutations in resistance remains undetermined.

Case study on rifampicin monoresistance

Around 1% of TB cases are rifampicin monoresistant (RMR), and the frequency is increasing

[1,32]. The WHO does not recommend isoniazid for RMR treatment, despite it being effective;

this is likely due to the reliance on assays such as Xpert MTB/RIF, which cannot distinguish

between RMR and MDR. Use of isoniazid could improve treatment outcomes for RMR

patients, which are currently similar to that of MDR TB, including a higher risk of death com-

pared to drug-susceptible infections [33,34]. Due to its low natural prevalence, RMR has been

poorly studied to date, but increasingly large clinical TB datasets, such as the one presented

here, make its study now feasible.

For this case study, we defined RMR as any isolate that is rifampicin resistant and isoniazid

susceptible, and discounted isolates with no definite phenotype for either drug. Of the 4,655

RR isolates in the compendium that also had a phenotype for isoniazid, 302 (6.5%) were RMR.

These isolates were contributed by 12 different countries, and we found South African and

Nigerian contributions had a significantly higher proportion of RMR isolates than that of the

total dataset at 17.5% (p< 0.00001) and 27.3% (p = 0.00534), respectively (Fig 6A), compared

with 6.5% for the total dataset. We note that these proportions are influenced by sampling

strategies, but the higher contribution of RMR isolates from South Africa is consistent with

previous studies [32].

Table 2. Predicting phenotypic resistance using genetics.

TP FP TN FN VME ME PPV NPV

INH 5,493 142 5,622 224 0.039 0.025 0.961 0.975

RIF 4,535 435 6,669 107 0.023 0.061 0.977 0.939

EMB 1,919 513 6,702 111 0.055 0.071 0.945 0.929

LEV 1,689 255 8,104 184 0.098 0.031 0.902 0.969

MXF 1,358 504 9,022 160 0.105 0.053 0.895 0.947

AMI 632 84 10,117 163 0.205 0.008 0.795 0.992

KAN 735 124 9,043 197 0.211 0.014 0.789 0.986

ETH 971 114 9,183 511 0.345 0.012 0.655 0.988

Statistics on how much resistance can be explained in a dataset enriched for rare resistance mutations using a standard resistance catalogue that predates the CRyPTIC

project. TP, the number of phenotypically resistant samples that are correctly identified as resistant (“true positives”); FP, the number of phenotypically susceptible

samples that are falsely identified as resistant (“false positives”); TN, the number of phenotypically susceptible samples that are correctly identified as susceptible (“true

negatives”); FN, the number of phenotypically resistant samples that are incorrectly identified as susceptible (“false negative”); VME, very major error rate (false-

negative rate), 0–1; ME, major error rate (false-positive rate), 0–1; PPV, positive predictive value, 0–1; NPV, negative predictive value, 0–1.

AMI, amikacin; EMB, ethambutol; ETH, ethionamide; INH, isoniazid; KAN, kanamycin; LEV, levofloxacin; MXF, moxifloxacin; RIF, rifampicin.

https://doi.org/10.1371/journal.pbio.3001721.t002

PLOS BIOLOGY A data compendium of Mycobacterium tuberculosis antibiotic resistance

PLOS Biology | https://doi.org/10.1371/journal.pbio.3001721 August 9, 2022 10 / 25

https://doi.org/10.1371/journal.pbio.3001721.t002
https://doi.org/10.1371/journal.pbio.3001721


Rifampicin monoresistance is incorrectly predicted by current diagnostics

A widely used, WHO-endorsed diagnostic tool, the Xpert MTB/RIF assay, uses a proxy

whereby any SNP detected in the “rifampicin-resistance determining region” (RRDR) of rpoB

Fig 5. Resistance to bedaquiline, clofazimine, delamanid, and linezolid among Mycobacterium tuberculosis
compendium isolates. (A) The prevalence (within these data) of resistance to BDQ, CFZ, DLM, and LZD per country

or origin or collection site. Phylotrees are shown for isolates phenotypically resistant to (B) BDQ, (C) CFZ, (D) DLM,

and (E) LZD. Tip point colours denote lineage. Each outer track represents a gene thought to be associated with

resistance and coloured blocks denote the presence of a nonsynonymous mutation in the relevant gene for a given

isolate. Mutations in these genes that are either associated with sensitivity or present in>5% of the collection of

isolates as a whole were ignored. BDQ, bedaquiline; CFZ, clofazimine; DLM, delamanid; LZD, linezolid.

https://doi.org/10.1371/journal.pbio.3001721.g005
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results in a prediction of MDR. However, the suitability of the proxy is dependent upon preva-

lence of RMR in the population [32]. We tested the reliability of this on the 4,655 RR isolates

in our dataset that had a phenotype for isoniazid (Fig 6B).

Of these isolates, 4,353 (93.5%) were MDR and 302 (6.5%) were RMRAU : PerPLOSstyle; numeralsarenotallowedatthebeginningofasentence:PleasecheckandconfirmthattheeditstothesentenceOftheMDRisolates; 187hadnoRRDRmutation; and:::arecorrect; andamendifnecessary:. Of the MDR isolates,

187 had no RRDR mutation, and therefore, 4.0% of isolates in this study would be predicted as

false negative MDR by the Xpert MTB/RIF assay. OfAU : PerPLOSstyle; numeralsarenotallowedatthebeginningofasentence:PleasecheckandconfirmthattheeditstothesentenceOftheRMRisolates; 276hadamutationinthe:::arecorrect; andamendifnecessary:the RMR isolates, 276 had a mutation in

the RRDR of rpoB and so the Xpert MTB/RIF assay proxy would incorrectly predict 5.9% of

the RR isolates as false positive MDR cases. However, overall, the Xpert MTB/RIF assay proxy

correctly predicts 89.5% of the RR isolates as MDR and 0.6% of the isolates as non-MDR in

Table 3. The top mutations associated with phenotypic drug resistance.

GENE VARIANT n %

Rifampicin rpoB S450L 2,914 62.2

rpoB D435V 506 10.8

rpoB H445D 202 4.3

rpoB H445Y 147 3.1

rpoB D435Y 112 2.4

Isoniazid katG S315T 3,668 70.0

fabG1 c-15t 829 15.8

fabG1 g-17t 176 3.4

fabG1 t-8c 154 2.9

inhA I194T 56 1.1

Ethambutol embB M306V 1,131 50.0

embB M306I 1,001 44.3

embB Q497R 449 19.9

embB G406A 164 7.2

embB G406D 105 4.6

Kanamycin rrs a1401g 660 58.9

eis c-14t 70 6.2

eis g-10a 53 4.7

Amikacin rrs a1401g 660 74.7

rrs g1484t 7 0.8

Levofloxacin gyrA D94G 783 36.5

gyrA A90V 487 22.7

gyrA D94N 157 7.3

gyrA D94A 133 6.2

gyrA S91P 92 4.3

Moxifloxacin gyrA D94G 783 45.4

gyrA A90V 487 28.2

gyrA D94N 157 9.1

gyrA D94A 133 7.7

gyrA D94Y 70 4.1

Ethionamide fabG1 c-15t 829 48.0

fabG1 L203L 124 7.2

Depicted is a survey of the resistance-associated mutations present in the data compendium [8,26]. “VARIANT”: nonsynonymous amino acid mutations are denoted by

upper case letters, while nucleotide substitutions for noncoding sequences are denoted by lower case letters. Negative numbers denote substitutions in promoter regions;

“GENE”: genic region of interest in which “Variant” can be found; “n”: number of phenotypically resistant isolates with “VARIANT”; “%”: percentage of total

phenotypically resistant isolates with “VARIANT”.

https://doi.org/10.1371/journal.pbio.3001721.t003
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this dataset, which suggests it is a reasonably successful diagnostic tool with>90% accuracy

for MDR classification of RR isolates. As our dataset is oversampled for resistance, it likely

contains a higher prevalence of RMR than the global average, and, hence, the Xpert MTB/RIF

Fig 6. Rifampicin monoresistance. (A) Percentage of RR isolates that are RMR by country of isolate origin. � indicates RMR

proportions that were significantly different from that of the total dataset using a 2-tailed z-test with 95% confidence. (B) MDR

predictions for RR isolates made using the Xpert MTB/RIF assay proxy. N is the total number of RR isolates. The inner ring shows the

proportion of RR isolates that are RMR and MDR. The middle ring represents the proportions of RMR and MDR isolates that have an

SNP (synonymous or nonsynonymous) in the RRDR of rpoB (“RRDR”), no RRDR SNP but a SNP elsewhere in the rpoB gene (“rpoB”),

and no rpoBmutations (“none”). The outer ring shows the expected TP, TN, FP, and FN MDR predictions of Xpert MTB/RIF assay,

based on the SNPs present in the RR isolates. (C) Nonsynonymous mutations found in the RRDR of rpoB in RMR isolates and MDR

isolates. Presence of a coloured spot indicates that the mutation was found in RMR/MDR isolates, and spot size corresponds to the

proportion of RMR or MDR isolates carrying that mutation. FN, false negative; FP, false positive; MDR, multidrug resistant; RRDR,

rifampicin resistance–determining region; RMR, rifampicin monoresistant; RR, rifampicin resistant; SNP, single nucleotide

polymorphism; TN, true negative; TP, true positive.

https://doi.org/10.1371/journal.pbio.3001721.g006
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assay is likely to perform better on more representative data. However, the analysis shows how

the increasing global levels of RMR TB cases could increase the number of false positive MDR

diagnoses by the Xpert MTB/RIF assay, denying isoniazid treatment to a greater number of

patients who would then be moved on to less effective drugs.

There are genetic differences between rifampicin monoresistant and

multidrug resistant isolates

We have analysed the matched phenotypic and genotypic data of the compendium to examine

whether there were any differences in the genetic determinants of rifampicin resistance

between RMR and MDR isolates as was seen in a recent study of South African isolates [35].

The proportion of RMR isolates with no rpoBmutation (5.3%; Fig 6B) was significantly higher

than that of MDR isolates (1.8%, p<0.00001). This suggests that non-target-mediated resis-

tance mechanisms, such as up-regulation of rifampicin-specific efflux pumps, could be more

influential in providing protection against rifampicin in RMR isolates than in MDR isolates.

The majority of RMR and MDR isolates contained one or more single nucleotide polymor-

phisms (SNPs) in rpoB, with the most having at least 1 mutation in the RRDR. To date, several

nonsynonymous RRDR mutations have been found in RMRM. tuberculosis isolates, including

the resistance conferring mutations S450L, H445D, and D435Y, which are also seen in MDR

isolates [36,37]. For both RMR and MDR isolates in this dataset, the most common rpoB
RRDR mutation seen was S450L (63.6% and 41.1% of isolates, respectively; Fig 6C). Five muta-

tions were present in RMR isolates that were not seen in MDR isolates: S428G, S441A, S441V,

S450M, and S450Q; however, these were seen at low prevalence (<2%) of RMR isolates. We

found more RMR isolates had His445 mutated than MDR isolates (27.8% of RMR and 9.5% of

MDR, p< 0.00001), and mutations at Ser450 and Asp435 were more prevalent in MDR iso-

lates than RMR isolates (43.7% of RMR and 65.8% of MDR (p< 0.00001), and 9.3% of RMR

and 15.5% of MDR (p = 0.00328), respectively).

In RMR isolates, we observed 27 different rpoBmutations that fall outside the RRDR; 11

were found in RMR but not MDR isolates and all were seen at<2% prevalence (Fig E in S1

File). The most common non-RRDR mutation in both MDR and RMR isolates was a cytosine

to thymine mutation 61 bases upstream of the rpoB start codon (10.1% and 8.6% of isolates,

respectively). The resistance conferring mutations, rpoB I491F, V695L, and V170F, were seen

at low proportions (<2% of isolates) with no significant difference between MDR and RMR

isolates.

Discussion

This compendium ofM. tuberculosis clinical isolates is the result of an extensive global effort

by the CRyPTIC consortium to better map the genetic variation associated with drug resis-

tance. Through its sheer size and by oversampling for resistance, the compendium gives an

unparalleled view of resistance and resistance patterns among the panel of 13 antitubercular

compounds studied. This study serves to summarise the data within the compendium and to

highlight the existence of the open-access resource to the wider community to help better

inform future treatment guidelines and steer the development of improved diagnostics.

Starting with first-line drugs, molecular based diagnostic assays have vastly improved the

detection of and the speed at which we find DR-TB cases, resulting in improved quality of care

for patients. However, relying solely on these diagnostic methods has several drawbacks. Aside

from the Xpert MTB/RIF assay potentially increasing false positive MDR diagnoses as dis-

cussed earlier in the RMR case study, the assay assumes isoniazid resistance upon detection of

rifampicin resistance. Thus, less is known about the prevalence of mono-isoniazid resistance
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or “true” cases of MDR (confirmed rifampicin and isoniazid resistance) [1] and with large

datasets such as this compendium, we can further investigate these important and rarer clinical

phenotypes (like that of RMR in our case study). Another example of a rarer phenotype is that

of isoniazid-resistant and rifampicin-susceptible (Hr-TB) isolates; a greater number of these

were contributed by CRyPTIC countries than RMR isolates (n = 1,470 versus n = 302), a pat-

tern also recently observed in a global prevalence study [38]. A modified 6-month treatment

regimen is now recommended for Hr-TB (rifampicin, ethambutol, levofloxacin, and pyrazina-

mide), and as a result of inadequate diagnosis, many of the 1.4 million global Hr-TB estimated

cases would have received inadequate and unnecessarily longer treatment regimens [1,39].

Encouragingly, CRyPTIC isolates with an Hr-TB background exhibited relatively low levels of

resistance to other antitubercular drugs, including those in the augmented regimen (Fig 4C).

However, without appropriate tools to assess and survey this, we will continue to misdiagnose

and ineffectively treat these clinical cases. In 2018, CRyPTIC and the 100,000 Genomes project

demonstrated that genotypic prediction from WGS correlates well with culture-based pheno-

type for first-line drugs, which is reflected in our summary of the genetic catalogue applied to

this dataset (Table 3) [8]. While predictions can be made to a high level of sensitivity and speci-

ficity, there is still more to learn, as exemplified by the isolates in the compendium that despite

being resistant to rifampicin and isoniazid could not be described genetically (Table 2). This

shortfall, along with the limitations of molecular based diagnostic assays, highlights the need

for continual genetic surveillance and shines a favourable light on a WGS-led approach.

A strength of this compendium lies with the data collated for second-line drugs. A greater

proportion of drug-resistant isolates had additional resistance to fluoroquinolones than sec-

ond-line injectable drugs (Fig 4A). This could be due to more widespread use of fluoroquino-

lones as well as their ease of administration and hence them being recommended over

injectables for longer MDR treatment regimens [1]. Concerningly, we found that resistance to

levofloxacin and moxifloxacin, and kanamycin and amikacin, were more common than resis-

tance to the mycobacterial specific drug ethambutol in an isoniazid- and rifampicin-suscepti-

ble background (Fig 4B), suggesting a level of preexisting resistance to second-line drugs. This

concurs with a systematic review that found patients previously prescribed fluoroquinolones

were 3 times more likely to have fluoroquinolone-resistant TB [40]. Careful stewardship of flu-

oroquinolones, both in TB and other infectious diseases, will be paramount for the success of

treatment regimens. Despite variability in sample collection, we observed high proportions of

fluoroquinolone-resistant MDR/RR isolates from some countries and therefore suggest that

MDR treatment regimens could be improved by optimisation on a geographic basis.

Further treatment improvement could also be made by the selection of appropriate drugs

from each class. For example, The WHO recommends switching from kanamycin to amikacin

when treating MDR TB patients [39], and the compendium supports this recommendation as

we saw more resistance to kanamycin than amikacin in all phenotypic backgrounds. For fluo-

roquinolones, more isolates were resistant to levofloxacin than moxifloxacin in all phenotypic

backgrounds, suggesting moxifloxacin may by the most appropriate fluoroquinolone to rec-

ommend, although we note this conclusion is critically dependent on the validity of the cutoff,

here an ECOFF, used to infer resistance. However, the amenability of drugs to catalogue-based

genetic diagnostics is also an important consideration, and our data suggest levofloxacin resis-

tance could be predicted more reliably than moxifloxacin, with fewer false positives predicted

(Table 2). Testing for fluoroquinolone resistance using molecular diagnostic tests remains lim-

ited. Global data from the past 15 years suggest that the proportion of MDR/RR TB cases resis-

tant to fluoroquinolones sits at around 20%, with these cases primarily found in regions of

high MDR-TB burden [1]. While recently approved tools, such as the Cepheid Xpert MTB/

XDR cartridge, will permit both isoniazid and fluoroquinolone testing to be increased, the
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same pitfalls are to be encountered regarding targeted diagnostic assays [41]. In contrast, the

genetic survey in this study demonstrates the potential of WGS for genetic prediction of resis-

tance to second-line drugs, and studies within the consortium to investigate this are underway.

The data compendium has facilitated the first global survey of resistance to NRDs. Reassur-

ingly, prevalence of resistance to the NRDs was substantially lower than for first- and second-

line agents in the dataset (Fig 3A), and resistance to the new drugs bedaquiline and delamanid

was less common than the repurposed drugs clofazimine and linezolid in an MDR/RR back-

ground (Fig 4C). However, the presence of higher levels of delamanid and clofazimine resis-

tance than ethambutol resistance in the isoniazid- and rifampicin-susceptible background

does suggest some preexisting propensity towards NRD resistance (Fig 4B).

Coresistance between NRDs was seen in isolates in the compendium, the most common

being isolates resistant to both bedaquiline and clofazimine. This link is well documented and

has been attributed to shared resistance mechanisms such as nonsynonymous mutations in

rv0678, which were found in both clofazimine- and bedaquiline-resistant isolates in the com-

pendium [31] (Fig 5B and 5C). Increased clofazimine use could further increase the prevalence

ofM. tuberculosis isolates with clofazimine and bedaquiline coresistance, limiting MDR treat-

ment options including using bedaquiline as the backbone of a shorter MDR regimen [42].

Therefore, proposed usage of clofazimine for other infectious diseases should be carefully

considered.

WHO recommends against the use of bedaquiline and delamanid in combination to pre-

vent the development of coresistance, which could occur relatively quickly [43]; the rate of

spontaneous evolution of delamanid resistance in vitro has been shown to be comparable to

that of isoniazid, and, likewise, bedaquiline resistance arises at a comparable rate to rifampicin

resistance [44]. In this compendium, 12.9% of bedaquiline-resistant isolates were resistant to

delamanid, and 7.1% of delamanid-resistant isolates were resistant to bedaquiline. Several sce-

narios could account for this, including the presence of shared resistance mechanisms. For

example, as bedaquiline targets energy metabolism within the cell, changes to cope with

energy/nutrient imbalances upon the acquisition of resistance-associated ATPase pump muta-

tions may result in cross resistance to delamanid in a yet unknown or unexplored mechanism

[13]. It is imperative that genetic determinants of resistance are fully explored for the NRDs, as

these are our current treatments of last resort, with special attention given to those mecha-

nisms that could be shared with other agents. In the meantime, careful stewardship and pheno-

typic and genotypic surveillance of the NRDs should be implemented, including linezolid and

clofazimine, which are now group A and B drugs, respectively, for MDR treatment [1].

Several research avenues are being actively explored by the CRyPTIC consortium that make

further use of this compendium, including the following: (i) relating genetic mutations to

quantitative changes in the MICs of different drugs [13]; (ii) genome-wide association studies

[15]; (iii) training machine learning models that can predict resistance [14]; and (iv) explora-

tion of the genetic determinants of resistance to second line and NRDs [16]. Collectively, these

studies share the same aim of facilitating the implementation of WGS-directed resistance pre-

diction in the clinic. Finally, we urge other researchers to explore and analyse this large dataset

ofM. tuberculosis clinical isolates and hope it will lead to a wave of new and inciteful studies

that will positively serve the TB community for years to come.

Methods

Ethics

Approval for CRyPTIC study was obtained by Taiwan Centers for Disease Control IRB No.

106209, University of KwaZulu Natal Biomedical Research Ethics Committee (UKZN BREC)
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(reference BE022/13) and University of Liverpool Central University Research Ethics Commit-

tees (reference 2286), Institutional Research Ethics Committee (IREC) of The Foundation for

Medical Research, Mumbai (Ref nos. FMR/IEC/TB/01a/2015 and FMR/IEC/TB/01b/2015),

Institutional Review Board of P.D. Hinduja Hospital and Medical Research Centre, Mumbai

(Ref no. 915-15-CR [MRC]), scientific committee of the Adolfo Lutz Institute (CTC-IAL 47-J /

2017) and in the Ethics Committee (CAAE: 81452517.1.0000.0059) and Ethics Committee

review by Universidad Peruana Cayetano Heredia (Lima, Peru) and LSHTM (London, UK),

Institutional Review Board at Pham Ngoc Thach Hospital, HCMC, Vietnam and Oxford Trop-

ical Research Ethics Committee, UK, University of the Witwatersrand, Johannesburg Human

Research Ethics Committee (Medical) (M160667), Technical Scientific Council (CTC-IAL no.

47-J / 2017) and Research Ethics Committee (CAAE 81452517.1.0000.0059) of Adolfo Lutz

Institute, and University off Cape Town Faculty of Health Sciences Research Ethical Commit-

tee approvals (HREC 012/2007, 057/2013).

The CRyPTIC study involves analysis of microbiological isolates only—there is no associ-

ated data on patients. The study aggregates isolates from previous studies (which had previ-

ously obtained IRB approval) and also collected its own samples. Each IRB listed above

assessed the protocol and saw no need for individual consent as only microbiological isolates

were being analysed, and no personally identifiable information or host genetic data was used.

In the remaining jurisdictions (IML Gauting (Germany), Public Health Scotland, Public

Health Sweden, San Raffaele Scientific Institute, Italy), no IRB approval (and no individual

patient consent) was required for studies analysing routinely collected microbiological isolates

only.

Sample collection

This study was designed to identify as many drug resistance mechanisms and mutations as

possible. Given that for many drugs there is a long tail of rare mutations present at different

frequencies in different countries, sample collection was biased towards collecting resistant

isolates, with (wherever possible) temporally and geographically matched susceptibles. There-

fore, with 4 exceptions, all collecting sites either sequenced all culturable isolates, a random

subsample of all culturable isolates (tailored to budget) or sequenced a subsample of all resis-

tant with matched susceptible samples. The exceptions were as follows: 102 samples from

South Africa, which were a clinical cohort recruited on the basis of the health service classify-

ing them as RR; the first 1,000 out of 2,944 samples from Peru were a historical freezer collec-

tion with heterogeneous sampling process (and the remainder were sampled prospectively, at

random); Brazilian samples combined all stored resistant samples, with prospectively sampled

pan-susceptibles; in addition to sampling prospectively and retrospectively (from freezers)

enriching for resistance and matched susceptibles, at IML Gauting (Germany) and National

Institute for Communicable Diseases (Johannesburg), all isolates resistant to a NRD were

included. Chinese isolates were collected according to the following strategy: collecting sub-

sites were randomly selected from the 72 counties, and then all culture-positive isolates were

included. A broad breakdown of sampling approaches is included in Table B in S1 File.

Plate assay

The CRyPTIC consortium designed 2 versions of the Sensititre MYCOTB plate (Thermo

Fisher Scientific, USA) named the “UKMYC5” and “UKMYC6” microtitre plates [11,12].

These plates contain 5 to 10 doubling dilutions of 13 antibiotics (rifampicin (RIF), rifabutin

(RFB), isoniazid (INH), ethambutol (EMB), levofloxacin (LEV), moxifloxacin (MXF), amika-

cin (AMI), kanamycin (KAN), ethionamide (ETH), clofazimine (CFZ), linezolid (LZD),
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delamanid (DLM), and bedaquiline (BDQ)). DLM and BDQ were provided by Otsuka Phar-

maceutical and Janssen Pharmaceuticals, respectively. The UKMYC5 plate also contained

para-aminosalicylic acid (PAS), but the MICs were not reproducible, and, hence, it was

excluded from the UKMYC6 plate design and is not included in any subsequent analysis [11].

A standard operating protocol for sample processing was defined by CRyPTIC as previ-

ously described [11,12]. Clinical samples were subcultured using 7H10 agar plates, Lowen-

stein–Jensen tubes, or MGIT tubes. Bacterial cell suspensions (0.5 McFarland standard, saline

Tween) prepared from (no later than) 14-day-old colonies were diluted 100X in 10 ml

enriched 7H9 broth prior to plate inoculation. A semiautomated Sensititre Autoinoculator

(Thermo Fisher Scientific, USA) was used to inoculate 100 μl prepared cell suspensions

(1.5 × 105 CFU/ml [5 × 104 CFU/ml—5 × 105 CFU/ml]) into each well of a UKMYC5/6 micro-

dilution plate. The plate was sealed and incubated for 14 days at 37˚C. Quality control runs

were performed periodically usingM. tuberculosisH37Rv ATCC 27294, which is sensitive to

all drugs on the plates.

Minimum inhibitory concentration (MIC) measurements

MICs for each drug were read after incubation for 14 days by a laboratory scientist using a

Thermo Fisher Sensititre Vizion digital MIC viewing system [11]. The Vizion apparatus was

also used to take a high contrast photograph of the plate with a white background, from which

the MIC was measured again using the Automated Mycobacterial Growth Detection Algo-

rithm (AMyGDA) software [45]. The AMyGDA algorithm was specifically developed to auto-

mate and perform quality control of MIC measurements and to facilitate machine learning

studies within the consortium. AMyGDA detects the boundaries of each well using a Hough

transform for circles and measures growth as the number of dark pixels within the area con-

tained by this boundary.

All images where the MICs measured by Vizion and AMyGDA were different were

uploaded to a citizen science project, BashTheBug, on the Zooniverse platform [46]. Each

image was then classified by�11 volunteers and the median classification taken. MICs were

then classified as high (at least 2 methods concur on the MIC), medium (either a scientist

recorded a MIC measurement using Vizion but did not store the plate picture, or Vizion and

AMyGDA disagree and there is no BashTheBug measurement), or low (all 3 methods disagree)

quality.

To ensure adequate data coverage for this study, we took the MIC from the Vizion reading

provided by the trained laboratory scientist if it was annotated as having medium or low

quality.

Binary phenotype classification

Binary phenotypes (resistant/susceptible) were assigned from the MICs by applying epidemio-

logical cutoff (ECOFF) values [12]; samples with MICs at or below the ECOFF are, by defini-

tion, wild-type and hence assigned to be susceptible to the drug in question [12]. Samples with

MICs above the ECOFF are therefore classified as resistant (Fig A and Table C in S1 File).

Please see [12] for the body of work supporting the use of the ECOFF relative to the compen-

dium isolates and Table C in S1 File for the ECOFFs for each drug tested.

Genomic data processing and variant calling

Clinical samples were subcultured either using Lowenstein–Jensen tubes, 7H10 agar plates, or

MGIT tubes for (no more than) 14 days prior to DNA extraction using either the FastPrep-24

instrument (MP Biomedicals) for cell lysis and ethanol precipitation or the
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cetyltrimethylammonium bromide (CTAB) method. Paired-end libraries were prepared using

a Nextera XT DNA sample preparation kit (Illumina, San Diego, CA, USA) and were

sequenced on Illumina instruments. The resulting FASTQ files were processed using the

bespoke pipeline Clockwork (v0.8.3, github.com/iqbal-lab-org/clockwork; [47]). Briefly, all

raw sequencing files were indexed into a relational database with which Clockwork proceeds.

Human, nasopharyngeal flora, and human immunodeficiency virus–related reads were

removed, and remaining reads were trimmed (adapters and low-quality ends) using Trimmo-

matic and mapped with BWA-MEM to theM. tuberculosisH37Rv reference genome

(NC000962.3) [48,49]. Read duplicates were removed. Genetic variants were called indepen-

dently using Cortex and SAMtools, 2 variant callers with orthogonal strengths (SAMtools, a

high-sensitivity SNP caller, and Cortex, a high-specificity SNP and indel caller) [50,51]. The 2

call sets were merged to produce a final call set, using the Minos adjudication tool (v0.11.0) to

resolve loci where the 2 callers disagreed, by remapping reads to an augmented genome con-

taining each alternative allele [24]. Default filters of a minimum depth of 5×, a fraction of sup-

porting reads of 0.9 (Minos) and a genotype confidence percentile (GCP) filter of 0.5 were

applied. The GCP filter is a normalised likelihood ratio test, giving a measure of confidence in

the called allele compared with the other alternatives, and is described in [24]. This produced

one variant call format (VCF) file per sample, each only describing positions where that sample

differed from the reference.

These filtered VCFs were then combined to produce a single nonredundant list of all vari-

ants seen in the cohort. All samples were then processed a second time with Minos, remapping

reads to a graphical representation of all the segregating variation within the cohort, generating

VCF files that had an entry at all variable positions (thus for all samples, most positions would

be genotyped as having the reference allele). These “regenotyped” VCFs were later used to cal-

culate pairwise distances (see below). Please refer to Supplemental Method A in S1 File for

commands used to generate the per-sample and regenotyped VCF files.

To remove untrustworthy loci, a genome mask was applied to the resulting VCF files

(regions identified with self-blast matches in [52] comprising of 324,971 bp of the reference

genome). Furthermore, positions with less than 90% of total samples passing default Clock-

work/Minos variant call filters (described above) were filtered out, comprising 95,703 bp of

the genome, of which 55,980 bp intersect with the genome mask.

Resistance prediction using a genetic catalogue

A hybrid catalogue of genetic variants associated with resistance to first- and second-line

drugs based on existing catalogues was created and can be found at github.com/oxfordmmm/

tuberculosis_amr_catalogues/blob/public/catalogues/NC_000962.3/NC_000962.3_CRyPTIC_

v1.311_GARC1_RUS.csv [8,26]. We specifically did not use the recent WHO catalogue to

avoid circularity and overtraining, as that catalogue was developed (via prior literature, expert

rules, and a heuristic algorithm) based partially on these isolates [25]).

The resulting VCF file for each isolate (see “Genomic data processing and variant calling”

section above) was compared to the genetic catalogue to determine the presence or absence of

resistance-associated mutations for 8 drugs: RIF, INH, EMB, LEV, MXF, AMI, KAN, and

ETH. We did not apply the approach used in [8] to make a prediction if a novel mutation was

detected in a known resistance gene, as we simply wanted to measure how well a pre-CRyPTIC

catalogue could predict resistance in the compendium. These results (found in PREDIC-

TIONS.csv; see “Data availability” section for access) were then compared to the binary pheno-

types (see “Binary phenotype classification” section for how these were defined) with the

following metrics calculated: TP, the number of phenotypically resistant samples that are
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correctly identified as resistant (“true positives”); FP, the number of phenotypically susceptible

samples that are falsely identified as resistant (“false positives”); TN, the number of phenotypi-

cally susceptible samples that are correctly identified as susceptible (“true negatives”); FN, the

number of phenotypically resistant samples that are incorrectly identified as susceptible (“false

negative”); VME, very major error rate (false-negative rate), 0 to 1; ME, major error rate (false-

positive rate), 0 to 1; PPV, positive predictive value, 0 to 1; NPV, negative predictive value.

Phylogenetic tree construction

A pairwise genetic distance matrix was constructed for 15,211 isolates by comparing pairs of

regenotyped VCF files (see “Genomic data processing and variant calling” section above for

more details). A neighbourhood-joining tree was constructed from the distance matrix using

quicktree [53]. Tree visualisation and annotation were performed using the R library ggtree
[54].M. tuberculosis lineages were assigned using Mykrobe and are represented by the col-

oured dots at the branch termini of the tree [24]. For isolates that had “mixed” lineage classifi-

cation (i.e., 2 lineages were found present in the sample by Mykrobe, n = 225, 1.5%), the first

of the 2 lineages was assigned to the isolate. ggtree was also used to construct the trees depicting

BDQ-, CFZ-, and DLM-resistant isolates.

The data

Data are available from ftp.ebi.ac.uk/pub/databases/cryptic/release_june2022/.

The FTP site contains 2 top level directories: “reuse” and “reproducibility”. All data for this

study were analysed and visualised using either R or python3 libraries and packages. See

github.com/kerrimalone/Brankin_Malone_2022 for codebase.

“reuse” directory

We point the reader to this directory to gain access to CRyPTIC project data. “CRyPTIC_reu-

se_table_20221019.csv” contains genotypic and phenotypic data relating to the figures and

summaries listed in this manuscript and is what we present as a general use reference table for

most future projects. It includes binary phenotypes (R/S), MICs, phenotype quality metrics,

and ENA sample IDs for 12,288 compendium isolates (see “Quality assurance of the minimum

inhibitory concentrations for 13 drugs” section below in Results for filters applied to obtain

this final set of isolated). It also includes file paths to each isolate’s VCF file and “regenotyped”

VCF file (VCF files that have an entry at all variable positions; see “Genomic data processing

and variant calling” section above for more). “CRyPTIC_excluded_samples_20220607.tsv”

contains the ENA accession numbers and file paths to each isolate’s VCF file and “regeno-

typed” VCF file for the 2,922 samples that were sequenced but have no relative MIC data.

“reproducibility” directory

This directory contains the data used for multiple CRyPTIC project publications referenced

throughout this manuscript. As stated above, each project has taken slightly different subsets

of these data as documented in those papers. For example, see how tables such as “MUTA-

TIONS.csv” and “GENOTYPES.csv” were used and filtered, (along with others) in this study

to obtain the reuse file “CRyPTIC_reuse_table_20221019.csv” in Fig 1. Again, for optimal use

of CRyPTIC data in your own project, please refer to “CRyPTIC_reuse_table_20221019.csv”

in the “reuse” directory. All data for this study were analysed and visualised using either R or

python3 libraries and packages. See github.com/kerrimalone/Brankin_Malone_2022 for

codebase.
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