
HAL Id: hal-03837079
https://hal.science/hal-03837079v1

Submitted on 3 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Transcontinental spread and evolution of
Mycobacterium tuberculosis W148 European/Russian
clade toward extensively drug resistant tuberculosis

Matthias Merker, Jean-Philippe Rasigade, Maxime Barbier, Helen Cox, Silke
Feuerriegel, Thomas A Kohl, Egor Shitikov, Kadri Klaos, Cyril Gaudin, Rudy

Antoine, et al.

To cite this version:
Matthias Merker, Jean-Philippe Rasigade, Maxime Barbier, Helen Cox, Silke Feuerriegel, et al..
Transcontinental spread and evolution of Mycobacterium tuberculosis W148 European/Russian clade
toward extensively drug resistant tuberculosis. Nature Communications, 2022, 13 (1), pp.5105.
�10.1038/s41467-022-32455-1�. �hal-03837079�

https://hal.science/hal-03837079v1
https://hal.archives-ouvertes.fr


nature communications

Article https://doi.org/10.1038/s41467-022-32455-1

Transcontinental spread and evolution
of Mycobacterium tuberculosis W148
European/Russian clade toward extensively
drug resistant tuberculosis

Matthias Merker1,2,3,19, Jean-Philippe Rasigade4,5,6,19, Maxime Barbier4,5,19,
Helen Cox7, Silke Feuerriegel1,2, Thomas A. Kohl 1,2, Egor Shitikov8,
Kadri Klaos 9, Cyril Gaudin10, Rudy Antoine11, Roland Diel12,13, Sonia Borrell14,15,
Sebastien Gagneux 14,15, Vladyslav Nikolayevskyy16, Sönke Andres17,
Valeriu Crudu 18, Philip Supply 11,20 , Stefan Niemann1,2,20 &
Thierry Wirth 4,5,20

Transmission-driven multi-/extensively drug resistant (M/XDR) tuberculosis
(TB) is the largest single contributor to human mortality due to antimicrobial
resistance. A few major clades of the Mycobacterium tuberculosis complex
belonging to lineage 2, responsible for high prevalence of MDR-TB in Eurasia,
show outstanding transnational distributions. Here, we determined factors
underlying the emergence and epidemic spread of theW148 clade by genome
sequencing and Bayesian demogenetic analyses of 720 isolates from 23
countries. We dated a common ancestor around 1963 and identified two
successive epidemic expansions in the late 1980s and late 1990s, coinciding
with major socio-economic changes in the post-Soviet Era. These population
expansions favored accumulation of resistance mutations to up to 11 anti-TB
drugs, with MDR evolving toward additional resistances to fluoroquinolones
and second-line injectable drugs within 20 years on average. Timescaled
haplotypic density analysis revealed that widespread acquisition of compen-
satory mutations was associated with transmission success of XDR strains.
Virtually all W148 strains harbored a hypervirulence-associated ppe38 gene
locus, and incipient recurrent emergence of prpR mutation-mediated drug
tolerancewas detected. The outstanding genetic arsenal of this geographically
widespread M/XDR strain clade represents a “perfect storm” that jeopardizes
the successful introduction of new anti-M/XDR-TB antibiotic regimens.

Bacteria of the Mycobacterium tuberculosis complex (Mtbc), the cau-
sative agent of tuberculosis (TB), caused 10 million new TB cases in
2019 and are the major cause of death worldwide due to antimicrobial
resistance1. Infectionswithmultidrug resistant (MDR)Mtbc strains, i.e.,

at least resistant to isoniazid [INH] and rifampicin [RIF], require
treatment regimens based on combinations of at least four drugs for
up to 2 years. This treatment often comes with severe side effects and
cure rates hardly exceed 50% globally2. Close to half a million new RIF

Received: 5 October 2021

Accepted: 1 August 2022

Check for updates

A full list of affiliations appears at the end of the paper. e-mail: philip.supply@ibl.cnrs.fr; sniemann@fz-borstel.de; wirth@mnhn.fr

Nature Communications |         (2022) 13:5105 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1126-6803
http://orcid.org/0000-0002-1126-6803
http://orcid.org/0000-0002-1126-6803
http://orcid.org/0000-0002-1126-6803
http://orcid.org/0000-0002-1126-6803
http://orcid.org/0000-0002-0055-755X
http://orcid.org/0000-0002-0055-755X
http://orcid.org/0000-0002-0055-755X
http://orcid.org/0000-0002-0055-755X
http://orcid.org/0000-0002-0055-755X
http://orcid.org/0000-0001-7783-9048
http://orcid.org/0000-0001-7783-9048
http://orcid.org/0000-0001-7783-9048
http://orcid.org/0000-0001-7783-9048
http://orcid.org/0000-0001-7783-9048
http://orcid.org/0000-0001-5059-8002
http://orcid.org/0000-0001-5059-8002
http://orcid.org/0000-0001-5059-8002
http://orcid.org/0000-0001-5059-8002
http://orcid.org/0000-0001-5059-8002
http://orcid.org/0000-0003-3690-3853
http://orcid.org/0000-0003-3690-3853
http://orcid.org/0000-0003-3690-3853
http://orcid.org/0000-0003-3690-3853
http://orcid.org/0000-0003-3690-3853
http://orcid.org/0000-0002-7371-0172
http://orcid.org/0000-0002-7371-0172
http://orcid.org/0000-0002-7371-0172
http://orcid.org/0000-0002-7371-0172
http://orcid.org/0000-0002-7371-0172
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32455-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32455-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32455-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-32455-1&domain=pdf
mailto:philip.supply@ibl.cnrs.fr
mailto:sniemann@fz-borstel.de
mailto:wirth@mnhn.fr


resistant/MDR-TB cases occur annually1,3. Overall, 10% of the MDR
strains are estimated to be additionally resistant to at least one fluor-
oquinolone and one second-line injectable drug, classifying them as
extremely drug resistant (XDR) or pre-XDR, according to previous or
newly modified WHO definitions, respectively, and rendering treat-
ment challenging or almost impossible in some cases.

While it was long assumed that MDR-TB was mostly arising from
acquisition of drug resistance during ineffective TB treatment,
modeling data suggest that incident MDR-TB is now globally driven
by person-to-person transmission of MDR strains, i.e., by primary
resistance4. Consistently, large MDR-TB outbreaks involving exten-
sive transmission of MDR strains over several decades have been
described in, e.g., KwaZulu Natal in South Africa5,6 and in Argentina7.
However, despite this extended time scale and although the impli-
cated strains are part of the otherwise globally successful Mtbc
lineage (L4)8, these outbreaks have been essentially contained within
the corresponding regions. A recent study covering 15 countries also
showed minimal cross-border transmission of drug-resistant
L4 strains, although this restriction was attributed to the relatively
recent emergence of these strains9. These observations raise thus
questions on the pace of drug resistance evolution and on the factors
that may limit or drive (inter)national spread of highly drug resistant
TB strains.

To address these questions, particular MDR-TB clones highly
prevalent in the Russian Federation and several countries in Eastern
Europe and Central Asia represent critical vehicles10,11. These world
regions are particularly affected by the MDR-TB epidemic, with MDR-
TB rates reaching levels of more than 20% among new patients11. This
epidemic is largely linked to MDR strains of L2 (Beijing genotype),
which have been proposed to acquire drug resistance more rapidly
than L4 strains in vitro12. We recently showed that the success of L2
MDR outbreak strains in Uzbekistan was also related to the acquisition
of compensatory mutations that mitigate the fitness cost of RIF resis-
tance conferring mutations13. Sustained transmission of these out-
break strains was associated with additional accumulation of drug
resistance, in a setting lacking comprehensive drug susceptibility
testing at the time14.

Here, we investigate 720 isolates of a single MDR outbreak clade11

part of L2, referred to as W148 European/Russian, from 23 countries
sampled between 1995 and 2013. W148 strains are the main con-
tributors to theMDR epidemic in Russia and Eastern Europe, and since
the USSR’s fall, have also propagated to Western Europe, likely driven
by economic or medical migrations of TB patients. As such, this strain
dataset represents a unique resource to study the longitudinal and
geographical spread, transmission efficacy and drug resistance evo-
lution of Mtbc strains under treatment pressure. Whole genome
sequencing (WGS) and Bayesian demographic approaches were com-
bined to infer the phylogenetic structure andorigin, aswell as bacterial
demographic changes and evolutionary steps driving the rise and
spread of M/(pre-)XDR-TB in Eurasia over the last decades.

Results
W148 phylogeography and spatio-temporal dispersion
We included a total of 731 clinical isolates of L2 for WGS analysis. Of
those, 720 belonged to the previously definedW148 European/Russian
outbreak based on specific single nucleotide polymorphisms (SNPs)11.
Themajority of the collectionwas sampled during the 21st century and
originated from 23 countries, which were later grouped to 14 geo-
graphical regions (Fig. 1a, Supplementary Fig. 1, Supplementary
Data 1). Eleven non-W148 modern lineage 2 isolates were used as
outgroup in subsequent phylogenetic analysis. To avoid the inclusion
of homoplastic sites, mainly due to independent acquisition of iden-
tical resistance conferring mutations in our phylogenetic reconstruc-
tions, we removed 610 variants located in genes and intergenic regions
associated with drug resistance and bacterial fitness (Supplementary

Data 1). A concatenated sequence alignment of 3508 SNPs differ-
entiating the isolates was used to build a maximum-likelihood tree in
order to unravel the geographic pattern present in the dataset (Fig. 1).
The tree revealed a distinction between two major W148 sublineages,
bifurcating from the most basal node in the phylogeny, at the extre-
mity of the branch derived from the root (Fig. 1b). Most Belarus and
Estonian strains clustered in a single subclade, indicating local epi-
demic spread. This pattern of local epidemicswas also apparent froma
minimum spanning tree (Supplementary Fig. 2) where central nodes,
containing several identical strain genomes from Estonia or Belarus,
are surrounded by numerous variants differing only by 2–5 SNPs. In
contrast, strains from Western Europe were randomly distributed in
the network suggesting the importation of W148 strains frommultiple
different regions.

In an initial step, we verified that the W148 clade is a measurably
evolving population (Fig. 2a, Supplementary Fig. 3), as required for
robustmolecular clock calibration. The bestfitting evolutionarymodel
was obtained under a Bayesian skyline model (Table S1), resulting in a
mutation rate of 1.1 × 10−7 mutation per site per year, with 57.61% of
variation across the tree. The time tree (Supplementary Fig. 4) esti-
mates the W148 MRCA around 1963 (95% HPD 1958–1968), and indi-
cates a sharp geographic dispersion to all Eurasia from the early
seventies onwards, followed by two main outbreaks in Belarus and
Estonia in the late eighties. The coalescent-based demographic
reconstructions indicated that the clonal population markedly
expanded with a twentyfold increase in the late eighties-early nineties,
and suggested a milder, fivefold increase (albeit with less certainty
given large confidence intervals) in the late nineties-early
2000s (Fig. 2c).

Genetic diversity among the W148 cluster
Pairwise SNP distances among W148 isolates were unimodal, with a
median of 32 SNPs (Supplementary Fig. 5). This definitively translates
into a recent andweakly structured sublineage, confirming its status of
an outbreak clone. Two other low frequency distribution pairs can be
seen, with median SNPs around 170 and 210. Those correspond to the
mean pairwise distances observed between W148 strains and other L2
members, including basal strains from this lineage.

W148 drug resistance evolution
All strains of the W148 clade were resistant against INH (katG S315T)
and streptomycin (rpsLK43R), indicating that resistance to these drugs
was already acquired by the W148 MRCA in 1963 (see above and
Supplementary Data 1, Fig. 3a), which is consistent with the introduc-
tion of INH in TB treatment in the USSR in the 1960s. Further, rates of
genotypic resistance were very high for other first-line drugs (Fig. 3a),
i.e., RIF (93.2%), ethambutol (84.2%), pyrazinamide (49.6%), andoverall
high for second-line drugs, i.e., fluoroquinolones (22.4%), kanamycin
(63.9%), amikacin (15.8%), capreomycin (16.0%), thioamide (44.4%),
and PAS (8.9%) (Supplementary Data 1). Ten out of 720 W148 strains
were identified withmutationsmediating D-cycloserine resistance.We
found no mutation previously described as associated with resistance
against the newly introduced drugs delamanid and bedaquiline15,16.
Alarmingly, among the 676MDRW148 strains, 49.6%were classified as
pre-XDR (either fluoroquinolone or second-line injectable drug resis-
tance), and 20.9% were classified as XDR-TB, according to WHO defi-
nitions in place until early 2021 (Fig. S6 and Supplementary Data 1).

We then examined the dynamic and the chronological sequence
of accumulation of resistance and compensatory mutations. By per-
forming regression analyses, we detected a significant temporal signal
in the accumulation of genotypic resistances (in red) and compensa-
torymutations (in blue) (Fig. 4), with respective r² =0.09; P < 2.2 × 10−16

and 0.11; P < 2.2 × 10−16.
On average, RIF resistance mediating mutations in rpoB on top of

pre-existing INH resistance and thusMDR, emerged around 1991 (inter

Article https://doi.org/10.1038/s41467-022-32455-1

Nature Communications |         (2022) 13:5105 2



quartile range (IQR) 1987–1997), in at least 66 independent eventswith
one subsequent transmission event in the dated W148 phylogeny
(Fig. 3b, Supplementary Fig. 6). This was followed by acquisition of an
additional putative compensatorymutation in rpoA, rpoB or rpoC in 56
events around 1996 (IQR 1991–2000). Interestingly, acquisitions of
resistance mutations to the second-line drug kanamycin (1997, IQR
1992–2006), but also PAS (1988, IQR 1983–2008) and ethionamide
(1993, IQR 1985–2002) were also deeply rooted in the W148 phylo-
geny. Ethambutol and pyrazinamide resistance emerged around 1994
(IQR 1989–2000) and 2002 (1999–2006), respectively, rendering 331/
720 (46%) W148 isolates fully first-line drug resistant (Supplementary
Data 1). The last step toward (pre)-XDR genotypes was the acquisition
of fluoroquinolone resistance in 2009 (IQR 2003–2010), in 25 inde-
pendent events with subsequent transmission of the pre-XDR strain
(Supplementary Fig. 6). Thus, on average W148 isolates evolved from
MDR to (pre-)XDR within 20 years (Fig. 3b).

Impact of compensatory mutations on transmission
We then focused on the impact of potential compensatorymutations on
the transmission success of RIF resistant isolates (676/731 isolates), as
judged by the genotype. Out of 676 RIF resistant isolates, 585 (86.5%)
harbored a putative compensatory mutation in at least one of the three
genes rpoA, rpoB or, mostly, rpoC. Only 9 RIF resistant isolates exhibited
such mutations in two of these genes, and only one out of 55 (1.8%) RIF
susceptible isolates harbored a mutation in either, rpoA, rpoB or rpoC,
i.e., in this case rpoC N416N (Supplementary Data 1).

To disentangle the respective influences of drug resistance and
compensatorymutationson the transmission success ofW148 isolates,
we used the timescaled haplotypic density (THD) method17,18.

For each isolate in a collection, the THD method considers the
genetic distances of all other isolates to compute a measure of geno-
typic density that reflects the rate of divergence in the isolate’s
ancestry, interpreted as a surrogate marker of epidemic success.
The THD success indices are then used as response variables in
regression models to enable correlating success with other strain
characteristics17,19,20. Using linear mixed models (LMMs) adjusted for
genetic population structure and country-level sampling variations
(see Supplementary Note), we examined the associations of the suc-
cess index with the resistance profile (MDR, and pre-XDR or XDR
according to previous classification), the number of resistance-
conferring mutations and the presence of compensatory mutations.
When included independently in LMMs, neither the resistance profile
nor the presence of compensatory mutations predicted success
(P = 0.07 and 0.24, respectively, ANOVA F-tests). However, in a model
including resistance status, compensatory mutations and their inter-
actions, the addition of interaction terms improvedmodel fit (P =0.01,
ANOVA F-test) and the presence of compensatory mutations was
positively associated with THD in pre-XDR and XDR isolates (P = 0.04
and 0.006, respectively, coefficient t-tests). Hence, the relationship
between resistance profile and epidemic success might be dependent
on the presence of compensatory mutations. Indeed, while epidemic
success decreased with increasing resistance profile (from MDR to
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Fig. 1 | Sampling scheme of B0/W148 strains and phylogeographic expansion
patterns in Eurasia. a Main locations (circled numbers and N ≥ 5) of sampled
B0/W148 populations stratified to three principle geographic regions (1
Russian Federation Tuva, 2 Russian Federation central Asia, 3 Kazakhstan,
4 Uzbekistan, 5 Iran, 6 Abkhazia, 7 Russian Federation Samara, 8 Ukraine,

9 Republic of Moldova, 10 Belarus, 11 Lithuania, 12 Estonia, 13 Sweden, 14
Germany). b Maximum-likelihood phylogeny of 720 B0/W148 strains, with
tips shaded by principle geographic origin. The stars are indicative of two
major outbreaks. The exhaustive list of all samples can be found in Supple-
mentary Data 1.
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pre-XDR and XDR) without compensatory mutations (Fig. 5a), the
success increased from MDR to pre-XDR or XDR among isolates with
compensatory mutations, showing that compensatory evolution,
rather than increased resistance only, drives the success of highly
resistant strains.

We then examined the impact of compensatorymutations on the
incremental accumulation of resistancemutations, rather than crudely
stratifying by MDR, pre-XDR or XDR profile. Resistance associated
mutations were slightly but significantly more numerous in isolates
with compensatory mutations compared to those without (median 6
vs 5 mutations, P = 8.1 × 10−12, Mann–Whitney U-test; Fig. 5b). The
number of resistance mutations, when included in an LMM, was
negatively associated with transmission success (P = 7.7 × 10−5), sug-
gesting a global fitness cost upon gradual accumulation of resistance
conferring mutations. To determine whether this fitness cost of gra-
dual resistance accumulation was measurable independently of the
resistance profile and/or compensatory mutations, we built a LMM
comprising three-way interactions between the number of resistance
mutations, resistance profile and compensatory mutations (Fig. 5c).
The coefficients of these interactions were all negative, with individual
P values ranging from 1.5 × 10−12 to 1.7 × 10−7. In MDR and pre-XDR
isolates, the decrease of the success index associated with each addi-
tional resistancemutationwas comparable in isolateswith andwithout
compensatory mutations (−1.4 × 10−3 vs −1.2 × 10−3 and −8.0 × 10−4 vs
−8.6 × 10−4, respectively). In XDR strains, however, the decrease of
success was 1.8-fold smaller in the presence of compensatory muta-
tions (−6.5 × 10−4 vs −1.2 × 10−3). Within the MDR, pre-XDR and XDR

groups, thus, the gradual accumulation of resistance mutations is
consistently negatively associated with epidemiological success, but
this association is attenuated by compensatory mutations in XDR
isolates. Additional details of the models, along with complementary
analyses using terminal branch lengths in the phylogeny as the model
response variable in place of THD, can be found in the Supplementary
Note file, Supplementary Fig. 7, Supplementary Fig. 8, and Supple-
mentary Fig. 9.

Targets of positive selection and hypervirulence-associated
mutation
Lastly, we screened the W148 phylogeny for homoplasy, i.e., identical
mutations occurring independently on different branches of the phy-
logeny and which cannot be explained by transmission events. Their
independent evolution in the otherwise strongly clonal and genetically
homogenousW148 outbreak would be a strong indication for positive
selection. As a proof of principle, we re-introduced mutations in
resistance mediating genes in the sequence alignment, which were
previously excluded to calculate the ML tree. With the homoplasy
analysis, we retrieved 77 such mutations in genes canonically impli-
cated in drug resistance and compensatory effects (Supplementary
Data 2). The remaining 82 mutations occurred in 47 genes with non-
canonical or (as yet) unknown link with drug resistance or fitness
compensation (Supplementary Data 2). Among the latter, 9 mutations
were identified as associated with (multi-)drug resistance in previous
genome-wide association studies21–23, comprising a dnaA chromoso-
mal site recently shown to be associated with INH resistance24.

Fig. 2 | W148 is a measurably evolving population. a Linear regression analysis
(least square approximation) showing correlation between root-to-tip distance and
sampling years of the W148 strain collection (n = 720) covering the period
1995–2013. b Posterior density distribution of the W148 clade TMRCA. c Effective
population size over time of the 720 W148 strains based on a Bayesian skyline

approach using the HKY substitutionmodel and a Log normal relaxed clockmodel
estimated ameanmutation rate of 1.12 × 10−7 substitutions per nucleotide per year.
Gray shaded area represents changes in the effective population size giving the 95%
highest posterior density (HPD) interval with the black line representing the
mean value.
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Strikingly as well, 4 non-synonymous SNPs recurrently occurred in a
total of 10 strains in the prpR (Rv1129c) gene.Mutations in these genes,
including T131P and D160A, have recently been demonstrated to
induce propionate metabolism-dependent tolerance to different drug
classes in M. tuberculosis25. All but one of the concerned strains were
(pre-)XDR, showing genotypic resistance to up to 10 anti-TBdrugs, and
harbored at least one compensatorymutation (Supplementary Data 1).
Except for two Estonian strains sharing a same resistance profile, these
prpR SNPs occurred in single, terminal tips of the phylogenetic tree,
indicating that they were acquired concomitantly or after the last
acquisition of resistance mutation.

In addition, we screened for the presence of an IS6110 insertion-
linked mutation in the ppe38 gene, recently shown to be involved in
hypervirulence of “modern” Beijing strains26. Consistent with previous

findings27,28, we found this mutated configuration in all 731 genomes
investigated, including both the W148 and the Beijing outgroup
strains.

Discussion
Using the largest genome set from a single outbreak of drug resistant
M. tuberculosis ever investigated, we were able to report the trans-
continental spread and evolution of an initial INH and streptomycin
resistant clone toward extensive TB drug resistance over five decades.
According to our dated phylogeny, this clone likely emerged in the
early sixties. The geographical source was difficult to assess due to
multiple population movements and a lack of sharp geographical
structure in the ML tree, but Central Asia remains the most likely
candidate region according to previous publications11,28. Two epidemic
waves in the late 1980s and late 1990s coincided with social economic
changes in the post-Soviet Era (respectively, the dissolution of Soviet
Union and the 1998 Russian financial crisis) which likely also initiated
subsequent westward expansions29. This continent-wide spread of M/
XDR W148 strains as part of the MTBC lineage 2 is remarkable, as it
contrasts with M/XDR M. tuberculosis clones part of other MTBC
lineages, for instance L4.3.3 and L4.1.2.1, which were extensively
transmitted over similar time scales but remained essentially con-
tained in KwaZulu Natal in South Africa5,6 or in Argentina7. Likewise,
global analysis of a large genome set of L4 strains showed thatmultiple
independent drug resistant clones emerged at nation levels across 5
continents since the antibiotic era, but remained geographically
restricted, with almost no cross-border transmission9.

Our data suggest a combination of bacterial genetic and human
history factors as driving factor of this distinctive epidemiological
success. While the spatial propagation of the parental clone began
during the late-seventies, the apparent 20-fold increase in the W148
effective population size and the start of the epidemic spread, espe-
cially prominent in Estonia and Belarus, in the late 80 s temporally
correlateswith the fall of the SovietUnion and the collapseof its public
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Fig. 3 | Antibiotic resistance profiles and emergence timing. a Bayesian time
tree based on 5264 variable positions (SNPs) among the 720 W148 strains and
11 lineage 2 outgroup strains. The different crowns are showing the presence
(filled box) or absence (empty box) of mutations conferring resistance to dif-
ferent drugs: INH Isoniazid, SM Streptomycin, RIF Rifampicin, EMBEthambutol,
PZA Pyrazinamide, FQ Fluoroquinolones, KMKanamycin, ETHEthionamide and
PAS Para-aminoslicylic acid; strains drug resistance profiles: XDR, Pre-XDR and

carrying putative rpoB compensation. b Box plot representing the emergence
time of different antibiotic resistances. Highlighted dates indicate emergence of
rifampicin resistance on top of pre-existing isoniazid resistance and thus MDR-TB
(1991), pyrazinamide resistance (2002), fluoroquinolone resistance and XDR-TB
(both 2009). Solid bars indicate median node ages, boxes represent the inter
quartile range (IQR), whiskers extend to 1.5× IQR, outliers are shown as individual
points.

Fig. 4 | Bubble plot showing the number of genotypic resistances (in red) and
compensatorymutations (in blue) as a function of strain’s years of isolation of
allW148 strains (n = 720).Bubble sizes are proportionate to the number of strains.
Regression analyses (least square approximation) were significant (P < 2.2 × 10−16)
and regression curves are shown on the plot.
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health system. This historical episode is known to coincide with a 50%
increase in TB mortality rate29, as well as epidemic peaks of other
diseases such as diphtheria31 and syphilis32 in Eastern Europe and
Russia at the same period. As a likely consequence of the poor TB
management at the time33, and consistently with the predictable
increase in mutation frequency upon increasing population size, we
found that most drug resistances and putative compensatory muta-
tions became fixed in the bulk of W148 strains around or following the
expansion period in the 1990s.

Our results also point to the crucial role of compensatory evolu-
tion in determining the epidemic success of the W148 clade. In the
evolutionary history of W148 strains, known compensatory mutations
in the RNA-polymerase genes rpoA, rpoB and rpoC34,35 consistently
appeared after the fixation of canonical RIF resistance conferring
mutations in rpoB. Moreover, we found thatW148 strains harboring at
least one putative compensatory mutation were resistant to more
drugs and exhibit higher transmissibility indices relatively to their
counterparts devoid of such mutations, thus further coherent with
effective mitigation of resistance related fitness cost and determinant
of transmissibility. Our findings thus extend at a global scale recent
conclusions on the role of compensatory mutations as drivers of
transmission of MDR-TB strains in carceral and general populations in

Georgia36. Interestingly, the expansion of the so-called LAM4/KZNXDR
clone (part of L4) in KwaZulu-Natal likewise started in the early 90 s
after the acquisition of presumed compensatory mutations in rpoB,
but essentially remained limited to southern Africa since then, with
only exceptional documented spill-over37, suggesting that other fac-
tors must have also contributed to the outstanding international
spread of W148 strains.

The acquisition of extensive drug resistance and compensatory
mutations specifically on top of an already underlying hypervirulent
genetic background is likely part of the explanation, as it was already
observed for other major pathogens30,38,39. Indeed, the W148 clade is a
branch of the so-called “modern” Beijing sublineage L2, which has
recently been shown to be characterized by an IS6110-linked deletion
of theppe38gene locus, leading to loss of secretionof substrates of the
ESX-5 type VII secretion system and involved in a hypervirulent
phenotype26. Our analysis confirmed the presence of such ppe38
configuration in all 731 dataset strains. Moreover, the W148 clade
additionally underwent two large scale genomic re-arrangements40,
and has a characteristic frameshift mutation in the two component
regulatory system KdpD and KdpE11, implicated in the response to
oxidative stress41. A KdpDE deletion mutant of M. tuberculosis was
shown to cause higher virulence in a mouse model42. Furthermore, we

Non-XDR Pre-XDR XDR
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0 ≥1 
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Fig. 5 | Compensatory mutations influence the epidemic success of drug-
resistant variants of W148 M. tuberculosis. Whole genome sequences of 671
isolateswere used to infer thepresenceof possible compensatorymutations and to
compute indices of epidemic success using the THDmethodwith a 10 y time scale.
a Evolution of success indices with resistance status (MDR, and pre-XDR, XDR
according to definitions in place in 2020) in isolates with and without possible
compensatory mutations. The median success index decreased with resistance
status in isolates lacking compensatory mutations and increased in isolates har-
boring these mutations. Solid bars indicate the median, boxes represent the inter
quartile range (IQR), whiskers extend to 1.5× IQR.bThe no. of resistance-conferring

mutations per genome was higher in isolates harboring compensatory mutations.
Solid bars indicate the median, boxes represent the inter quartile range (IQR),
whiskers extend to 1.5× IQR, outliers are indicated by individual points. c The
success indices decreased with the accumulation of resistance-conferring muta-
tions within MDR, pre-XDR and XDR isolates. Colored lines and bands denote
success indices (point estimate and 95% confidence interval, respectively) pre-
dicted by a linear model adjusted for population structure. In XDR, but not MDR
and pre-XDR isolates, compensatory mutations were associated with a two-times
slower decrease of success index per additional resistance mutation. All P values
derived from two-sided Mann–Whitney U-tests.
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detected recurrent instances of emergence of prpR mutations med-
iating multidrug tolerance25 in terminal branches of our W148 phylo-
geny, corresponding in most cases to (pre-)XDR strains carrying both
compensatorymutations and resistance mutations to up to 10 anti-TB
drugs. Thus, the genetic make-up of the W148 clade may represent a
unique “perfect storm” providing extended resistance with little to no
fitness cost and incipient additional multidrug tolerance, on top of
hypervirulence likely favoring rapid disease progression and enhanced
infectiousness. Drug tolerance undermines overall antibiotic efficacy
and favors additional drug resistance emergence25, and may further
imperil sustained effectiveness of newly introduced anti-TB drugs,
especially bedaquiline and linezolid, as resistance to either of these
drugs and to a fluoroquinolone is now defining XDR. Moreover, the
observed ongoing gain of drug tolerance associated mutations in
strains that are already highly resistant and highly transmissible—up to
transcontinental level—is of particularly serious concern.

Finally, host population movements over the time period have
most probably further potentialized these exceptional bacterial fea-
tures and contributed to the geographic expansion of the W148 clade.
Our TMRCA estimate of the W148 origin was determined to the early
nineteen sixties, followed by a first expansion to European Russia, and
consistent with important population movements from West Siberia
starting in the 1960s till the 1980s28. Subsequent expansion was most
likely fueled by the known important migration further westward43, as
well as bymany patients suffering fromW148 strain-causedM/XDR-TB
and seeking medical care in Western Europe, which occurred and still
occurs since the fall of the Berlin Wall. Nevertheless, and importantly,
for the strain set isolated in Western European countries, one-third of
the patients whose origin was documented were Western European-
born, indicating thus effective allopatric transmission beyond popu-
lations of origin and further supporting the contribution of intrinsic
bacterial features as well.

In conclusion, our results provide new insights into bacterial and
host-related factors involved in the propagation at continental scale of
an extensively drug resistant strain ofM. tuberculosis over the last five
decades. From a clinical and public health point of view, our popula-
tion genomic approach reveals that most W148 strains have become
resistant to multiple first- and second-line anti-TB drugs, including
some that are potentially gaining additional multidrug tolerance.
Extensive drug susceptibility testing and a tightly controlled pro-
grammatic introduction of newer anti-TB drugs and newly composed
regimens will be critical to contain and prevent further emergence,
spread and additional resistance amplification of XDR strains. Fur-
thermore, we show how Bayesian approaches can detect fine scale TB
expansions linked to past deficiencies in Public Health systems or
economic crises. Recently, numerous disruptions in medical services
caused by COVID-19 translated into a worrying reduction in TB case
notifications (WHO 2019). Applying a similar strategy with TB strains
collected from2019 onward will likely allow unraveling andmeasuring
the impact of the COVID-19 epidemics on TB, facilitating therefore
local decision-making and prioritization of aid.

Methods
Data collection and whole-genome sequencing
The study comprises Mtbc strains obtained for routine diagnostic
procedures. No additional patient material was obtained. Ethical
approval was granted by the ethic commission of the University of
Lübeck, Germany. Overall, 731 MTBC isolates were identified based on
characteristic MTBC genotyping patterns classifying them as W148
Beijing family. This definition includes isolates with mycobacterial
interspersed repetitive units (MIRU) genotype “100-32”, as well as a
characteristic IS6110 restriction fragment length polymorphism
(RFLP) banding pattern described previously by Bifani et al.44. Both
MIRU genotype 100-32 and the characteristic RFLP banding pattern
have been linked with strains previously designated as “the successful

Russian clone”28. Following WGS analysis (see below), 720/731 isolates
had specific genetic polymorphisms classifying them unambiguously
as W148 Europe/Russian outbreak clade11. This clade has been recently
also termed L2.2 M4.545 and clade B in a study in Samara, Russia13.

Isolates were sampled in 23 different countries between 1995 and
2013 and later grouped in 14 geographical regions. For the geographic
assignment of the strains, the following rule was applied: prioritize the
“patient origin”, if not available implement “the country of isolation”.
All samples belonging to Eurasia with more than five strains are
represented on the geographical map (Fig. 1a). Other, marginal sam-
ples, from theMiddle East andAfrica,with <5 strainswere not included
in statistical analyses due to small samples sizes, but can be found in
SupplementaryData 1. Adetailed overviewof the sampling per country
and estimates for the regional prevalence of W148 strains are given in
Supplementary Data 3, and numbers of MDR/XDR isolates per country
are displayed in Supplementary Fig. 10. The global dataset entails 537
newly sequenced genomes, plus another 194 publicly available W148
genomes (see Supplementary Data 1). WGS was performed on all iso-
lates using Illumina Technology (MiSeq and HiSeq 2500) with Nextera
XT library preparation kits as instructedby themanufacturer (Illumina,
San Diego, CA, USA). The raw data (fastq files) were submitted to the
European nucleotide archive (accession numbers are given in Sup-
plementary Data 1).

Mapping of reads, SNP filtering and genotypic drug resistance
prediction
Fastq files/reads were mapped to the M. tuberculosis H37Rv genome
(GenBank ID: NC_000962.3) with the MTBseq pipeline as described
earlier46. Briefly, variants were called with a minimum coverage of 10
reads and at least 75% allele frequency. After exclusion of drug resis-
tance associated genes, repetitive regions and non-informative/non
discriminating SNPs, the remaining positions that matched the above-
mentioned threshold levels in at least 95% of all isolates were con-
sidered as valid and used for all isolates in a concatenated sequence
alignment.

To determine strain genotypic drug resistances, we first con-
sidered all mutations in 28 genes implicated in resistance against
first- and second-line drugs as well as rpoA and rpoC associated
with compensatory effects (Supplementary Data 4). In the context of
this study, we only considered a mutation in either rpoA, rpoB, or
rpoC, as putative compensatory mutation when it co-occurred with a
RIF resistance conferring mutation. We excluded known phyloge-
netic variants for the resistance prediction according to ref. 47.
Rationales and references for mutations considered as resistance
conferring are given in Supplementary Data 4. Homoplasy was ana-
lyzed with HomoplasyFinder (accessed at 26.10.2020, https://github.
com/JosephCrispell/homoplasyFinder) as described earlier48. As
input, we used the sequence alignment described above and re-
introduced SNPs in genes implicated in drug resistance and com-
pensatory effects, and a maximum-likelihood tree based on a
sequence alignment excluding genes associated with drug resistance
and compensatory evolution (see below).

Time-dependent phylogenetic and phylogeographic
reconstruction
Phylogenetic relationships were reconstructed using the maximum-
likelihood approach implemented in PHYML 3.41249. The robustness of
the maximum-likelihood tree topology was assessed with boot-
strapping analyses of 1000 pseudoreplicated datasets. Phylogenies
were rooted with the midpoint rooting option using FIGTREE software
v1.4 andwith the referenceM. tuberculosis strainH37Rv, both resulting
in the same topology. The profile of drug resistances for each strain
and information of compensatory mutations were plotted on the
maximum-likelihood tree using ITOL

50. Linear regression analysis of the
root-to-tip distances against sampling time was performed using
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TEMPEST1.551. To assess the robustness of our root-to-tip regression, we
performed a permutation test of 5000 replicates using the LMPERM

Package 2.1.052 in R. As a complementary assessment of the temporal
signal in the data, date randomization was performed on our datasets
using the TIPDATINGBEAST 1.1.0 R package53. Sampling dates of the gen-
omes were randomly shuffled five times, and date-randomized data-
sets were analyzed with BEAST V2.3.2 using the same parameters as the
original ones. For all simulations, there was no overlap between
the substitution rates 95%HPD intervals between the real data and the
randomized data, suggesting that the data contain sufficient temporal
structure and spread.

For the coalescent-based analyses, evolutionary rates and tree
topologies were analyzed using the general time-reversible (GTR) and
Hasegawa–Kishino–Yano (HKY) substitution models with gamma dis-
tributed among-site rate variation with four rate categories (Γ4). The
substitution rate was estimated under different demographic and
clock models using BEAST v2.3.254 taking advantage of a sampling
timeframe from 1995 to 2013. We tested both a strict molecular clock
(which assumes the same evolutionary rates for all branches in the
tree) and a relaxed clock that allows different rates among branches.
Constant-sized and Bayesian skyline plot models, based on a general,
non-parametric prior that enforces no particular demographic history
were used. For each model, two independent chains were conducted
for 100million generations and convergencewas assessedby checking
ESS values for key parameters using TRACER V1.6. We used TRACER V1.6 to
calculate the log10 Bayes factors in order to compare themodels after a
burnin of 10% of the chain. Bayes factors represent the ratio of the
marginal likelihood of the models being compared. Approximate
marginal likelihoods for each coalescent model were calculated via
importance sampling (1000 bootstraps) using the harmonic mean of
the sampled likelihoods. A ratio between 3 and 10 indicates moderate
support that one model better fits the data than another, whereas
values >10 indicate strong support.

In addition, to compare regions of different sample sizes we cal-
culated the nucleotide diversity pi per regions and performed a rar-
efaction procedure to correct for sample size differences, using
bootstrapping and subsampling of 19 individuals (corresponding to the
smallest population size considered in the analysis, i.e., from Lithuania)
with 10,000 repetitions, in R, using the package APE

55 and PEGAS
56. The

minimum spanning tree was produced using BIONUMERICS version 7.6.

Statistical analysis, THD success index computation and
modeling
The THD success index was computed as described elsewhere17 based
on the matrix of genetic distances between isolates (SNPs counts).
User-defined parameters were a mutation rate of 1.1 × 10−7 mutation
per site per year, an effective genome size (number of positions
retained for SNP calling) of 3.97 × 106 and a time scale of 10 y, con-
sistent with the relatively fast pace of expansion ofW148 suggested by
demographic analyses (Fig. 2c).

To account for variations in the sampling effort between countries
in our dataset, the THD computations were corrected for sampling
bias. The THD reflects both the abundance and genetic proximity of
isolates in a group of interest, so that an unbalanced sampling cover-
age between groups can falsely increase THD in groups with higher
coverage. Consider the following example, where two genetically dis-
tinct groups A and B have similar demographic history such that their
true average THD values are equal, and their THD estimates depend on
their respective sample sizes. If, due to unbalanced sampling effort,
individuals in A and B were sampled with a probability (sampling
coverage) of 1.0 and 0.5, respectively, we expect THD estimates in A to
be higher than in B due only to sampling bias. Because each THD value
is an average of densities, this sampling bias can be corrected for by
using a weighted average, with weights inversely proportional to

sampling coverage. In our example, assigning weights of 1 to indivi-
duals inA andweights of 2 to individuals in Bwould restore thebalance
between A and B. Based on this rationale, we estimated the sampling
coverage for each country in our dataset (Supplementary Data 3) to
assign weights to isolates during THD computations. The THD success
indexwas then comparedbetween groups usingMann–WhitneyU-test
or used as the response variable in LMMs. All constructed LMMs were
controlled for population structure and country-specific variations
(see details below). The significance of LMM coefficients was assessed
using package LMERTEST v3.1-3. All THD computations used R software
version 4.0.2. Detailed model outputs can be found in the Supple-
mentary Note. R scripts and data for all THD models and figure gen-
eration can be found at https://github.com/rasigadelab/xdrtb_thd and
at the Zenodo repository at https://zenodo.org/record/6826135 under
DOI 10.5281/zenodo.6826135.

Correction for population structure in THD models is used to
detect potential predictors independent of vertical inheritance18.
Correction for population structure was conducted using principal
component analysis57. Genetic principal components are distance-
preserving coordinates in the space of genetic distances (SNP differ-
ences) between isolates, the same space over which THDs are com-
puted. To correct for population structure in THD regression models,
we introduced genetic principal components as continuous, fixed-
effect control variables. Doing so introduces the location of each iso-
late in the population structure as a model predictor. If THD indices
only depend on population structure but not on other predictors such
as drug resistance, the addition of these other predictors will not
improve model fit and these predictors will not be considered inde-
pendent. Conversely, if other predictors contribute to THD prediction
independent of population structure (typically if their effect is seen
among strains with independent arisal in the phylogeny), their addi-
tion along with genetic principal components will improve model fit
and thesepredictorswill be considered independent of the population
structure.

The genetic principal components were computed as follows.
First, a reasonably large set (n = 20) of genetic principal components
were computed from the matrix of genetic distances using classical
metric multidimensional scaling (standard R command cmdscale). We
did not use the full set of genetic principal components as controls in
the THD mixed-effect models, as this would lead to increased noise
anddiminished statistical power. To reducenoise, we selected a subset
of the genetic principal components most strongly associated with
THD, to be used as controls inTHDmixed-effectsmodels. To select the
subset of relevant genetic components, a linear regression of THDwas
constructed, of the form [Eq. 1]

y =Gg + ϵ ð1Þ

where y is the known vector of THD indices; G is the known matrix of
genetic principal components; g is the unknown vector of coefficients
associated with the genetic principal components; and ϵ is the error
term, assumed to follow a centered normal distribution. This full
model was used as input to a stepwise variable selection procedure in
which genetic principal components are added or removed at each
step while monitoring model fit. The procedure stops when
complexity-penalizedmodelfit (as estimatedusingAkaike Information
Criterion) is not strengthened anymore by adding or removing genetic
principal components (standard R command step). The subset of
genetic principal components (n = 4, namely, components 1, 2, 3 and 7)
in the final, best-fitting model (adjusted R² =0.29) were retained and
used as fixed-effect control variables in THDmixed-effectmodels. The
same approach was used in alternative models using terminal branch
lengths in place of THD indices as the response variable (see
Supplementary Methods).
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Linear mixed models (LMMs) using THD indices as the response
variable had the following structure [Eq. 2],

y=Xβ+Cγ +Zu + ϵ ð2Þ

where y is the known vector of THD indices; X is the known matrix of
predictors of interest as indicated in text, such as the resistance group;
β is the unknown vector of fixed-effect coefficients associated with the
fixed-effect predictors; C is the known matrix of fixed-effect controls,
typically the set of genetic principal components used to control for
population structure (see above); γ is the unknown vector of
coefficients associated with the fixed-effect controls; Z is the known
matrixof random-effect controls, namely the geographic region coded
as a categorical variable; u is the unknown vector of coefficients
associated with the random-effect controls; and ϵ is the error term,
assumed to follow a centered normal distribution.

Impact of resistance-conferring and compensatory mutations
on transmission success
We used multiple linear regressions to examine the respective
contributions of antimicrobial resistance and putative fitness cost-
compensatingmutations to the transmission success of TB. To take
transmission duration into account, we computed, for each isolate
and each period length T in years (from 1 to 40 y before sampling), a
transmission success score defined as the number of isolates dis-
tant of less than T SNPs, divided by T. This approach relied on the
following rationale: based on MTBC evolution rate of 0.5 mutation
per genome per year, the relation between evolution time and SNP
divergence is such that a cluster with atmostN SNPs of difference is
expected to have evolved for approximately N years. Thus, trans-
mission success score over T years could be interpreted as the size
of the transmission network divided by its evolution time, hence as
the average yearly increase of the network size. For each period T,
the transmission success score was regressed on the number of
resistance mutations and on the presence of putative compensa-
tory mutations. The regression coefficients with 95% confidence
intervals were computed and plotted against T to identify maxima,
that is, time periods when the transmission success was maximally
influenced by either resistance-conferring or - compensating
mutations.

Detection of genes under positive selection and IS6110
insertion-linked ppe38 mutation
Homoplasies, likely signatures of positive selection, were identified
using HomoplasyFinder48. IS6110 insertions in the ppe38 gene locus
were screened in the 731 genomes by a specific pipeline, first including
collection of IS6110 sequence parts-containing reads identified by
bowtie 258 -based mapping on a IS6110 reference sequence. Using the
same mapping tool or the CLC Genomic Workbench software
(Qiagen), collected reads were mapped on a M. tuberculosis H37Rv
genome reference, fromwhich all IS6110 copies were excised in silico,
to identify orthologous genome sequences flanking IS6110 insertions
in each isolate, as described in Antoine et al.59.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that the data supporting the findings of this study
are available within the paper and as Supplementary Material and
Supplementary Methods files and may also be requested from M.M.
Accession numbers for sequence data (fastq files) are provided in
Supplementary Data 1.

Code availability
R scripts and data for all THD models and figure generation can be
found at https://github.com/rasigadelab/xdrtb_thd and at the Zenodo
repository at https://zenodo.org/record/6826135 under https://doi.
org/10.5281/zenodo.6826135.
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